[go: up one dir, main page]

JP2016064845A - Bag body and vacuum heat insulation material using the bag body - Google Patents

Bag body and vacuum heat insulation material using the bag body Download PDF

Info

Publication number
JP2016064845A
JP2016064845A JP2014194237A JP2014194237A JP2016064845A JP 2016064845 A JP2016064845 A JP 2016064845A JP 2014194237 A JP2014194237 A JP 2014194237A JP 2014194237 A JP2014194237 A JP 2014194237A JP 2016064845 A JP2016064845 A JP 2016064845A
Authority
JP
Japan
Prior art keywords
heat
recesses
bag body
heat seal
bag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014194237A
Other languages
Japanese (ja)
Other versions
JP6422713B2 (en
Inventor
絵梨奈 白川
Erina Shirakawa
絵梨奈 白川
中村 博文
Hirobumi Nakamura
博文 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Film Co Ltd
Original Assignee
Sekisui Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Film Co Ltd filed Critical Sekisui Film Co Ltd
Priority to JP2014194237A priority Critical patent/JP6422713B2/en
Publication of JP2016064845A publication Critical patent/JP2016064845A/en
Application granted granted Critical
Publication of JP6422713B2 publication Critical patent/JP6422713B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Packages (AREA)
  • Package Closures (AREA)
  • Thermal Insulation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a bag body and a vacuum heat insulation material which can suppress a penetration amount of gas entering inside the bag body, and suppress occurrence of fracture in a heat seal area.SOLUTION: A bag body 2 is formed by overlapping two composite films 20 having heat fusion layers so that the heat fusion layers face each other, and thermally sealing at least a part of an outer peripheral edge part. A row 28 of recesses, in which a plurality of recesses 26 whose thickness of the heat fusion layers is thinner than the periphery are disposed at intervals in a lengthwise direction of a heat seal area 22 formed at the outer peripheral edge part, are provided on at least one surface of the heat seal area 22. A plurality of rows 28 of the recesses are arranged at intervals in a width direction of the heat seal area 22. In each row 28 of the recesses, a recess 26 is arranged so as to be positioned between two recesses 26 of the adjacent rows 28 of the recesses. In a vacuum heat insulation material 1, a core material 10 having a fine gap is sealed in a decompressed state in the bag body 2 as a filling material.SELECTED DRAWING: Figure 1

Description

本発明は、充填物を密封する袋体及び当該袋体を用いた真空断熱材に関する。   The present invention relates to a bag body for sealing a filling material and a vacuum heat insulating material using the bag body.

近年、菓子などの食品や薬などを袋体に密封状態で収納して長期保存を可能としたり、袋体に発泡体、粉末、繊維体などを真空密封して真空断熱材としたり、袋体の密封技術が広く用いられている。   In recent years, food such as confectionery and medicines can be stored in a sealed state in a bag to enable long-term storage, or foam, powder, fiber, etc. can be vacuum-sealed into a bag to form a vacuum insulation material. The sealing technology is widely used.

例えば、真空断熱材は、グラスウールやシリカ粉末などの微細空隙を有する断熱性に優れた芯材を、ガスバリア性を有する複合フィルムからなる袋体内に収納し、袋体の内部を減圧して密封したものである。真空断熱材は、袋体の内部を高真空に保つことにより、高い断熱効果を実現している。よって、その優れた断熱効果を長期にわたって発揮するためには、袋体内の真空度を高く維持することが必要である。   For example, the vacuum heat insulating material contains a core material excellent in heat insulating properties having fine voids such as glass wool or silica powder in a bag made of a composite film having gas barrier properties, and the inside of the bag is decompressed and sealed. Is. The vacuum heat insulating material achieves a high heat insulating effect by keeping the inside of the bag body at a high vacuum. Therefore, in order to exhibit the excellent heat insulation effect over a long period of time, it is necessary to maintain a high degree of vacuum in the bag body.

ここで、袋体の内部を高真空に保つ方法のひとつに、袋体の外部から内部に侵入する気体(ガス)の量を抑制する方法がある。袋体は、通常、2枚の矩形状の複合フィルムを重ね合わせて、その四方の側縁部(外周縁部)同士を熱シールすることによって製造される。複合フィルムは、一般的に、最外面に位置する表面保護層と、熱シール材として最内面に位置する熱融着層と、ベース層及び熱融着層の間に挟まれたガスバリア層とによって構成され、これらの各層が接着剤によって接着されている。ここで、袋体の外周縁部の端面では熱融着層が露出している。熱融着層はガスバリア層と比べて気体(ガス)が透過しやすいため、熱融着層が露出している箇所から熱融着層を通って内部へ気体(ガス)が経時的に侵入する。その結果、袋体内の真空度が低下し、真空断熱材においては長期にわたって優れた断熱性能を維持できないという問題がある。   Here, as one of the methods for keeping the inside of the bag body at a high vacuum, there is a method for suppressing the amount of gas (gas) entering the inside from the outside of the bag body. A bag body is usually manufactured by stacking two rectangular composite films and heat-sealing their four side edges (outer peripheral edges). In general, a composite film is composed of a surface protective layer located on the outermost surface, a heat fusion layer located on the innermost surface as a heat sealing material, and a gas barrier layer sandwiched between the base layer and the heat fusion layer. And each of these layers is bonded by an adhesive. Here, the heat-sealing layer is exposed at the end face of the outer peripheral edge of the bag. Gas (gas) permeates through the heat-fusion layer through the heat-fusion layer from the location where the heat-fusion layer is exposed, because the gas (gas) is more permeable than the gas barrier layer. . As a result, the degree of vacuum in the bag body is lowered, and there is a problem that the vacuum heat insulating material cannot maintain excellent heat insulating performance for a long time.

そこで、特許文献1には、熱シール時に袋体の外周縁部の一部を強く加圧して熱シール領域の一部に厚みの薄い薄肉部を形成することで、この薄肉部において袋体内に侵入する気体(ガス)の透過量を抑制する技術が開示されている。特許文献1では、この薄肉部が線状に延びるように形成され、袋体の全周を取り巻くように形成されている。   Therefore, in Patent Document 1, a part of the outer peripheral edge of the bag body is strongly pressed at the time of heat sealing to form a thin part having a small thickness in a part of the heat sealing region. A technique for suppressing the permeation amount of an invading gas (gas) is disclosed. In patent document 1, this thin part is formed so that it may extend linearly, and it is formed so that the perimeter of a bag body may be surrounded.

特開2011−208764号公報JP 2011-207664 A

しかしながら、熱シール領域に厚みの薄い薄肉部を連続して設けると、当該薄肉部では熱シール領域の強度が低下する。そのため、強度の弱い部分が熱シール領域に連続して設けられるため、耐久性に問題が生じるおそれがある。なお、この問題は、真空断熱材に限らず、他の密封袋においても同様である。   However, if a thin portion having a small thickness is continuously provided in the heat seal region, the strength of the heat seal region is reduced in the thin portion. Therefore, since the weak part is continuously provided in the heat seal region, there is a possibility that a problem may occur in durability. This problem is not limited to the vacuum heat insulating material, but is the same in other sealed bags.

本発明は、上記問題を解決するためになされたものであって、袋体内に侵入する気体(ガス)の透過量を抑制する肉薄の部分を熱シール領域に設けても、熱シール領域の破断などの発生を抑制することができ、長期にわたって密封性の高い袋体及び断熱性能が優れた真空断熱材を提供することを目的とする。   The present invention has been made to solve the above problem, and even if a thin portion that suppresses the permeation amount of gas (gas) entering the bag body is provided in the heat seal region, the heat seal region is broken. It is an object of the present invention to provide a bag body having a high sealing property and a vacuum heat insulating material with excellent heat insulating performance.

本発明の上記目的は、熱融着層を有する2枚の複合フィルムを前記熱融着層が対向するように重ねて外周縁の少なくとも一部を熱シールすることによって形成される袋体において、外周縁に形成された熱シール領域の少なくとも一方面には、前記熱融着層の厚みが周辺よりも薄い凹部が前記熱シール領域の長さ方向に間隔をあけて複数配置された前記凹部の列が設けられるとともに、前記凹部の列が前記熱シール領域の幅方向に間隔をあけて複数配置されており、前記凹部の各列は、前記凹部が隣り合う前記凹部の列の2つの前記凹部の間に位置するよう配置されている袋体によって達成される。   The above object of the present invention is to provide a bag formed by stacking two composite films having a heat fusion layer so that the heat fusion layers face each other and heat-sealing at least a part of the outer periphery. The at least one surface of the heat seal area formed on the outer peripheral edge has a plurality of recesses in which the thickness of the heat-sealing layer is thinner than that of the periphery. The recesses are arranged at intervals in the length direction of the heat seal area. A plurality of rows of recesses are provided at intervals in the width direction of the heat seal region, and each row of recesses includes two recesses of the row of recesses adjacent to each other. This is achieved by a bag that is positioned between the two.

上記構成の袋体の好ましい実施態様は、前記凹部の列は、該袋体の前記熱シール領域の両面に設けられており、かつ、前記各凹部の位置が前記熱シール領域の両面で一致している。   In a preferred embodiment of the bag body configured as described above, the row of the recesses is provided on both surfaces of the heat seal region of the bag body, and the positions of the recesses coincide on both surfaces of the heat seal region. ing.

また、上記構成の袋体のさらに好ましい実施態様は、前記凹部は、該袋体の前記熱シール領域の反対側の面に対向して設けられた前記凹部と同じ形状である。なお、この場合、前記凹部は、平板部及び前記平板部に突設された複数の突起部を有する2つのヒートシールバーを当該袋体の一方面側及び他方面側に配置し、前記突起部の位置を一致させた状態で2つの前記ヒートシールバーで当該袋体を挟んで加熱圧縮することで形成されることが好ましい。   In a further preferred embodiment of the bag body configured as described above, the concave portion has the same shape as the concave portion provided to face the opposite surface of the heat seal region of the bag body. In this case, the concave portion has two heat seal bars having a flat plate portion and a plurality of protruding portions projecting from the flat plate portion arranged on one side and the other side of the bag body, and the protruding portion Preferably, the bag is sandwiched between two heat seal bars and heated and compressed in a state where the positions are matched.

また、上記構成の袋体のさらに好ましい実施態様は、前記凹部の形状は、底面側に向かうにしたがって漸次外形が小さくなる四角錐台状である。   In a further preferred embodiment of the bag having the above-described configuration, the shape of the concave portion is a quadrangular frustum shape whose outer shape gradually decreases toward the bottom surface.

また、上記構成の袋体のさらに好ましい実施態様は、前記凹部の側面と底面との間の角が丸みを帯びている。   Further, in a further preferred embodiment of the bag body configured as described above, the corner between the side surface and the bottom surface of the recess is rounded.

また、本発明の上記目的は、上記構成の袋体内に、充填物として微細空隙を有する芯材を減圧密封した真空断熱材によっても達成される。   The above-mentioned object of the present invention can also be achieved by a vacuum heat insulating material in which a core material having fine voids as a filling material is sealed under reduced pressure in a bag body having the above-described configuration.

本発明によれば、袋体内に侵入する気体(ガス)の透過量を抑制することができるうえ、熱シール領域の破断などの発生を抑制することができるので、袋体の密封性を長期にわたって高く維持することができる。よって、この袋体を用いた真空断熱材は、長期にわたって優れた断熱性能を維持できる。   According to the present invention, the permeation amount of gas (gas) entering the bag body can be suppressed and the occurrence of breakage of the heat seal region can be suppressed, so that the sealing performance of the bag body can be maintained over a long period of time. Can be kept high. Therefore, the vacuum heat insulating material using this bag can maintain excellent heat insulating performance over a long period of time.

本発明の一実施形態の袋体を用いた真空断熱材の平面図である。It is a top view of the vacuum heat insulating material using the bag of one embodiment of the present invention. 図1のA−A線に沿う断面図である。It is sectional drawing which follows the AA line of FIG. 複合フィルムの断面図である。It is sectional drawing of a composite film. 図1の熱シール領域の一部を拡大して示す平面図である。It is a top view which expands and shows a part of heat seal area | region of FIG. 凹部の平面図である。It is a top view of a recessed part. 凹部の断面図である。It is sectional drawing of a recessed part. ヒートシールバーの平面図である。It is a top view of a heat seal bar. 図7のB−B線に沿う断面図である。It is sectional drawing which follows the BB line of FIG. 引張試験の測定方法を示す説明図である。It is explanatory drawing which shows the measuring method of a tension test.

以下、本発明の実施形態について添付図面を参照して説明する。なお、以下の実施形態では、真空断熱材を例にして説明する。真空断熱材は、家電や保温・保冷設備、自動販売機などの断熱に好適に使用でき、さらに自動車や船舶などの輸送機器や住宅用建材など長期耐久性を要するものの断熱に特に好適に使用できる。   Embodiments of the present invention will be described below with reference to the accompanying drawings. In the following embodiments, a vacuum heat insulating material will be described as an example. Vacuum insulation materials can be used suitably for insulation of home appliances, heat insulation / cooling equipment, vending machines, etc., and can be used particularly well for insulation of materials that require long-term durability, such as transportation equipment for automobiles and ships, and building materials for housing. .

図1は、本発明の一実施形態の袋体2を用いた真空断熱材1の平面図であり、図2は、図1の真空断熱材1の断面図である。   FIG. 1 is a plan view of a vacuum heat insulating material 1 using a bag body 2 according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of the vacuum heat insulating material 1 of FIG.

真空断熱材1は、充填物である芯材10が袋体2内に減圧密封されたものである。芯材10の形状は、通常、板状である。芯材10としては、特に限定されるものではないが、例えば、ウレタンフォーム、スチレンフォーム、フェノールフォームなどの気泡体、グラスウール、ロックウール、アルミナ繊維、シリカアルミナ繊維などの繊維体、パーライト、シリカなどの多孔性粉体などを使用できる。なかでも、グラスウール(好ましくは、繊維径3μm〜5μm)が好ましい。芯材10は、高い空隙率(例えば、約90%以上)を有することが好ましい。また、袋体2の内部には、揮発性成分などを吸着する吸着剤が封入されていてもよい。このような吸着剤としては、例えば、活性炭、ゼオライトなどを使用できる。真空断熱材1の形状及びサイズは、従来の真空断熱材と同様であってよく、例えば、10cm〜150cm×10cm〜200cm×1cm〜5cmの板状である。   The vacuum heat insulating material 1 is obtained by sealing a core material 10 as a filling in a bag 2 under reduced pressure. The shape of the core material 10 is usually a plate shape. Although it does not specifically limit as the core material 10, For example, foams, such as urethane foam, a styrene foam, a phenol foam, fiber bodies, such as glass wool, rock wool, an alumina fiber, a silica alumina fiber, pearlite, a silica, etc. The porous powder can be used. Among these, glass wool (preferably fiber diameter of 3 μm to 5 μm) is preferable. The core material 10 preferably has a high porosity (for example, about 90% or more). Further, an adsorbent that adsorbs volatile components or the like may be enclosed inside the bag body 2. As such an adsorbent, for example, activated carbon, zeolite or the like can be used. The shape and size of the vacuum heat insulating material 1 may be the same as that of the conventional vacuum heat insulating material, for example, a plate shape of 10 cm to 150 cm × 10 cm to 200 cm × 1 cm to 5 cm.

袋体2は、本実施形態では、互いに平面視の形状が同一の2枚の矩形状の複合フィルム20からなり、これらの複合フィルム20を重ね合わせ、四方の側縁部20A〜20D(外周縁部)を熱シールすることにより、中央部分に充填物を収容する内部空間21を、外周縁部に内部空間21を密封する熱シール領域22を、それぞれ形成したものである。なお、複合フィルム20の外周縁部(側縁部20A〜20D)とは、複合フィルム20の輪郭をなす外周縁(側縁)より内側の所定部分を指している。   In the present embodiment, the bag body 2 is composed of two rectangular composite films 20 having the same shape in plan view, and these composite films 20 are overlapped to form four side edges 20A to 20D (outer peripheral edges). Part) is heat-sealed to form an internal space 21 for containing the filler in the central part and a heat-seal area 22 for sealing the internal space 21 at the outer peripheral edge part. In addition, the outer peripheral edge part (side edge part 20A-20D) of the composite film 20 has pointed out the predetermined part inside the outer peripheral edge (side edge) which makes the outline of the composite film 20. FIG.

複合フィルム20は、図3に示すように、複合フィルム20の表基材となる表面保護層23と、熱シール材として複合フィルム20の最内面に位置する熱融着層24と、表面保護層23及び熱融着層24の間に挟まれたガスバリア層25とによって構成されている。これらの各層23〜25を、例えば、従来から公知のラミネート用の接着剤により接着して複合フィルム20が形成される。なお、各層23〜25を、押出しラミネート又はドライラミネートにより積層して複合フィルム20を形成することもできる。   As shown in FIG. 3, the composite film 20 includes a surface protective layer 23 serving as a surface base material of the composite film 20, a heat sealing layer 24 positioned on the innermost surface of the composite film 20 as a heat sealing material, and a surface protective layer. 23 and a gas barrier layer 25 sandwiched between the heat-fusible layer 24. These layers 23 to 25 are bonded to each other with, for example, a conventionally known laminating adhesive to form the composite film 20. In addition, each layer 23-25 can also be laminated | stacked by extrusion lamination or dry lamination, and the composite film 20 can also be formed.

表面保護層23は、ガスバリア層25を保護する機能及び/又は複合フィルム20に機械的強度を付与する機能を有しており、例えば、ポリアミド樹脂(例えばナイロン)、ポリオレフィン樹脂(例えば、ポリエチレン樹脂、ポリプロピレン樹脂)、環状ポリオレフィン樹脂、ポリスチレン樹脂、アクリロニトリル−スチレン共重合体(AS樹脂)、アクリロニトリル−ブタジエン−スチレン共重合体(ABS樹脂)、ポリ(メタ)アクリル樹脂、ポリカーボネート樹脂、ポリビニルアルコール樹脂、エチレン−ビニルエステル共重合体ケン化物(EVOH樹脂)、ポリエステル樹脂(例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート)、ポリウレタン樹脂、アセタール樹脂、及びセルロース系樹脂などから選択される樹脂フィルムを好適に使用することができる。このような樹脂フィルムは、未延伸フィルム、又は一軸方向もしくは二軸方向に延伸したフィルムであることができる。   The surface protective layer 23 has a function of protecting the gas barrier layer 25 and / or a function of imparting mechanical strength to the composite film 20. For example, a polyamide resin (for example, nylon), a polyolefin resin (for example, a polyethylene resin, Polypropylene resin), cyclic polyolefin resin, polystyrene resin, acrylonitrile-styrene copolymer (AS resin), acrylonitrile-butadiene-styrene copolymer (ABS resin), poly (meth) acrylic resin, polycarbonate resin, polyvinyl alcohol resin, ethylene -Resin selected from saponified vinyl ester copolymer (EVOH resin), polyester resin (for example, polyethylene terephthalate, polyethylene naphthalate), polyurethane resin, acetal resin, and cellulose resin Irumu can be suitably used. Such a resin film can be an unstretched film or a film stretched in a uniaxial direction or a biaxial direction.

熱融着層24としては、加熱によって溶融して相互に接着する熱融着性を有する樹脂フィルムであればよく、例えば、直鎖状低密度ポリエチレンフィルム(LLDPEフィルム)やポリプロピレンフィルム(CPPフィルム)などを好適に使用することができる。これらの樹脂フィルムは、未延伸でもよく延伸されていてもよい。   The heat-sealable layer 24 may be a resin film having a heat-sealability that melts by heating and adheres to each other. For example, a linear low-density polyethylene film (LLDPE film) or a polypropylene film (CPP film) Etc. can be used suitably. These resin films may be unstretched or may be stretched.

ガスバリア層25は、気体を遮断する機能(ガスバリア性)を有しており、例えば、アルミニウム箔、銅箔、ステンレス箔などの金属箔、又は、例えばポリエチレンテレフタレートフィルムなどの樹脂フィルムにアルミニウムや酸化ケイ素、アルミナなどの薄膜を蒸着などにより積層させたものなどを好ましく使用することができる。   The gas barrier layer 25 has a function of blocking gas (gas barrier properties). For example, a metal foil such as an aluminum foil, a copper foil, and a stainless steel foil, or a resin film such as a polyethylene terephthalate film is coated with aluminum or silicon oxide. A thin film made of alumina or the like laminated by vapor deposition or the like can be preferably used.

上記構成からなる2枚の複合フィルム20を、熱融着層24が相互に対向するようにして重ね合わせた後、上方の側縁部20Dを除く三方の側縁部20A〜20Cを、後述する図7及び図8に示すヒートシールバー11を用いて熱シールすることで、袋体2とする。そして、熱シールしていない上方の側縁部20Dにある開口から、袋体2内に充填物である芯材10を収納し、その後、真空チャンバー内で、大気圧での加熱による乾燥、次いで減圧下(好ましくは1.0×10-2〜1.0×10−4Pa、より好ましくは1.0×10−3〜1.0×10−4Pa)での加熱による乾燥の後、減圧を維持したまま上記開口を図7及び図8に示すヒートシールバー11を用いて熱シールして袋体2を密封することにより、真空断熱材1を製造することができる。 After the two composite films 20 having the above-described configuration are overlapped so that the heat-sealing layer 24 faces each other, the three side edge portions 20A to 20C excluding the upper side edge portion 20D will be described later. It is set as the bag body 2 by heat-sealing using the heat seal bar 11 shown in FIG.7 and FIG.8. And the core material 10 which is a filling is accommodated in the bag body 2 from the opening in the upper side edge portion 20D which is not heat-sealed, and then dried by heating at atmospheric pressure in a vacuum chamber, After drying by heating under reduced pressure (preferably 1.0 × 10 −2 to 1.0 × 10 −4 Pa, more preferably 1.0 × 10 −3 to 1.0 × 10 −4 Pa), The vacuum heat insulating material 1 can be manufactured by sealing the bag body 2 by heat-sealing the opening using the heat seal bar 11 shown in FIGS. 7 and 8 while maintaining the reduced pressure.

2枚の複合フィルム20の対向する熱融着層24同士を熱シールした部分である熱シール領域22には、図1、図2及び図4〜図6に示すように、肉薄の凹部26が複数設けられている。この凹部26は、本願明細書の先行技術文献で挙げた薄肉部のように、熱シール領域22の長さ方向(袋体2の周方向)に連続した線状に延びるものではなく、個別に切り離された複数の凹部26が熱シール領域22の長さ方向に沿って間隔をあけて断続的に配置されている。この凹部26は、熱シール時に袋体2の外周縁部の一部を強く加圧することにより、加圧された部分では熱融着層24の厚みが周辺よりも薄くなることで形成される。これにより、熱シール領域22には、熱シール領域22の長さ方向に沿って、熱融着層24の厚みが厚い肉厚の凸部27と、熱融着層24の厚みが薄い肉薄の凹部26とが交互に配置されている。   As shown in FIGS. 1, 2, and 4 to 6, a thin concave portion 26 is formed in the heat sealing region 22, which is a portion where the heat sealing layers 24 facing each other of the two composite films 20 are heat sealed. A plurality are provided. The recessed portion 26 does not extend in a linear shape continuous in the length direction of the heat seal region 22 (the circumferential direction of the bag body 2), like the thin wall portion cited in the prior art document of the present specification, but individually. The plurality of separated recesses 26 are intermittently arranged at intervals along the length direction of the heat seal region 22. The concave portion 26 is formed by strongly pressing a part of the outer peripheral edge portion of the bag body 2 at the time of heat sealing so that the thickness of the heat-sealing layer 24 becomes thinner than the periphery at the pressed portion. As a result, the heat seal region 22 has a thick protrusion 27 having a large thickness of the heat fusion layer 24 and a thin thickness of the heat fusion layer 24 along the length direction of the heat seal region 22. The recesses 26 are alternately arranged.

このように、本実施形態では、凹部26が熱シール領域22の長さ方向に間隔をあけて複数配置された凹部の列28が設けられているが、この凹部の列28が、熱シール領域22の幅方向に沿って間隔をあけて少なくとも2列以上配置されている。なお、配置される凹部の列28の数は、3列以上が好ましく、本実施形態では4列となっている。さらに、各凹部の列28は、凹部26が、隣り合う凹部の列28の2つの凹部26の間に位置するように配置されている。つまり、各凹部の列28は、熱シール領域22の幅方向に隣接する凹部の列28と、凹部26が熱シール領域22の長さ方向において一部のみが重なるのはよいが、大部分で重ならないように熱シール領域22の長さ方向にずれるよう配置されている。その結果、熱シール領域22には、熱シール領域22の幅方向に沿っても、熱融着層24の厚みが厚い肉厚の凸部27と、熱融着層24の厚みが薄い肉薄の凹部26とが交互に配置され、複数の凹部26が全体として千鳥状に配列されている。   As described above, in the present embodiment, a plurality of recess rows 28 are provided in which the recesses 26 are arranged at intervals in the length direction of the heat seal region 22. At least two rows are arranged at intervals along the width direction of 22. In addition, the number of the row | line | columns 28 of the recessed part arrange | positioned has preferable 3 rows or more, and is 4 rows in this embodiment. Furthermore, each row of recesses 28 is arranged such that the recesses 26 are located between two recesses 26 in the row of adjacent recesses 28. That is, each recess row 28 may overlap with the recess row 28 adjacent in the width direction of the heat seal region 22, but the recess 26 may partially overlap in the length direction of the heat seal region 22. It arrange | positions so that it may slip | deviate to the length direction of the heat seal area | region 22 so that it may not overlap. As a result, the heat seal region 22 has a thick protrusion 27 having a large thickness of the heat sealing layer 24 and a thin thickness of the heat sealing layer 24 even in the width direction of the heat sealing region 22. The recesses 26 are alternately arranged, and the plurality of recesses 26 are arranged in a staggered manner as a whole.

上述したように、袋体2の外周縁部の熱融着層同士が熱シールされた熱シール領域22に複数の凹部26が配列されると、凹部26では、袋体2の外周縁部の端面から侵入する気体(ガス)が透過し得る面積(断面積)が小さくなり、気体(ガス)の透過抵抗が増大して透過速度が低減する。その結果、熱シール領域22を透過して袋体2の内部に経時的に侵入する気体(ガス)の侵入量が抑制される。ここで、熱シール領域22の長さ方向において、各凹部の列28には、凹部26が存在しない凸部27の部分が存在し、この凸部27では、袋体2の外周縁部の端面から侵入する気体(ガス)が透過し易くなっている。しかし、この凸部27の熱シール領域22の幅方向の側方には、隣接する凹部の列28の凹部26が存在しているので、袋体2の外周縁部の端面から侵入する気体(ガス)は、熱シール領域22を幅方向に透過する際に、必ず凹部26に突き当たる。よって、熱シール領域22の全域(袋体2の全周)において袋体2の外周縁部の端面から侵入する気体(ガス)の侵入量を抑制できるので、密封性の高い袋体2を提供することができる。一方で、熱シール領域22の凹部26においては、熱融着層24の厚みが周辺よりも薄くなり、その厚みの減少分だけ強度が低下する。しかし、凹部26が熱シール領域22の長さ方向に断続的に設けられていて、強度の低い部分が連続していないので、熱シール領域22の破断が生じにくい。よって、熱シール領域22の耐久性が増し、長期にわたって袋体2の密封性を高く維持することができ、この袋体2を真空断熱材1に用いると、長期にわたって優れた断熱性能を実現することができる。   As described above, when the plurality of recesses 26 are arranged in the heat sealing region 22 in which the heat-sealing layers of the outer peripheral edge portions of the bag body 2 are heat-sealed, in the recess 26, the outer peripheral edge portion of the bag body 2 is The area (cross-sectional area) through which the gas (gas) entering from the end face can permeate is reduced, the permeation resistance of the gas (gas) is increased, and the permeation speed is reduced. As a result, the amount of gas (gas) that permeates through the heat seal region 22 and enters the bag body 2 with time is suppressed. Here, in the longitudinal direction of the heat seal region 22, each row of recesses 28 has a portion of a projection 27 where the recess 26 does not exist. In this projection 27, the end surface of the outer peripheral edge of the bag body 2. The gas (gas) that enters from the air easily penetrates. However, since there is a recess 26 in the row 28 of adjacent recesses on the side of the width 27 of the heat seal region 22 of the protrusion 27, the gas entering from the end surface of the outer peripheral edge of the bag body 2 ( The gas) always strikes the recess 26 when passing through the heat seal region 22 in the width direction. Therefore, since the amount of gas (gas) entering from the end surface of the outer peripheral edge of the bag body 2 in the entire region of the heat seal region 22 (the entire circumference of the bag body 2) can be suppressed, the bag body 2 with high sealing performance is provided. can do. On the other hand, in the recessed part 26 of the heat seal area | region 22, the thickness of the heat sealing | fusion layer 24 becomes thinner than the periphery, and intensity | strength falls by the part for the reduction | decrease in the thickness. However, since the recess 26 is provided intermittently in the length direction of the heat seal region 22 and the low strength portion is not continuous, the heat seal region 22 is not easily broken. Therefore, the durability of the heat seal region 22 is increased, and the sealing performance of the bag body 2 can be maintained high over a long period of time. When the bag body 2 is used for the vacuum heat insulating material 1, excellent heat insulating performance is realized over a long period of time. be able to.

凹部の列28を構成する凹部26の間隔D1は、特に限定されるものではないが、凹部26の長さl1と同じあるいは長さl1以下である必要があり、凹部26の長さl1以下であることが好ましい。これにより、各凹部の列28の各凹部26は、熱シール領域22の幅方向に隣接する凹部の列28のいずれかの凹部26と、少なくとも一部が重なるので、凹部26により袋体2の外周縁部の端面から侵入する気体(ガス)の透過を効果的に抑制できる。また、凹部の列28の間隔D2は、特に限定されるものではなく、凹部26の大きさ、熱シール領域22の幅、熱シール領域22に設ける凹部の列28の数などに応じて適宜設定すればよい。   The distance D1 between the recesses 26 constituting the recess rows 28 is not particularly limited, but must be the same as the length 11 of the recesses 26 or less than the length 11 and less than the length 11 of the recesses 26. Preferably there is. As a result, each recess 26 in each recess row 28 overlaps at least partly with any of the recesses 26 in the recess row 28 adjacent in the width direction of the heat seal region 22. Permeation of gas (gas) entering from the end face of the outer peripheral edge can be effectively suppressed. The distance D2 between the recess rows 28 is not particularly limited, and is set as appropriate according to the size of the recess 26, the width of the heat seal region 22, the number of the recess rows 28 provided in the heat seal region 22, and the like. do it.

凹部26の形状は、平面視において正方形状や長方形状などの矩形状、多角形状、円形状、楕円形状など、特に限定されるものではないが、矩形状であることが好ましい。また、凹部26の断面視形状は、三角形状のような先の尖った形状でなければ、正方形状や長方形状などの矩形状、台形状、半円形状、半楕円形状など、特に限定されるものではないが、台形状であることが好ましい。よって、本実施形態では、凹部26の形状は、底面側に向かうにしたがって漸次外形が小さくなる四角錐台状に形成されている。これにより、凹部26の4つの側面26Aと底面26Bとの間の角が鈍角となってゆるやかとなり、丸みを帯びた形状に近づくので、角が鋭利に尖っている場合と比較して、同一サイズの凹部26を形成する場合の熱シール時の温度条件、圧力条件、時間条件を緩和できる。よって、ヒートシールバー11の温度や圧力を下げたり、ヒートシールバー11による押圧時間を短くしたりしても、袋体2の外周縁部の熱シール領域22に凹部26をくっきりと形成することができるので、熱シール時のエネルギー効率を向上でき、一定時間内の製造数(製造効率)も向上できる。   The shape of the concave portion 26 is not particularly limited in a plan view, such as a rectangular shape such as a square shape or a rectangular shape, a polygonal shape, a circular shape, or an elliptical shape, but is preferably a rectangular shape. Further, the cross-sectional view shape of the recess 26 is not particularly limited to a triangular shape such as a square shape or a rectangular shape, a trapezoidal shape, a semicircular shape, or a semielliptical shape unless the shape is a pointed shape such as a triangular shape. Although it is not a thing, it is preferable that it is trapezoid shape. Therefore, in this embodiment, the shape of the recessed part 26 is formed in the shape of a quadrangular pyramid which becomes small gradually as it goes to the bottom surface side. As a result, the angle between the four side surfaces 26A and the bottom surface 26B of the concave portion 26 becomes an obtuse angle and becomes gentle and approaches a rounded shape, so that the same size as in the case where the corner is sharply sharpened. The temperature conditions, pressure conditions, and time conditions during heat sealing when forming the recesses 26 can be relaxed. Therefore, even if the temperature or pressure of the heat seal bar 11 is lowered or the pressing time by the heat seal bar 11 is shortened, the recess 26 is clearly formed in the heat seal region 22 of the outer peripheral edge of the bag body 2. Therefore, the energy efficiency at the time of heat sealing can be improved, and the number of products (manufacturing efficiency) within a certain time can also be improved.

凹部26の大きさ、つまり、長さl1・幅l2・深さdは、特に限定されるものではなく、熱シール領域22の幅や長さ、熱シール領域22に設ける凹部26の数などに応じて適宜設定すればよい。また、凹部26の形状は、全て同じ形状であってもよいが、明らかに異なる形状のものが含まれていてもよく、例えば、両サイドの凹部の列28の凹部26の形状が、その間に挟まれている凹部の列28の凹部26の形状と異なっていてもよい。なお、上記した「同じ」形状とは、完全に同一であるだけでなく、完全ではないがそれに近い状態であることも含む概念である。   The size of the concave portion 26, that is, the length l1, the width l2, and the depth d are not particularly limited. The width and length of the heat sealing region 22, the number of the concave portions 26 provided in the heat sealing region 22, and the like. What is necessary is just to set suitably according to. The shape of the recesses 26 may all be the same shape, but may be obviously different shapes. For example, the shape of the recesses 26 in the row 28 of recesses on both sides is between them. It may be different from the shape of the recesses 26 of the row 28 of sandwiched recesses. The “same” shape described above is not only completely the same, but also includes a concept that is not perfect but close to it.

この凹部26は、図7及び図8に示す金属製のヒートシールバー11により袋体2の外周縁部を加熱押圧することにより形成される。ヒートシールバー11は、平板部12と、平板部12に突設された突起部13とを有している。袋体2の外周縁部において、突起部13により押圧された箇所では、溶融した熱融着層24が周囲に流動することから、熱融着層24の厚みが周辺よりも薄い凹部26が形成される。このとき、凹部26の形状は突起部13の形状に沿うことから、ヒートシールバー11の突起部13の形状を四角錐台状とすることで、四角錐台状の凹部26が形成される。本実施形態のように、突起部13の形状を四角錐台状とする場合には、突起部13の天面13Aと周面となる4つの側面13Bとの間の角が丸みを帯びるように面取りされていることが好ましい。このように、凹部26を形成する突起部13の角が丸みを帯びていると、熱シール時にヒートシールバー11の突起部13が強く押し当てられる際に、複合フィルム20の表面保護層23に損傷が生じたり、ガスバリア層25の金属層に損傷(ピンホール、割れなど)が生じたりすることを低減することができる。これは、熱シール時に溶融した熱融着層24の樹脂が流動しやすくなるからであり、表面保護層23もしくはガスバリア層25の金属層のストレスが緩和されるからである。熱シール時に、複合フィルム20の表面保護層23やガスバリア層25の金属層に損傷が生じると、せっかく施した凹凸形状によってガスバリア効果を高めても、袋体2そのもののガスバリア性が低下してしまうというおそれがあるが、本実施形態では、この問題を良好に解消できる。なお、突起部13の形状を四角柱などの角柱状とした場合にも、同様に角を面取りすることで、同様の効果を奏する。また、突起部13の形状を四角錐台状とする場合において、天面13Aに向けて傾斜する4つの側面13Bの傾斜角度θは、特に限定されるものではなく、適宜(例えば45度)設定することができる。   This recessed part 26 is formed by heat-pressing the outer peripheral edge part of the bag body 2 with the metal heat seal bar 11 shown in FIG.7 and FIG.8. The heat seal bar 11 has a flat plate portion 12 and a protruding portion 13 protruding from the flat plate portion 12. In the outer peripheral edge of the bag body 2, the melted heat-sealable layer 24 flows to the periphery at the location pressed by the protrusion 13, so that a recess 26 is formed in which the thickness of the heat-sealable layer 24 is thinner than the periphery. Is done. At this time, since the shape of the recessed portion 26 follows the shape of the protruding portion 13, the shape of the protruding portion 13 of the heat seal bar 11 is a truncated pyramid shape, so that the recessed portion 26 having a truncated pyramid shape is formed. As in the present embodiment, when the shape of the protrusion 13 is a truncated pyramid shape, the corner between the top surface 13A of the protrusion 13 and the four side surfaces 13B serving as the peripheral surfaces is rounded. It is preferable that it is chamfered. Thus, when the corners of the protrusion 13 forming the recess 26 are rounded, the protrusion 13 of the heat seal bar 11 is strongly pressed against the surface protective layer 23 of the composite film 20 during heat sealing. It is possible to reduce the occurrence of damage or the occurrence of damage (pinholes, cracks, etc.) in the metal layer of the gas barrier layer 25. This is because the resin of the heat sealing layer 24 melted at the time of heat sealing easily flows, and the stress of the metal layer of the surface protective layer 23 or the gas barrier layer 25 is relieved. If the surface protective layer 23 of the composite film 20 or the metal layer of the gas barrier layer 25 is damaged during heat sealing, the gas barrier property of the bag body 2 itself is deteriorated even if the gas barrier effect is enhanced by the uneven shape that has been applied. In this embodiment, this problem can be solved satisfactorily. In addition, also when the shape of the projection part 13 is made into square prism shapes, such as a square pole, the same effect is show | played by chamfering a corner | angular similarly. In addition, when the shape of the protrusion 13 is a quadrangular pyramid shape, the inclination angle θ of the four side surfaces 13B inclined toward the top surface 13A is not particularly limited, and is appropriately set (for example, 45 degrees). can do.

また、本実施形態では、凹部の列28は、袋体2の外周縁部の熱シール領域22の両面に設けられており、かつ、各凹部26は、その位置が熱シール領域22の両面で対応している。また、各凹部26は、熱シール領域22の両面で対応している凹部26同士が同じ形状である、すなわち、熱シール領域22の反対側の面に対向して設けられた凹部26と同じ形状である。なお、上記した「同じ」形状とは、完全に同一であるだけでなく、完全ではないがそれに近い状態であることも含む概念である。図7及び図8に示す突起部13を有するヒートシールバー11を、袋体2の一方面側及び他方面側に配置し、2つのヒートシールバー11の突起部13の位置を一致させた状態で、2つのヒートシールバー11で袋体2を挟むように加熱圧縮することで、袋体2の熱シール領域22の両面にそれぞれ凹部26が形成される。このように、袋体2の熱シール領域22の両面にそれぞれ凹部26を形成すると、袋体2の熱シール領域22の一方面だけに凹部26を形成する場合と比べて、熱シール時の温度条件、圧力条件、時間条件を緩和でき、ヒートシールバー11の温度や圧力を下げたり、ヒートシールバー11による押圧時間を短くすることができる。よって、熱シール時のエネルギー効率を効果的に向上できるうえ、製造効率も効果的に向上できる。なお、袋体2の熱シール領域22の一方面だけに凹部26を形成する場合には、図7及び図8に示す突起部13を有するヒートシールバー11を袋体2の一方面側に配置し、かつ、他方面側には平板部のみを有する金属製のヒートシールバーを配置し、両ヒートシールバーで袋体2を挟むように加熱圧縮する。   Moreover, in this embodiment, the row | line | column 28 of a recessed part is provided in both surfaces of the heat seal area | region 22 of the outer peripheral edge part of the bag body 2, and the position of each recessed part 26 is both surfaces of the heat seal area | region 22. It corresponds. Moreover, each recessed part 26 is the same shape as the recessed part 26 provided opposite to the surface on the opposite side of the heat seal area | region 22, ie, the recessed parts 26 corresponding on both surfaces of the heat seal area | region 22 are the same shape. It is. The “same” shape described above is not only completely the same, but also includes a concept that is not perfect but close to it. The heat seal bar 11 having the protrusion 13 shown in FIGS. 7 and 8 is disposed on the one surface side and the other surface side of the bag body 2, and the positions of the protrusions 13 of the two heat seal bars 11 are matched. Thus, the concave portions 26 are formed on both surfaces of the heat seal region 22 of the bag body 2 by heating and compressing so that the bag body 2 is sandwiched between the two heat seal bars 11. Thus, when the recessed part 26 is formed in both surfaces of the heat sealing area | region 22 of the bag body 2, respectively, compared with the case where the recessed part 26 is formed only in one surface of the heat sealing area | region 22 of the bag body 2, the temperature at the time of heat sealing Conditions, pressure conditions, and time conditions can be relaxed, the temperature and pressure of the heat seal bar 11 can be lowered, and the pressing time by the heat seal bar 11 can be shortened. Therefore, energy efficiency at the time of heat sealing can be effectively improved, and manufacturing efficiency can also be effectively improved. In addition, when forming the recessed part 26 only in one surface of the heat seal area | region 22 of the bag body 2, the heat seal bar 11 which has the projection part 13 shown in FIG.7 and FIG.8 is arrange | positioned on the one surface side of the bag body2. And the metal heat seal bar which has only a flat plate part is arrange | positioned in the other surface side, and it heat-compresses so that the bag body 2 may be pinched | interposed with both heat seal bars.

上記構成の袋体2によると、まず、袋体2の外周縁部の熱融着層24同士が熱シールされた熱シール領域22に、熱融着層24の厚みが薄い肉薄の凹部26を設けたことにより、袋体2の外周縁部の端面から熱シール領域22を透過して袋体2の内部に侵入する気体(ガス)の侵入量が抑制される。よって、袋体2の密封性を高く維持することができ、優れた断熱性能を維持する真空断熱材1を提供することができる。   According to the bag body 2 having the above-described configuration, first, the thin concave portion 26 having a thin thickness of the heat sealing layer 24 is formed in the heat sealing region 22 where the heat sealing layers 24 of the outer peripheral edge of the bag body 2 are heat sealed. By providing, the penetration | invasion amount of the gas (gas) which permeate | transmits the heat seal area | region 22 from the end surface of the outer peripheral edge part of the bag body 2, and penetrate | invades in the inside of the bag body 2 is suppressed. Therefore, the sealing property of the bag body 2 can be maintained high, and the vacuum heat insulating material 1 that maintains excellent heat insulating performance can be provided.

また、凹部26を、袋体2の熱シール領域22の長さ方向(周方向)に断続的に設けるようにしたので、熱シール領域22に凹部を連続的に線状に設けた場合と比較して、熱シール領域22の耐久性が増し、熱シール領域22の破断を生じ難くできる。よって、長期にわたって袋体2の密封性を高く維持することができるので、真空断熱材1についても長期にわたって優れた断熱性能を実現することができる。   Moreover, since the recessed part 26 was intermittently provided in the length direction (circumferential direction) of the heat seal area | region 22 of the bag body 2, compared with the case where a recessed part is provided in the heat seal area | region 22 continuously in linear form. As a result, the durability of the heat seal region 22 is increased, and the heat seal region 22 is not easily broken. Therefore, since the sealing performance of the bag body 2 can be kept high over a long period of time, the vacuum heat insulating material 1 can also achieve excellent heat insulating performance over a long period of time.

また、凹部26が袋体2の熱シール領域22の両面に設けられており、2つの凹部26によって熱シール領域22に熱融着層24の厚みが薄い部分を形成しているので、熱シール時の温度条件、圧力条件、時間条件を緩和できる。よって、熱シール時のエネルギー効率に加え製造効率を効果的に向上できる。   Moreover, since the recessed part 26 is provided in both surfaces of the heat sealing area | region 22 of the bag body 2, and the heat sealing layer 22 has a thin part in the heat sealing area | region 22 by the two recessed parts 26, heat sealing is carried out. The temperature, pressure, and time conditions can be relaxed. Therefore, in addition to the energy efficiency at the time of heat sealing, manufacturing efficiency can be improved effectively.

以上、本発明の一実施形態について説明したが、本発明の具体的な態様は、上記実施形態に限定されるものではない。例えば、上記実施形態では、袋体2の4つの側縁部20A〜20Dの全てに凹部26有するシール領域22を設けているが、袋体2の開口部となる1つの側縁部(例えば上方の側縁部20D)を除いた袋体2の3つの側縁部20A〜20Cに凹部26を有する熱シール領域22を設け、袋体2の開口部となる側縁部20Dには、凹部26を有さない熱シール領域22を設けるようにしても構わない。   As mentioned above, although one Embodiment of this invention was described, the specific aspect of this invention is not limited to the said embodiment. For example, in the above-described embodiment, the seal region 22 having the recess 26 is provided in all of the four side edge portions 20A to 20D of the bag body 2, but one side edge portion (for example, the upper side) serving as the opening portion of the bag body 2 is provided. The heat seal region 22 having the recess 26 is provided in the three side edges 20A to 20C of the bag body 2 excluding the side edge 20D), and the recess 26 is provided in the side edge 20D serving as the opening of the bag body 2. You may make it provide the heat seal area | region 22 which does not have.

また、上記実施形態では、袋体2の内部を真空にする真空断熱材1について説明したが、真空断熱材1以外の用途として、袋体2の内部に薬品などを封入する医療用用途においても同様に実施でき、同様の効果を期待できる。   Moreover, in the said embodiment, although the vacuum heat insulating material 1 which makes the inside of the bag body 2 vacuum was demonstrated, also in the medical use which encloses a chemical | medical agent etc. in the inside of the bag body 2 as uses other than the vacuum heat insulating material 1. It can be implemented in the same manner and the same effect can be expected.

以下、実施例を用いて本発明を更に説明する。ただし、本発明が本実施例に限定されるものではない。   The present invention will be further described below using examples. However, the present invention is not limited to this embodiment.

[実施例の複合フィルムの製造]
まず、二軸延伸ポリエチレンテレフタレートフィルム(ユニチカ社、ポリエステルフィルム エンブレットS、厚さ12μm)に、ドライラミネート法で、二軸延伸ポリアミドフィルム(ユニチカ社、エンブレムNX、厚さ15μm)を貼り合せた。その後、ポリアミドフィルムの外面に、同じくドライラミネート法により、アルミ箔(日本製箔社、JIS8021、厚さ6.5μm)を貼り合せ、さらにアルミ箔の外面に、ドライラミネート法により、熱融着層として、未延伸直鎖状低密度ポリエチレンフィルム(三井化学東セロ社、TUX−HC、厚さ50μm)を貼り合わせた。これら4枚のフィルムを貼り合せるドライラミネート法においては、ドライラミネート用接着剤の主剤として、タケラックA1143(三井化学社、末端エポキシ変性)、硬化剤としてタケネートA−3(三井化学社)を9:1の比率で混合し、酢酸エチルで固形分23%まで希釈した後、グラビヤシリンダーで1つのフィルム表面に13g/mの量で塗布した。その後、乾燥炉を通過させて、固形分3.0g/mの接着剤層を形成させ、この接着剤層表面に、ラミネートロールを用いて25℃〜70℃程度の熱をかけながら、別のフィルムを貼り合せた。その後、大気圧、40℃、168時間エージングをして接着剤硬化反応を促進させ複合フィルムを得た。
[Production of Composite Film of Example]
First, a biaxially stretched polyamide film (Unitika, Emblem NX, thickness 15 μm) was bonded to a biaxially stretched polyethylene terephthalate film (Unitika, polyester film Emblet S, thickness 12 μm) by a dry laminating method. Thereafter, an aluminum foil (Nihon Foil Co., Ltd., JIS8021, thickness 6.5 μm) is bonded to the outer surface of the polyamide film by the same dry laminating method, and a heat fusion layer is further bonded to the outer surface of the aluminum foil by the dry laminating method. As above, an unstretched linear low density polyethylene film (Mitsui Chemicals, Inc., TUX-HC, thickness 50 μm) was bonded. In the dry laminating method in which these four films are bonded together, Takelac A1143 (Mitsui Chemicals, terminal epoxy modification) is used as the main component of the dry laminating adhesive, and Takenate A-3 (Mitsui Chemicals) is used as the curing agent. After mixing at a ratio of 1 and diluting with ethyl acetate to a solid content of 23%, it was applied to one film surface with a gravure cylinder in an amount of 13 g / m 2 . After that, an adhesive layer having a solid content of 3.0 g / m 2 is formed by passing through a drying furnace, and heat is applied to the surface of the adhesive layer using a laminating roll at about 25 ° C. to 70 ° C. The films were bonded together. Thereafter, aging was performed at atmospheric pressure and 40 ° C. for 168 hours to accelerate the adhesive curing reaction, thereby obtaining a composite film.

[実施例1]
上述の通りに製造した矩形状の2枚の複合フィルムを、ポリエチレンフィルム同士が対向するように重ねて配置し、BH60形製袋機(トタニ技研工業社製)を用いて、重ね合わされた複合フィルムの3方の側縁部に対して各20mm巾のヒートシールバーを上下に配置し、約180℃の熱をかけながら上下のヒートシールバーで複合フィルムの3方の側縁部を挟み込んで、ポリエチレンフィルム同士を熱融着させる。これにより、280mm×350mmの3方の側縁部が熱シールされた袋体を製造した。この袋体を真空乾燥炉内に置き、80℃、72時間の乾燥処理を行った後、これに、200mm×200mm×32mmの板状に形成した旭ファイバーグラス社製のグラスウール(繊維径4μm)を入れ、更に169℃で36分間乾燥させた後に1.0×10−3Paに減圧し、減圧を維持したまま、袋体の残り一方の側縁部の開口を20mm巾のヒートシールバーにより180℃の熱をかけて熱融着させて、真空断熱材を製造した。なお、実施例1では、ヒートシールバーとして、図7及び図8で示すような、平板部に四角錐台状の突起部が長さ方向に複数かつ幅方向に複数列設けられたヒートシールバーを用いた。
[Example 1]
Two rectangular composite films produced as described above are placed so as to face each other so that the polyethylene films face each other, and are laminated using a BH60 bag making machine (manufactured by Totani Giken Kogyo Co., Ltd.). A heat seal bar with a width of 20 mm is arranged on the upper and lower sides of the three side edges of each of the above, sandwiching the three side edges of the composite film with the upper and lower heat seal bars while applying heat of about 180 ° C., Heat-seal polyethylene films. Thereby, a bag body in which the three side edges of 280 mm × 350 mm were heat-sealed was manufactured. This bag was placed in a vacuum drying oven, dried at 80 ° C. for 72 hours, and then glass wool made by Asahi Fiber Glass Co., Ltd. formed into a plate shape of 200 mm × 200 mm × 32 mm (fiber diameter 4 μm). After further drying at 169 ° C. for 36 minutes, the pressure was reduced to 1.0 × 10 −3 Pa, and the opening at the other side edge of the bag was maintained with a 20 mm wide heat seal bar while maintaining the reduced pressure. A vacuum heat insulating material was manufactured by heat fusion at 180 ° C. In Example 1, as a heat seal bar, as shown in FIGS. 7 and 8, a heat seal bar in which a plurality of quadrangular pyramid-shaped projections are provided in the length direction and in a plurality of rows in the width direction as shown in FIG. 7 and FIG. Was used.

[実施例2]
上下のヒートシールバーとして、図7及び図8で示すような、平板部に四角錐台状の突起部が長さ方向に複数かつ幅方向に複数列設けられたヒートシールバーと、平板部のみを有するヒートシールバーとを用い、約210℃の熱をかけながら熱融着させた以外は、実施例1と同様にして、実施例2の真空断熱材を製造した。
[Example 2]
As the upper and lower heat seal bars, as shown in FIG. 7 and FIG. 8, a heat seal bar in which a plurality of quadrangular pyramid-shaped protrusions are provided in the length direction and in a plurality of rows in the width direction as shown in FIGS. A vacuum heat insulating material of Example 2 was produced in the same manner as in Example 1 except that heat fusion was performed while applying heat at about 210 ° C.

[実施例3]
上下のヒートシールバーとして、平板部に四角柱状の突起部が長さ方向に複数かつ幅方向に複数列設けられたヒートシールバーと、平板部のみを有するヒートシールバーとを用い、約210℃の熱をかけながら熱融着させた以外は、実施例1と同様にして、実施例3の真空断熱材を製造した。
[Example 3]
As the upper and lower heat seal bars, a heat seal bar having a plurality of square columnar projections in the length direction and a plurality of rows in the width direction on the flat plate portion, and a heat seal bar having only the flat plate portion, about 210 ° C. A vacuum heat insulating material of Example 3 was produced in the same manner as in Example 1 except that the heat fusion was performed while applying the heat.

[比較例1]
上下のヒートシールバーとして、平板部のみを有するヒートシールバーを用い、約210℃の熱をかけながら熱融着させた以外は、実施例1と同様にして、比較例1の真空断熱材を製造した。
[Comparative Example 1]
The vacuum heat insulating material of Comparative Example 1 was used in the same manner as in Example 1 except that heat sealing bars having only flat plate portions were used as the upper and lower heat sealing bars, and heat fusion was performed while applying heat at about 210 ° C. Manufactured.

[比較例2]
二軸延伸ポリアミドフィルム(ユニチカ社、エンブレムNX、厚さ15μm)に、ドライラミネート法で、二軸延伸ポリアミドフィルム(ユニチカ社、エンブレムNX、厚さ25μm)を貼り合せた。その後、ポリアミドフィルムの外面に、同じくドライラミネート法により、アルミ箔(日本製箔社、JIS8021、厚さ9.0μm)を貼り合せ、さらにアルミ箔の外面に、ドライラミネート法により、熱融着層として、高密度ポリエチレンフィルム(タマポリ社、HD、厚さ50μm)を貼り合わせた。これら4枚のフィルムを貼り合せるドライラミネート法においては、ドライラミネート用接着剤の主剤として、タケラックA1143(三井化学社、末端エポキシ変性)、硬化剤としてタケネートA−3(三井化学社)を9:1の比率で混合し、酢酸エチルで固形分23%まで希釈した後、グラビヤシリンダーで1つのフィルム表面に13g/mの量で塗布した。その後、乾燥炉を通過させて、固形分3.0g/mの接着剤層を形成させ、この接着剤層表面に、ラミネートロールを用いて25℃〜70℃程度の熱をかけながら、別のフィルムを貼り合せた。その後、大気圧、40℃、168時間エージングをして接着剤硬化反応を促進させ複合フィルムを得た。
[Comparative Example 2]
A biaxially stretched polyamide film (Unitika, Emblem NX, thickness 25 μm) was bonded to a biaxially stretched polyamide film (Unitika, Emblem NX, thickness 15 μm) by a dry laminating method. Thereafter, an aluminum foil (Nihon Foil Co., Ltd., JIS8021, thickness: 9.0 μm) is bonded to the outer surface of the polyamide film by the same dry laminating method, and a heat fusion layer is further bonded to the outer surface of the aluminum foil by the dry laminating method. A high-density polyethylene film (Tamapoly Co., Ltd., HD, thickness 50 μm) was attached. In the dry laminating method in which these four films are bonded together, Takelac A1143 (Mitsui Chemicals, terminal epoxy modification) is used as the main component of the dry laminating adhesive, and Takenate A-3 (Mitsui Chemicals) is used as the curing agent. After mixing at a ratio of 1 and diluting with ethyl acetate to a solid content of 23%, it was applied to one film surface with a gravure cylinder in an amount of 13 g / m 2 . After that, an adhesive layer having a solid content of 3.0 g / m 2 is formed by passing through a drying furnace, and heat is applied to the surface of the adhesive layer using a laminating roll at about 25 ° C. to 70 ° C. The films were bonded together. Thereafter, aging was performed at atmospheric pressure and 40 ° C. for 168 hours to accelerate the adhesive curing reaction, thereby obtaining a composite film.

上述の通りに製造した矩形状の2枚の複合フィルムを、ポリエチレンフィルム同士が対向するように重ねて配置し、BH60形製袋機(トタニ技研工業社製)を用いて、重ね合わされた複合フィルムの3方の側縁部に対して各20mm巾のヒートシールバーを上下に配置し、約210℃の熱をかけながら上下のヒートシールバーで複合フィルムの3方の側縁部を挟み込んで、ポリエチレンフィルム同士を熱融着させる。これにより、280mm×350mmの3方の側縁部が熱シールされた袋体を製造した。この袋体を真空乾燥炉内に置き、80℃、72時間の乾燥処理を行った後、これに、200mm×200mm×32mmの板状に形成した旭ファイバーグラス社製のグラスウール(繊維径4μm)を入れ、更に169℃で36分間乾燥させた後に1.0×10−3Paに減圧し、減圧を維持したまま、袋体の残り一方の側縁部の開口を20mm巾のヒートシールバーにより210℃の熱をかけて熱融着させて、真空断熱材を製造した。なお、比較例2では、ヒートシールバーとして、本願明細書の先行技術文献で挙げているように、平板部に長さ方向に連続して線状に延びる突起部が幅方向に複数列設けられたヒートシールバーを用いた。 Two rectangular composite films produced as described above are placed so as to face each other so that the polyethylene films face each other, and are laminated using a BH60 bag making machine (manufactured by Totani Giken Kogyo Co., Ltd.). A heat seal bar with a width of 20 mm for each of the three side edges of the upper and lower sides, and sandwiching the three side edges of the composite film with the upper and lower heat seal bars while applying heat of about 210 ° C, Heat-seal polyethylene films. Thereby, a bag body in which the three side edges of 280 mm × 350 mm were heat-sealed was manufactured. This bag was placed in a vacuum drying oven, dried at 80 ° C. for 72 hours, and then glass wool made by Asahi Fiber Glass Co., Ltd. formed into a plate shape of 200 mm × 200 mm × 32 mm (fiber diameter 4 μm). After further drying at 169 ° C. for 36 minutes, the pressure was reduced to 1.0 × 10 −3 Pa, and the opening at the other side edge of the bag was maintained with a 20 mm wide heat seal bar while maintaining the reduced pressure. A vacuum heat insulating material was manufactured by heat fusion at 210 ° C. In Comparative Example 2, as a heat seal bar, as described in the prior art document of the present specification, a plurality of rows of protrusions extending linearly continuously in the length direction are provided on the flat plate portion in the width direction. A heat seal bar was used.

[評価方法]
1.熱伝導率
実施例1〜3及び比較例1,2で製造した袋体を105℃で200時間処理した後の熱伝導率を、英弘精機社製の熱伝導率計測システムオートA HC−074A(平板熱流計法、2枚熱流方式)を用いて、表1(測定平行条件)及び表2(測定温度条件)の測定条件にて測定した。熱伝導率計は試料を上下のプレートで挟み、熱流束を測定する。当該熱伝導率計において、熱伝導率は、次式で求められる。以下の試料の厚さLは、前記熱伝導率計の上下のプレートが試料を挟むことによって、測定される。
[Evaluation method]
1. The thermal conductivity after the bags manufactured in thermal conductivity examples 1 to 3 and comparative examples 1 and 2 were treated at 105 ° C. for 200 hours was measured as the thermal conductivity measurement system Auto A HC-074A (manufactured by Eiko Seiki Co., Ltd.). Using a flat plate heat flow meter method and a two-sheet heat flow method, measurement was performed under the measurement conditions shown in Table 1 (measurement parallel conditions) and Table 2 (measurement temperature conditions). A thermal conductivity meter sandwiches a sample between upper and lower plates and measures the heat flux. In the thermal conductivity meter, the thermal conductivity is obtained by the following equation. The following sample thickness L is measured by sandwiching the sample between the upper and lower plates of the thermal conductivity meter.

λ={(Qh+Qc)/2}×L/ΔT
λ:熱伝導率
Qh:高温側熱流量
Qc:低温側熱流量
L:試料の厚さ
ΔT:高温側サンプル表面温度(Th)と低温側サンプル表面温度(Tc)との差
λ = {(Qh + Qc) / 2} × L / ΔT
λ: Thermal conductivity Qh: High temperature side heat flow rate Qc: Low temperature side heat flow rate L: Sample thickness ΔT: Difference between high temperature side sample surface temperature (Th) and low temperature side sample surface temperature (Tc)

測定結果を表3に示す。なお、表3において、「◎」は、熱伝導率が0.003W/mK以下であり、「○」は、熱伝導率が0.01W/mKより大きく0.05W/mK以下であり、「×」は、熱伝導率が0.05W/mKより大きいことを示している。表3から、本発明に係る実施例1〜3は、比較例1よりも熱伝導率が小さく、本願明細書の先行技術文献で挙げている比較例2との比較では熱伝導率が同等又は熱伝導率が小さいことがわかる。真空断熱材は、その内部が減圧されていることにより、空気による熱伝導が低減されている。そのため、本発明のように熱伝導率が小さいと、袋体の外周縁部の端面から熱シール領域を透過して袋体の内部に侵入する空気の侵入量が抑制されていて、袋体の密封性が高く維持されていることがわかる。よって、真空断熱材としては、優れた断熱性能を実現できることがわかる。   Table 3 shows the measurement results. In Table 3, “◎” indicates that the thermal conductivity is 0.003 W / mK or less, and “◯” indicates that the thermal conductivity is greater than 0.01 W / mK and 0.05 W / mK, “X” indicates that the thermal conductivity is larger than 0.05 W / mK. From Table 3, Examples 1 to 3 according to the present invention have a thermal conductivity smaller than that of Comparative Example 1, and the thermal conductivity is equivalent to that of Comparative Example 2 cited in the prior art document of the present specification. It can be seen that the thermal conductivity is small. The vacuum heat insulating material is reduced in heat conduction by air due to the reduced pressure inside. Therefore, if the thermal conductivity is small as in the present invention, the amount of air entering the bag body through the heat seal region from the end face of the outer peripheral edge of the bag body is suppressed, and the bag body It can be seen that the sealing performance is maintained high. Therefore, it can be seen that excellent heat insulating performance can be realized as a vacuum heat insulating material.

2.熱シール領域の引張強度
袋体の熱シール領域の引張強度を、JIS K−7127に準拠した測定方法で測定した。試料片として、袋体の外周縁部の熱シール領域から内側に向けて幅15mm、長さ150mmで切り出し、この試料片を垂直に配置し、図9に示すように、その上端部及び下端部から長さ方向で20mmにわたる部分を冶具で挟んで固定する。そして、試料片を、島津製作所社製のオートグラフAGS−Hで引っ張り(試験速度:200mm/min)、これにより破断した時点で加えられている荷重を測定した。
2. Tensile strength of heat-sealed region The tensile strength of the heat-sealed region of the bag was measured by a measuring method based on JIS K-7127. As a sample piece, it cuts out from the heat sealing area | region of the outer peripheral edge part of a bag body inside by 15 mm in width and 150 mm in length, this sample piece is arrange | positioned perpendicularly, and as shown in FIG. The part extending over 20 mm in the length direction is fixed with a jig. Then, the sample piece was pulled with an autograph AGS-H manufactured by Shimadzu Corporation (test speed: 200 mm / min), and the load applied at the time of fracture was measured.

測定結果を表4に示す。なお、表4において、「○」は破断時の荷重が60N/15mm以上であり、「△」は、破断時の荷重が40N/15mm以上60N/15mm未満であり、「×」は、破断時の荷重が40N/15mm未満であることを示している。表4から、本発明に係る実施例1〜3は、比較例2よりも熱シール領域の強度が高く、耐久性に優れていることがわかる。よって、真空断熱材としては、長期に渡って優れた断熱性能を維持できることがわかる。   Table 4 shows the measurement results. In Table 4, “◯” indicates a load at break of 60 N / 15 mm or more, “Δ” indicates a load at break of 40 N / 15 mm or more and less than 60 N / 15 mm, and “×” indicates a break. It is shown that the load is less than 40 N / 15 mm. From Table 4, it can be seen that Examples 1 to 3 according to the present invention have higher heat seal strength than Comparative Example 2 and are excellent in durability. Therefore, it can be seen that the vacuum heat insulating material can maintain excellent heat insulating performance over a long period of time.

1 真空断熱材
2 袋体
10 芯材
20 複合フィルム
22 熱シール領域
24 熱融着層
26 凹部
28 凹部の列
DESCRIPTION OF SYMBOLS 1 Vacuum heat insulating material 2 Bag body 10 Core material 20 Composite film 22 Heat seal area | region 24 Heat-fusion layer 26 Recessed part 28 Row of recessed parts

Claims (7)

熱融着層を有する2枚の複合フィルムを前記熱融着層が対向するように重ねて外周縁部の少なくとも一部を熱シールすることによって形成される袋体において、
外周縁部に形成された熱シール領域の少なくとも一方面には、前記熱融着層の厚みが周辺よりも薄い凹部が前記熱シール領域の長さ方向に間隔をあけて複数配置された前記凹部の列が設けられるとともに、前記凹部の列が前記熱シール領域の幅方向に間隔をあけて複数配置されており、
前記凹部の各列は、前記凹部が隣り合う前記凹部の列の2つの前記凹部の間に位置するように配置されている袋体。
In a bag formed by stacking two composite films having a heat fusion layer so that the heat fusion layers face each other and heat-sealing at least a part of the outer peripheral edge,
The concave portion in which a plurality of concave portions in which the thickness of the heat-fusible layer is thinner than the periphery are arranged at intervals in the length direction of the thermal seal region on at least one surface of the heat seal region formed in the outer peripheral edge portion And a plurality of rows of the recesses are arranged at intervals in the width direction of the heat seal region,
Each of the rows of recesses is a bag that is disposed so that the recesses are positioned between two recesses of the row of recesses adjacent to each other.
前記凹部の列は、該袋体の前記熱シール領域の両面に設けられており、かつ、前記各凹部の位置が前記熱シール領域の両面で一致している請求項1に記載の袋体。   2. The bag according to claim 1, wherein the row of recesses is provided on both surfaces of the heat seal region of the bag, and the positions of the recesses coincide on both surfaces of the heat seal region. 前記凹部は、該袋体の前記熱シール領域の反対側の面に対向して設けられた前記凹部と同じ形状である請求項2に記載の袋体。   The bag according to claim 2, wherein the concave portion has the same shape as the concave portion provided to face the opposite surface of the heat seal region of the bag. 前記凹部は、平板部及び前記平板部に突設された複数の突起部を有する2つのヒートシールバーを当該袋体の一方面側及び他方面側に配置し、前記突起部の位置を一致させた状態で2つの前記ヒートシールバーで当該袋体を挟んで加熱圧縮することで形成される請求項2又は3に記載の袋体。   The concave portion has two heat seal bars having a flat plate portion and a plurality of protrusions protruding from the flat plate portion on one surface side and the other surface side of the bag body so that the positions of the protrusion portions coincide with each other. The bag according to claim 2 or 3, wherein the bag is formed by sandwiching the bag between the two heat seal bars and compressing the bag. 前記凹部の形状は、底面側に向かうにしたがって漸次外形が小さくなる四角錐台状である請求項1〜4のいずれかに記載の袋体。   The bag according to any one of claims 1 to 4, wherein a shape of the concave portion is a quadrangular frustum shape whose outer shape gradually decreases toward the bottom surface. 前記凹部の側面と底面との間の角が丸みを帯びている請求項5に記載の袋体。   The bag according to claim 5, wherein a corner between a side surface and a bottom surface of the recess is rounded. 請求項1〜6のいずれかに記載の袋体内に、充填物として微細空隙を有する芯材を減圧密封した真空断熱材。   The vacuum heat insulating material which carried out the pressure reduction sealing of the core material which has a fine space | gap as a filling in the bag body in any one of Claims 1-6.
JP2014194237A 2014-09-24 2014-09-24 Bag body and vacuum heat insulating material using the bag body Active JP6422713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014194237A JP6422713B2 (en) 2014-09-24 2014-09-24 Bag body and vacuum heat insulating material using the bag body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014194237A JP6422713B2 (en) 2014-09-24 2014-09-24 Bag body and vacuum heat insulating material using the bag body

Publications (2)

Publication Number Publication Date
JP2016064845A true JP2016064845A (en) 2016-04-28
JP6422713B2 JP6422713B2 (en) 2018-11-14

Family

ID=55804952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014194237A Active JP6422713B2 (en) 2014-09-24 2014-09-24 Bag body and vacuum heat insulating material using the bag body

Country Status (1)

Country Link
JP (1) JP6422713B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021192473A1 (en) * 2020-03-24 2021-09-30 株式会社スリーボンド Container
CN114829828A (en) * 2019-12-20 2022-07-29 三菱电机株式会社 Vacuum heat insulating material and heat insulating box

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62141190U (en) * 1986-02-28 1987-09-05
JP2010255805A (en) * 2009-04-28 2010-11-11 Panasonic Corp Vacuum insulation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62141190U (en) * 1986-02-28 1987-09-05
JP2010255805A (en) * 2009-04-28 2010-11-11 Panasonic Corp Vacuum insulation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114829828A (en) * 2019-12-20 2022-07-29 三菱电机株式会社 Vacuum heat insulating material and heat insulating box
CN114829828B (en) * 2019-12-20 2023-10-03 三菱电机株式会社 Vacuum heat insulating material and heat insulating box
WO2021192473A1 (en) * 2020-03-24 2021-09-30 株式会社スリーボンド Container

Also Published As

Publication number Publication date
JP6422713B2 (en) 2018-11-14

Similar Documents

Publication Publication Date Title
KR101286342B1 (en) Core material for vacuum insulation panel, method for fabricating the same and vacuum insulation panel using the same
CN102105735B (en) Vacuum heat insulation material and manufacturing method therefor
KR101301504B1 (en) Vacuum heat insulation material and method for production thereof
JP4893728B2 (en) Vacuum insulation
WO2014156703A1 (en) Vacuum heat-insulating material
JP2015068484A (en) Laminate sheet for vacuum heat insulation material and vacuum heat insulation material
JP5907204B2 (en) Manufacturing method of vacuum insulation
JP2014228135A (en) Method of manufacturing vacuum heat insulation material, and the vacuum heat insulation material
JP6422713B2 (en) Bag body and vacuum heat insulating material using the bag body
JP2010031958A (en) Vacuum heat insulation material
CN103298865A (en) Core material for a vacuum insulation panel formed of a phenolic resin-cured foam and vacuum insulation panel using same, and method for manufacturing same
TWI604150B (en) Vacuum heat insulation material and heat insulation box
WO2016190176A1 (en) Layered heat insulator having through hole, and heat insulating structure
JP2010084813A (en) Vacuum insulating material and method of manufacturing the same
CN107816601B (en) vacuum insulation
WO2016157931A1 (en) Outer packaging member for vacuum heat insulating member, vacuum heat-insulating member, and device with vacuum heat-insulating member
JP2011208763A (en) Vacuum heat insulating material
JP5377451B2 (en) Vacuum heat insulating material and heat insulating box using this vacuum heat insulating material
JP2012026512A (en) Bag body and vacuum heat insulating material
JP2007138976A (en) Vacuum heat insulating material and manufacturing method thereof
JP2010173700A (en) Bag body and method for manufacturing the same
JP2017137955A (en) Jacket material for vacuum heat insulation material and vacuum heat insulation material using the same
JP2014109334A (en) Vacuum insulation material and external capsule material for the same
JP2010139006A (en) Vacuum heat insulating material
JP2011094637A (en) Vacuum heat insulating material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180410

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181017

R150 Certificate of patent or registration of utility model

Ref document number: 6422713

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250