JP2016060680A - Boron nitride aggregates and thermally conductive compositions - Google Patents
Boron nitride aggregates and thermally conductive compositions Download PDFInfo
- Publication number
- JP2016060680A JP2016060680A JP2014191654A JP2014191654A JP2016060680A JP 2016060680 A JP2016060680 A JP 2016060680A JP 2014191654 A JP2014191654 A JP 2014191654A JP 2014191654 A JP2014191654 A JP 2014191654A JP 2016060680 A JP2016060680 A JP 2016060680A
- Authority
- JP
- Japan
- Prior art keywords
- boron nitride
- mass
- conductive composition
- group
- thermally conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は、電気機器、電子機器、発光機器、集積回路等の発熱部材から放熱部材へ熱を伝達させるのに用いられる熱伝導性を有する組成物に関するものである。 The present invention relates to a composition having thermal conductivity used for transferring heat from a heat generating member such as an electric device, an electronic device, a light emitting device, and an integrated circuit to a heat radiating member.
近年、集積回路をはじめ、電気機器、電子機器、発光機器等の発熱部材から放熱部材へ熱を伝達させる熱伝導層には、高い熱伝導性を有し、且つ絶縁性であることが要求されており、このような要求を満たすものとして、フィラーを樹脂あるいはゴム中に分散させた放熱材料が広く用いられている。ここで、フィラーとしては、高い熱伝導率を有し、且つ絶縁性である六方晶窒化ホウ素(h−BN)が用いられている。 In recent years, heat conduction layers that transfer heat from heat generating members to heat radiating members such as integrated circuits, electric devices, electronic devices, and light emitting devices are required to have high heat conductivity and insulating properties. In order to satisfy such requirements, a heat dissipation material in which a filler is dispersed in resin or rubber is widely used. Here, as the filler, hexagonal boron nitride (h-BN) having high thermal conductivity and insulating properties is used.
六方晶窒化ホウ素の結晶構造は、黒鉛と同様の層状構造であり、その粒子形状は鱗片状である。この鱗片状窒化ホウ素は長径方向(六方晶のa軸方向)の熱伝導率が高く、短径方向(六方晶のc軸方向)の熱伝導率が低いという、異方的な熱伝導率を有しており、かかる長径方向と短径方向との熱伝導率の差は、数倍から数十倍と言われている。アスペクト比が大きい鱗片状窒化ホウ素(h−BN)を樹脂に配合した樹脂からなるシートにおいては、鱗片状窒化ホウ素がその長径方向をシート方向に沿って配列されるので、該シートの厚さ方向の伝熱性は十分でない。樹脂あるいはゴム中に分散させる鱗片状窒化ホウ素を直立させた状態、すなわち鱗片状窒化ホウ素の長径方向が伝熱方向と一致するように配向させる放熱グリース、ペースト、パッド、シート、フィルム、その熱伝導性組成物の開発が期待されている。 The crystal structure of hexagonal boron nitride is a layered structure similar to graphite, and its particle shape is scaly. This scaly boron nitride has an anisotropic thermal conductivity in which the thermal conductivity in the major axis direction (hexagonal a-axis direction) is high and the thermal conductivity in the minor axis direction (hexagonal c-axis direction) is low. The difference in thermal conductivity between the major axis direction and the minor axis direction is said to be several to several tens of times. In a sheet made of a resin in which scaly boron nitride (h-BN) having a large aspect ratio is blended with a resin, scaly boron nitride is arranged along the sheet direction in the major axis direction, so the thickness direction of the sheet The heat conductivity is not enough. Thermally conductive grease, paste, pad, sheet, film, and heat conduction in which flaky boron nitride dispersed in resin or rubber is upright, that is, oriented so that the major axis direction of flaky boron nitride coincides with the heat transfer direction Development of a composition is expected.
放熱材料の熱伝導率を大きくするために、窒化ホウ素一次粒子を凝集させた窒化ホウ素凝集体を充填剤(フィラー)として用いる方法が提案されている。 In order to increase the thermal conductivity of the heat dissipation material, a method of using a boron nitride aggregate obtained by aggregating primary boron nitride particles as a filler (filler) has been proposed.
窒化ホウ素凝集体をフィラーとした熱伝導性組成物は大きな熱伝導率を有している。しかし、窒化ホウ素凝集体の持つポテンシャルが十分に発揮されているとは言い難く、その原因調査および熱伝導率改善を進めてきたところ、窒化ホウ素凝集体の酸素量を低減することが重要であることを見出した。 A thermally conductive composition using a boron nitride aggregate as a filler has a large thermal conductivity. However, it is difficult to say that the potential of boron nitride aggregates is fully exerted, and after investigating the cause and improving the thermal conductivity, it is important to reduce the oxygen content of boron nitride aggregates I found out.
特許文献1(電化、特許第3461651)に記載された発明においては、六方晶窒化ホウ素の鱗片状の一次粒子同士が結合剤を含有することなく配向せずに集合してなる六方晶窒化ホウ素粉末、すなわち窒化ホウ素凝集体が示されているが、この窒化ホウ素凝集体の酸素量は、0.5重量%以上であり、これ未満では焼結体強度が低くなると記載されている。 In the invention described in Patent Document 1 (Electrification, Japanese Patent No. 3461651), hexagonal boron nitride powder in which flaky primary particles of hexagonal boron nitride are aggregated without containing a binder without being oriented. That is, boron nitride aggregates are shown, but the oxygen content of the boron nitride aggregates is 0.5% by weight or more, and it is described that the sintered body strength is reduced below this.
特許文献2(三菱電機、特許第5184543)に記載された発明においては、鱗片状窒化ホウ素の一次粒子を等方的に凝集させ、焼成して球状に形成した二次凝集粒子、すなわち窒化ホウ素凝集体が示されているが、この窒化ホウ素凝集体の酸素量については記載されていない。 In the invention described in Patent Document 2 (Mitsubishi Electric, Patent No. 5184543), primary particles of scaly boron nitride are agglomerated isotropically and baked to form secondary agglomerated particles, that is, boron nitride agglomerated particles. Aggregation is shown, but the oxygen content of this boron nitride aggregate is not described.
特許文献3(電化、特許第3880201)に記載された発明においては、タップ密度が0.87〜0.90g/cm2、酸化ホウ素量が0.1〜1.0質量%、水分含有量が0.1〜0.4質量%の凝集粒子である窒化ホウ素粉末、すなわち窒化ホウ素凝集体が示されているが、この窒化ホウ素凝集体の酸素量を計算すると、0.16質量%以上となる。 In the invention described in Patent Document 3 (Electrification, Patent No. 3880201), the tap density is 0.87 to 0.90 g / cm 2 , the amount of boron oxide is 0.1 to 1.0 mass%, and the water content is Boron nitride powder that is 0.1 to 0.4 mass% aggregated particles, that is, boron nitride aggregate is shown. When the amount of oxygen of the boron nitride aggregate is calculated, it becomes 0.16 mass% or more. .
本発明は、上記のような問題を解決するためになされたものであり、高熱伝導性フィラーとして酸素量の小さい窒化ホウ素凝集体、その凝集体をフィラーとして用いた熱伝導性組成物を提供することを目的とする。更に本発明は、生産性やコスト面において有利であり、且つ電気機器、電子機器、発光機器、集積回路等の発熱部材から放熱部材へ熱を伝達させるのに用いられる熱伝導性を有する組成物、グリース及びペースト、並びにかかる組成物から得られる放熱パッド、シート及びフィルムを提供することを目的とする。 The present invention has been made to solve the above problems, and provides a boron nitride aggregate having a small amount of oxygen as a high thermal conductive filler, and a thermal conductive composition using the aggregate as a filler. For the purpose. Furthermore, the present invention is advantageous in terms of productivity and cost, and has a thermal conductivity used for transferring heat from a heat generating member such as an electric device, an electronic device, a light emitting device, and an integrated circuit to a heat radiating member. Another object is to provide grease, paste, and heat dissipation pads, sheets and films obtained from such compositions.
本発明者らは、上記課題を解決するため鋭意研究を重ねた結果、酸素量が0.1質量%未満の窒化ホウ素凝集体は熱伝導率が高いことを見出し、該凝集体を充填剤として樹脂あるいはゴムといったマトリックスに50質量%以上の量で分散してなる熱伝導性組成物とすれば、鱗片状窒化ホウ素をシート内で直立させた状態、すなわち鱗片状窒化ホウ素の長径方向が伝熱方向と一致するように配向された窒化ホウ素が増加して、伝熱方向の熱伝導性が飛躍的に向上された熱伝導性組成物の、放熱グリース、ペースト、パッド、シート、フィルムが得られることを見出し、本発明を完成した。 As a result of intensive studies to solve the above problems, the present inventors have found that a boron nitride aggregate having an oxygen content of less than 0.1% by mass has high thermal conductivity, and the aggregate is used as a filler. If the heat conductive composition is dispersed in a matrix such as resin or rubber in an amount of 50% by mass or more, the scale-like boron nitride is upright in the sheet, that is, the major axis direction of the scale-like boron nitride is the heat transfer. Boron nitride oriented to coincide with the direction increases, and heat conduction composition with improved heat conductivity in the heat transfer direction can be obtained heat radiation grease, paste, pad, sheet, film As a result, the present invention has been completed.
即ち、本発明は、下記の凝集体、組成物及びシートを提供するものである。
〔1〕 酸素量が、0.1質量%未満であることを特徴とする窒化ホウ素凝集体。
〔2〕 〔1〕に記載の窒化ホウ素凝集体を充填剤としてマトリックス中に50質量%以上含むことを特徴とする熱伝導性組成物。
〔3〕 前記マトリックスがシリコーンであることを特徴とする〔2〕に記載の熱伝導性組成物。
〔4〕 前記熱伝導性組成物がシリコーンを10質量%以上45質量%未満の量で含むことを特徴とする〔2〕又は〔3〕に記載の熱伝導性組成物。
〔5〕 前記シリコーンが下記平均組成式(1)
RaSiO(4−a)/2 (1)
(上記式(1)において、Rは同一又は異種の置換又は非置換の一価炭化水素基、好ましくは炭素数1〜8の一価炭化水素基であり、該一価炭化水素基の炭素原子に結合した水素原子の一部又は全部は置換されていてもよく、aは1.85〜2.10の正数である。)
で表されるオルガノポリシロキサンであることを特徴とする〔2〕〜〔4〕のいずれか1項に記載の熱伝導性組成物。
〔6〕上記〔2〕〜〔5〕のいずれか1項に記載の熱伝導性組成物を成形して得られることを特徴とする熱伝導性シート。
なお、前記成形は、未硬化、半硬化及び硬化を含むがこれらに限定されない。
That is, the present invention provides the following aggregates, compositions and sheets.
[1] A boron nitride aggregate having an oxygen content of less than 0.1% by mass.
[2] A thermally conductive composition comprising the boron nitride aggregate according to [1] as a filler in an amount of 50% by mass or more in a matrix.
[3] The heat conductive composition according to [2], wherein the matrix is silicone.
[4] The thermal conductive composition according to [2] or [3], wherein the thermal conductive composition contains silicone in an amount of 10% by mass or more and less than 45% by mass.
[5] The silicone is represented by the following average composition formula (1)
R a SiO (4-a) / 2 (1)
(In the above formula (1), R is the same or different substituted or unsubstituted monovalent hydrocarbon group, preferably a monovalent hydrocarbon group having 1 to 8 carbon atoms, and the carbon atom of the monovalent hydrocarbon group. A part or all of the hydrogen atoms bonded to may be substituted, and a is a positive number of 1.85 to 2.10.)
The heat conductive composition according to any one of [2] to [4], which is an organopolysiloxane represented by the formula:
[6] A heat conductive sheet obtained by molding the heat conductive composition according to any one of [2] to [5].
The molding includes, but is not limited to, uncured, semi-cured and cured.
本発明によれば、高熱伝導性フィラーとして酸素量の小さい窒化ホウ素凝集体、その凝集体をフィラーとして用いた熱伝導性組成物が得られる。更に、これらは、生産性やコスト面において有利であり、且つ電気機器、電子機器、発光機器、集積回路等の発熱部材から放熱部材へ熱を伝達させるのに用いられる放熱性グリース、ペースト、パッド、シート、フィルム又はシートとすることができる。 According to the present invention, a boron nitride aggregate having a small amount of oxygen as a high thermal conductive filler, and a thermal conductive composition using the aggregate as a filler can be obtained. Furthermore, these are advantageous in terms of productivity and cost, and heat dissipating grease, paste, and pads used for transferring heat from heat generating members such as electric devices, electronic devices, light emitting devices and integrated circuits to heat dissipating members. , Sheet, film or sheet.
以下、本発明の窒化ホウ素凝集体及び熱伝導性組成物について詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the boron nitride aggregate and the heat conductive composition of the present invention will be described in detail, but the present invention is not limited thereto.
・窒化ホウ素凝集体の調製
窒化ホウ素凝集体は、鱗片状窒化ホウ素の一次粒子を用い、公知の方法に従って製造することができる。具体的には、鱗片状窒化ホウ素の一次粒子を公知の方法によって凝集させた後、焼結させることによって作製することができる。ここで、焼結温度は、1,950〜2,050℃が好ましく、特に2,000℃が好ましい。凝集方法としては特に限定されないが、所定の鱗片状窒化ホウ素の一次粒子と、水溶性バインダと、水とを均一に混合して得たスラリーを上部から噴霧し、液滴が落下する間に乾燥と造粒を行うスプレードライ法が挙げられる。スプレードライ法は、大量生産によく用いられ、球状で流動性の良い顆粒(二次凝集粒子)が得られやすい。窒化ホウ素凝集体の酸素量を調整するには、造粒処理のスプレー速度を調整する、バインダ種類を変える、スプレー液の種類を変える等の方法が挙げられる。
-Preparation of a boron nitride aggregate A boron nitride aggregate can be manufactured in accordance with a well-known method using the primary particle of scaly boron nitride. Specifically, it can be produced by aggregating primary particles of scaly boron nitride by a known method and then sintering. Here, the sintering temperature is preferably 1,950 to 2,050 ° C., particularly preferably 2,000 ° C. The agglomeration method is not particularly limited, and a slurry obtained by uniformly mixing predetermined primary particles of flaky boron nitride, a water-soluble binder, and water is sprayed from above and dried while the droplets fall. And spray drying method for granulation. The spray-drying method is often used for mass production, and it is easy to obtain granules (secondary aggregated particles) that are spherical and have good fluidity. In order to adjust the oxygen content of the boron nitride aggregate, methods such as adjusting the spray rate of the granulation treatment, changing the binder type, changing the type of spray liquid, and the like can be mentioned.
[マトリックス]
本発明の熱伝導性組成物のマトリックスとしては、樹脂状又はゴム状のポリマーが使用し得る。かかるポリマーとして、シリコーン、特に下記式(1)で示される平均組成式を有するオルガノポリシロキサンが好適に使用できる。
RaSiO(4−a)/2 (1)
[matrix]
As the matrix of the heat conductive composition of the present invention, a resinous or rubbery polymer can be used. As such a polymer, silicone, particularly an organopolysiloxane having an average composition formula represented by the following formula (1) can be preferably used.
R a SiO (4-a) / 2 (1)
上記式(1)において、Rは同一又は異種の置換又は非置換の一価炭化水素基、好ましくは炭素数1〜8の一価炭化水素基であり、該一価炭化水素基は、例えばハロゲン原子及び/又はシアノ基で置換されていてもよい。Rとしての該一価炭化水素基としては、例えば、メチル基、エチル基、プロピル基等のアルキル基;ビニル基、アリル基等のアルケニル基;フェニル基、トリル基等のアリール基;シクロヘキシル基、シクロペンチル基等のシクロアルキル基;又はこれらの基の炭素原子に直結した水素原子の一部又は全部をハロゲン原子、シアノ基等で置換した基、例えばクロロメチル基、クロロエチル基、トリフロロプロピル基、シアノエチル基、シアノプロピル基等が挙げられる。Rとしては好ましいものはメチル基、フェニル基、トリフロロプロピル基、ビニル基である。aは1.85〜2.10の正数である。 In the above formula (1), R is the same or different substituted or unsubstituted monovalent hydrocarbon group, preferably a monovalent hydrocarbon group having 1 to 8 carbon atoms, and the monovalent hydrocarbon group is, for example, halogen It may be substituted with an atom and / or a cyano group. Examples of the monovalent hydrocarbon group as R include an alkyl group such as a methyl group, an ethyl group, and a propyl group; an alkenyl group such as a vinyl group and an allyl group; an aryl group such as a phenyl group and a tolyl group; a cyclohexyl group; A cycloalkyl group such as a cyclopentyl group; or a group in which some or all of the hydrogen atoms directly bonded to the carbon atoms of these groups are substituted with a halogen atom, a cyano group, etc., such as a chloromethyl group, a chloroethyl group, a trifluoropropyl group, A cyanoethyl group, a cyanopropyl group, etc. are mentioned. R is preferably a methyl group, a phenyl group, a trifluoropropyl group, or a vinyl group. a is a positive number from 1.85 to 2.10.
式(1)の前記オルガノポリシロキサンは直鎖状の分子構造を有することが好ましいが、分子中に一部分子鎖状構造を有していてもよい。更に前記オルガノポリシロキサンは分子鎖末端をトリオルガノシリル基又は水酸基で封鎖されていることが好ましい。該トリオルガノシリル基としては、トリメチルシリル基、ジメチルビニルシリル基、トリビニルシリル基、メチルフェニルビニルシリル基、メチルジフェニルシリル基、ジメチルフェニルシリル基、ジメチルヒドロキシシリル基等が例示される。 The organopolysiloxane of the formula (1) preferably has a linear molecular structure, but may partially have a molecular chain structure in the molecule. Further, the organopolysiloxane is preferably blocked at the molecular chain end with a triorganosilyl group or a hydroxyl group. Examples of the triorganosilyl group include a trimethylsilyl group, a dimethylvinylsilyl group, a trivinylsilyl group, a methylphenylvinylsilyl group, a methyldiphenylsilyl group, a dimethylphenylsilyl group, and a dimethylhydroxysilyl group.
本発明の熱伝導性組成物は、マトリックスとしてシリコーンを含む場合、該シリコーンを該組成物の質量に対して、通常は10質量%以上45質量%未満の量、好ましくは20〜40質量%、特に30〜40質量%の量とすることが好ましい。 When the thermally conductive composition of the present invention contains silicone as a matrix, the silicone is usually in an amount of 10% by weight or more and less than 45% by weight, preferably 20 to 40% by weight, based on the weight of the composition. It is preferable to set it as the quantity of 30-40 mass% especially.
本発明の熱伝導性組成物が、マトリックスとしてシリコーンであるオルガノポリシロキサンを使用する場合は、架橋剤を含有せしめることが好ましい。該架橋剤は使用するオルガノポリシロキサンの架橋反応の機構により適宜選択すればよい。 In the case where the thermally conductive composition of the present invention uses organopolysiloxane which is silicone as a matrix, it is preferable to contain a crosslinking agent. What is necessary is just to select this crosslinking agent suitably by the mechanism of the crosslinking reaction of the organopolysiloxane to be used.
例えば、前記架橋反応がラジカル反応の場合は、前記架橋剤としては、有機過酸化物が使用され、具体的には、ベンゾイルパーオキサイド、モノクロルベンゾイルパーオキサイド、ビス2,4−ジクロロベンゾイルパーオキサイド、o−メチルベンゾイルパーオキサイド、p−メチルベンゾイルパーオキサイド、ジ(t−ブチル)パーベンゾエート、ジクミルパーオキサイド、2,5−ジメチル−2,5−ビス(t−ブチルパーオキシ)ヘキサン、ジ(t−ブチル)パーオキサイド等が例示される。該有機過酸化物はオルガノポリシロキサン100質量部に対して0.1〜10質量部、特に0.2〜5質量部添加することが好ましい。 For example, when the crosslinking reaction is a radical reaction, an organic peroxide is used as the crosslinking agent, specifically, benzoyl peroxide, monochlorobenzoyl peroxide, bis 2,4-dichlorobenzoyl peroxide, o-methylbenzoyl peroxide, p-methylbenzoyl peroxide, di (t-butyl) perbenzoate, dicumyl peroxide, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane, di ( Examples thereof include t-butyl) peroxide. The organic peroxide is preferably added in an amount of 0.1 to 10 parts by weight, particularly 0.2 to 5 parts by weight, based on 100 parts by weight of the organopolysiloxane.
前記架橋反応が付加反応の場合は、本発明の熱伝導性組成物は、前記架橋剤としてケイ素原子に直結した水素原子を1分子中に2個以上含有するオルガノハイドロジェンシロキサンと、触媒として有効量(触媒量)の白金族元素(好ましくは白金)又はその化合物が含まれる。この場合はオルガノポリシロキサンが1分子中に2個以上のアルケニル基を含有することが必要である。該オルガノハイドロジェンポリシロキサンは、ケイ素原子に直結した水素原子がアルケニル基に対して0.5〜5倍、特に0.6〜3倍となる量で配合することが好ましい。 When the crosslinking reaction is an addition reaction, the thermally conductive composition of the present invention is effective as a catalyst and an organohydrogensiloxane containing two or more hydrogen atoms directly bonded to a silicon atom as the crosslinking agent. An amount (catalytic amount) of a platinum group element (preferably platinum) or a compound thereof is included. In this case, it is necessary that the organopolysiloxane contains two or more alkenyl groups in one molecule. The organohydrogenpolysiloxane is preferably blended in such an amount that the hydrogen atom directly bonded to the silicon atom is 0.5 to 5 times, particularly 0.6 to 3 times that of the alkenyl group.
更に、前記架橋反応が縮合反応の場合は、アルコキシ基、アセトキシ基、オキシム基等の加水分解性基を1分子中に2個以上、好ましくは3個以上含有する加水分解性シラン又はシロキサンが架橋剤として使用される。この配合量は、前記オルガノポリシロキサン100質量部に対して1〜20質量部とすることが好ましく、特に2〜10質量部とすることが好ましい。また、触媒としてSn、Ti、Fe、Co等の有機金属化合物を使用することが好ましい。縮合反応の場合は、前記オルガノポリシロキサンの分子鎖両末端が水酸基又はアルコキシ基で封鎖されていることが必要である。前記架橋剤の本発明の熱伝導性組成物への配合量は、該組成物中のその他の成分の種類や配合比に合わせて適宜調整すればよい。 Further, when the crosslinking reaction is a condensation reaction, a hydrolyzable silane or siloxane containing 2 or more, preferably 3 or more hydrolyzable groups such as alkoxy group, acetoxy group or oxime group in one molecule is crosslinked. Used as an agent. The blending amount is preferably 1 to 20 parts by mass, particularly preferably 2 to 10 parts by mass with respect to 100 parts by mass of the organopolysiloxane. Moreover, it is preferable to use organometallic compounds, such as Sn, Ti, Fe, Co, as a catalyst. In the case of the condensation reaction, it is necessary that both ends of the molecular chain of the organopolysiloxane are blocked with a hydroxyl group or an alkoxy group. What is necessary is just to adjust the compounding quantity to the heat conductive composition of this invention of the said crosslinking agent suitably according to the kind and compounding ratio of the other component in this composition.
[熱伝導性組成物]
本発明の熱伝導性組成物は、上述の窒化ホウ素凝集体、マトリックスとしてのシリコーン成分の他に、必要に応じて、例えば充填補強剤、分散剤、難燃助剤、耐熱助剤、希釈用有機溶剤、着色のための顔料、硬化抑制剤等を組成物全体の35質量%以下、好ましくは30質量%以下の量で配合することができる。また、シリコーンゴム製の絶縁放熱シートでは成形時に骨格となるガラス繊維クロスを含有させることもできる。
[Thermal conductive composition]
In addition to the above-mentioned boron nitride aggregate and the silicone component as a matrix, the thermally conductive composition of the present invention, if necessary, for example, a filling reinforcing agent, a dispersing agent, a flame retardant aid, a heat resistant aid, for dilution An organic solvent, a pigment for coloring, a curing inhibitor, and the like can be blended in an amount of 35% by mass or less, preferably 30% by mass or less of the entire composition. In addition, the insulating heat-radiating sheet made of silicone rubber can contain glass fiber cloth that becomes a skeleton at the time of molding.
・熱伝導性組成物及び成形体の調製
本発明の熱伝導性組成物は、プラネタリーミキサー、ゲートミキサー、品川ミキサー、バンバリーミキサー、3本ロール、ニーダー等の汎用的な設備を使用して均一混合することができる。本発明の熱伝導性組成物は、未硬化、半硬化及び硬化のいずれの状態もあり得る。本発明の熱伝導性組成物は、公知の方法によって成形され得る。例えば、パッド、シート、フィルムとする場合には、本発明の熱伝導性組成物をプレス成形法、射出成形法、押出成形法、カレンダー成形法、ロール成形法、ドクターブレード成形法等の公知の成形法を適用して成形後加硫(硬化)すればよい。パッド又はシートとする場合には、本発明の熱伝導性組成物をプレス成形法、射出成形法、押出成形法、カレンダー成形法、ロール成形法、ドクターブレード成形法等の公知の成形法を適用して成形後加硫(硬化)すればよい。フィルムとする場合には、本発明の熱伝導性組成物を塗工等の公知の作製方法を適用し、乾燥、加硫(硬化)すればよい。さらに、これらのパッド、シート、フィルム等に粘着剤及び保護用の紙やフィルムを設けることは任意である。
-Preparation of heat conductive composition and molded body The heat conductive composition of the present invention is uniform using general equipment such as planetary mixer, gate mixer, Shinagawa mixer, Banbury mixer, three rolls, kneader. Can be mixed. The thermally conductive composition of the present invention can be in any state of uncured, semi-cured and cured. The heat conductive composition of this invention can be shape | molded by a well-known method. For example, in the case of a pad, sheet, or film, the heat conductive composition of the present invention is publicly known such as a press molding method, an injection molding method, an extrusion molding method, a calendar molding method, a roll molding method, a doctor blade molding method, etc. What is necessary is just to vulcanize (harden) after shaping | molding applying a shaping | molding method. In the case of a pad or sheet, a known molding method such as press molding, injection molding, extrusion molding, calendar molding, roll molding, doctor blade molding, etc. is applied to the thermally conductive composition of the present invention. Then, it may be vulcanized (cured) after molding. In the case of forming a film, the heat conductive composition of the present invention may be dried and vulcanized (cured) by applying a known production method such as coating. Furthermore, it is optional to provide an adhesive and protective paper or film on these pads, sheets, films and the like.
以下、本発明の熱伝導性組成物の実施例及び比較例を示して本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。 EXAMPLES Hereinafter, although the Example and comparative example of the heat conductive composition of this invention are shown and this invention is demonstrated in detail, this invention is not limited to these.
[実施例1]
(1)窒化ホウ素凝集体の調製
・窒化ホウ素の仮焼き
純度93%で結晶性が比較的低い鱗片状窒化ホウ素を、窒素雰囲気中、1,800℃で1時間仮焼きし、ライカイ機を用いて3時間粉砕処理を行った。
・窒化ホウ素の造粒処理
パウレック製の流動層造粒乾燥コーティング装置(MP−01)に、上記の仮焼き及び粉砕処理した鱗片状窒化ホウ素500gを配置し、スプレー液として水250gを配置した。スプレー速度4g/min、給気温度80℃にて窒化ホウ素の造粒処理を行った。
・窒化ホウ素の焼成
窒素雰囲気中、造粒処理した窒化ホウ素を2,000℃で2時間焼成した。
・酸処理
焼成した窒化ホウ素を硝酸水溶液で洗浄し、130℃で2時間乾燥した。
・酸素量の測定
酸素分析計TC−436(LECO社製)を使用して酸素量を測定した。
[Example 1]
(1) Preparation of boron nitride aggregate and calcining of boron nitride Scalar boron nitride having a purity of 93% and relatively low crystallinity was calcined at 1,800 ° C. for 1 hour in a nitrogen atmosphere, and a reika machine was used. For 3 hours.
-Granulation treatment of boron nitride In a fluidized bed granulation drying coating apparatus (MP-01) made by Paulek, 500 g of the calcined and pulverized scale-like boron nitride was placed, and 250 g of water was placed as a spray liquid. Boron nitride granulation was performed at a spray rate of 4 g / min and an air supply temperature of 80 ° C.
-Firing of boron nitride The granulated boron nitride was fired at 2,000 ° C for 2 hours in a nitrogen atmosphere.
Acid treatment The calcined boron nitride was washed with an aqueous nitric acid solution and dried at 130 ° C. for 2 hours.
-Measurement of oxygen amount The oxygen amount was measured using an oxygen analyzer TC-436 (manufactured by LECO).
(2)熱伝導性組成物(放熱グリース組成物)の調製
ポリジメチルシロキサン(信越化学工業(株)製、KF−96−500cs)100質量部、及び上記の窒化ホウ素凝集体200質量部をプラネタリーミキサーで混合して、熱伝導性組成物(放熱グリース組成物)を得た。
・熱伝導率の測定
各組成物を3cm厚の型に流し込みキッチン用ラップをかぶせ、迅速熱伝導率計QTM−500(京都電子工業(株)社製)を使用して熱伝導率を測定した。
結果、酸素量は0.05質量%、熱伝導率は5.1W/m・Kであった。
(2) Preparation of Thermally Conductive Composition (Heat Dissipation Grease Composition) 100 parts by mass of polydimethylsiloxane (manufactured by Shin-Etsu Chemical Co., Ltd., KF-96-500cs) and 200 parts by mass of the above boron nitride aggregate were added to the planet The mixture was mixed with a Lee mixer to obtain a heat conductive composition (heat dissipating grease composition).
Measurement of thermal conductivity Each composition was poured into a 3 cm thick mold and covered with a kitchen wrap, and the thermal conductivity was measured using a rapid thermal conductivity meter QTM-500 (manufactured by Kyoto Electronics Industry Co., Ltd.). .
As a result, the oxygen content was 0.05% by mass, and the thermal conductivity was 5.1 W / m · K.
[実施例2]
造粒処理のスプレー速度を8g/minとしたこと以外は実施例1と同様の手順を行った。結果、酸素量は0.09質量%、熱伝導率は5.0W/m・Kであった。
[Example 2]
The same procedure as in Example 1 was performed except that the spray rate of the granulation treatment was 8 g / min. As a result, the oxygen content was 0.09% by mass, and the thermal conductivity was 5.0 W / m · K.
[比較例1]
造粒処理のスプレー速度を16g/minとしたこと以外は実施例1と同様に行った。結果、酸素量は0.17質量%、熱伝導率は4.5W/m・Kであった。
[Comparative Example 1]
The same procedure as in Example 1 was performed except that the spray rate of the granulation treatment was 16 g / min. As a result, the oxygen content was 0.17% by mass, and the thermal conductivity was 4.5 W / m · K.
[比較例2]
造粒処理のスプレー速度を10g/minとしたこと以外は実施例1と同様に行った。結果、酸素量は0.11質量%、熱伝導率は4.6W/m・Kであった。
[Comparative Example 2]
The same procedure as in Example 1 was performed except that the spray rate of the granulation treatment was 10 g / min. As a result, the oxygen content was 0.11% by mass, and the thermal conductivity was 4.6 W / m · K.
[実施例3]
・熱伝導性組成物(放熱シート)
実施例1の酸処理の手順まで実施して得られた窒化ホウ素凝集体を200質量部;ジメチルシロキサン単位99.85mol%、メチルビニルシロキサン単位0.15mol%で、平均重合度約8,000のオルガノポリシロキサン100質量部;及び架橋剤として2,5−ジメチル−2,5−ビス(t−ブチルパーオキシ)ヘキサン3質量部を、400質量部のトルエンに分散してプラネタリーミキサーで混合した。得られた放熱シート用組成物をPETセパレーター上にドクターブレード法でコーティングした後、80℃で10分間トルエン除去のための乾燥を行い、温度180℃、圧力150kg/cm2で20分間のプレス加熱加圧を行って、0.3mmの放熱シートを得た。
・酸素量の測定
酸素分析計TC−436(LECO社製)を使用して酸素量を測定した。
・熱抵抗の測定
TO−3型トランジスタとヒートシンクとの間に挟み、5kgf・cmで取り付けた測定装置を使用して熱抵抗を測定した。
結果、酸素量は0.05質量%、熱抵抗は0.22K/Wであった。
[Example 3]
・ Thermal conductive composition (heat dissipation sheet)
200 parts by mass of the boron nitride aggregate obtained by carrying out the acid treatment procedure of Example 1; 99.85 mol% of dimethylsiloxane units, 0.15 mol% of methylvinylsiloxane units and having an average degree of polymerization of about 8,000 100 parts by mass of organopolysiloxane; and 3 parts by mass of 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane as a crosslinking agent were dispersed in 400 parts by mass of toluene and mixed with a planetary mixer. . After coating the obtained composition for a heat-dissipating sheet on a PET separator by a doctor blade method, drying for removing toluene at 80 ° C. for 10 minutes is performed, and press heating is performed at a temperature of 180 ° C. and a pressure of 150 kg / cm 2 for 20 minutes. Pressurization was performed to obtain a 0.3 mm heat dissipation sheet.
-Measurement of oxygen amount The oxygen amount was measured using an oxygen analyzer TC-436 (manufactured by LECO).
-Measurement of thermal resistance Thermal resistance was measured using a measuring device sandwiched between a TO-3 type transistor and a heat sink and attached at 5 kgf · cm.
As a result, the oxygen content was 0.05% by mass, and the thermal resistance was 0.22 K / W.
[実施例4]
造粒処理のスプレー速度を8g/minとしたこと以外は実施例1の酸処理まで同様の手順で窒化ホウ素凝集体を作製し、実施例3と同様の手順で放熱シートを作製した。結果、酸素量は0.09質量%、熱抵抗は0.26K/Wであった。
[Example 4]
A boron nitride aggregate was prepared in the same procedure up to the acid treatment in Example 1 except that the spray rate of the granulation treatment was 8 g / min, and a heat radiating sheet was prepared in the same procedure as in Example 3. As a result, the oxygen content was 0.09 mass%, and the thermal resistance was 0.26 K / W.
[比較例3]
造粒処理のスプレー速度を16g/minとしたこと以外は実施例1の酸処理まで同様の手順で窒化ホウ素凝集体を作製し、実施例3と同様の手順で放熱シートを作製した。結果、酸素量は0.17質量%、熱抵抗は0.33K/Wであった。
[Comparative Example 3]
A boron nitride aggregate was prepared in the same procedure up to the acid treatment in Example 1 except that the spray rate of the granulation treatment was 16 g / min, and a heat dissipation sheet was prepared in the same procedure as in Example 3. As a result, the oxygen content was 0.17% by mass, and the thermal resistance was 0.33 K / W.
[比較例4]
造粒処理のスプレー速度を10g/minとしたこと以外は実施例1の酸処理まで同様の手順で窒化ホウ素凝集体を作製し、実施例3と同様の手順で放熱シートを作製した。結果、酸素量は0.11質量%、熱抵抗は0.31K/Wであった。
[Comparative Example 4]
A boron nitride aggregate was prepared in the same procedure up to the acid treatment of Example 1 except that the spray rate of the granulation treatment was 10 g / min, and a heat dissipation sheet was prepared in the same procedure as in Example 3. As a result, the oxygen amount was 0.11% by mass, and the thermal resistance was 0.31 K / W.
Claims (6)
RaSiO(4−a)/2 (1)
(上記式(1)において、Rは同一又は異種の、一価炭化水素基であって、該一価炭化水素基の炭素原子に結合した水素原子の一部又は全部は置換されていてもよく、aは1.85〜2.10の正数である。)
で表されるオルガノポリシロキサンであることを特徴とする請求項2〜4のいずれか1項に記載の熱伝導性組成物。 The silicone has the following average composition formula (1):
R a SiO (4-a) / 2 (1)
(In the above formula (1), R is the same or different monovalent hydrocarbon group, and some or all of the hydrogen atoms bonded to the carbon atom of the monovalent hydrocarbon group may be substituted. A is a positive number from 1.85 to 2.10.)
The heat conductive composition of any one of Claims 2-4 characterized by the above-mentioned.
A heat conductive sheet obtained by molding the heat conductive composition according to claim 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014191654A JP2016060680A (en) | 2014-09-19 | 2014-09-19 | Boron nitride aggregates and thermally conductive compositions |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014191654A JP2016060680A (en) | 2014-09-19 | 2014-09-19 | Boron nitride aggregates and thermally conductive compositions |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016060680A true JP2016060680A (en) | 2016-04-25 |
Family
ID=55797007
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014191654A Pending JP2016060680A (en) | 2014-09-19 | 2014-09-19 | Boron nitride aggregates and thermally conductive compositions |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2016060680A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021176931A (en) * | 2020-05-08 | 2021-11-11 | 信越化学工業株式会社 | Method for producing insulated heat radiation sheet |
KR20240068444A (en) * | 2022-11-10 | 2024-05-17 | 윌코 주식회사 | Boron nitride composite and copper foil assembly including the same and manufacturing method there of |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5860603A (en) * | 1981-10-01 | 1983-04-11 | Komatsu Ltd | Method of raising the purification of hexagonal boron nitride |
JPS62154410A (en) * | 1985-12-25 | 1987-07-09 | 信越化学工業株式会社 | Thermal conductive insulation sheet |
JPS63274603A (en) * | 1987-04-30 | 1988-11-11 | Kawasaki Steel Corp | Method for elevating purity of hexagonal boron nitride to high level |
JPH03159964A (en) * | 1989-11-17 | 1991-07-09 | Natl Inst For Res In Inorg Mater | Production of transparent, high-purity boron nitride sintered body of cubic system |
JP2013040062A (en) * | 2011-08-12 | 2013-02-28 | Mitsubishi Chemicals Corp | Hexagonal boron nitride powder, thermally conductive resin composition containing the same, and molded product obtained by the resin composition |
JP2013241321A (en) * | 2011-11-29 | 2013-12-05 | Mitsubishi Chemicals Corp | Aggregated boron nitride particle, composition containing aggregated boron nitride particle, and three-dimensional integrated circuit having layer comprising composition |
-
2014
- 2014-09-19 JP JP2014191654A patent/JP2016060680A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5860603A (en) * | 1981-10-01 | 1983-04-11 | Komatsu Ltd | Method of raising the purification of hexagonal boron nitride |
JPS62154410A (en) * | 1985-12-25 | 1987-07-09 | 信越化学工業株式会社 | Thermal conductive insulation sheet |
JPS63274603A (en) * | 1987-04-30 | 1988-11-11 | Kawasaki Steel Corp | Method for elevating purity of hexagonal boron nitride to high level |
JPH03159964A (en) * | 1989-11-17 | 1991-07-09 | Natl Inst For Res In Inorg Mater | Production of transparent, high-purity boron nitride sintered body of cubic system |
JP2013040062A (en) * | 2011-08-12 | 2013-02-28 | Mitsubishi Chemicals Corp | Hexagonal boron nitride powder, thermally conductive resin composition containing the same, and molded product obtained by the resin composition |
JP2013241321A (en) * | 2011-11-29 | 2013-12-05 | Mitsubishi Chemicals Corp | Aggregated boron nitride particle, composition containing aggregated boron nitride particle, and three-dimensional integrated circuit having layer comprising composition |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021176931A (en) * | 2020-05-08 | 2021-11-11 | 信越化学工業株式会社 | Method for producing insulated heat radiation sheet |
JP7264107B2 (en) | 2020-05-08 | 2023-04-25 | 信越化学工業株式会社 | Method for manufacturing insulating heat-dissipating sheet |
KR20240068444A (en) * | 2022-11-10 | 2024-05-17 | 윌코 주식회사 | Boron nitride composite and copper foil assembly including the same and manufacturing method there of |
KR102689103B1 (en) | 2022-11-10 | 2024-07-26 | 윌코 주식회사 | Boron nitride composite and copper foil assembly including the same and manufacturing method there of |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6497291B2 (en) | Insulating heat dissipation sheet | |
JP5761111B2 (en) | Insulating heat dissipation sheet and method for granulating boron nitride | |
JP3543663B2 (en) | Thermal conductive silicone rubber composition and method for producing the same | |
JP5843368B2 (en) | Thermally conductive silicone composition and cured product thereof | |
CN110709474B (en) | Thermally conductive polyorganosiloxane composition | |
JP6269511B2 (en) | Thermally conductive silicone composition, cured product and composite sheet | |
CN103140436B (en) | Aluminum nitride powder and process for manufacturing same | |
WO2015087620A1 (en) | Heat-storage composition | |
JP2008260798A (en) | Thermally conductive cured product and method for producing the same | |
JP2009203373A (en) | Thermoconductive silicone composition | |
WO2015190270A1 (en) | Heat-conductive sheet | |
JP6613462B2 (en) | Thermally conductive sheet | |
KR101801728B1 (en) | Liquid silicone addition type adhesive composition | |
JP4086222B2 (en) | Heat resistant and heat conductive silicone rubber sheet for thermocompression bonding | |
JP2018053260A (en) | Thermal conductive silicone composition, cured article and composite sheet | |
WO2018020862A1 (en) | Heat conductive sheet | |
CN109266094B (en) | Heat-dissipating ink and preparation method of heat-dissipating shield | |
JP5419265B2 (en) | Silicone rubber sheet for thermocompression bonding and manufacturing method thereof | |
JP2016060680A (en) | Boron nitride aggregates and thermally conductive compositions | |
JP2020164756A (en) | Method for manufacturing heat-dissipating member composition, heat-dissipating member, electronic device, heat-dissipating member | |
JP5972731B2 (en) | Thermally conductive sheet | |
JP2015218246A (en) | Thermally conductive composition | |
JP5418620B2 (en) | Thermal conduction member | |
JP6978147B1 (en) | Manufacturing method of heat conductive sheet and laminated body | |
WO2025062949A1 (en) | Thermally conductive silicone composition and sheet-like cured product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160825 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170510 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170523 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20171114 |