JP2016063165A - 撮像素子及び固体撮像装置 - Google Patents
撮像素子及び固体撮像装置 Download PDFInfo
- Publication number
- JP2016063165A JP2016063165A JP2014191953A JP2014191953A JP2016063165A JP 2016063165 A JP2016063165 A JP 2016063165A JP 2014191953 A JP2014191953 A JP 2014191953A JP 2014191953 A JP2014191953 A JP 2014191953A JP 2016063165 A JP2016063165 A JP 2016063165A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- imaging device
- pixel
- storage electrode
- semiconductor layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Solid State Image Pick-Up Elements (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
【課題】信号電荷の転送残りを抑制することができる撮像素子及び固体撮像装置を提供することである。
【解決手段】実施形態の撮像素子は、蓄積電極と、第2の絶縁層と、半導体層と、捕集電極と、光電変換層と、上部電極とを持つ。蓄積電極は、第1の絶縁層上に形成される。第2の絶縁層は、前記蓄積電極上に形成される。半導体層は、前記蓄積電極及び前記第2の絶縁層を覆うように形成される。捕集電極は、前記半導体層に接するように形成され、前記蓄積電極から離れるように形成される。光電変換層は、前記半導体層上に形成される。上部電極は、前記光電変換層上に形成される。
【選択図】図3
【解決手段】実施形態の撮像素子は、蓄積電極と、第2の絶縁層と、半導体層と、捕集電極と、光電変換層と、上部電極とを持つ。蓄積電極は、第1の絶縁層上に形成される。第2の絶縁層は、前記蓄積電極上に形成される。半導体層は、前記蓄積電極及び前記第2の絶縁層を覆うように形成される。捕集電極は、前記半導体層に接するように形成され、前記蓄積電極から離れるように形成される。光電変換層は、前記半導体層上に形成される。上部電極は、前記光電変換層上に形成される。
【選択図】図3
Description
本発明の実施形態は、撮像素子及び固体撮像装置に関する。
従来より、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサや、CCD(Charge Coupled Device)などの固体撮像素子は、固体撮像装置に広く用いられている。これらの固体撮像素子では、一般的に、浮遊拡散領域(FD部)と呼ばれる不純物拡散領域を用いて、光電変換によって生じた電荷である信号電荷を信号電圧に変換する。
固体撮像素子は、各フレームを撮像する度に、FD部をリセットトランジスタによって所定の電位にリセット(初期化)する。FD部がリセットトランジスタによってリセットされる際、ランダムな熱雑音(kTCノイズ)が発生する。このkTCノイズは、相関二重サンプリングの手法を用いて除去される。
近年、これらの固体撮像素子の中でも特に、光利用効率の向上、画素の微細化の観点から、積層型撮像素子が注目されている。積層型撮像素子は、例えば、シリコン基板の受光面側の表面上層に、有機光電変換膜などの光電変換膜が積層された構造を有している。このような積層型撮像素子では、シリコン基板の上に形成された光電変換膜が信号電荷を保持する機能をもたないため、後リセット方式の相関二重サンプリングによってkTCノイズは除去される。しかし、後リセット方式の相関二重サンプリングでは、kTCノイズの除去が不十分であるという問題があった。
このような問題の解決を図った従来技術として、光電変換膜に信号電荷を蓄積させて、前リセット方式の相関二重サンプリングを用いてkTCノイズを除去する積層型撮像素子が提案されている。
このような問題の解決を図った従来技術として、光電変換膜に信号電荷を蓄積させて、前リセット方式の相関二重サンプリングを用いてkTCノイズを除去する積層型撮像素子が提案されている。
しかしながら、このような積層型撮像素子では、光電変換膜に蓄積された信号電荷をFD部に転送する際に、信号電荷が完全に転送されない場合があった。すなわち、現実的な長さの転送時間では、信号電荷の転送残りが生じる場合があった。
本発明が解決しようとする課題は、信号電荷の転送残りを抑制することができる撮像素子及び固体撮像装置を提供することである。
実施形態の撮像素子は、蓄積電極と、第2の絶縁層と、半導体層と、捕集電極と、光電変換層と、上部電極とを持つ。蓄積電極は、第1の絶縁層上に形成される。第2の絶縁層は、前記蓄積電極上に形成される。半導体層は、前記蓄積電極及び前記第2の絶縁層を覆うように形成される。捕集電極は、前記半導体層に接するように形成され、前記蓄積電極から離れるように形成される。光電変換層は、前記半導体層上に形成される。上部電極は、前記光電変換層上に形成される。
以下、実施形態の撮像素子及び固体撮像装置を、図面を参照して説明する。
なお、以下の説明において、実施形態の固体撮像装置の構成要素間の電気的な接続は、直接的な接続であってもよく、間接的な接続であってもよい。直接的な接続は、例えば、複数の構成要素の構成要素を形成する部材を互いに直接的に接続することによって行われてもよい。間接的な接続は、例えば、他の任意の導電部材を介して、複数の構成要素を形成する部材を互いに間接的に接続することによって行われてもよい。
尚、以下の説明における図は固体撮像装置の構成を説明するためのものであり、図示される各部の大きさや厚さや寸法等は、実際の固体撮像装置の寸法関係とは異なる。
なお、以下の説明において、実施形態の固体撮像装置の構成要素間の電気的な接続は、直接的な接続であってもよく、間接的な接続であってもよい。直接的な接続は、例えば、複数の構成要素の構成要素を形成する部材を互いに直接的に接続することによって行われてもよい。間接的な接続は、例えば、他の任意の導電部材を介して、複数の構成要素を形成する部材を互いに間接的に接続することによって行われてもよい。
尚、以下の説明における図は固体撮像装置の構成を説明するためのものであり、図示される各部の大きさや厚さや寸法等は、実際の固体撮像装置の寸法関係とは異なる。
(第1の実施形態)
図1は、第1の実施形態に係る固体撮像装置1の全体構成例を示すブロック図である。
固体撮像装置1は、画素アレイ2、垂直走査部3、水平走査部4、制御部5を備えている。画素アレイ2は、マトリックス状に配列された複数の画素10を備えている。画素10は、撮像素子の具体例の一つである。
図1は、第1の実施形態に係る固体撮像装置1の全体構成例を示すブロック図である。
固体撮像装置1は、画素アレイ2、垂直走査部3、水平走査部4、制御部5を備えている。画素アレイ2は、マトリックス状に配列された複数の画素10を備えている。画素10は、撮像素子の具体例の一つである。
画素アレイ2の行方向には、垂直走査部3から出力された選択信号SELを画素10に伝送するための複数の選択信号線3−A1,3−A2,…,3−An(nは自然数)が設けられている。以下では、選択信号線3−Ai(iは、1≦i≦nなる自然数)は、複数の選択信号線3−A1,3−A2,…,3−Anのうちの一つを指す。
画素アレイ2の行方向には、垂直走査部3から出力されたリセット信号RSTを伝送するための複数の制御信号線3−B1,3−B2,…,3−Bnが、上記の複数の選択信号線3−A1,3−A2,…,3−Anと平行に設けられている。以下では、制御信号線3−Biは、複数の制御信号線3−B1,3−B2,…,3−Bnのうちの一つを指す。
画素アレイ2の列方向には、画素10から出力された画素信号を水平走査部4に伝送するための複数の画素信号線4−1,4−2,…,4−m(mは自然数)が設けられている。以下では、画素信号線4−j(jは、1≦j≦mなる自然数)は、複数の画素信号線4−1,4−2,…,4−mのうちの一つを指す。
画素アレイ2を構成する複数の画素10は、複数の選択信号線3−A1,3−A2,…,3−Anと複数の画素信号線4−1,4−2,…,4−mとの交差領域に配置されている。
画素アレイ2を構成する複数の画素10は、複数の選択信号線3−A1,3−A2,…,3−Anと複数の画素信号線4−1,4−2,…,4−mとの交差領域に配置されている。
垂直走査部3は、画素アレイ2に配列された複数の画素10を行単位で駆動する。垂直走査部3は、例えばシフトレジスタによって構成される。垂直走査部3は、画素アレイ2を構成する画素10を行単位で選択するための選択信号SELと、各画素10の動作を制御するためのリセット信号RSTとを出力する。すなわち、垂直走査部3は、各画素10を行単位で順次垂直方向に選択走査し、選択された画素10が画素信号線4−jを通して画素信号を水平走査部4に出力する。ここで、画素信号は、各画素10の光電変換部が生成した信号電荷に基づく信号である。光電変換部は、受光量に応じて信号電荷を生成する。光電変換部は、例えば、対向する2つの電極に挟持された光電変換膜である。
水平走査部4は、画素アレイ2の各画素10から出力された画素信号の信号処理を行う。水平走査部4は、各画素10から出力された画素信号を増幅するためのカラムアンプと、増幅された画素信号を信号処理するための信号処理部とを含んでいる。水平走査部4は、画素10の固有の固定パターンノイズを除去するための相関二重サンプリング(CDS: Correlated double sampling)や、信号増幅、AD変換等の信号処理を行う。
制御部5は、固体撮像装置1の全体動作を制御する。本実施形態では、制御部5は、主として、画素10の駆動に関する制御を行う。制御部5は、複数の画素トランジスタを含む回路部による初期化の後に、露光により光電変換部が生成した信号電荷の量に応じた画素信号を読み出す制御を行う。
図2は、第1の実施形態に係る固体撮像装置1が備える1つの画素10の回路構成例を示す図である。
図2に示す具体例では、各画素10は、光電変換部PECと、複数の画素トランジスタ(いわゆるMOSトランジスタ)とを有する画素回路部21とを持つ。画素10の光電変換部PECの各電極には、電極の電位を制御するための電圧(VB31,VB33及びVB42)が印加される。
具体的には、画素10の画素回路部21は、リセットトランジスタRX、増幅トランジスタAX及び選択トランジスタSXの3つの画素トランジスタを備える。増幅トランジスタAXのドレインには所定の電源電圧が印加されている。増幅トランジスタAXのソースは選択トランジスタSXのドレインに接続されている。増幅トランジスタAXのソースは選択トランジスタSXのドレインに接続され、選択トランジスタSXのソースは画素信号線4−jに接続されている。選択トランジスタSXのゲートには、垂直走査部3から出力される選択信号SELが印加される。リセットトランジスタRXのドレインには所定の電源電圧が印加され、リセットトランジスタRXのソースは増幅トランジスタAXのゲートに接続されている。リセットトランジスタRXのゲートには、垂直走査部3から出力されるリセット信号RSTが印加される。増幅トランジスタAXのゲートとリセットトランジスタRXのソースは、光電変換部PECを構成する後述のFD部22に接続されている。光電変換部PECに備えられた後述の蓄積電極31、捕集電極33、上部電極42には、それぞれ、電圧VB31,VB33,VB42が印加される。また、画素10は、さらに転送トランジスタを含む4つの画素トランジスタによって構成されていてもよい。
図2に示す具体例では、各画素10は、光電変換部PECと、複数の画素トランジスタ(いわゆるMOSトランジスタ)とを有する画素回路部21とを持つ。画素10の光電変換部PECの各電極には、電極の電位を制御するための電圧(VB31,VB33及びVB42)が印加される。
具体的には、画素10の画素回路部21は、リセットトランジスタRX、増幅トランジスタAX及び選択トランジスタSXの3つの画素トランジスタを備える。増幅トランジスタAXのドレインには所定の電源電圧が印加されている。増幅トランジスタAXのソースは選択トランジスタSXのドレインに接続されている。増幅トランジスタAXのソースは選択トランジスタSXのドレインに接続され、選択トランジスタSXのソースは画素信号線4−jに接続されている。選択トランジスタSXのゲートには、垂直走査部3から出力される選択信号SELが印加される。リセットトランジスタRXのドレインには所定の電源電圧が印加され、リセットトランジスタRXのソースは増幅トランジスタAXのゲートに接続されている。リセットトランジスタRXのゲートには、垂直走査部3から出力されるリセット信号RSTが印加される。増幅トランジスタAXのゲートとリセットトランジスタRXのソースは、光電変換部PECを構成する後述のFD部22に接続されている。光電変換部PECに備えられた後述の蓄積電極31、捕集電極33、上部電極42には、それぞれ、電圧VB31,VB33,VB42が印加される。また、画素10は、さらに転送トランジスタを含む4つの画素トランジスタによって構成されていてもよい。
図3は、第1の実施形態に係る固体撮像装置1が備える1つの画素10に対応した断面構造を模式的に示す断面図である。固体撮像装置1は、いわゆる積層型のCMOSイメージセンサであってもよい。
画素10は、半導体基板部20、層間絶縁膜30、蓄積電極31、絶縁膜32、捕集電極33、コンタクトプラグ34、半導体層35、光電変換層(光電変換膜)41及び上部電極42を備える。蓄積電極31、捕集電極33及び絶縁膜32は、層間絶縁膜30と半導体層35との間に配置されている。このうち、蓄積電極31、絶縁膜32、捕集電極33、半導体層35、光電変換層41及び上部電極42は、図2に示す光電変換部PECを構成する。
画素10は、半導体基板部20、層間絶縁膜30、蓄積電極31、絶縁膜32、捕集電極33、コンタクトプラグ34、半導体層35、光電変換層(光電変換膜)41及び上部電極42を備える。蓄積電極31、捕集電極33及び絶縁膜32は、層間絶縁膜30と半導体層35との間に配置されている。このうち、蓄積電極31、絶縁膜32、捕集電極33、半導体層35、光電変換層41及び上部電極42は、図2に示す光電変換部PECを構成する。
画素10は、複数の光電変換部を有していてもよい。例えば、画素10は、光電変換層41の他に、半導体基板部20内にさらに、例えばPD(フォトダイオード)等の光電変換部を有していてもよい。この場合、光電変換層41が特定の波長範囲の光を受光して光電変換を行い、半導体基板部20内に形成されている光電変換部が他の波長範囲の光を受光して光電変換を行う。
画素10は、複数の光電変換部を持つ場合、複数の光電変換部が転送トランジスタを除く他の画素トランジスタを共有し、且つフローティングディフージョン(FD)を共有する、いわゆる画素共有構造を採用することができる。
画素10は、複数の光電変換部を持つ場合、複数の光電変換部が転送トランジスタを除く他の画素トランジスタを共有し、且つフローティングディフージョン(FD)を共有する、いわゆる画素共有構造を採用することができる。
図3に示した固体撮像装置1は、いわゆる裏面照射型のCMOSイメージセンサによる固体撮像装置である。すなわち、半導体基板部20の裏面上に形成された上部電極42(図3に示す上部電極42の上面F1)が、光を入射させて受光する受光面であり、半導体基板部20の表面(図3に示す半導体基板部20の下面F2)が、読み出し回路を含む回路が形成された回路形成面である。なお、本実施形態に係る固体撮像装置は、裏面照射型のCMOSイメージセンサによる固体撮像装置に限定するものではなく、いわゆる表面照射型のCMOSイメージセンサ、CCD(Charge Coupled Device)イメージセンサ等といった任意のイメージセンサによるものであってもよい。
半導体基板部20は、イオン不純物のドーピングによりpn接合が作製可能なシリコン基板を用いて形成されている。シリコン基板としては、クリスタルシリコン(cSi)やアモルファスシリコン(aSi)等からなるものを挙げることができる。半導体基板部20の内部には、画素回路部21が形成されている。画素回路部21は、画素トランジスタとFD部22とを含む。FD部22は、電荷を蓄積可能な半導体領域であり、その電位はフローティング状態になりうる。
層間絶縁膜30は、第1の絶縁層の具体例の一つである。層間絶縁膜30は、半導体基板部20の上に形成されている。層間絶縁膜30は、例えば、いわゆる層間絶縁膜である。層間絶縁膜30には、比誘電率の高い無機化合物や有機化合物を用いることができる。層間絶縁膜30は、例えば、SiO2(シリコン酸化膜)である。
蓄積電極31、絶縁膜32及び捕集電極33は、画素毎にパターニングされている。蓄積電極31は、層間絶縁膜30の上に形成されている。
蓄積電極31に用いられる材料は、加工性に優れたものが望ましい。蓄積電極31に用いられる材料の例としては、酸化錫インジウム(ITO、Indium-Tin-Oxide)、酸化亜鉛(ZnO)、グラフェン等が挙げられる。
蓄積電極31に用いられる材料は、加工性に優れたものが望ましい。蓄積電極31に用いられる材料の例としては、酸化錫インジウム(ITO、Indium-Tin-Oxide)、酸化亜鉛(ZnO)、グラフェン等が挙げられる。
絶縁膜32は、第2の絶縁層の具体例の一つである。絶縁膜32は、蓄積電極31の上に形成されている。絶縁膜32は、半導体層35と蓄積電極31とを電気的に絶縁する。絶縁膜32は、層間絶縁膜30と同じ材料で形成されていてもよいし、異なる材料で形成されていてもよい。半導体層35と蓄積電極31とを電気的に絶縁するために、絶縁膜32の厚みは3nm以上が望ましい。また、絶縁膜32に用いられる材料は、加工性に優れたものが望ましい。
絶縁膜32に用いられる材料の例としては、シリコン酸化膜、シリコン窒化膜、アルミナ、及び絶縁性の有機化合物が挙げられる。
絶縁膜32に用いられる材料の例としては、シリコン酸化膜、シリコン窒化膜、アルミナ、及び絶縁性の有機化合物が挙げられる。
捕集電極33は、層間絶縁膜30の上に形成されている。捕集電極33は、蓄積電極31との間に間隔L1をあけて形成されている。捕集電極33は、半導体層35に接するように形成される。
捕集電極33に用いられる材料は、加工性に優れたものが望ましい。捕集電極33に用いられる材料の例としては、酸化錫インジウム(ITO)、酸化亜鉛(ZnO)、グラフェン等が挙げられる。
捕集電極33に用いられる材料は、加工性に優れたものが望ましい。捕集電極33に用いられる材料の例としては、酸化錫インジウム(ITO)、酸化亜鉛(ZnO)、グラフェン等が挙げられる。
蓄積電極31、絶縁膜32及び捕集電極33は、特定の波長領域の光を80%以上透過させることが望ましい。特定の波長領域の光は、例えば、赤(R)領域(約590nm以上約750nm以下の範囲の波長帯域)の光、緑(G)領域(約500nm以上約590nm以下の範囲の波長帯域)の光、青(B)領域(約400nm以上約500nm以下の範囲の波長帯域)の光、可視光領域(約400nm以上約750nm以下の範囲の波長帯域)の光等である。
画素10が複数の光電変換部を有する場合に、露光時に照射された光を蓄積電極31、絶縁膜32及び捕集電極33のうちのいずれかが吸収すると、光電変換層41とは別の光電変換部の受光量が減少してしまう。そのため、画素10の見かけ上の感度が低下してしまうという問題がある。本実施形態では、蓄積電極31、絶縁膜32及び捕集電極33が光を透過させるように形成することで、このような問題の発生が抑制される。
画素10が複数の光電変換部を有する場合に、露光時に照射された光を蓄積電極31、絶縁膜32及び捕集電極33のうちのいずれかが吸収すると、光電変換層41とは別の光電変換部の受光量が減少してしまう。そのため、画素10の見かけ上の感度が低下してしまうという問題がある。本実施形態では、蓄積電極31、絶縁膜32及び捕集電極33が光を透過させるように形成することで、このような問題の発生が抑制される。
コンタクトプラグ34は、層間絶縁膜30を貫通しており、捕集電極33と画素回路部21のFD部22とを電気的に接続している。コンタクトプラグ34は、層間絶縁膜30を貫通するビアにタングステン等の導電性材料を埋め込むことにより形成してもよい。また、コンタクトプラグ34は、イオン注入による半導体層等により形成することもできる。
半導体層35は、蓄積電極31、絶縁膜32及び捕集電極33の全面を覆うように形成されている。半導体層35の厚みは、蓄積電極31の厚みと絶縁膜32の厚みとの和よりも厚くなるように形成されている。これにより、半導体層35は、蓄積電極31及び捕集電極33の間の段差部から、蓄積電極31又は捕集電極33にかけても連続な層として形成される。例えば、蓄積電極31の厚みが20nmであり、絶縁膜32の厚みが5nmである場合、半導体層35の厚みは、30nm以上であることが望ましい。
半導体層35は、画素毎にパターニングされている。これにより、固体撮像装置1において隣接する各画素10の捕集電極33の間で電荷のやりとりが発生することが防止される。
半導体層35は、画素毎にパターニングされている。これにより、固体撮像装置1において隣接する各画素10の捕集電極33の間で電荷のやりとりが発生することが防止される。
半導体層35は、光電変換層41によって生成された信号電荷を半導体層35内に蓄積する。半導体層35は、蓄積された信号電荷を捕集電極33へ転送する。
半導体層35には、無機材料が用いられてもよいし、有機半導体材料が用いられてもよい。半導体層35は、例えば、無機材料をスパッタ成膜した後に、フォトリソグラフィー及びエッチングを行うことによって形成されてもよい。半導体層35は、例えば、有機半導体材料を用いて、スクリーン印刷によってパターニングすることによって形成されてもよい。
半導体層35は、光透過性が高い材料を用いて形成されていることが望ましい。半導体層35は、特定の波長領域の光を80%以上透過させることが望ましい。特定の波長領域の光は、例えば、赤(R)領域の光、緑(G)領域の光、青(B)領域の光、可視光領域の光等である。また、半導体層35に用いられる材料は、加工性に優れたものが望ましい。
画素10が複数の光電変換部を有する場合に、露光時に照射された光を半導体層35が吸収すると、光電変換層41とは別の光電変換部の受光量が減少してしまう。そのため、画素10の見かけ上の感度が低下してしまうという問題がある。本実施形態では、半導体層35が光を透過させるように構成することで、このような問題の発生が抑制される。
画素10が複数の光電変換部を有する場合に、露光時に照射された光を半導体層35が吸収すると、光電変換層41とは別の光電変換部の受光量が減少してしまう。そのため、画素10の見かけ上の感度が低下してしまうという問題がある。本実施形態では、半導体層35が光を透過させるように構成することで、このような問題の発生が抑制される。
半導体層35に用いられる無機材料の例としては、シリコンカーバイド、IGZO、ダイヤモンド、グラフェン、カーボンナノチューブ等が挙げられる。半導体層35に用いられる有機半導体材料の例としては、縮合多環炭化水素化合物、縮合複素環化合物等が挙げられる。縮合多環炭化水素化合物の例として、ペンタセン、ルブレン等が挙げられる。縮合複素環化合物及びそれらの誘導体の例として、2,7−ジオクチル[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(C8-BTBT)、3,11−ジデシルジナフト[2,3−d:2’,3’−d’]ベンゾ[1,2−b:4,5−b’]ジチオフェン(C10-DNBDT)等が挙げられる。なお、C8-BTBT又はC10-DNBDTを材料に用いた膜は、以下の参考文献1に記載されている方法を用いて形成することができる。
参考文献1:2011年日本画像学会第112回技術研究会資料、p75
参考文献1:2011年日本画像学会第112回技術研究会資料、p75
光電変換層41は、半導体層35の上に形成されている。光電変換層41は、パターニングされておらず、画素10の受光面全面に形成されている。光電変換層41は、露光に応じて光電変換を行い、信号電荷を生成する。生成された信号電荷の量は、光電変換層41の受光量に依存する。
光電変換層41には、半導体基板上に積層可能であることを限度として、任意の光電変換膜を用いることができる。光電変換層41は、例えば、有機光電変換材料を用いて形成される。
図3に示す画素10では、光電変換層41は1つの層の如く図示をしているが、光電変換層41は、複数層であってもよい。また、光電変換層41は、画素毎にパターニングされていてもよい。
図3に示す画素10では、光電変換層41は1つの層の如く図示をしているが、光電変換層41は、複数層であってもよい。また、光電変換層41は、画素毎にパターニングされていてもよい。
上部電極42は、光電変換層41の上に形成されている。上部電極42は、パターニングされずに画素10の受光面全面に形成されていてもよいし、画素毎にパターニングされていてもよい。上部電極42に用いられる材料の例としては、酸化錫インジウム(ITO)、酸化亜鉛(ZnO)、グラフェン等が挙げられる。
上部電極42は、光透過性が高い材料を用いて形成されていることが望ましい。上部電極42は、特定の波長領域の光を80%以上透過させることが望ましい。特定の波長領域の光は、例えば、赤(R)領域の光、緑(G)領域の光、青(B)領域の光、可視光領域の光等である。これによって、露光された光を上部電極42が吸収することによって、光電変換層41の受光量が減少することが抑制される。すなわち、画素10の見かけ上の感度が低下してしまうことが抑制される。
図3に示す画素10において、半導体基板部20の上に形成される各層は、乾式成膜法あるいは湿式成膜法を用いて作製されることができる。乾式成膜法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、MBE等の物理気相成長法、プラズマ重合等のCVD法を用いることができる。湿式成膜法としては、キャスト法、スピンコート法、ディッピング法、LB法等の塗布法を用いることができる。また、インクジェット印刷やスクリーン印刷などの印刷法、熱転写やレーザー転写などの転写法を用いてもよい。
次に、第1の実施形態の固体撮像装置1の製造方法について、説明する。
先ず、半導体基板部20の各画素10となる領域に、複数の画素トランジスタ及びFD部22を含む画素回路部21を形成する。次に、半導体基板部20の上に層間絶縁膜30を積層した後、層間絶縁膜30を貫通するコンタクトプラグ34を形成する。このコンタクトプラグ34は、上述したFD部22と接続されている。次に、層間絶縁膜30の上に蓄積電極31、絶縁膜32及び捕集電極33を形成する。捕集電極33は、蓄積電極31との間に所定のギャップ長L1分の間隔をあけるように形成される。蓄積電極31、絶縁膜32及び捕集電極33は、画素10となる領域全体に積層された後にフォトリソグラフィー及びエッチングを行うことによって形成されてもよい。次に、蓄積電極31、絶縁膜32及び捕集電極33の上に半導体層35が形成される。次に、半導体層35の上に光電変換層41が形成された後、光電変換層41の上に上部電極42が形成される。以上のような工程を経ることによって、固体撮像装置1を製造することができる。
先ず、半導体基板部20の各画素10となる領域に、複数の画素トランジスタ及びFD部22を含む画素回路部21を形成する。次に、半導体基板部20の上に層間絶縁膜30を積層した後、層間絶縁膜30を貫通するコンタクトプラグ34を形成する。このコンタクトプラグ34は、上述したFD部22と接続されている。次に、層間絶縁膜30の上に蓄積電極31、絶縁膜32及び捕集電極33を形成する。捕集電極33は、蓄積電極31との間に所定のギャップ長L1分の間隔をあけるように形成される。蓄積電極31、絶縁膜32及び捕集電極33は、画素10となる領域全体に積層された後にフォトリソグラフィー及びエッチングを行うことによって形成されてもよい。次に、蓄積電極31、絶縁膜32及び捕集電極33の上に半導体層35が形成される。次に、半導体層35の上に光電変換層41が形成された後、光電変換層41の上に上部電極42が形成される。以上のような工程を経ることによって、固体撮像装置1を製造することができる。
図4は、第1の実施形態の固体撮像装置1に備えられた画素10のデバイス構造の一例を示す図である。図4に示した画素10の構成のうち、図3に示したものと同一の構成部分については同じ符号を付す。図4では、上述の図2に示す画素10の構成要素のうち、光電変換部PECのデバイス構造と、画素回路部21を構成するリセットトランジスタRXのデバイス構造とが例示されている。また、図4では、画素回路部21を構成する増幅トランジスタAXおよび選択トランジスタSXは、理解の容易化のため、画素回路部21の枠外に示されているが、増幅トランジスタAXおよび選択トランジスタSXは、リセットトランジスタRXと共に半導体基板部20に形成されている。
前述したように、半導体基板部20の画素10は、リセットトランジスタRX、増幅トランジスタAX、選択トランジスタSXを備える。以下の例ではこれらのトランジスタとして例えばNチャンネルのMOSトランジスタを用いるが、PチャンネルのMOSトランジスタを用いてもよいし、他のトランジスタを用いてもよい。
リセットトランジスタRXのゲートは、導電層24である。導電層24は、画素10の半導体基板部20上に形成されている絶縁膜(不図示)を介して、半導体基板部20の上に形成されている。導電層24には制御信号線3−Biが接続され、リセット信号RSTが印加される。リセットトランジスタRSTのドレインは、不純物拡散領域23であり、電源電圧線に接続される。不純物拡散領域23は、一定の電圧(例えば、V1)に保たれている。リセットトランジスタRSTのソースは、FD部22に接続される。リセットトランジスタRXは、リセット信号RSTによってオン状態になると導通状態になり、FD部22を所定の電位にリセットする。
増幅トランジスタAXのゲートは、FD部22に接続される。増幅トランジスタAXのドレインは電源電圧線に接続される。増幅トランジスタAXのソースは、選択トランジスタSXに接続される。増幅トランジスタAXは、ソースフォロワとして機能する。
選択トランジスタSXのゲートには、選択信号線3−Aiが接続され、選択信号SELが印加される。選択トランジスタSXのドレインは、増幅トランジスタAXのソースに接続される。選択トランジスタSXのソースは、画素信号線4−jに接続される。選択トランジスタSXは、垂直走査部3から出力された選択信号SELによってオン状態となると、増幅トランジスタAXからの画素信号出力を画素信号線4−jに伝送する。増幅トランジスタAX及び選択トランジスタSXによって、FD部22の電位に応じた信号が画素信号出力として出力される。
前述したように、半導体基板部20の画素10は、リセットトランジスタRX、増幅トランジスタAX、選択トランジスタSXを備える。以下の例ではこれらのトランジスタとして例えばNチャンネルのMOSトランジスタを用いるが、PチャンネルのMOSトランジスタを用いてもよいし、他のトランジスタを用いてもよい。
リセットトランジスタRXのゲートは、導電層24である。導電層24は、画素10の半導体基板部20上に形成されている絶縁膜(不図示)を介して、半導体基板部20の上に形成されている。導電層24には制御信号線3−Biが接続され、リセット信号RSTが印加される。リセットトランジスタRSTのドレインは、不純物拡散領域23であり、電源電圧線に接続される。不純物拡散領域23は、一定の電圧(例えば、V1)に保たれている。リセットトランジスタRSTのソースは、FD部22に接続される。リセットトランジスタRXは、リセット信号RSTによってオン状態になると導通状態になり、FD部22を所定の電位にリセットする。
増幅トランジスタAXのゲートは、FD部22に接続される。増幅トランジスタAXのドレインは電源電圧線に接続される。増幅トランジスタAXのソースは、選択トランジスタSXに接続される。増幅トランジスタAXは、ソースフォロワとして機能する。
選択トランジスタSXのゲートには、選択信号線3−Aiが接続され、選択信号SELが印加される。選択トランジスタSXのドレインは、増幅トランジスタAXのソースに接続される。選択トランジスタSXのソースは、画素信号線4−jに接続される。選択トランジスタSXは、垂直走査部3から出力された選択信号SELによってオン状態となると、増幅トランジスタAXからの画素信号出力を画素信号線4−jに伝送する。増幅トランジスタAX及び選択トランジスタSXによって、FD部22の電位に応じた信号が画素信号出力として出力される。
次に、図5に示すフローチャートに沿って、図6及び図7を参照しながら、第1の実施形態の固体撮像装置1の動作を説明する。図5は、第1の実施形態の固体撮像装置1の動作の流れの一例を示すフローチャートである。図6は、第1の実施形態の固体撮像装置1の動作を説明するためのタイミングチャートである。図7は、第1の実施形態の固体撮像装置1の動作の各過程における画素の内部ノードのポテンシャルの一例を示す図である。ここでは、図3に示す画素10の動作を中心に説明する。ここでは、一例として、画素10の光電変換層41が発生する信号電荷が電子である場合について説明する。また、ここでは、固体撮像装置1が、動画撮影等の複数のフレームの撮像を連続して行う場合について説明する。
まず、時刻t0において、露光が開始され、光電変換層41によって発生された信号電荷は半導体層35に蓄積される(ステップS1)。より具体的には、固体撮像装置1は、蓄積電極31の電位φ31、捕集電極33の電位φ33及び上部電極42の電位φ42が、次に示す式(1)を満たすように、蓄積電極31、捕集電極33及び上部電極42に電圧VB31,VB33,VB42を印加する。例えば、制御部5の制御の下、垂直走査部3は、蓄積電極31に電位φ31を与える電圧VB31として0Vを印加し、捕集電極33に電位φ33を与える電圧VB33として−1Vを印加し、上部電極42に電位φ42を与える電圧VB42として−5Vを印加する。
このとき、光電変換層41では、光電変換によって電子と正孔(電子―正孔対)が発生する。発生する電子―正孔対の量は、露光量に対応する。より具体的には、例えば、光電変換層41が有機光電変換膜によって形成されている場合、露光によって有機光電変換膜中に生成された励起子は、光電変換層41中に生じている電界によって、キャリア分離される。光電変換層41中に生じている電界とは、上部電極42と蓄積電極31との電位差によって生じる電界又は上部電極42と捕集電極33との電位差によって生じる電界である。
信号電荷が電子の場合、電子―正孔対のうちの電子の大部分は、蓄積電極31側に向かって移動する。このとき、電子―正孔対のうちの正孔は、上部電極42に向かって移動し、さらに上部電極42を介して光電変換層41の外へ排出される。
蓄積電極31と半導体層35との間には絶縁膜32がある。そのため、光電変換層41から蓄積電極31へ向かって移動してきた電子は、絶縁膜32によるポテンシャル障壁を超えることができずに、半導体層35内の蓄積電極31及び絶縁膜32の上部分近傍(以下、「信号電荷蓄積エリア」という。)に蓄積される。すなわち、信号電荷(電子)は、半導体層35の内部領域であって、第2の絶縁層との界面近傍の領域に蓄積される。このとき、蓄積電極31の電位は捕集電極33の電位以上となっているため、信号電荷蓄積エリアに蓄積された信号電荷は、捕集電極33へ向かって移動せずに信号電荷蓄積エリアに蓄積されたままとなる。
信号電荷が電子の場合、電子―正孔対のうちの電子の大部分は、蓄積電極31側に向かって移動する。このとき、電子―正孔対のうちの正孔は、上部電極42に向かって移動し、さらに上部電極42を介して光電変換層41の外へ排出される。
蓄積電極31と半導体層35との間には絶縁膜32がある。そのため、光電変換層41から蓄積電極31へ向かって移動してきた電子は、絶縁膜32によるポテンシャル障壁を超えることができずに、半導体層35内の蓄積電極31及び絶縁膜32の上部分近傍(以下、「信号電荷蓄積エリア」という。)に蓄積される。すなわち、信号電荷(電子)は、半導体層35の内部領域であって、第2の絶縁層との界面近傍の領域に蓄積される。このとき、蓄積電極31の電位は捕集電極33の電位以上となっているため、信号電荷蓄積エリアに蓄積された信号電荷は、捕集電極33へ向かって移動せずに信号電荷蓄積エリアに蓄積されたままとなる。
次に、時刻t1において、固体撮像装置1は、画素10のFD部22のリセットを行う(ステップS2)。より具体的には、制御部5の制御の下、垂直走査部3は、選択信号SEL及びリセット信号RSTをハイレベルにする。このとき、導電層24に印加されるリセット信号RSTの電圧VRSTは、不純物拡散領域23に印加されている電圧V1よりも大きい。そのため、電圧VRSTが印加されている導電層24のポテンシャルは、不純物拡散領域23のポテンシャルφ1よりも低くなり、リセットトランジスタRXがオン状態となる。リセットトランジスタRXがオン状態となると、FD部22と不純物拡散領域23との間で電荷のやりとりが生じる。したがって、FD部22は、不純物拡散領域23と同じポテンシャルφ1になり、リセットされる(図7の1段目を参照)。
続いて、時刻t2において、制御部5の制御の下、垂直走査部3は、リセット信号RSTをローレベルとする。これにより、リセットトランジスタRXがオフ状態になり、FD部22は不純物拡散領域23と電気的に切り離される。すなわち、FD部22はフローティング状態となる。リセットトランジスタRXがオフ状態となる際に、熱雑音(kTCノイズ)が発生する。そのため、FD部22のポテンシャルは、φ1とは異なるポテンシャルφ2になる。kTCノイズは、リセットトランジスタRXをオフ状態にする度にランダムに発生するノイズである。
続いて、時刻t3において、制御部5の制御の下、水平走査部4は、FD部22の電圧を示す電圧VSIGを読み出し、電圧VSIGの電圧値をリセットレベルとして検出する(ステップS3)。詳細には、FD部22の電圧は、画素信号VSIGとして、増幅トランジスタAXを通じて画素10から出力される。このとき、FD部22から読み出された電圧VSIGは、ポテンシャルφ2に対応する電圧であり、時刻t2においてリセットトランジスタRXがオフ状態にされた際に発生したkTCノイズを含んでいる(図7の2段目を参照)。画素10から出力された画素信号VSIGは、画素信号線4−jを通じて水平走査部4に供給される。水平走査部4は、画素信号VSIGを増幅して電圧Voutを出力する。水平走査部4の信号処理部(図示なし)は、電圧Voutをリセットレベルとしてサンプリングして保持する。
続いて、時刻t4において、固体撮像装置1は、信号電荷をFD部22に転送する(ステップS4)。また、時刻t4において、固体撮像装置1は、時刻t0から行われていた露光及び信号電荷の蓄積を終了(完了)する。
より具体的には、固体撮像装置1は、蓄積電極31の電位φ31、捕集電極33の電位φ33及び上部電極42の電位φ42が、次に示す式(2)を満たすように、蓄積電極31、捕集電極33及び上部電極42に電圧を印加する。例えば、制御部5の制御の下、垂直走査部3は、蓄積電極31に電位φ31を与える電圧VB31として−1Vを印加し、捕集電極33に電位φ33を与える電圧VB33として0Vを印加し、上部電極42に電位φ42を与える電圧VB42として−5Vを印加する。
より具体的には、固体撮像装置1は、蓄積電極31の電位φ31、捕集電極33の電位φ33及び上部電極42の電位φ42が、次に示す式(2)を満たすように、蓄積電極31、捕集電極33及び上部電極42に電圧を印加する。例えば、制御部5の制御の下、垂直走査部3は、蓄積電極31に電位φ31を与える電圧VB31として−1Vを印加し、捕集電極33に電位φ33を与える電圧VB33として0Vを印加し、上部電極42に電位φ42を与える電圧VB42として−5Vを印加する。
このとき、蓄積電極31の捕集電極33側のエッジ付近と捕集電極33との間に、フリンジ電界が生じる。なお、フリンジ電界は、蓄積電極31と捕集電極33との間の電位差によって生じるものであり、信号電荷蓄積エリアの中央付近(すなわち、半導体層35内の蓄積電極31の上部分の中央付近)には発生しない。このフリンジ電界によって、信号電荷蓄積エリアの捕集電極33側のエッジ付近に蓄積されていた信号電荷は、捕集電極33へ転送される。これによって、信号電荷蓄積エリアの捕集電極33側のエッジ付近の信号電荷密度が低くなり、信号電荷蓄積エリアにおいて信号電荷の濃度勾配が発生する。この信号電荷の濃度勾配によって、信号電荷蓄積エリアに蓄積されている信号電荷は、信号電荷蓄積エリアの中央付近から、信号電荷蓄積エリアの捕集電極33側のエッジ付近に向けて拡散によって移動する。
このようにして、蓄積電極31と捕集電極33との間の電位差によるフリンジ電界が信号電荷蓄積エリアの中央付近に生じない場合においても、信号電荷蓄積エリアの中央付近に蓄積されていた信号電荷も捕集電極33に転送される。捕集電極33に転送された信号電荷は、コンタクトプラグ34を介して、FD部22へ転送される。FD部22のポテンシャルは、信号電荷が信号電荷蓄積エリアから転送されることによって、ポテンシャルφ3になる(図7の3段目を参照)。
一般に、拡散による電荷の移動速度は、電界ドリフトによる電荷の移動速度に比べて遅い。したがって、信号電荷が信号電荷蓄積エリアの中を拡散によって移動する時間は、信号電荷が蓄積電極31と捕集電極33との間のフリンジ電界によって移動する時間に比べて長い。しかし、後述するように、半導体層35が、移動度が十分に高い材料によって形成されている場合、蓄積電極31上から捕集電極33へ信号電荷を現実的な時間内で転送することができる。
固体撮像装置1は、上記のステップS1からステップS4を繰り返して実行することで、複数のフレームの撮像を行う。また、固体撮像装置1は、上述のステップS1からステップS4を繰り返し実行する都度、上記のステップS4の後に、次に説明するステップS5及びステップS6を実行する。
このようにして、蓄積電極31と捕集電極33との間の電位差によるフリンジ電界が信号電荷蓄積エリアの中央付近に生じない場合においても、信号電荷蓄積エリアの中央付近に蓄積されていた信号電荷も捕集電極33に転送される。捕集電極33に転送された信号電荷は、コンタクトプラグ34を介して、FD部22へ転送される。FD部22のポテンシャルは、信号電荷が信号電荷蓄積エリアから転送されることによって、ポテンシャルφ3になる(図7の3段目を参照)。
一般に、拡散による電荷の移動速度は、電界ドリフトによる電荷の移動速度に比べて遅い。したがって、信号電荷が信号電荷蓄積エリアの中を拡散によって移動する時間は、信号電荷が蓄積電極31と捕集電極33との間のフリンジ電界によって移動する時間に比べて長い。しかし、後述するように、半導体層35が、移動度が十分に高い材料によって形成されている場合、蓄積電極31上から捕集電極33へ信号電荷を現実的な時間内で転送することができる。
固体撮像装置1は、上記のステップS1からステップS4を繰り返して実行することで、複数のフレームの撮像を行う。また、固体撮像装置1は、上述のステップS1からステップS4を繰り返し実行する都度、上記のステップS4の後に、次に説明するステップS5及びステップS6を実行する。
上述のステップS4の後、時刻t5において、制御部5の制御の下、水平走査部4は、画素信号として、FD部22の電圧を示す電圧VSIGを検出する(ステップS5)。詳細には、FD部22の電圧は、画素信号VSIGとして、増幅トランジスタAX及び選択トランジスタSXを通じて画素10から出力される。このとき、画素信号VSIGの電圧は、ポテンシャルφ3に対応する電圧である(図7の4段目を参照)。
時刻t1にFD部22がリセットされてから、kTCノイズはFD部22に保持されたままである。そのため、画素信号VSIGには、時刻t3において検出された電圧VSIGに含まれているkTCノイズと同じkTCノイズが含まれる。
画素10から出力された画素信号VSIGは、画素信号線4−jを通じて水平走査部4に供給される。水平走査部4は、画素信号VSIGを増幅して電圧Voutを出力する。水平走査部4の信号処理部(図示なし)は、電圧Voutをサンプリングして保持する。
時刻t1にFD部22がリセットされてから、kTCノイズはFD部22に保持されたままである。そのため、画素信号VSIGには、時刻t3において検出された電圧VSIGに含まれているkTCノイズと同じkTCノイズが含まれる。
画素10から出力された画素信号VSIGは、画素信号線4−jを通じて水平走査部4に供給される。水平走査部4は、画素信号VSIGを増幅して電圧Voutを出力する。水平走査部4の信号処理部(図示なし)は、電圧Voutをサンプリングして保持する。
続いて、時刻t6において、制御部5の制御の下、水平走査部4の信号処理部は、上記のサンプリングにより得られた電圧Voutから信号電圧VSを算出する(ステップS6)。詳細には、水平走査部4の信号処理部は、前述の時刻t3におけるFD部22の電圧VSIGに基づく電圧Vout(リセットレベル)のサンプリング値と、時刻t6におけるFD部22の電圧VSIGに基づく電圧Voutのサンプリング値との差分を演算し、その演算結果を信号電圧VSとして出力する。この信号電圧VSは、露光により光電変換層41が生成した電荷量に相当する信号成分を表す。
このように、固体撮像装置1によれば、前リセット方式のCDS処理を用いてkTCノイズを除去した信号電圧を得ることができる。
このように、固体撮像装置1によれば、前リセット方式のCDS処理を用いてkTCノイズを除去した信号電圧を得ることができる。
次に、信号電荷蓄積エリアに蓄積された信号電荷が、拡散によって信号電荷蓄積エリアから捕集電極33に転送されるまでに要する時間の見積もりについて説明する。信号電荷蓄積エリアに蓄積された信号電荷が拡散によって移動する時間の見積もりは、以下の参考文献2に記載されているMOS bucket bridgeの転送時間を用いて行った。
参考文献2:M.G.Collet and L.J.M.Esser, Festkorperprobleme XIII, 1973, p337
参考文献2:M.G.Collet and L.J.M.Esser, Festkorperprobleme XIII, 1973, p337
図8は、MOS bucket bridgeの転送時間の計算式におけるモデルを示す図である。図8に示したモデルにおいて、互いに隣接すると共に連続するMOS(Metal Oxide Semiconductor)構造(以下、「MOS」という。)が形成されている。図8のMOSは、半導体基板J1と、ゲート酸化膜J2と、ゲート電極J3とを有する。半導体基板J1は、p型シリコンを用いて形成されている。半導体基板J1内に、チャネル部J4が、n型シリコンを用いて形成されている。ゲート酸化膜J2は、半導体基板J1の上にSiO2によって形成される。ゲート電極J3は、ゲート酸化膜J2の上に形成される。
このように構成されたMOS bucket bridgeでは、ゲート電極J3直下のチャネル部J4に蓄積されている電荷が隣接するMOSに転送される。MOS bucket bridgeでは、電荷の転送過程は、エッジ部分J5におけるフリンジ電界によるドリフト過程と、チャネル部J4における拡散過程とから構成されている。
また、MOS bucket bridgeでは、チャネル部J4のドーピング濃度が十分に高く、エッジ部J5付近を除いたチャネル部J4の電位勾配が無い(電位勾配が平坦とみなせる)と仮定されている。また、電位ブロック領域J6において、電荷転送時の電流は連続であると仮定されている。
MOS bucket bridgeにおける転送時間と蓄積電荷量の関係は、電荷の拡散過程を考慮して、次に示す式(3)及び式(4)で表される。
このように構成されたMOS bucket bridgeでは、ゲート電極J3直下のチャネル部J4に蓄積されている電荷が隣接するMOSに転送される。MOS bucket bridgeでは、電荷の転送過程は、エッジ部分J5におけるフリンジ電界によるドリフト過程と、チャネル部J4における拡散過程とから構成されている。
また、MOS bucket bridgeでは、チャネル部J4のドーピング濃度が十分に高く、エッジ部J5付近を除いたチャネル部J4の電位勾配が無い(電位勾配が平坦とみなせる)と仮定されている。また、電位ブロック領域J6において、電荷転送時の電流は連続であると仮定されている。
MOS bucket bridgeにおける転送時間と蓄積電荷量の関係は、電荷の拡散過程を考慮して、次に示す式(3)及び式(4)で表される。
ここで、tは、電荷の転送開始時をt=0とした場合の時刻である。Qs(0)は、電荷の転送開始時(t=0)にチャネル部J2に蓄積されている電荷量であり、Qs(t)は、転送開始から時刻tにチャネル部J4に蓄積されている電荷量である。さらに、Coxは、単位面積当たりのチャネル部J4の容量であり、LBは、隣接するMOSのゲート電極間の距離であり、LCは、MOSのゲート電極長である。さらに、μnは、シリコン層(半導体基板J1)の移動度であり、qは、電気素量であり、n0は、単位面積当たりの初期電子数(t=0における電子数)である。
図8に示したMOS bucket bridgeのモデルと、図3に示した画素10とを比較すると、半導体基板J1は、画素10における半導体層35とみなすことができる。また、ゲート酸化膜J2は、画素10における絶縁膜32とみなすことができる。また、ゲート電極J3は、画素10における蓄積電極31とみなすことができる。また、電荷が転送される先である隣接するMOSのゲート電極は、画素10における捕集電極33とみなすことができる。
すなわち、μnは、半導体層35の移動度とみなすことができる。また、隣接するMOSのゲート電極間の距離LBは、蓄積電極31と捕集電極33との間のギャップ長L1とみなすことができ、MOSのゲート電極長LCは、蓄積電極31のエッジ間の最小寸法L2とみなすことができる。また、単位面積当たりのチャネル部J4の容量Coxは、半導体層35と絶縁膜32と蓄積電極31とで形成されるキャパシタの単位面積当たりの容量とみなすことができる。
すなわち、μnは、半導体層35の移動度とみなすことができる。また、隣接するMOSのゲート電極間の距離LBは、蓄積電極31と捕集電極33との間のギャップ長L1とみなすことができ、MOSのゲート電極長LCは、蓄積電極31のエッジ間の最小寸法L2とみなすことができる。また、単位面積当たりのチャネル部J4の容量Coxは、半導体層35と絶縁膜32と蓄積電極31とで形成されるキャパシタの単位面積当たりの容量とみなすことができる。
既存の4トランジスタ構成のCMOSイメージセンサ(以下、「既存CMOSセンサ」という。)と同等の高速読み出しを実施するためには、固体撮像装置1は、各画素から信号を読み出す動作(以下、「信号読み出し動作」という。)を1/(f×Line)秒以内に行う必要がある。ここで、fは、フレーム周波数であり、Lineは画素アレイ2(センサアレイ)の行数である。信号読み出し動作には、各画素から信号電圧を読み出す動作と、FD部22をリセットする動作とが含まれる。FD部22をリセットする動作には、例えば、2μsec程度の時間がかかる。
上述した信号読み出し動作の時間についての条件と、式(3)と、式(4)とから、固体撮像装置1は、次に示す式(5)を満足するように構成されている必要がある。
上述した信号読み出し動作の時間についての条件と、式(3)と、式(4)とから、固体撮像装置1は、次に示す式(5)を満足するように構成されている必要がある。
ここで、SCは、1つの画素10あたりの蓄積電極31の面積であり、Qは、信号電荷の読み出し動作の後(すなわち、1/(f×Line)秒後)に信号電荷蓄積エリアに残っている信号電荷数(転送残りの信号電荷数)である。
固体撮像装置1が、既存CMOSセンサと同等の読み出しノイズで動作するためには、転送残りの信号電荷数Qは、既存のセンサと同程度以下となる必要がある。固体撮像装置1が、例えば、埋め込み型シリコンフォトダイオードの暗電流ノイズと同等の読み出しノイズで動作するためには、転送残りの信号電荷数Qは、0.5電子程度以下となる必要がある。また、固体撮像装置1が、例えば、以下の参考文献3に記載されているフィードバックリセットを適用した有機積層型CMOSイメージセンサ(以下、「フィードバックリセット有機CMOSセンサ」という。)の読み出しノイズと同等の読み出しノイズで操作するためには、転送残りの信号電荷数Qは、2.3電子程度以下となる必要がある。
参考文献3:M.Ishii, S.Kasuga, K.Yazawa, Y.Sakata, T.Okino, Y.Sato, J.Hirase, Y.Hirose, T.Tamaki, Y.Matsunaga, and Y.Kato, “An ultra-low noise photoconductive film image sensor with a high speed column feed back amplifer noise canceller” 2013 Symposium on VLSI Circuits Digest of Technical Papers, C8
例えば、既存CMOSセンサと同等の高速読み出しを行い、さらに、フィードバックリセット有機CMOSセンサと同等の読み出しノイズで動作するためには、固体撮像装置1は、次に示す式(6)を満足するように形成されている必要がある。
固体撮像装置1が、既存CMOSセンサと同等の読み出しノイズで動作するためには、転送残りの信号電荷数Qは、既存のセンサと同程度以下となる必要がある。固体撮像装置1が、例えば、埋め込み型シリコンフォトダイオードの暗電流ノイズと同等の読み出しノイズで動作するためには、転送残りの信号電荷数Qは、0.5電子程度以下となる必要がある。また、固体撮像装置1が、例えば、以下の参考文献3に記載されているフィードバックリセットを適用した有機積層型CMOSイメージセンサ(以下、「フィードバックリセット有機CMOSセンサ」という。)の読み出しノイズと同等の読み出しノイズで操作するためには、転送残りの信号電荷数Qは、2.3電子程度以下となる必要がある。
参考文献3:M.Ishii, S.Kasuga, K.Yazawa, Y.Sakata, T.Okino, Y.Sato, J.Hirase, Y.Hirose, T.Tamaki, Y.Matsunaga, and Y.Kato, “An ultra-low noise photoconductive film image sensor with a high speed column feed back amplifer noise canceller” 2013 Symposium on VLSI Circuits Digest of Technical Papers, C8
例えば、既存CMOSセンサと同等の高速読み出しを行い、さらに、フィードバックリセット有機CMOSセンサと同等の読み出しノイズで動作するためには、固体撮像装置1は、次に示す式(6)を満足するように形成されている必要がある。
次に、図9及び図10を参照しながら、固体撮像装置1の半導体層35に各種半導体材料を用いた場合の信号電荷の転送時間について説明する。図9は、第1の実施形態に係る画素10の半導体層35に各種半導体材料を用いた場合の転送時間を見積もった結果の一例を示す図である。図10は、図9に示した転送時間の見積もりに使用した各種半導体材料の移動度の一例を示す表である。
図9に示したグラフにおいて、縦軸は、各種半導体材料のバンドギャップを示し、横軸は、第1の実施形態の固体撮像装置1の半導体層35に各種半導体材料を用いた場合の転送時間を示す。
図9に示した転送時間は、画素10の蓄積電極31の平面視における形状が、一辺の長さが1μmの正方形であり、蓄積電極31と捕集電極33間のギャップ長L1が50nmである場合について見積もったものである。すなわち、式(6)において、L1を50nmとし、L2を1μmとした。さらに、式(6)におけるμnは半導体層35の移動度とみなすことができるため、図10の表に示す各種半導体材料に対応する移動度の値を代入することによって、図9に示す転送時間を算出することができる。
図9の破線が示す転送時間(8.6μsec)は、既存CMOSセンサと同等の高速読み出しを実施するために、固体撮像装置1が、各画素からの信号読み出し動作にかけることのできる時間の最大値である。この転送時間(8.6μsec)は、固体撮像装置1がFull-HD(画素サイズ1920×1080)であり、フレーム周波数fが60Hzであると場合を仮定して見積もった。固体撮像装置1がFull-HDの場合、画素アレイ2の行数Lineは1920である。
図9に示した転送時間は、画素10の蓄積電極31の平面視における形状が、一辺の長さが1μmの正方形であり、蓄積電極31と捕集電極33間のギャップ長L1が50nmである場合について見積もったものである。すなわち、式(6)において、L1を50nmとし、L2を1μmとした。さらに、式(6)におけるμnは半導体層35の移動度とみなすことができるため、図10の表に示す各種半導体材料に対応する移動度の値を代入することによって、図9に示す転送時間を算出することができる。
図9の破線が示す転送時間(8.6μsec)は、既存CMOSセンサと同等の高速読み出しを実施するために、固体撮像装置1が、各画素からの信号読み出し動作にかけることのできる時間の最大値である。この転送時間(8.6μsec)は、固体撮像装置1がFull-HD(画素サイズ1920×1080)であり、フレーム周波数fが60Hzであると場合を仮定して見積もった。固体撮像装置1がFull-HDの場合、画素アレイ2の行数Lineは1920である。
図9に示した転送時間の見積もりの具体例では、半導体層35にIGZOを用いた場合の固体撮像装置1の転送時間は、2.87μsecである。すなわち、半導体層35にIGZOを用いた場合、固体撮像装置1は、FD部22をリセットする動作(例えば、2μsec)を含めた各画素からの信号読み出し動作を、上述した8.6μsec以内に行うことができる。
これに対して、上記の特許文献1に記載されている、有機光電変換膜内に蓄積した信号電荷が有機光電変換膜内を移動して捕集電極に転送される構成では、転送時間は6msec以上を要すると見積もられる。この転送時間の見積もりにおいて、有機光電変換膜はC60であるとし、有機光電変換膜の移動度は0.000001[m2/V/sec]であるとした。
これに対して、上記の特許文献1に記載されている、有機光電変換膜内に蓄積した信号電荷が有機光電変換膜内を移動して捕集電極に転送される構成では、転送時間は6msec以上を要すると見積もられる。この転送時間の見積もりにおいて、有機光電変換膜はC60であるとし、有機光電変換膜の移動度は0.000001[m2/V/sec]であるとした。
信号電荷の転送時間の観点から、半導体層35に用いられる材料は移動度が大きいことが望ましい。半導体層35に用いられる材料は、さらに、可視光を含む波長帯域の光を80%以上透過させることが望ましい。このような半導体材料として、半導体層35には、グラフェン、IGZO、シリコンカーバイド(SiC)、ダイヤモンド薄膜、縮合多環炭化水素化合物及び縮合複素環化合物を用いることができる。縮合多環炭化水素化合物の例として、ペンタセン、ルブレン等が挙げられる。縮合複素環化合物の例として、2,7−ジオクチル[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(C8-BTBT)、3,11−ジデシルジナフト[2,3−d:2’,3’−d’]ベンゾ[1,2−b:4,5−b’]ジチオフェン(C10-DNBDT)等が挙げられる。
室温の熱エネルギーによって励起されたキャリアによるノイズを抑制するため、半導体層35に用いる半導体材料のバンドギャップは、既存のフォトダイオードに使用されているシリコン(Si)のバンドギャップ以上の大きさであることが望ましい。このような構成にすることによって、固体撮像装置1は、半導体層35内において、室温の熱エネルギーによって励起されたキャリアが半導体層35内に蓄積されている信号電荷に混ざり、ノイズとなることを抑制することができる。
次に、蓄積電極31と捕集電極33間のギャップ長L1と信号電荷の転送時間との関係について説明する。図11は、第1の実施形態の固体撮像装置1におけるギャップ長L1に対する転送時間の見積もり結果の一例を示す図である。図11に示した転送時間は、固体撮像装置1の蓄積電極31のエッジ間の最小寸法L2が1μmであり、半導体層35がIGZOを用いて形成され、半導体層35における移動度が15cm2/(V・sec)である場合について見積もった。
固体撮像装置1が、例えばFull-HD(画素サイズ1920×1080)であり、フレーム周波数fが60Hzである場合、固体撮像装置1は、既存のCMOSセンサと同等の高速読み出しを実施するためには、各画素から信号電圧を読み出す動作及びFD部のリセットの動作を8.6マイクロ秒以内に行う必要がある。FD部22のリセット動作にかかる時間が2マイクロ秒である場合、固体撮像装置1は、各画素から信号電圧を読み出す動作を6.6マイクロ秒(=8.6−2)以内に行う必要がある。
図11に示す具体例において、各画素から信号電圧を読み出す転送時間が6.6マイクロ秒以下であるためには、蓄積電極31と捕集電極33間のギャップ長L1は、115nm以下となるように形成されている必要がある。
図11に示す具体例において、各画素から信号電圧を読み出す転送時間が6.6マイクロ秒以下であるためには、蓄積電極31と捕集電極33間のギャップ長L1は、115nm以下となるように形成されている必要がある。
以上説明した第1の実施形態によれば、固体撮像装置1は、蓄積電極31及び絶縁膜32を覆うように形成され、蓄積された信号電荷を捕集電極33に転送する半導体層35を持つことにより、信号電荷の転送残りを抑制することが可能となる。
特に、蓄積電極31及び捕集電極33の電位差によるフリンジ電界が、半導体層35内の蓄積電極31上の中央部分に発生しない場合においても、半導体層35内における信号電荷の拡散を用いて、信号電荷蓄積エリアに蓄積された信号電荷を捕集電極33に転送することによって、既存CMOSセンサと同等の高速読み出しを実施することが可能となる。
また、第1の実施形態によれば、半導体層35において、光電変換層41における光電変換により生成された信号電荷を蓄積し保持することができる。そのため、固体撮像装置1は、前リセット方式のCDS処理を用いることで、後リセット方式のCDS処理を行う場合に比べ、より精度良くkTCノイズを除去することが可能となる。
特に、蓄積電極31及び捕集電極33の電位差によるフリンジ電界が、半導体層35内の蓄積電極31上の中央部分に発生しない場合においても、半導体層35内における信号電荷の拡散を用いて、信号電荷蓄積エリアに蓄積された信号電荷を捕集電極33に転送することによって、既存CMOSセンサと同等の高速読み出しを実施することが可能となる。
また、第1の実施形態によれば、半導体層35において、光電変換層41における光電変換により生成された信号電荷を蓄積し保持することができる。そのため、固体撮像装置1は、前リセット方式のCDS処理を用いることで、後リセット方式のCDS処理を行う場合に比べ、より精度良くkTCノイズを除去することが可能となる。
次に、第1の実施形態の変形例について説明する。図12は、第1の実施形態の変形例に係る固体撮像装置1Aが備える1つの画素10Aに対応した断面構造を模式的に示す断面図である。
図12に示す第1の実施形態の変形例にかかる画素10Aは、捕集電極33にかえて捕集電極33aを備える点と、コンタクトプラグ34にかえてコンタクトプラグ34aを備える点とを除けば、第1の実施形態にかかる画素10と同一の構成とすることができる。したがって、図12に示す画素10Aの構成要素のうち、図3に示す画素10の構成要素と同一の部分については、図3と同一の符号を付すると共にその説明を省略する。
図12に示す第1の実施形態の変形例にかかる画素10Aは、捕集電極33にかえて捕集電極33aを備える点と、コンタクトプラグ34にかえてコンタクトプラグ34aを備える点とを除けば、第1の実施形態にかかる画素10と同一の構成とすることができる。したがって、図12に示す画素10Aの構成要素のうち、図3に示す画素10の構成要素と同一の部分については、図3と同一の符号を付すると共にその説明を省略する。
捕集電極33aは、蓄積電極31の周囲を取り囲むように形成されている点を除けば、固体撮像装置1における捕集電極33と同一である。
コンタクトプラグ34aは、複数のコンタクトプラグが層間絶縁膜30を貫通している点を除けば、固体撮像装置1におけるコンタクトプラグ34と同一である。
図8に示したMOS bucket bridgeのモデルと、図12に示した画素10Aとを比較すると、上記の式(4)における隣接するMOSのゲート電極間の距離LBは、蓄積電極31と捕集電極33との間のギャップ長L1(図12)とみなすことができる。さらに、上記の式(4)におけるMOSのゲート電極長LCは、蓄積電極31のエッジ間の最小寸法の半分とみなすことができる。すなわち、画素10Aの蓄積電極31の面内における形状が正方形である場合、上記の式(5)におけるL2は、蓄積電極31の一辺の半分に相当する。そのため、固体撮像装置1Aは、固体撮像装置1の場合よりも大きいサイズの蓄積電極31を用いて、既存CMOSセンサと同等の高速読み出しを実施することができる。
画素10の面内とは、画素10の積層方向に垂直な面の面内である。また、画素10の積層方向とは、画素10の各層が積層される方向である。すなわち、画素10の積層方向は、半導体基板部20の面に対して垂直な方向である。
画素10の面内とは、画素10の積層方向に垂直な面の面内である。また、画素10の積層方向とは、画素10の各層が積層される方向である。すなわち、画素10の積層方向は、半導体基板部20の面に対して垂直な方向である。
次に、固体撮像装置1Aの製造方法について説明する。固体撮像装置1Aの製造方法は、捕集電極33aを形成する点と、コンタクトプラグ34aを形成する点とを除けば、第1の実施形態の固体撮像装置1の製造方法と同一でもよい。したがって、固体撮像装置1Aの製造方法について、第1の実施形態の固体撮像装置1の製造方法と同一の構成部分についてはその説明を省略する。
コンタクトプラグ34aは、層間絶縁膜30を積層した後に、層間絶縁膜30を貫通する複数のコンタクトプラグ34aとして形成される。
捕集電極33aは、蓄積電極31の周囲を取り囲む形状である点を除けば、第1の実施形態の固体撮像装置1の捕集電極33と同一の方法で層間絶縁膜30の上に形成される。以上のような工程を経ることによって、固体撮像装置1Aを製造することができる。
コンタクトプラグ34aは、層間絶縁膜30を積層した後に、層間絶縁膜30を貫通する複数のコンタクトプラグ34aとして形成される。
捕集電極33aは、蓄積電極31の周囲を取り囲む形状である点を除けば、第1の実施形態の固体撮像装置1の捕集電極33と同一の方法で層間絶縁膜30の上に形成される。以上のような工程を経ることによって、固体撮像装置1Aを製造することができる。
以上説明した第1の実施形態の変形例によれば、第1の実施形態と同様、信号電荷の転送残りを抑制することが可能となる。さらに、第1の実施形態の変形例によれば、固体撮像装置1Aは、捕集電極33aを蓄積電極31の周囲を取り囲むように形成することによって、蓄積電極31と捕集電極33aとの間のフリンジ電界が生じるエリアを、固体撮像装置1よりも大きくとることが可能となる。そのため、固体撮像装置1Aは、信号電荷蓄積エリアに蓄積された信号電荷を捕集電極33aに、より効率よく転送することが可能となる。
すなわち、固体撮像装置1Aは、同じ転送時間内において捕集電極33aにより多くの信号電荷を転送することが可能となる。したがって、固体撮像装置1Aは、より多くの信号電荷を信号電荷蓄積エリアに蓄積することが可能となり、ダイナミックレンジをより広くとることが可能となる。また、上記の式(5)におけるL2は、固体撮像装置1Aの蓄積電極31のエッジ間の最小寸法の半分とみなすことができるため、固体撮像装置1Aは、蓄積電極31の大きさをより大きくとることが可能となる。
すなわち、固体撮像装置1Aは、同じ転送時間内において捕集電極33aにより多くの信号電荷を転送することが可能となる。したがって、固体撮像装置1Aは、より多くの信号電荷を信号電荷蓄積エリアに蓄積することが可能となり、ダイナミックレンジをより広くとることが可能となる。また、上記の式(5)におけるL2は、固体撮像装置1Aの蓄積電極31のエッジ間の最小寸法の半分とみなすことができるため、固体撮像装置1Aは、蓄積電極31の大きさをより大きくとることが可能となる。
(第2の実施形態)
次に、第2の実施形態について説明する。図13は、第2の実施形態に係る固体撮像装置1Bが備える1つの画素10Bに対応した断面構造を模式的に示す断面図である。
次に、第2の実施形態について説明する。図13は、第2の実施形態に係る固体撮像装置1Bが備える1つの画素10Bに対応した断面構造を模式的に示す断面図である。
第2の実施形態に係る画素10Bは、以下の2点を除けば、第1の実施形態に係る画素10と同一の構成でもよい。第1の点は、画素10Bは、蓄積電極31、絶縁膜32、捕集電極33、コンタクトプラグ34及び半導体層35にかえて、蓄積電極31a、絶縁膜32a、捕集電極33b、コンタクトプラグ34b及び半導体層35aを備える点である。第2の点は、画素10Bは、さらにバリア膜36を備える点である。
図13に示す画素10Bの構成要素のうち、図3に示す画素10の構成要素と同一の部分については、図3と同一の符号を付すると共にその説明を省略する。
図13に示す画素10Bの構成要素のうち、図3に示す画素10の構成要素と同一の部分については、図3と同一の符号を付すると共にその説明を省略する。
図13に示すように、固体撮像装置1Bの画素10Bにおいて、蓄積電極31a及び絶縁膜32aは、層間絶縁膜30と半導体層35aとの間に配置され、捕集電極33bは、半導体層35aの上に配置される。
蓄積電極31a及び絶縁膜32aは、画素毎にパターニングされている。蓄積電極31aは、層間絶縁膜30の上に形成されている。図13に示すように、蓄積電極31aは、平面視において、画素10Bの受光面の端部分まで形成されていてもよい。
絶縁膜32aは、蓄積電極31aの上に形成されている。図13に示すように、絶縁膜32aは、平面視において、画素10Bの受光面の端部分まで形成されていてもよい。
捕集電極33bは、半導体層35aの上に形成される。すなわち、捕集電極33bは、蓄積電極31aよりも画素10Bの受光面側(上部電極42側)に形成される。
捕集電極33bの一部と、蓄積電極31aの一部とは、半導体層35aを間に挟んで積層されるように構成されている。すなわち、捕集電極33bの一部と、蓄積電極31aの一部とは、半導体層35aを間に挟んで対向するように構成されている。
捕集電極33bの一部及び蓄積電極31aの一部は、平面視において、部分的に重なりを有するように形成されることが望ましい。このような構成にすることによって、捕集電極33bと蓄積電極31aとの間に、捕集電極33bの一部及び蓄積電極31aの一部が平面視において重なりを有しない場合に比べて、より強いフリンジ電界を発生させることができる。
捕集電極33bの一部と、蓄積電極31aの一部とは、半導体層35aを間に挟んで積層されるように構成されている。すなわち、捕集電極33bの一部と、蓄積電極31aの一部とは、半導体層35aを間に挟んで対向するように構成されている。
捕集電極33bの一部及び蓄積電極31aの一部は、平面視において、部分的に重なりを有するように形成されることが望ましい。このような構成にすることによって、捕集電極33bと蓄積電極31aとの間に、捕集電極33bの一部及び蓄積電極31aの一部が平面視において重なりを有しない場合に比べて、より強いフリンジ電界を発生させることができる。
コンタクトプラグ34bは、層間絶縁膜30及び半導体層35aを貫通しており、捕集電極33bと画素回路部21のFD部22とを電気的に接続している。
半導体層35aは、蓄積電極31a及び絶縁膜32aの全面を覆うように形成されている。半導体層35aの一部は、捕集電極33bの一部と接触するように配置されている。
半導体層35aの厚みは、蓄積電極31aの厚みと絶縁膜32aの厚みとの和よりも厚くなるように形成されている。これにより、半導体層35aは、蓄積電極31aの端の段差部においても連続な層として形成される。
半導体層35aの厚みは、蓄積電極31aの厚みと絶縁膜32aの厚みとの和よりも厚くなるように形成されている。これにより、半導体層35aは、蓄積電極31aの端の段差部においても連続な層として形成される。
半導体層35aは、画素毎にパターニングされていてもよい。この場合、半導体層35aは、無機材料をスパッタ成膜した後に、フォトリソグラフィー及びエッチングを行うことによって形成されてもよい。また、半導体層35aは、有機半導体材料を用いて、スクリーン印刷によってパターニングすることによって形成されてもよい。これによって、固体撮像装置1Bにおいて隣接する各画素10Bの捕集電極33bの間で電荷のやりとりが発生することが防止される。
半導体層35aは、固体撮像装置1Bの画素アレイ2の全面(すなわち、センサアレイ面全面)に形成されていてもよい。この場合、半導体層35aは、無機材料をスパッタ成膜によって形成されてもよい。また、半導体層35aは、有機半導体材料を用いて、メニスカス法により塗布することによって形成されてもよい。信号電荷の蓄積の際、信号電荷蓄積エリアには、蓄積電極31に印加するバイアス電圧によってポテンシャル井戸が形成される。そのため、固体撮像装置1Bの画素アレイ2の全面に半導体層35aが形成されている場合でも、隣接する画素10Bの間において半導体層35aを介して蓄積されている信号電荷がやりとりされることが抑制される。
半導体層35aは、固体撮像装置1Bの画素アレイ2の全面(すなわち、センサアレイ面全面)に形成されていてもよい。この場合、半導体層35aは、無機材料をスパッタ成膜によって形成されてもよい。また、半導体層35aは、有機半導体材料を用いて、メニスカス法により塗布することによって形成されてもよい。信号電荷の蓄積の際、信号電荷蓄積エリアには、蓄積電極31に印加するバイアス電圧によってポテンシャル井戸が形成される。そのため、固体撮像装置1Bの画素アレイ2の全面に半導体層35aが形成されている場合でも、隣接する画素10Bの間において半導体層35aを介して蓄積されている信号電荷がやりとりされることが抑制される。
バリア膜36は、第3の絶縁層の具体例の一つである。バリア膜36は、捕集電極33bの上に形成されている。バリア膜36は、捕集電極33bと光電変換層41との間で電荷のやりとりが発生するのを抑制する。電荷のやりとりとは、例えば、光電変換層41から捕集電極33bに電荷が直接注入することである。バリア膜36は、例えば、光電変換層41が有機半導体で形成されている場合における、いわゆるバリア膜である。
バリア膜36に用いられる材料は、加工性に優れたものが望ましい。また、バリア膜36は、絶縁性の高い誘電体材料によって形成されてもよい。バリア膜36は、特定の波長領域の光を80%以上透過させることが望ましい。特定の波長領域の光は、例えば、赤(R)領域の光、緑(G)領域の光、青(B)領域の光、可視光領域の光等である。画素10が複数の光電変換部を有する場合に、露光時に照射された光をバリア膜36が吸収すると、光電変換層41とは別の光電変換部の受光量が減少してしまう。そのため、画素10の見かけ上の感度が低下してしまうという問題がある。本実施形態では、バリア膜36が光を透過させるように構成することで、このような問題の発生が抑制される。
光電変換層41が有機半導体によって形成されている場合、バリア膜36は、光電変換層41の有機半導体と捕集電極33bとの接触界面において形成されるショットキーバリアを利用することによって形成されてもよい。
なお、蓄積電極31a、絶縁膜32a、捕集電極33b及び半導体層35aは、第1の実施形態と同様に、特定の波長領域の光を80%以上透過させることが望ましい。それ以外の構成要素については、上記図3に示す第1の実施形態の画素10と同じでもよい。
バリア膜36に用いられる材料は、加工性に優れたものが望ましい。また、バリア膜36は、絶縁性の高い誘電体材料によって形成されてもよい。バリア膜36は、特定の波長領域の光を80%以上透過させることが望ましい。特定の波長領域の光は、例えば、赤(R)領域の光、緑(G)領域の光、青(B)領域の光、可視光領域の光等である。画素10が複数の光電変換部を有する場合に、露光時に照射された光をバリア膜36が吸収すると、光電変換層41とは別の光電変換部の受光量が減少してしまう。そのため、画素10の見かけ上の感度が低下してしまうという問題がある。本実施形態では、バリア膜36が光を透過させるように構成することで、このような問題の発生が抑制される。
光電変換層41が有機半導体によって形成されている場合、バリア膜36は、光電変換層41の有機半導体と捕集電極33bとの接触界面において形成されるショットキーバリアを利用することによって形成されてもよい。
なお、蓄積電極31a、絶縁膜32a、捕集電極33b及び半導体層35aは、第1の実施形態と同様に、特定の波長領域の光を80%以上透過させることが望ましい。それ以外の構成要素については、上記図3に示す第1の実施形態の画素10と同じでもよい。
画素10Bは、上述した式(5)の関係を満たすように構成されていることが望ましい。上記のように構成された画素10Bの場合、上記の式(3)及び式(4)におけるLBは、捕集電極33bと蓄積電極31aの間隔に相当し、半導体層35aの厚みに対応する。すなわち、上記の式(5)及び式(6)におけるL1は、半導体層35aの厚みに対応する。
画素サイズがFull-HDであり、フレーム周波数fが60Hzである場合、既存CMOSセンサと同等の高速読み出しを実施するためには、固体撮像装置1Bは、各画素からの信号読み出し動作を8.6マイクロ秒以内に行う必要がある。各画素10Bの蓄積電極31aのエッジ間の最小寸法L2が1μmであり、半導体層35aがIGZOを用いて形成され、半導体層35aにおける移動度が15cm2/(V・sec)である場合、半導体層35aの厚みは、115nm以下であることが望ましい。
画素サイズがFull-HDであり、フレーム周波数fが60Hzである場合、既存CMOSセンサと同等の高速読み出しを実施するためには、固体撮像装置1Bは、各画素からの信号読み出し動作を8.6マイクロ秒以内に行う必要がある。各画素10Bの蓄積電極31aのエッジ間の最小寸法L2が1μmであり、半導体層35aがIGZOを用いて形成され、半導体層35aにおける移動度が15cm2/(V・sec)である場合、半導体層35aの厚みは、115nm以下であることが望ましい。
次に、第2の実施形態に係る固体撮像装置1Bの製造方法について図14〜図17を参照しながら説明する。図14〜図17は、第2の実施形態に係る固体撮像装置1Bの製造方法を示す図である。第2の実施形態の固体撮像装置1Bの製造方法は、蓄積電極31a、絶縁膜32a、捕集電極33b、コンタクトプラグ34b、半導体層35a及びバリア膜36の形成工程の構成が、第1の実施形態の固体撮像装置1の製造方法と異なるものであり、その他の構成については第1の実施形態と同一である。したがって、第2の実施形態の固体撮像装置1Bの製造方法について、第1の実施形態の固体撮像装置1の製造方法と同一の構成部分については同じ符号を付すると共に説明を省略する。
先ず、図14に示すように、前述した第1の実施形態の固体撮像装置1の形成工程と同様にして、半導体基板部20、画素回路部21及び層間絶縁膜30を形成する。次に、層間絶縁膜30の上に蓄積電極31a及び絶縁膜32aを形成する。蓄積電極31a及び絶縁膜32aは、画素10となる領域全体に積層された後にフォトリソグラフィー及びエッチングを行うことによって形成されてもよい。次に、蓄積電極31a及び絶縁膜32aの上に半導体層35aが形成される。次に、層間絶縁膜30及び半導体層35aを貫通するコンタクトプラグ34bを形成する。このコンタクトプラグ34bは、上述したFD部22と接続されている。
次に、図15に示すように、半導体層35aの上に、捕集電極33b及びバリア膜36を形成する。捕集電極33b及びバリア膜36は、画素10となる領域全体に積層された後に、フォトリソグラフィー及びエッチングを行うことによって形成されてもよい。図16に示すように、捕集電極33bの一部と、蓄積電極31aの一部とは、半導体層35aを間に挟んで積層されるように構成されている。
次に、図17に示すように、捕集電極33b、バリア膜36及び半導体層35aの上に光電変換層41が形成された後、光電変換層41の上に上部電極42が形成される。以上のような工程を経ることによって、固体撮像装置1Bを製造することができる。
以上説明した第2の実施形態によれば、第1の実施形態と同様、信号電荷の転送残りを抑制することが可能となる。さらに、第2の実施形態によれば、上記の式(5)におけるL1は、捕集電極33bと蓄積電極31aとの間隔に相当し、半導体層35aの厚みに対応する。したがって、固体撮像装置1Bは、半導体層35aの厚みを調整することによって、捕集電極33bと蓄積電極31aとの間隔(上記の式(5)におけるL1)を調整することが可能である。そのため、固体撮像装置1Bは、捕集電極及び蓄積電極を同じ面内にリソグラフィー等を用いて形成する場合に比べて、捕集電極33bと蓄積電極31aとの間隔をより容易に調整することが可能となる。
また、第2の実施形態の固体撮像装置1Bは、捕集電極33bと蓄積電極31aとの間隔が画素10Bの面内ではなく厚み方向(画素10Bの積層方向)に存在するため、画素10Bの面積をより小さくすることができる。すなわち、固体撮像装置1Bは、素子の集積度を向上させることができる。
また、第2の実施形態の固体撮像装置1Bは、捕集電極33bと蓄積電極31aとの間隔が画素10Bの面内ではなく厚み方向(画素10Bの積層方向)に存在するため、画素10Bの面積をより小さくすることができる。すなわち、固体撮像装置1Bは、素子の集積度を向上させることができる。
次に、第2の実施形態の変形例について説明する。上記第2の実施形態の固体撮像装置1Bでは、捕集電極33bは蓄積電極31aの一方の端部分と対向するように形成されているとしたが、捕集電極33bは、平面視において蓄積電極31aの周囲を取り囲むように形成されていてもよい。これによって、蓄積電極31aと捕集電極33bとの間のフリンジ電界が生じるエリアをより大きくとることができる。そのため、固体撮像装置1Bは、信号電荷蓄積エリアに蓄積された信号電荷をより効率よく捕集電極33bに転送することが可能となる。
すなわち、固体撮像装置1Bは、同じ転送時間内に、より多くの信号電荷を捕集電極33bに転送することが可能となる。したがって、固体撮像装置1Bは、より多くの信号電荷を信号電荷蓄積エリアに蓄積することが可能となり、ダイナミックレンジをより広くとることが可能となる。
すなわち、固体撮像装置1Bは、同じ転送時間内に、より多くの信号電荷を捕集電極33bに転送することが可能となる。したがって、固体撮像装置1Bは、より多くの信号電荷を信号電荷蓄積エリアに蓄積することが可能となり、ダイナミックレンジをより広くとることが可能となる。
(第3の実施形態)
次に、第3の実施形態について説明する。図18は、第3の実施形態に係る固体撮像装置1Cが備える1つの画素10Cに対応した構造を模式的に示す平面図である。
次に、第3の実施形態について説明する。図18は、第3の実施形態に係る固体撮像装置1Cが備える1つの画素10Cに対応した構造を模式的に示す平面図である。
第3の実施形態に係る画素10Cは、蓄積電極31、絶縁膜32及び捕集電極33にかえて、蓄積電極31b、絶縁膜32b及び捕集電極33cを備える点を除けば、第1の実施形態に係る画素10と同一の構成でもよい。
図18に示す画素10Cの構成要素のうち、図3に示す画素10の構成要素と同一の部分については、図3と同一の符号を付すると共にその説明を省略する。
図18に示す画素10Cの構成要素のうち、図3に示す画素10の構成要素と同一の部分については、図3と同一の符号を付すると共にその説明を省略する。
蓄積電極31bは、層間絶縁膜30と半導体層35の間に形成される。蓄積電極31bは、1つの画素10C内に、複数の略長方形の部分を有するように構成される。蓄積電極31bの複数の略長方形の部分は、互いに平行となるように構成されてもよい。蓄積電極31bは、いわゆる櫛型の形状となるように構成されていてもよい。これによって、固体撮像装置1Cは、蓄積電極31bの形状が長方形である場合よりも、蓄積電極31bの周辺長をより大きくとることができる。すなわち、固体撮像装置1Cは、蓄積電極31bと捕集電極33cが対向するエリアを増やすことができる。
絶縁膜32bは、蓄積電極31bの上に形成されている。絶縁膜32bは、蓄積電極31bの全面を覆うように形成されている。絶縁膜32bによって、半導体層35と蓄積電極31bとは電気的に絶縁される。
捕集電極33cは、層間絶縁膜30と半導体層35の間に形成される。捕集電極33cの一部は、半導体層35に接するように形成される。捕集電極33cは、1つの画素10C内に、複数の略長方形の部分を有するように構成される。捕集電極33cの複数の略長方形の部分は、互いに平行となるように構成されてもよい。さらに、捕集電極33cの複数の略長方形の部分は、長方形の部分によって、同じ面内で連続した面を形成するように接続されてもよい。捕集電極33cは、いわゆる櫛型の形状となるように構成されていてもよい。
絶縁膜32bは、蓄積電極31bの上に形成されている。絶縁膜32bは、蓄積電極31bの全面を覆うように形成されている。絶縁膜32bによって、半導体層35と蓄積電極31bとは電気的に絶縁される。
捕集電極33cは、層間絶縁膜30と半導体層35の間に形成される。捕集電極33cの一部は、半導体層35に接するように形成される。捕集電極33cは、1つの画素10C内に、複数の略長方形の部分を有するように構成される。捕集電極33cの複数の略長方形の部分は、互いに平行となるように構成されてもよい。さらに、捕集電極33cの複数の略長方形の部分は、長方形の部分によって、同じ面内で連続した面を形成するように接続されてもよい。捕集電極33cは、いわゆる櫛型の形状となるように構成されていてもよい。
蓄積電極31bの複数の略長方形の部分と、捕集電極33cの複数の略長方形の部分とは、半導体層35を間に挟んで対向するように配置される。
なお、蓄積電極31b、絶縁膜32b及び捕集電極33cは、第1の実施形態と同様に、特定の波長領域の光を80%以上透過させることが望ましい。
それ以外の構成要素については、上記図3に示す第1の実施形態の画素10と同じでもよい。
なお、蓄積電極31b、絶縁膜32b及び捕集電極33cは、第1の実施形態と同様に、特定の波長領域の光を80%以上透過させることが望ましい。
それ以外の構成要素については、上記図3に示す第1の実施形態の画素10と同じでもよい。
以上説明した第3の実施形態によれば、第1の実施形態と同様、信号電荷の転送残りを抑制することが可能となる。さらに、第3の実施形態によれば、固体撮像装置1Cは、蓄積電極31aと捕集電極33bとの間のフリンジ電界が生じるエリアをより大きくとることが可能となる。そのため、固体撮像装置1Cは、信号電荷蓄積エリアに蓄積された信号電荷をより効率よく捕集電極33cに転送することが可能となる。すなわち、固体撮像装置1Cは、同じ転送時間内においてより多くの信号電荷を捕集電極33cに転送することが可能となる。したがって、固体撮像装置1Cは、より多くの信号電荷を信号電荷蓄積エリアに蓄積することが可能となり、ダイナミックレンジをより広くとることが可能となる。
次に、第3の実施形態の変形例について説明する。上記第3の実施形態の固体撮像装置1Cでは、捕集電極33cは、層間絶縁膜30と半導体層35の間に形成されるとしたが、捕集電極33cは、半導体層35の上に形成されていてもよい。
この場合、捕集電極33cの上に、さらにバリア膜36が形成されてもよい。バリア膜36は、捕集電極33cと光電変換層41との間で電荷のやりとりが発生するのを抑制する。バリア膜36は、絶縁性の高い誘電体材料によって形成されてもよい。また、光電変換層41が有機半導体によって形成されている場合、バリア膜36は、光電変換層41の有機半導体と捕集電極33bとの接触界面において形成されるショットキーバリアを利用することによって形成されてもよい。
この場合、捕集電極33cの上に、さらにバリア膜36が形成されてもよい。バリア膜36は、捕集電極33cと光電変換層41との間で電荷のやりとりが発生するのを抑制する。バリア膜36は、絶縁性の高い誘電体材料によって形成されてもよい。また、光電変換層41が有機半導体によって形成されている場合、バリア膜36は、光電変換層41の有機半導体と捕集電極33bとの接触界面において形成されるショットキーバリアを利用することによって形成されてもよい。
このように構成された第3の実施形態の変形例によれば、上記の式(5)におけるL1は、捕集電極33cと蓄積電極31bとの間隔に相当し、半導体層35の厚みに対応する。したがって、このように構成された固体撮像装置1Cは、半導体層35の厚みを調整することによって、捕集電極33cと蓄積電極31bとの間隔(上記の式(5)におけるL1)を調整することが可能である。そのため、捕集電極33cと蓄積電極31bとを同じ面内にリソグラフィー等を用いて形成する場合に比べて、捕集電極33cと蓄積電極31bとの間隔をより容易に調整することが可能となる。
(第4の実施形態)
次に、第4の実施形態について説明する。図19は、第4の実施形態に係る固体撮像装置1Dが備える画素アレイ2Dにおける各画素10Dの配置を模式的に示す平面図である。
次に、第4の実施形態について説明する。図19は、第4の実施形態に係る固体撮像装置1Dが備える画素アレイ2Dにおける各画素10Dの配置を模式的に示す平面図である。
第4の実施形態に係る固体撮像装置1Dは、捕集電極33dが、画素アレイ2Dの複数の画素10Dによって共有されている点を除けば、第1の実施形態に係る固体撮像装置1と同一の構成でもよい。
図19に示す具体例では、捕集電極33dは、画素アレイ2Dにおいて列方向に互いに隣接する4つの画素10Dによって共有される。捕集電極33dを共有する複数の画素10Dの数は、4つに限られない。
また、固体撮像装置1Dにおいて、捕集電極33dを共有する複数の画素10Dが、1つのコンタクトプラグ34及び1つのFD部22を共有してもよい。
半導体層35は、画素毎にパターニングされている。互いに隣接する各画素10Dの半導体層35の間には、光電変換層41が形成されている。これにより、捕集電極33dを共有する複数の画素10Dの間で、半導体層35を介して、隣接する各画素10Dの間で信号電荷のやりとりが発生することが抑制される。
画素アレイ2Dにおいて、行方向に互いに隣接する2つの画素10Dの蓄積電極31の間の距離は、1つの画素10D内における蓄積電極31と捕集電極33dとの間の距離よりも大きくなるように構成されていてもよい。
それ以外の構成要素については、上記図1及び図3に示す第1の実施形態の固体撮像装置1と同じでもよい。
図19に示す具体例では、捕集電極33dは、画素アレイ2Dにおいて列方向に互いに隣接する4つの画素10Dによって共有される。捕集電極33dを共有する複数の画素10Dの数は、4つに限られない。
また、固体撮像装置1Dにおいて、捕集電極33dを共有する複数の画素10Dが、1つのコンタクトプラグ34及び1つのFD部22を共有してもよい。
半導体層35は、画素毎にパターニングされている。互いに隣接する各画素10Dの半導体層35の間には、光電変換層41が形成されている。これにより、捕集電極33dを共有する複数の画素10Dの間で、半導体層35を介して、隣接する各画素10Dの間で信号電荷のやりとりが発生することが抑制される。
画素アレイ2Dにおいて、行方向に互いに隣接する2つの画素10Dの蓄積電極31の間の距離は、1つの画素10D内における蓄積電極31と捕集電極33dとの間の距離よりも大きくなるように構成されていてもよい。
それ以外の構成要素については、上記図1及び図3に示す第1の実施形態の固体撮像装置1と同じでもよい。
以上説明した第4の実施形態によれば、第1の実施形態と同様、信号電荷の転送残りを抑制することが可能となる。さらに、第4の実施形態によれば、固体撮像装置1Dは、隣接する複数の画素10Dが捕集電極33dを共有する構成をとることによって、各画素10D内における捕集電極33dの面積を少なくすることができる。したがって、画素10D内における捕集電極33dの面積比率を減少させ、蓄積電極31の面積比率を増大させることができる。そのため、同じ画素のサイズに対して、光電変換によって生成することができる信号電荷の数をより多くすることができる。また、同じ画素のサイズに対して、蓄積できる信号電荷の数をより多くすることができる。すなわち、同じ画素サイズに対して、より多くの信号電荷を読み出すことが可能となる。すなわち、画素の効率を向上させることが可能となる。
固体撮像装置1Dにおいて、捕集電極33dを共有する複数の画素10Dが、1つのコンタクトプラグ34及び1つのFD部22を共有する場合、コンタクトプラグ34及びFD部22を構成する数を少なくすることができる。そのため、固体撮像装置1Dは、構成を省略したコンタクトプラグ34及びFD部22の分の面積を節約することができ、集積度を挙げることが可能となる。
次に、第4の実施形態の変形例について説明する。
図20は、第4の実施形態の変形例に係る固体撮像装置1Eが備える画素アレイ2Eにおける各画素10Eの配置を模式的に示す平面図である。
図20に示す第4の実施形態の変形例に係る固体撮像装置1Eは、捕集電極33dにかえて捕集電極33eを備える点を除けば、第4の実施形態にかかる固体撮像装置1Dと同一の構成とすることができる。したがって、図20に示す固体撮像装置1Eの構成要素のうち、図19に示す固体撮像装置1Dの構成要素と同一の部分については、図19と同一の符号を付すると共にその説明を省略する。
図20は、第4の実施形態の変形例に係る固体撮像装置1Eが備える画素アレイ2Eにおける各画素10Eの配置を模式的に示す平面図である。
図20に示す第4の実施形態の変形例に係る固体撮像装置1Eは、捕集電極33dにかえて捕集電極33eを備える点を除けば、第4の実施形態にかかる固体撮像装置1Dと同一の構成とすることができる。したがって、図20に示す固体撮像装置1Eの構成要素のうち、図19に示す固体撮像装置1Dの構成要素と同一の部分については、図19と同一の符号を付すると共にその説明を省略する。
捕集電極33eは、蓄積電極31の周囲を取り囲むように形成されている点を除けば、固体撮像装置1Dにおける捕集電極33dと同一である。
捕集電極33eは、列方向に互いに隣接する複数の画素10Eの捕集電極33eと電気的に接続されていればよい。捕集電極33eは、図20の具体例に示した形状に限られない。
捕集電極33eは、列方向に互いに隣接する複数の画素10Eの捕集電極33eと電気的に接続されていればよい。捕集電極33eは、図20の具体例に示した形状に限られない。
捕集電極33dは、図17に示す画素10Bの捕集電極33bと同様に、半導体層35の上に形成されてもよい。このとき、捕集電極33dの一部と、蓄積電極31の一部とは、半導体層35を間に挟んで積層されるように構成されていてもよい。さらに、捕集電極33dの一部と、蓄積電極31の一部とは、平面視において、部分的に重なりを有するように形成されることが望ましい。
このように構成された第4の実施形態の変形例によれば、固体撮像装置1Eは、蓄積電極31と捕集電極33eとの間のフリンジ電界が生じるエリアを、固体撮像装置1Dよりも大きくとることが可能となる。そのため、固体撮像装置1Eは、捕集電極33eの形状が蓄積電極31の周囲を取り囲む形状である点を除けば同一の構成である固体撮像装置1Dに比べて、信号電荷蓄積エリアに蓄積された信号電荷をより効率よく捕集電極33eに転送することが可能となる。すなわち、固体撮像装置1Eは、同じ転送時間内に、より多くの信号電荷を捕集電極33eに転送することが可能となる。したがって、固体撮像装置1Eは、より多くの信号電荷を信号電荷蓄積エリアに蓄積することが可能となり、ダイナミックレンジをより広くとることが可能となる。
上記各実施形態では、固体撮像装置はCMOSイメージセンサによるものとしたが、CCDイメージセンサによるものであってもよい。
以上説明した少なくともひとつの実施形態によれば、半導体層は、蓄積電極及び第2の絶縁層の全面を覆うように形成される。半導体層は、光電変換層によって生成された信号電荷を蓄積して保持し、蓄積された信号電荷を捕集電極に転送する。そのため、信号電荷の転送残りを抑制することが可能となる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
1、1A、1B、1D、1E…固体撮像装置、2…画素アレイ、3…垂直走査部、4…水平走査部、5…制御部、3−A1〜3−An…選択信号線、3−B1〜3−Bn…制御信号線、4−1〜4−m…画素信号線、10、10A、10B、10C、10D、10E…画素、20…半導体基板部、21…画素回路部、22…FD部、23…不純物拡散領域、24…導電層、30…層間絶縁膜、31、31a、31b…蓄積電極、32、32a…絶縁膜、33、33a、33b、33c、33d、33e…捕集電極、34、34a、34b…コンタクトプラグ、35、35a…半導体層、36…バリア膜、41…光電変換層、42…上部電極
Claims (10)
- 第1の絶縁層上に形成された蓄積電極と、
前記蓄積電極上に形成された第2の絶縁層と、
前記蓄積電極及び前記第2の絶縁層を覆うように形成された半導体層と、
前記半導体層に接するように形成され、前記蓄積電極から離れるように形成された捕集電極と、
前記半導体層上に形成された光電変換層と、
前記光電変換層上に形成された上部電極と、
を備える、撮像素子。 - 前記捕集電極は、前記捕集電極の一部と前記蓄積電極の一部とが前記半導体層を間に挟んで積層された、
請求項1又は2に記載の撮像素子。 - 前記捕集電極は、前記蓄積電極の周囲を取り囲む形状である、
請求項1から3のいずれか1項に記載の撮像素子。 - 前記捕集電極は、複数の略長方形の部分を有しており、前記捕集電極の前記複数の略長方形の部分は互いに平行となるように配置され、
前記蓄積電極は、複数の略長方形の部分を有しており、前記蓄積電極の前記複数の略長方形の部分は互いに平行となるように配置され、
前記捕集電極の前記複数の略長方形の部分と、前記蓄積電極の前記複数の略長方形の部分とは、前記半導体層を間に挟んで対向するように配置されている、
請求項1から4のいずれか1項に記載の撮像素子。 - 前記半導体層が、シリコンカーバイド、IGZO、ダイヤモンド、グラフェン、カーボンナノチューブ、縮合多環炭化水素化合物及び縮合複素環化合物のうちの少なくとも1つを含む半導体により形成された、
請求項1から請求項5のうちいずれか1項に記載の撮像素子。 - 前記捕集電極が、ZnO、ITO(Indium-Tin-Oxide)及びグラフェンのうちのいずれか1つを含む膜である、
請求項1から請求項6のうちいずれか1項に記載の撮像素子。 - 前記蓄積電極が、ZnO、ITO及びグラフェンのうちのいずれか1つを含む膜である、
請求項1から請求項7のうちいずれか1項に記載の撮像素子。 - 前記半導体層は、波長が400nm以上750nm以下の光を80%以上透過させる、
請求項1から請求項8のうちいずれか1項に記載の撮像素子。 - 請求項1から請求項9のうちいずれか1項に記載の撮像素子を含む固体撮像装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014191953A JP2016063165A (ja) | 2014-09-19 | 2014-09-19 | 撮像素子及び固体撮像装置 |
CN201510507361.XA CN106206627A (zh) | 2014-09-19 | 2015-08-18 | 图像感测设备和固态图像感测装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014191953A JP2016063165A (ja) | 2014-09-19 | 2014-09-19 | 撮像素子及び固体撮像装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016063165A true JP2016063165A (ja) | 2016-04-25 |
Family
ID=55798205
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014191953A Pending JP2016063165A (ja) | 2014-09-19 | 2014-09-19 | 撮像素子及び固体撮像装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2016063165A (ja) |
CN (1) | CN106206627A (ja) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018235895A1 (ja) * | 2017-06-21 | 2018-12-27 | ソニーセミコンダクタソリューションズ株式会社 | 撮像素子、積層型撮像素子及び固体撮像装置 |
WO2019035252A1 (ja) | 2017-08-16 | 2019-02-21 | ソニー株式会社 | 撮像素子、積層型撮像素子及び固体撮像装置 |
WO2019035270A1 (ja) | 2017-08-16 | 2019-02-21 | ソニー株式会社 | 撮像素子、積層型撮像素子及び固体撮像装置 |
WO2019035254A1 (ja) | 2017-08-16 | 2019-02-21 | ソニー株式会社 | 撮像素子、積層型撮像素子及び固体撮像装置 |
WO2019069752A1 (ja) * | 2017-10-04 | 2019-04-11 | ソニーセミコンダクタソリューションズ株式会社 | 固体撮像素子及び電子装置 |
WO2019111603A1 (ja) | 2017-12-05 | 2019-06-13 | ソニー株式会社 | 撮像素子、積層型撮像素子及び固体撮像装置 |
WO2019181456A1 (ja) * | 2018-03-19 | 2019-09-26 | ソニーセミコンダクタソリューションズ株式会社 | 固体撮像素子および固体撮像装置 |
WO2019203085A1 (ja) | 2018-04-20 | 2019-10-24 | ソニー株式会社 | 撮像素子、積層型撮像素子及び固体撮像装置 |
WO2019203222A1 (ja) | 2018-04-20 | 2019-10-24 | ソニー株式会社 | 撮像素子、積層型撮像素子及び固体撮像装置 |
WO2019203213A1 (ja) | 2018-04-20 | 2019-10-24 | ソニー株式会社 | 撮像素子、積層型撮像素子及び固体撮像装置 |
WO2019203268A1 (ja) | 2018-04-20 | 2019-10-24 | ソニー株式会社 | 撮像素子、積層型撮像素子及び固体撮像装置 |
JPWO2018110072A1 (ja) * | 2016-12-16 | 2019-10-31 | ソニー株式会社 | 撮像素子、積層型撮像素子及び撮像装置、並びに、撮像素子の製造方法 |
DE112018002114T5 (de) | 2017-04-21 | 2020-01-02 | Sony Corporation | Bildgebungselement, mehrschichtbildgebungselement und festkörperbildgebungsvorrichtung |
WO2020050170A1 (ja) * | 2018-09-04 | 2020-03-12 | ソニー株式会社 | 撮像素子、積層型撮像素子及び固体撮像装置 |
WO2020066553A1 (ja) * | 2018-09-28 | 2020-04-02 | ソニー株式会社 | 撮像素子、積層型撮像素子及び固体撮像装置 |
KR20200100170A (ko) * | 2018-01-26 | 2020-08-25 | 엠베리온 오와이 | 전압-모드 감광성 장치 |
WO2020202902A1 (ja) | 2019-04-05 | 2020-10-08 | ソニー株式会社 | 撮像素子、積層型撮像素子及び固体撮像装置、並びに、撮像素子の製造方法 |
JPWO2020217783A1 (ja) * | 2019-04-25 | 2020-10-29 | ||
JP2020188269A (ja) * | 2016-03-01 | 2020-11-19 | ソニー株式会社 | 撮像素子、積層型撮像素子及び固体撮像装置、並びに、固体撮像装置の駆動方法 |
WO2020241169A1 (ja) | 2019-05-24 | 2020-12-03 | ソニー株式会社 | 撮像素子、積層型撮像素子及び固体撮像装置、並びに、撮像素子の製造方法 |
JPWO2020241168A1 (ja) * | 2019-05-24 | 2020-12-03 | ||
WO2020241165A1 (ja) | 2019-05-24 | 2020-12-03 | ソニー株式会社 | 撮像素子、積層型撮像素子及び固体撮像装置、並びに、無機酸化物半導体材料 |
JPWO2021002090A1 (ja) * | 2019-07-02 | 2021-01-07 | ||
KR20210031677A (ko) | 2018-07-17 | 2021-03-22 | 소니 세미컨덕터 솔루션즈 가부시키가이샤 | 촬상 소자, 적층형 촬상 소자 및 고체 촬상 장치 |
WO2021200508A1 (ja) * | 2020-03-31 | 2021-10-07 | ソニーグループ株式会社 | 撮像素子および撮像装置 |
US11670659B2 (en) | 2017-06-21 | 2023-06-06 | Sony Semiconductor Solutions Corporation | Imaging element, stacked imaging element, and solid-state imaging apparatus |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013026332A (ja) * | 2011-07-19 | 2013-02-04 | Sony Corp | 固体撮像素子および製造方法、並びに電子機器 |
KR101861650B1 (ko) * | 2011-10-17 | 2018-05-29 | 삼성전자주식회사 | 이미지 센서, 이를 포함하는 전자 시스템 및 그 이미지 센싱 방법 |
US9490373B2 (en) * | 2012-02-02 | 2016-11-08 | Sony Corporation | Solid-state imaging device and electronic apparatus with improved storage portion |
-
2014
- 2014-09-19 JP JP2014191953A patent/JP2016063165A/ja active Pending
-
2015
- 2015-08-18 CN CN201510507361.XA patent/CN106206627A/zh active Pending
Cited By (112)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6992851B2 (ja) | 2016-03-01 | 2022-01-13 | ソニーグループ株式会社 | 撮像素子、積層型撮像素子及び固体撮像装置、並びに、固体撮像装置の駆動方法 |
JP7537571B2 (ja) | 2016-03-01 | 2024-08-21 | ソニーグループ株式会社 | 光検出素子 |
JP2020188269A (ja) * | 2016-03-01 | 2020-11-19 | ソニー株式会社 | 撮像素子、積層型撮像素子及び固体撮像装置、並びに、固体撮像装置の駆動方法 |
JP2023157977A (ja) * | 2016-03-01 | 2023-10-26 | ソニーグループ株式会社 | 光検出素子 |
JPWO2018110072A1 (ja) * | 2016-12-16 | 2019-10-31 | ソニー株式会社 | 撮像素子、積層型撮像素子及び撮像装置、並びに、撮像素子の製造方法 |
JP7033548B2 (ja) | 2016-12-16 | 2022-03-10 | ソニーグループ株式会社 | 撮像素子、積層型撮像素子及び撮像装置 |
JP7244692B2 (ja) | 2016-12-16 | 2023-03-22 | ソニーグループ株式会社 | 撮像素子、積層型撮像素子及び撮像装置、並びに、撮像素子の製造方法 |
US12041799B2 (en) | 2016-12-16 | 2024-07-16 | Sony Group Corporation | Imaging element, stacked-type imaging element, imaging apparatus, and manufacturing method of imaging element |
JP2022066292A (ja) * | 2016-12-16 | 2022-04-28 | ソニーグループ株式会社 | 撮像素子、積層型撮像素子及び撮像装置、並びに、撮像素子の製造方法 |
US11495762B2 (en) | 2016-12-16 | 2022-11-08 | Sony Corporation | Imaging element, stacked-type imaging element, imaging apparatus, and manufacturing method of imaging element |
KR20230149866A (ko) | 2017-04-21 | 2023-10-27 | 소니그룹주식회사 | 광검출 소자, 적층형 광검출 소자 및 고체 촬상 장치 |
DE112018002114T5 (de) | 2017-04-21 | 2020-01-02 | Sony Corporation | Bildgebungselement, mehrschichtbildgebungselement und festkörperbildgebungsvorrichtung |
KR20200019113A (ko) | 2017-04-21 | 2020-02-21 | 소니 주식회사 | 촬상 소자, 적층형 촬상 소자 및 고체 촬상 장치 |
KR102595958B1 (ko) * | 2017-04-21 | 2023-10-31 | 소니그룹주식회사 | 촬상 소자, 적층형 촬상 소자 및 고체 촬상 장치 |
US11276726B2 (en) | 2017-04-21 | 2022-03-15 | Sony Corporation | Imaging element, stacked imaging element, and solid-state imaging apparatus |
WO2018235895A1 (ja) * | 2017-06-21 | 2018-12-27 | ソニーセミコンダクタソリューションズ株式会社 | 撮像素子、積層型撮像素子及び固体撮像装置 |
US11670659B2 (en) | 2017-06-21 | 2023-06-06 | Sony Semiconductor Solutions Corporation | Imaging element, stacked imaging element, and solid-state imaging apparatus |
KR20200038463A (ko) | 2017-08-16 | 2020-04-13 | 소니 주식회사 | 촬상 소자, 적층형 촬상 소자 및 고체 촬상 장치 |
TWI784007B (zh) * | 2017-08-16 | 2022-11-21 | 日商索尼股份有限公司 | 攝像元件、積層型攝像元件及固體攝像裝置 |
CN111033740A (zh) * | 2017-08-16 | 2020-04-17 | 索尼公司 | 摄像元件、层叠型摄像元件和固态摄像装置 |
CN111033741A (zh) * | 2017-08-16 | 2020-04-17 | 索尼公司 | 摄像元件、层叠式摄像元件和固态摄像装置 |
DE112018004204T5 (de) | 2017-08-16 | 2020-04-30 | Sony Corporation | Bildgebungselement, laminiertes Bildgebungselement und Festkörper-Bildgebungsvorrichtung |
EP4141940A3 (en) * | 2017-08-16 | 2023-06-14 | Sony Group Corporation | Imaging element, laminated imaging element, and solid-state imaging device |
KR20200036816A (ko) | 2017-08-16 | 2020-04-07 | 소니 주식회사 | 촬상 소자, 적층형 촬상 소자 및 고체 촬상 장치 |
KR20200035940A (ko) | 2017-08-16 | 2020-04-06 | 소니 주식회사 | 촬상 소자, 적층형 촬상 소자 및 고체 촬상 장치 |
EP3671840A4 (en) * | 2017-08-16 | 2020-08-19 | Sony Corporation | IMAGING ELEMENT, LAYERING IMAGING ELEMENT AND SEMICONDUCTOR IMAGING DEVICE |
EP4141940A2 (en) | 2017-08-16 | 2023-03-01 | Sony Group Corporation | Imaging element, laminated imaging element, and solid-state imaging device |
JPWO2019035270A1 (ja) * | 2017-08-16 | 2020-10-01 | ソニー株式会社 | 撮像素子、積層型撮像素子及び固体撮像装置 |
US11101303B2 (en) | 2017-08-16 | 2021-08-24 | Sony Corporation | Imaging element, laminated imaging element, and solid-state imaging device |
JPWO2019035252A1 (ja) * | 2017-08-16 | 2020-10-08 | ソニー株式会社 | 撮像素子、積層型撮像素子及び固体撮像装置 |
KR20230096123A (ko) | 2017-08-16 | 2023-06-29 | 소니그룹주식회사 | 촬상 소자, 적층형 촬상 소자 및 고체 촬상 장치 |
US11430833B2 (en) | 2017-08-16 | 2022-08-30 | Sony Corporation | Imaging element, laminated imaging element, and solid-state imaging device |
KR102552757B1 (ko) | 2017-08-16 | 2023-07-07 | 소니그룹주식회사 | 촬상 소자, 적층형 촬상 소자 및 고체 촬상 장치 |
JP7090087B2 (ja) | 2017-08-16 | 2022-06-23 | ソニーグループ株式会社 | 撮像素子、積層型撮像素子及び固体撮像装置 |
CN111033741B (zh) * | 2017-08-16 | 2024-01-16 | 索尼公司 | 摄像元件、层叠式摄像元件和固态摄像装置 |
WO2019035254A1 (ja) | 2017-08-16 | 2019-02-21 | ソニー株式会社 | 撮像素子、積層型撮像素子及び固体撮像装置 |
WO2019035270A1 (ja) | 2017-08-16 | 2019-02-21 | ソニー株式会社 | 撮像素子、積層型撮像素子及び固体撮像装置 |
WO2019035252A1 (ja) | 2017-08-16 | 2019-02-21 | ソニー株式会社 | 撮像素子、積層型撮像素子及び固体撮像装置 |
KR20230136671A (ko) | 2017-10-04 | 2023-09-26 | 소니 세미컨덕터 솔루션즈 가부시키가이샤 | 고체 촬상 소자 및 전자 장치 |
KR20200057703A (ko) | 2017-10-04 | 2020-05-26 | 소니 세미컨덕터 솔루션즈 가부시키가이샤 | 고체 촬상 소자 및 전자 장치 |
JP7618717B2 (ja) | 2017-10-04 | 2025-01-21 | ソニーセミコンダクタソリューションズ株式会社 | 固体撮像素子及び電子装置 |
KR102734210B1 (ko) * | 2017-10-04 | 2024-11-26 | 소니 세미컨덕터 솔루션즈 가부시키가이샤 | 고체 촬상 소자 및 전자 장치 |
WO2019069752A1 (ja) * | 2017-10-04 | 2019-04-11 | ソニーセミコンダクタソリューションズ株式会社 | 固体撮像素子及び電子装置 |
JPWO2019069752A1 (ja) * | 2017-10-04 | 2020-11-05 | ソニーセミコンダクタソリューションズ株式会社 | 固体撮像素子及び電子装置 |
JP7449695B2 (ja) | 2017-10-04 | 2024-03-14 | ソニーセミコンダクタソリューションズ株式会社 | 固体撮像素子及び電子装置 |
KR102578925B1 (ko) * | 2017-10-04 | 2023-09-15 | 소니 세미컨덕터 솔루션즈 가부시키가이샤 | 고체 촬상 소자 및 전자 장치 |
US11350051B2 (en) | 2017-10-04 | 2022-05-31 | Sony Semiconductor Solutions Corporation | Solid-state imaging element and electronic device |
JP2023078295A (ja) * | 2017-10-04 | 2023-06-06 | ソニーセミコンダクタソリューションズ株式会社 | 固体撮像素子及び電子装置 |
DE112018004434T5 (de) | 2017-10-04 | 2020-05-20 | Sony Semiconductor Solutions Corporation | Festkörper-bildgebungselement und elektronische vorrichtung |
KR20200093542A (ko) | 2017-12-05 | 2020-08-05 | 소니 주식회사 | 촬상 소자, 적층형 촬상 소자 및 고체 촬상 장치 |
US11744091B2 (en) | 2017-12-05 | 2023-08-29 | Sony Corporation | Imaging element, stacked-type imaging element, and solid-state imaging apparatus to improve charge transfer |
WO2019111603A1 (ja) | 2017-12-05 | 2019-06-13 | ソニー株式会社 | 撮像素子、積層型撮像素子及び固体撮像装置 |
JP2021511676A (ja) * | 2018-01-26 | 2021-05-06 | エンベリオン オイEmberion Oy | 電圧モード感光装置 |
KR20200100170A (ko) * | 2018-01-26 | 2020-08-25 | 엠베리온 오와이 | 전압-모드 감광성 장치 |
JP7189223B2 (ja) | 2018-01-26 | 2022-12-13 | エンベリオン オイ | 電圧モード感光装置 |
KR102436918B1 (ko) * | 2018-01-26 | 2022-08-25 | 엠베리온 오와이 | 전압-모드 감광성 장치 |
US11910624B2 (en) | 2018-03-19 | 2024-02-20 | Sony Semiconductor Solutions Corporation | Solid-state imaging element and solid-state imaging device |
KR20200132845A (ko) | 2018-03-19 | 2020-11-25 | 소니 세미컨덕터 솔루션즈 가부시키가이샤 | 고체 촬상 소자 및 고체 촬상 장치 |
WO2019181456A1 (ja) * | 2018-03-19 | 2019-09-26 | ソニーセミコンダクタソリューションズ株式会社 | 固体撮像素子および固体撮像装置 |
JPWO2019181456A1 (ja) * | 2018-03-19 | 2021-03-18 | ソニーセミコンダクタソリューションズ株式会社 | 固体撮像素子および固体撮像装置 |
JP2023076561A (ja) * | 2018-03-19 | 2023-06-01 | ソニーセミコンダクタソリューションズ株式会社 | 固体撮像素子および固体撮像装置 |
US11552268B2 (en) | 2018-03-19 | 2023-01-10 | Sony Semiconductor Solutions Corporation | Solid-state imaging element and solid-state imaging device |
WO2019203268A1 (ja) | 2018-04-20 | 2019-10-24 | ソニー株式会社 | 撮像素子、積層型撮像素子及び固体撮像装置 |
KR20210004976A (ko) | 2018-04-20 | 2021-01-13 | 소니 주식회사 | 촬상 소자, 적층형 촬상 소자 및 고체 촬상 장치 |
KR102658488B1 (ko) * | 2018-04-20 | 2024-04-18 | 소니그룹주식회사 | 촬상 소자, 적층형 촬상 소자 및 고체 촬상 장치 |
KR20210004974A (ko) | 2018-04-20 | 2021-01-13 | 소니 주식회사 | 촬상 소자, 적층형 촬상 소자 및 고체 촬상 장치 |
KR20200143380A (ko) | 2018-04-20 | 2020-12-23 | 소니 주식회사 | 촬상 소자, 적층형 촬상 소자 및 고체 촬상 장치 |
TWI820114B (zh) * | 2018-04-20 | 2023-11-01 | 日商索尼股份有限公司 | 攝像元件、積層型攝像元件及固體攝像裝置 |
WO2019203085A1 (ja) | 2018-04-20 | 2019-10-24 | ソニー株式会社 | 撮像素子、積層型撮像素子及び固体撮像装置 |
JP7192857B2 (ja) | 2018-04-20 | 2022-12-20 | ソニーグループ株式会社 | 撮像素子、積層型撮像素子及び固体撮像装置 |
WO2019203213A1 (ja) | 2018-04-20 | 2019-10-24 | ソニー株式会社 | 撮像素子、積層型撮像素子及び固体撮像装置 |
US11705530B2 (en) | 2018-04-20 | 2023-07-18 | Sony Corporation | Imaging device, stacked imaging device, and solid-state imaging apparatus |
JPWO2019203213A1 (ja) * | 2018-04-20 | 2021-05-27 | ソニーグループ株式会社 | 撮像素子、積層型撮像素子及び固体撮像装置 |
JP7272354B2 (ja) | 2018-04-20 | 2023-05-12 | ソニーグループ株式会社 | 撮像素子、積層型撮像素子及び固体撮像装置 |
WO2019203222A1 (ja) | 2018-04-20 | 2019-10-24 | ソニー株式会社 | 撮像素子、積層型撮像素子及び固体撮像装置 |
JPWO2019203268A1 (ja) * | 2018-04-20 | 2021-05-20 | ソニーグループ株式会社 | 撮像素子、積層型撮像素子及び固体撮像装置 |
JPWO2019203222A1 (ja) * | 2018-04-20 | 2021-05-13 | ソニーグループ株式会社 | 撮像素子、積層型撮像素子及び固体撮像装置 |
JPWO2019203085A1 (ja) * | 2018-04-20 | 2021-05-13 | ソニーグループ株式会社 | 撮像素子、積層型撮像素子及び固体撮像装置 |
KR20200143374A (ko) | 2018-04-20 | 2020-12-23 | 소니 주식회사 | 촬상 소자, 적층형 촬상 소자 및 고체 촬상 장치 |
TWI812699B (zh) * | 2018-04-20 | 2023-08-21 | 日商索尼股份有限公司 | 攝像元件、積層型攝像元件及固體攝像裝置 |
KR20250022908A (ko) | 2018-07-17 | 2025-02-17 | 소니 세미컨덕터 솔루션즈 가부시키가이샤 | 촬상 소자, 적층형 촬상 소자 및 고체 촬상 장치 |
US12156412B2 (en) | 2018-07-17 | 2024-11-26 | Sony Semiconductor Solutions Corporation | Image pickup element, stacked image pickup element, and solid image pickup apparatus |
KR20210031677A (ko) | 2018-07-17 | 2021-03-22 | 소니 세미컨덕터 솔루션즈 가부시키가이샤 | 촬상 소자, 적층형 촬상 소자 및 고체 촬상 장치 |
US12238948B2 (en) | 2018-09-04 | 2025-02-25 | Sony Group Corporation | Imaging element, stacked imaging element, and solid-state imaging device |
WO2020050170A1 (ja) * | 2018-09-04 | 2020-03-12 | ソニー株式会社 | 撮像素子、積層型撮像素子及び固体撮像装置 |
US11800729B2 (en) | 2018-09-04 | 2023-10-24 | Sony Corporation | Imaging element, stacked imaging element, and solid-state imaging device |
JPWO2020050170A1 (ja) * | 2018-09-04 | 2021-09-16 | ソニーグループ株式会社 | 撮像素子、積層型撮像素子及び固体撮像装置 |
JP7428131B2 (ja) | 2018-09-04 | 2024-02-06 | ソニーグループ株式会社 | 撮像素子、積層型撮像素子及び固体撮像装置 |
WO2020066553A1 (ja) * | 2018-09-28 | 2020-04-02 | ソニー株式会社 | 撮像素子、積層型撮像素子及び固体撮像装置 |
US12035547B2 (en) | 2018-09-28 | 2024-07-09 | Sony Corporation | Image pickup element, stacked image pickup element, and solid-state image pickup apparatus that exel in characteristics of transferring an electric charge accmlarted in photoelectric conversion layer |
JPWO2020066553A1 (ja) * | 2018-09-28 | 2021-09-02 | ソニーグループ株式会社 | 撮像素子、積層型撮像素子及び固体撮像装置 |
JP7468347B2 (ja) | 2018-09-28 | 2024-04-16 | ソニーグループ株式会社 | 撮像素子、積層型撮像素子及び固体撮像装置 |
KR20210145742A (ko) | 2019-04-05 | 2021-12-02 | 소니그룹주식회사 | 촬상 소자, 적층형 촬상 소자 및 고체 촬상 장치, 및, 촬상 소자의 제조 방법 |
US12144192B2 (en) | 2019-04-05 | 2024-11-12 | Sony Group Corporation | Imaging element, stacked imaging element and solid-state imaging device, and method of manufacturing imaging element |
WO2020202902A1 (ja) | 2019-04-05 | 2020-10-08 | ソニー株式会社 | 撮像素子、積層型撮像素子及び固体撮像装置、並びに、撮像素子の製造方法 |
JPWO2020217783A1 (ja) * | 2019-04-25 | 2020-10-29 | ||
JP7624608B2 (ja) | 2019-04-25 | 2025-01-31 | パナソニックIpマネジメント株式会社 | 撮像装置 |
US12171107B2 (en) | 2019-05-24 | 2024-12-17 | Sony Group Corporation | Imaging element, stacked imaging element and solid-state imaging device, and method of manufacturing imaging element |
JPWO2020241169A1 (ja) * | 2019-05-24 | 2020-12-03 | ||
JP7559753B2 (ja) | 2019-05-24 | 2024-10-02 | ソニーグループ株式会社 | 撮像素子、積層型撮像素子及び固体撮像装置、並びに、撮像素子の製造方法 |
JP7578104B2 (ja) | 2019-05-24 | 2024-11-06 | ソニーグループ株式会社 | 撮像素子、積層型撮像素子及び固体撮像装置 |
WO2020241165A1 (ja) | 2019-05-24 | 2020-12-03 | ソニー株式会社 | 撮像素子、積層型撮像素子及び固体撮像装置、並びに、無機酸化物半導体材料 |
US12284857B2 (en) | 2019-05-24 | 2025-04-22 | Sony Group Corporation | Imaging element, stacked imaging element and solid-state imaging device, and inorganic oxide semiconductor material |
WO2020241168A1 (ja) * | 2019-05-24 | 2020-12-03 | ソニー株式会社 | 撮像素子、積層型撮像素子及び固体撮像装置、並びに、無機酸化物半導体材料 |
WO2020241169A1 (ja) | 2019-05-24 | 2020-12-03 | ソニー株式会社 | 撮像素子、積層型撮像素子及び固体撮像装置、並びに、撮像素子の製造方法 |
JPWO2020241168A1 (ja) * | 2019-05-24 | 2020-12-03 | ||
WO2021002090A1 (ja) | 2019-07-02 | 2021-01-07 | ソニー株式会社 | 撮像素子、積層型撮像素子及び固体撮像装置 |
EP3996138A4 (en) * | 2019-07-02 | 2022-09-14 | Sony Group Corporation | IMAGING ELEMENT, MULTILAYER IMAGING ELEMENT AND SOLID STATE IMAGING DEVICE |
US12262572B2 (en) | 2019-07-02 | 2025-03-25 | Sony Group Corporation | Imaging element, stacked imaging element, and solid-state imaging device |
JPWO2021002090A1 (ja) * | 2019-07-02 | 2021-01-07 | ||
JP7673637B2 (ja) | 2019-07-02 | 2025-05-09 | ソニーグループ株式会社 | 撮像素子、積層型撮像素子及び固体撮像装置 |
WO2021200508A1 (ja) * | 2020-03-31 | 2021-10-07 | ソニーグループ株式会社 | 撮像素子および撮像装置 |
Also Published As
Publication number | Publication date |
---|---|
CN106206627A (zh) | 2016-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2016063165A (ja) | 撮像素子及び固体撮像装置 | |
US12027565B2 (en) | Imaging device having charge storage electrode, first electrode, second electrode and transfer control electrode, driving method for imaging device having the same, and electronic apparatus | |
JP2016063156A (ja) | 撮像素子及び固体撮像装置 | |
JP5328224B2 (ja) | 固体撮像装置 | |
US9281331B2 (en) | High dielectric constant structure for the vertical transfer gates of a complementary metal-oxide semiconductor (CMOS) image sensor | |
US8692303B2 (en) | Solid-state imaging device, electronic device, and manufacturing method for solid-state imaging device | |
CN104396018B (zh) | 固态图像拾取装置及其制造方法以及电子设备 | |
US7544560B2 (en) | Image sensor and fabrication method thereof | |
JP2023126771A (ja) | 撮像素子、積層型撮像素子及び撮像装置 | |
US10892302B2 (en) | Photoelectric conversion element, imaging element, stacked-type imaging element, and solid-state imaging apparatus | |
JP2012049289A (ja) | 固体撮像装置とその製造方法、並びに電子機器 | |
WO2012117670A1 (ja) | 固体撮像装置 | |
US20230326953A1 (en) | Imaging element, stacked imaging element, and solid-state imaging device | |
JP2015037154A (ja) | 撮像素子および撮像装置 | |
JP2016033972A (ja) | 撮像装置及び撮像システム | |
JP2017195215A (ja) | 撮像素子及びその製造方法 | |
US10244193B2 (en) | Imaging apparatus and imaging system | |
WO2016009835A1 (ja) | 半導体装置および電子機器 | |
JP6689936B2 (ja) | 撮像装置の製造方法 | |
JP2025010567A (ja) | 撮像装置 | |
JP7316046B2 (ja) | 光電変換装置およびカメラ | |
JP2017103429A (ja) | 撮像装置、および、撮像システム | |
JP7050111B2 (ja) | 撮像装置 | |
WO2023182517A1 (ja) | 半導体装置及び固体撮像装置 | |
JP2013225704A (ja) | 固体撮像装置 |