[go: up one dir, main page]

JP2016031086A - Fault diagnosis device for hydraulic equipment - Google Patents

Fault diagnosis device for hydraulic equipment Download PDF

Info

Publication number
JP2016031086A
JP2016031086A JP2014152666A JP2014152666A JP2016031086A JP 2016031086 A JP2016031086 A JP 2016031086A JP 2014152666 A JP2014152666 A JP 2014152666A JP 2014152666 A JP2014152666 A JP 2014152666A JP 2016031086 A JP2016031086 A JP 2016031086A
Authority
JP
Japan
Prior art keywords
hydraulic
valve
spool
denotes
reference number
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014152666A
Other languages
Japanese (ja)
Inventor
祐二 小倉
Yuji Ogura
祐二 小倉
慎一 池生
Shinichi Ikeno
慎一 池生
久保 光生
Mitsuo Kubo
光生 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Original Assignee
Nachi Fujikoshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp filed Critical Nachi Fujikoshi Corp
Priority to JP2014152666A priority Critical patent/JP2016031086A/en
Publication of JP2016031086A publication Critical patent/JP2016031086A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Indication Of The Valve Opening Or Closing Status (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fault diagnosis device for hydraulic equipment for setting a drain amount at a hydraulic circuit to a suitable normal value to reduce loss of entire device under application of a spool valve having a spool position sensor.SOLUTION: A hydraulic cylinder 61 is operated to cause an upper die 62 to descend to depress a work-piece 64 installed at a lower die 63, and a spool valve 65 having a spool position sensor is connected to a hydraulic supply passage (oil passage) of the hydraulic cylinder 61. A reference number 66 denotes a relief valve for determining maximum pressure of the entire circuit, a reference number 67 denotes a change-over valve for on-load un-load states, a reference number 68 denotes a change-over valve for pressurizing and descending and rapid descending of the hydraulic cylinder 61, and a reference number 69 denotes a safety valve to avoid abnormal pressure in the hydraulic cylinder 61. A reference number 70 denotes a counter-balance valve to assure a back-pressure occurred at the time of descending of the hydraulic cylinder 61 and prevent its dead weight dropping. A reference number 71 denotes a hydraulic source.SELECTED DRAWING: Figure 1

Description

本発明は産業機械及び建設機械等で使用される油圧装置に関し、さらに詳細には、シリンダや油圧モータ等のアクチュエータを電磁弁で駆動させる油圧装置の故障診断装置に関する。   The present invention relates to a hydraulic apparatus used in industrial machines and construction machines, and more particularly to a hydraulic apparatus failure diagnosis apparatus that drives an actuator such as a cylinder or a hydraulic motor with a solenoid valve.

従来、この種の油圧故障診断方法として、ドレン回路を備える油圧機器からの正常時のドレン流量と異常時のドレン流量を比較して油圧機器の異常の有無を検出ことが知られている(例えば、特許文献1参照)。   Conventionally, as this type of hydraulic failure diagnosis method, it is known to detect whether there is an abnormality in a hydraulic device by comparing a normal drain flow rate from a hydraulic device including a drain circuit with an abnormal drain flow rate (for example, , See Patent Document 1).

また、サーボ弁において、入力指令値に対するスプール移動量の正常値と、実際に移動した実績値とを比較して、異常の有無を検出する装置がある(例えば、特許文献2参照。)。   In addition, there is a device that detects the presence or absence of abnormality by comparing the normal value of the spool movement amount with respect to the input command value and the actual value of actual movement in the servo valve (see, for example, Patent Document 2).

特開昭59−083811号公報JP 59-03811 A 特開平5−106613号公報JP-A-5-106613

しかしながら、特許文献1に示す故障診断装置においては、油圧回路のドレン量は、作用する圧力の大きさや時間の長さによって変化し、油温の影響を受けるので、適正な正常値を設定することが困難である。   However, in the failure diagnosis apparatus shown in Patent Document 1, the drain amount of the hydraulic circuit varies depending on the magnitude of the acting pressure and the length of time, and is affected by the oil temperature. Therefore, an appropriate normal value should be set. Is difficult.

さらに、特許文献2に示す故障診断方法では、サーボ弁を使用した油圧回路でないと実施することができない。また、サーボ弁と制御機器を含めると高価になり、一般的にサーボ弁の圧力損失が高いので、装置全体の損失が大きくなる。   Furthermore, the failure diagnosis method disclosed in Patent Document 2 can only be implemented by a hydraulic circuit using a servo valve. Further, including the servo valve and the control device is expensive, and generally the pressure loss of the servo valve is high, so that the loss of the entire apparatus increases.

本発明は、本出願人が研究開発したスプール位置検出器付スプール弁を油圧回路に用いることにより油圧回路におけるドレン量のばらつきに影響されず、装置全体の損失を低減する油圧機器の故障診断装置を提供する。   The present invention relates to a fault diagnosis apparatus for hydraulic equipment that reduces the loss of the entire apparatus without being affected by variations in the drain amount in the hydraulic circuit by using the spool valve with a spool position detector researched and developed by the present applicant in the hydraulic circuit. I will provide a.

前記の課題を達成するために本発明は、
油圧駆動源と、前記油圧駆動源に接続された電磁切換弁と、前記電磁切換弁に連通し該電磁切換弁の切換動作により変位するアクチュエータと、を備えた油圧制御装置において、
油圧回路内に前記電磁切換弁に代わってスプール位置検出器付スプール弁を設け、
前記スプール位置検出器付スプール弁のソレノイドの通電信号とモニタリング信号が変化するまでの時間差を常時監視し、前記時間差がしきい値を超えた場合に油圧機器若しくは油圧作動油の異常と判断することを特徴とする。
To achieve the above object, the present invention provides:
In a hydraulic control apparatus comprising: a hydraulic drive source; an electromagnetic switching valve connected to the hydraulic drive source; and an actuator that communicates with the electromagnetic switching valve and is displaced by a switching operation of the electromagnetic switching valve.
A spool valve with a spool position detector is provided in the hydraulic circuit in place of the electromagnetic switching valve,
The time difference until the energization signal of the solenoid of the spool valve with the spool position detector and the monitoring signal change is constantly monitored, and when the time difference exceeds a threshold value, it is determined that the hydraulic device or hydraulic fluid is abnormal. It is characterized by.

本発明によれば、スプール位置検出付器スプール弁の応答時間の変化で油圧機器の故障診断を行うことにより、故障の判断基準が容易に設定できるようになった。   According to the present invention, it is possible to easily set a failure determination criterion by performing a failure diagnosis of a hydraulic device based on a change in response time of a spool valve with a spool position detector.

サーボ弁でなく電磁弁を使用するので、装置のコストアップを最小限に抑えることができる。また、装置の損失は全く変わらない。   Since a solenoid valve is used instead of a servo valve, the cost of the apparatus can be minimized. Also, the loss of the device is not changed at all.

応答時間を検出する等の装置は必要になるが、既存の電磁弁をスプール位置検出器付スプール弁に置き換えることができることで、容易に故障診断機能を追加することができる。   A device for detecting the response time is required, but a fault diagnosis function can be easily added by replacing the existing solenoid valve with a spool valve with a spool position detector.

本発明の実施の形態に係る油圧機器の故障診断装置に係る油圧回路である。It is a hydraulic circuit which concerns on the failure diagnosis apparatus of the hydraulic equipment which concerns on embodiment of this invention. 図1の診断装置に使用するスプール位置検出器付スプール弁の部分断面図である。It is a fragmentary sectional view of the spool valve with a spool position detector used for the diagnostic apparatus of FIG. スプール位置検出器付スプール弁の動作説明図である。It is operation | movement explanatory drawing of a spool valve with a spool position detector. スプール位置検出器付スプール弁のソレノイド無通電状態を模写的に示した簡略図である。It is the simplified diagram which copied and showed the solenoid non-energized state of the spool valve with a spool position detector. スプール位置検出器付スプール弁のソレノイド通電状態を模写的に示した簡略図である。It is the simplification which showed the solenoid energization state of the spool valve with a spool position detector in a copying manner. スイッチ及びシリンダの応答を示す波形線図である。It is a wave form diagram which shows the response of a switch and a cylinder.


以下、本発明の実施の形態に係る油圧機器の故障診断装置につき好適な実施の形態を挙げ、添付図面を参照して詳細に説明する。

Preferred embodiments of a failure diagnosis apparatus for hydraulic equipment according to embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

図1はNC工作機械、例えばプレス機械の一般的な油圧回路60の概略構成図である。   FIG. 1 is a schematic configuration diagram of a general hydraulic circuit 60 of an NC machine tool, for example, a press machine.

図1において、参照符号61は油圧シリンダで、上型62を下降させて下型63に搭載したワーク64を押えており、該油圧シリンダ61の油圧供給路(油路)に4ポート(A,B,P,R)3位置の制御弁、例えばスプール位置検出器スプール弁65が接続されている。   In FIG. 1, reference numeral 61 is a hydraulic cylinder, which lowers the upper die 62 and presses a work 64 mounted on the lower die 63. Four ports (A, A, B, P, R) A three-position control valve, for example, a spool position detector spool valve 65 is connected.

図1中、参照符号66は回路全体の最高圧力を決めるリリーフ弁、参照符号67はオンロード・アンロードの切換弁、参照符号68は油圧シリンダ61の加圧下降、急速降下用の切換弁、参照符号69は安全弁を示し油圧シリンダ61の異常圧を回避する。   In FIG. 1, reference numeral 66 is a relief valve for determining the maximum pressure of the entire circuit, reference numeral 67 is an on-load / unload switching valve, reference numeral 68 is a switching valve for pressurizing and lowering the hydraulic cylinder 61, Reference numeral 69 denotes a safety valve that avoids abnormal pressure in the hydraulic cylinder 61.

また、参照符号70はカウンタバランス弁を示し油圧シリンダ61の下降時の背圧を確保し、自重落下を防止する。参照符号71は油圧源を示す。   Reference numeral 70 denotes a counter balance valve, which ensures a back pressure when the hydraulic cylinder 61 is lowered, and prevents its own weight from falling. Reference numeral 71 indicates a hydraulic pressure source.

油圧回路60に使用するスプール位置検出器付スプール弁65の構造は、特開2005−180646に示す図1のスプール位置検出器付スプール弁31と同一であるため、図2により全体符号31を65に付け替えた略縦断面図を示すが詳細な説明は省略する。   The structure of the spool valve 65 with spool position detector used in the hydraulic circuit 60 is the same as that of the spool valve 31 with spool position detector shown in FIG. 1 shown in Japanese Patent Laid-Open No. 2005-180646. Although a schematic longitudinal sectional view replaced with is shown, detailed description thereof is omitted.

次に、スプール位置検出器付スプール弁65の作動を図3により説明する。図3は図1のスプール位置検出器付スプール弁65の右側の電磁コイル30bに通電した状態を示す部分断面図である。なお、図2と同様の主たる部品については同符号を付している。   Next, the operation of the spool valve 65 with a spool position detector will be described with reference to FIG. FIG. 3 is a partial cross-sectional view showing a state in which the electromagnetic coil 30b on the right side of the spool valve 65 with a spool position detector of FIG. 1 is energized. Note that the same components as those in FIG. 2 are denoted by the same reference numerals.

電磁コイル30a,30bの両方が非励磁の場合の図2に示す中立時においては、両側のリング3a,3b及びリテーナ4a,4bが接触面13a,13bで接触しており、電気端子20a,20b及び検出電気端子21a,21bは互いに導通している。図3に示すように、図でみて右側の電磁コイル30bを励磁した場合、スプール2は左方向に移動する。すると、右側のリテーナ4bとリング3bは接触面13bで接触したままであるが、左側のリテーナ4aはスプール2の移動に伴なって左方向へ移動するので、左側のリテーナ4aとリング3aとは非接触となる。   In the neutral state shown in FIG. 2 where both the electromagnetic coils 30a and 30b are not excited, the rings 3a and 3b and the retainers 4a and 4b on both sides are in contact with the contact surfaces 13a and 13b, and the electric terminals 20a and 20b. The detection electrical terminals 21a and 21b are electrically connected to each other. As shown in FIG. 3, when the right electromagnetic coil 30b is energized in the drawing, the spool 2 moves in the left direction. Then, the right retainer 4b and the ring 3b remain in contact with each other at the contact surface 13b, but the left retainer 4a moves to the left along with the movement of the spool 2, so that the left retainer 4a and the ring 3a Contactless.

つまり、右側の電気端子20bと検出電気端子21bは導通しているが、左側の電気端子20aと検出電気端子21aは導通していない状態となる。同様の原理で、左側の電磁コイル30aを励磁すると、左側の電気端子20aと検出電気端子21aとは導通しているが、右側の電気端子20bと検出電気端子21bとは導通しない状態となる。   That is, the right electrical terminal 20b and the detection electrical terminal 21b are electrically connected, but the left electrical terminal 20a and the detection electrical terminal 21a are not electrically connected. When the left electromagnetic coil 30a is excited by the same principle, the left electrical terminal 20a and the detection electrical terminal 21a are electrically connected, but the right electrical terminal 20b and the detection electrical terminal 21b are not electrically connected.

このように、非励磁状態、右側の電磁コイル30bの励磁状態、左側の電磁コイル30aの励磁状態それぞれにおいて、左右のリテーナ4a、4bとリング3a、3bとの接触状態が全て異なる。各状態によってリテーナとリングとの接触状態が違うということは、各リテーナとリングに接続されている電気端子同士の導通状態も変わることとなり、これを利用して、スプール2がどの位置にいるかを直接検出することができる。   Thus, the contact states of the left and right retainers 4a and 4b and the rings 3a and 3b are all different in the non-excitation state, the excitation state of the right electromagnetic coil 30b, and the excitation state of the left electromagnetic coil 30a. The contact state between the retainer and the ring varies depending on each state, which means that the conduction state between the electrical terminals connected to each retainer and the ring also changes, and this is used to determine the position of the spool 2. Can be detected directly.

図4及び図5は、図2及び図3に示すスプール位置検出器付スプール弁65の作動原理及びスイッチ機構を模写的に示した簡略図で、図4及び図5中、図2及び図3の構成要素は同一符号を付して詳細な説明を省略する。なお、スプール位置検出器付スプール弁65は、図2及び図3において、電磁コイル30a、30bを備えているが,一方の電磁コイル、例えば電磁コイル30bの作動原理ついて説明し、電磁コイル30aについては作動原理が電磁コイル30bと同じなので説明を省略する。   4 and 5 are simplified views schematically showing the operation principle and the switch mechanism of the spool valve 65 with a spool position detector shown in FIGS. 2 and 3, and FIG. 2 and FIG. These components are given the same reference numerals and detailed description thereof is omitted. The spool valve 65 with a spool position detector includes the electromagnetic coils 30a and 30b in FIGS. 2 and 3, but the operation principle of one electromagnetic coil, for example, the electromagnetic coil 30b, will be described. Since the operation principle is the same as that of the electromagnetic coil 30b, description thereof is omitted.

図4は、電磁コイル30bが非励磁の状態を示しており、この状態ではスプール2は中立位置(図2参照)にある。このため、モニタリングスイッチ機構65bを構成するリング3b(固定接点)とリテーナ4b(可動接点)が接触しているので、該モニタリングスイッチ機構65bは導通状態、すなわちスイッチON状態になっている。   FIG. 4 shows a state in which the electromagnetic coil 30b is not excited. In this state, the spool 2 is in a neutral position (see FIG. 2). For this reason, since the ring 3b (fixed contact) and the retainer 4b (movable contact) constituting the monitoring switch mechanism 65b are in contact, the monitoring switch mechanism 65b is in a conductive state, that is, a switch ON state.

図4の状態で、電磁コイル30bを通電にすると、図5に示すようにスプール2が右方向に移動し、これに伴いリテーナ4b(可動接点)が移動してリング3b(固定接点)か
ら離脱するので、モニタリングスイッチ機構65bは非導通状態、すなわちスイッチOFF状態になっている。
When the electromagnetic coil 30b is energized in the state shown in FIG. 4, the spool 2 moves to the right as shown in FIG. 5, and the retainer 4b (movable contact) moves accordingly, and is detached from the ring 3b (fixed contact). Therefore, the monitoring switch mechanism 65b is in a non-conductive state, that is, a switch OFF state.

図6は、スプール位置検出器付スプール弁65で油圧シリンダ61を「停止(高圧保持)→ソレノイド、例えば電磁コイル30b−ONで前進(図1で下降)→電磁コイル30b−OFFで停止」の通り、駆動させたときの応答波形を示す。   FIG. 6 shows that the hydraulic cylinder 61 is “stopped (maintained at a high pressure) by a spool valve 65 with a spool position detector → forwardly moved by a solenoid, for example, an electromagnetic coil 30b-ON (lowered in FIG. 1) → stopped by an electromagnetic coil 30b-OFF”. As shown, the response waveform when driven is shown.

図6において、応答時間T1、T2、T3、T4はそれぞれ下記を表す。   In FIG. 6, response times T1, T2, T3, and T4 represent the following, respectively.

T1:ソレノイド(電磁コイル30b)電圧−ON(電磁コイル30b通電)から油圧シリンダ61が動き始めるまでの時間。   T1: Time from the solenoid (electromagnetic coil 30b) voltage -ON (energization of the electromagnetic coil 30b) until the hydraulic cylinder 61 starts to move.

T2:ソレノイド(電磁コイル30b)電圧−OFF(電磁コイル30b通電停止)から油圧シリンダ61が停止するまでの時間。
T3:ソレノイド(電磁コイル30b)電圧−ON(電磁コイル30b通電)からモニタリングスイッチ機構52bがOFFになるまでの時間。
T4:ソレノイド(電磁コイル30b)電圧−OFF(電磁コイル30b通電停止)からモニタリングスイッチ機構52bがONになるまでの時間。
T2: Time from the solenoid (electromagnetic coil 30b) voltage -OFF (electromagnetic coil 30b energization stop) until the hydraulic cylinder 61 stops.
T3: Time from the solenoid (electromagnetic coil 30b) voltage -ON (energization of the electromagnetic coil 30b) until the monitoring switch mechanism 52b is turned off.
T4: Time from the solenoid (electromagnetic coil 30b) voltage -OFF (electromagnetic coil 30b energization stop) until the monitoring switch mechanism 52b is turned on.

これにより、例えばT1>T3、T4>T2になるように設定すると、モニタリングスイッチ機構52bがONの時は、油圧シリンダ61は必ず停止状態にあって安全を確認することができる。   Thus, for example, if T1> T3 and T4> T2 are set, when the monitoring switch mechanism 52b is ON, the hydraulic cylinder 61 is always in a stopped state, and safety can be confirmed.

さらに、本発明は油圧回路60の故障診断装置としてスプール位置検出器付スプール弁65を使用してソレノイドの通電信号(図6参照)とモニタリング信号(図6参照)が変化するまでの「時間差」(図6参照)を常に監視し、該「時間差」が「しきい値」を超えた場合にプレス機械に油圧回路60の異常、例えば油圧機器若しくは油圧作動油の異常と判断することができる。   Furthermore, the present invention uses a spool valve 65 with a spool position detector as a failure diagnosis device of the hydraulic circuit 60, and “a time difference” until the solenoid energization signal (see FIG. 6) and the monitoring signal (see FIG. 6) change. (See FIG. 6) is constantly monitored, and when the “time difference” exceeds the “threshold value”, it can be determined that the press machine has an abnormality in the hydraulic circuit 60, for example, an abnormality in hydraulic equipment or hydraulic fluid.

さらに、油圧回路60(図1参照)においてスプール位置検出器付スプール弁65を使用することにより、スプール2(図2乃至図5参照)が中立位置にいるかどうかをモニタリングスイッチ機構65bの信号で油圧ポンプの運転許可条件として利用できる。よって、例えばプレス機械を含む機械の安全確認型システムを構築できる。   Further, by using a spool valve 65 with a spool position detector in the hydraulic circuit 60 (see FIG. 1), whether the spool 2 (see FIGS. 2 to 5) is in a neutral position is determined by a signal from the monitoring switch mechanism 65b. It can be used as a condition for permitting operation of the pump. Therefore, for example, a safety confirmation type system for a machine including a press machine can be constructed.

以上、説明したように本発明に使用するスプール位置検出器付スプール弁は、油の流れを切り換えるスプール弁に位置を外部で検出できるモニタリングスイッチ機構を備えている。   As described above, the spool valve with a spool position detector used in the present invention is provided with a monitoring switch mechanism that can detect the position externally to the spool valve that switches the flow of oil.

これにより、実機ではコイルを励磁・非励磁してから、スイッチ信号が変化するまでの時間(応答時間)を外部検出することが可能である。   Thereby, in an actual machine, it is possible to externally detect the time (response time) from when the coil is excited / de-energized until the switch signal changes.

係る応答時間の「故障を示す限界値(しきい値)」を設定し、応答時間がそれ以上になった場合に「異常」信号を発することができる。   A “limit value (threshold value) indicating failure” of the response time is set, and an “abnormal” signal can be issued when the response time becomes longer.

さらに、本発明が油圧機器の故障診断装置として実施できる理由として下記のことが挙げられる。   Furthermore, the reason why the present invention can be implemented as a failure diagnosis apparatus for hydraulic equipment is as follows.

一般に、油圧機器の故障の多くは、油(油圧作動油)中の異物が影響する。   In general, many troubles of hydraulic equipment are affected by foreign matter in oil (hydraulic hydraulic fluid).

異物は、外部からの侵入もあるが、油圧装置(油圧機器を含む)内部から発生す場合もあり、スプール弁の摺動部を傷つけたり、摺動部の隙間に入り込むことで、スプール弁の応答時間を遅らせることから、応答時間の「遅れ」を検出することで、油圧機器故障の可能性や、メンテナンスを行うタイミングを知ることができる。   Foreign matter may intrude from the outside, but may also occur from the inside of the hydraulic system (including hydraulic equipment), and damage the spool valve sliding part or entering the clearance of the sliding part. Since the response time is delayed, by detecting a “delay” in the response time, it is possible to know the possibility of a hydraulic equipment failure and the timing for performing maintenance.

本発明において、容易に決定できる「故障を示す限界値」は、弁単体の応答時間にのみ依存するので決め易い。   In the present invention, the “limit value indicating failure” that can be easily determined depends on only the response time of the valve alone, and thus is easy to determine.

この場合、「故障を示す限界値」は、応答時間が最も遅くなる圧力、流量、作動油粘度(油温)での実測値を参照して決めてもよく、実機使用条件に合わせて実測値を参照して決めてもよい。
In this case, the “limit value indicating failure” may be determined by referring to the actual measured values at the pressure, flow rate, and hydraulic oil viscosity (oil temperature) at which the response time is the slowest. You may decide with reference to.

1、1´ 本体 1a 軸方向穴
2、2´ スプール 2a、2、b2´段部
3a、3b リング 4a、4b、4´ リテーナ
5a、5b 第一のスペーサ 5c、5d インロー部
6a、6b 第二のスペーサ 7a,7b 導電性ロッド
8 ブッシュ
11a、11b、11´ ガイド(ソレノイドガイド)
12a、12b スプリング 13a、13b 外方側端面(接触面)
14 連通路
60 油圧回路 61 油圧シリンダ
63 上型 64 下型
65 スプール位置検出器付スプール弁 65b モニタリングスイッチ機構
66 リリーフバルブ 67 オンロード・アンロード切換弁
68 切換弁 69 安全弁
70 カウンタバランスバルブ 71 油圧源
1, 1 'body 1a axial hole 2, 2' spool 2a, 2, b2 'step 3a, 3b ring 4a, 4b, 4' retainer 5a, 5b first spacer 5c, 5d spigot 6a, 6b second Spacer 7a, 7b Conductive rod 8 Bush
11a, 11b, 11 'guide (solenoid guide)
12a, 12b Spring 13a, 13b Outer end face (contact surface)
14 communication path 60 hydraulic circuit 61 hydraulic cylinder 63 upper mold 64 lower mold 65 spool valve with spool position detector 65b monitoring switch mechanism 66 relief valve 67 on-load / unload switching valve 68 switching valve 69 safety valve 70 counter balance valve 71 hydraulic source

Claims (1)

油圧駆動源と、前記油圧駆動源に接続された電磁切換弁と、前記電磁切換弁に連通し該電磁切換弁の切換動作により変位するアクチュエータと、を備えた油圧制御装置において、
油圧回路内に前記電磁切換弁に代わってスプール位置検出器付スプール弁を設け、
前記スプール位置検出器付スプール弁のソレノイドの通電信号とモニタリング信号が変化するまでの時間差を常時監視し、前記時間差がしきい値を超えた場合に油圧機器若しくは油圧作動油の異常と判断することを特徴とする油圧機器の故障診断装置。

In a hydraulic control apparatus comprising: a hydraulic drive source; an electromagnetic switching valve connected to the hydraulic drive source; and an actuator that communicates with the electromagnetic switching valve and is displaced by a switching operation of the electromagnetic switching valve.
A spool valve with a spool position detector is provided in the hydraulic circuit in place of the electromagnetic switching valve,
The time difference until the energization signal of the solenoid of the spool valve with the spool position detector and the monitoring signal change is constantly monitored, and when the time difference exceeds a threshold value, it is determined that the hydraulic device or hydraulic fluid is abnormal. Hydraulic equipment failure diagnosis device characterized by

JP2014152666A 2014-07-28 2014-07-28 Fault diagnosis device for hydraulic equipment Pending JP2016031086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014152666A JP2016031086A (en) 2014-07-28 2014-07-28 Fault diagnosis device for hydraulic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014152666A JP2016031086A (en) 2014-07-28 2014-07-28 Fault diagnosis device for hydraulic equipment

Publications (1)

Publication Number Publication Date
JP2016031086A true JP2016031086A (en) 2016-03-07

Family

ID=55441602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014152666A Pending JP2016031086A (en) 2014-07-28 2014-07-28 Fault diagnosis device for hydraulic equipment

Country Status (1)

Country Link
JP (1) JP2016031086A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017219060A (en) * 2016-06-03 2017-12-14 Kyb株式会社 State detection system of control valve
JP2018119679A (en) * 2017-01-23 2018-08-02 株式会社不二越 Abnormality detection device of hydraulic device, hydraulic device, and working mother machine
JP2018135950A (en) * 2017-02-22 2018-08-30 株式会社不二越 Abnormality diagnosis device of hydraulic equipment
WO2020059411A1 (en) * 2018-09-19 2020-03-26 株式会社アマダホールディングス Press brake and management system
JP2020183784A (en) * 2019-05-07 2020-11-12 株式会社不二越 Hydraulic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0360664U (en) * 1989-10-19 1991-06-14
JP2001032958A (en) * 1999-07-16 2001-02-06 Smc Corp Method and device for controlling operation of solenoid valve
JP2009503403A (en) * 2005-07-29 2009-01-29 グラコ ミネソタ インコーポレーテッド Reciprocating pump with electronically monitored air valve with battery and solenoid electronic monitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0360664U (en) * 1989-10-19 1991-06-14
JP2001032958A (en) * 1999-07-16 2001-02-06 Smc Corp Method and device for controlling operation of solenoid valve
JP2009503403A (en) * 2005-07-29 2009-01-29 グラコ ミネソタ インコーポレーテッド Reciprocating pump with electronically monitored air valve with battery and solenoid electronic monitor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017219060A (en) * 2016-06-03 2017-12-14 Kyb株式会社 State detection system of control valve
JP2018119679A (en) * 2017-01-23 2018-08-02 株式会社不二越 Abnormality detection device of hydraulic device, hydraulic device, and working mother machine
JP2018135950A (en) * 2017-02-22 2018-08-30 株式会社不二越 Abnormality diagnosis device of hydraulic equipment
WO2020059411A1 (en) * 2018-09-19 2020-03-26 株式会社アマダホールディングス Press brake and management system
JP2020044550A (en) * 2018-09-19 2020-03-26 株式会社アマダホールディングス Press brake and management system
US11872620B2 (en) 2018-09-19 2024-01-16 Amada Co., Ltd. Press brake and management system
JP2020183784A (en) * 2019-05-07 2020-11-12 株式会社不二越 Hydraulic device

Similar Documents

Publication Publication Date Title
JP2016031086A (en) Fault diagnosis device for hydraulic equipment
JP5661615B2 (en) Control valve system for cycle monitoring, diagnosis and prediction of performance degradation
CN107420627B (en) Method for controlling a valve and valve
US8579252B2 (en) Actuator device having an open/close valve
US5217199A (en) Connecting valve and hydraulic oil safety and power system in which the connecting valve is used
EP1770460A2 (en) Automation system with integrated safety and standard control functionality
JP2018119679A (en) Abnormality detection device of hydraulic device, hydraulic device, and working mother machine
WO2017171022A1 (en) Failure detection device
KR20090132703A (en) Servo Valve Diagnosis
JP2015100878A (en) Non-excitation electromagnetic brake for industrial robot
JP6423765B2 (en) Brake device having a function of detecting brake operation and release abnormality
JP2012020825A (en) Brake control device of elevator
JP5217888B2 (en) Drive device
CN104285067A (en) Fluid system and method for operating a fluid system
US10020149B2 (en) Control apparatus for controlling a switching element
WO2015151256A1 (en) Elevator control device
JP7014140B2 (en) Electromagnetic brake control device and control device
JP4764245B2 (en) Fault diagnosis device and method for tap switching device under load
KR101451110B1 (en) Diagnosis unit of oil pressure equipment for test unit for construction machine
JP2020183784A (en) Hydraulic device
US20160186786A1 (en) Controller Apparatus for an Electro-Hydraulic Drive Unit
JP6701294B2 (en) Press brake and management system
JP2018135950A (en) Abnormality diagnosis device of hydraulic equipment
CN202358844U (en) Liquid control handle of crane and crane
CN101577413A (en) Hydraulic valve control circuit and method for checking the function of a hydraulic valve control circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180314

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180912