JP2016020525A - 999 platinum alloy having high hardness and high compressive strength and manufacturing method thereof - Google Patents
999 platinum alloy having high hardness and high compressive strength and manufacturing method thereof Download PDFInfo
- Publication number
- JP2016020525A JP2016020525A JP2014144289A JP2014144289A JP2016020525A JP 2016020525 A JP2016020525 A JP 2016020525A JP 2014144289 A JP2014144289 A JP 2014144289A JP 2014144289 A JP2014144289 A JP 2014144289A JP 2016020525 A JP2016020525 A JP 2016020525A
- Authority
- JP
- Japan
- Prior art keywords
- platinum alloy
- melting furnace
- purity
- casting
- jewelry
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910001260 Pt alloy Inorganic materials 0.000 title claims abstract description 52
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 25
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 60
- 238000002844 melting Methods 0.000 claims abstract description 49
- 230000008018 melting Effects 0.000 claims abstract description 49
- 238000000034 method Methods 0.000 claims abstract description 37
- 238000005266 casting Methods 0.000 claims abstract description 34
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910001873 dinitrogen Inorganic materials 0.000 claims abstract description 16
- 238000001816 cooling Methods 0.000 claims abstract description 5
- 239000007789 gas Substances 0.000 claims description 13
- 239000000155 melt Substances 0.000 claims description 5
- 229910052697 platinum Inorganic materials 0.000 abstract description 14
- 229910045601 alloy Inorganic materials 0.000 abstract description 7
- 239000000956 alloy Substances 0.000 abstract description 7
- 238000000465 moulding Methods 0.000 abstract description 3
- 239000010437 gem Substances 0.000 abstract 1
- 229910001751 gemstone Inorganic materials 0.000 abstract 1
- 238000005259 measurement Methods 0.000 description 15
- 239000006104 solid solution Substances 0.000 description 11
- 239000012535 impurity Substances 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 229910052733 gallium Inorganic materials 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 125000004429 atom Chemical group 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 125000004433 nitrogen atom Chemical group N* 0.000 description 3
- 229910000497 Amalgam Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000010953 base metal Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000007542 hardness measurement Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 235000013619 trace mineral Nutrition 0.000 description 2
- 239000011573 trace mineral Substances 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 235000006679 Mentha X verticillata Nutrition 0.000 description 1
- 235000002899 Mentha suaveolens Nutrition 0.000 description 1
- 235000001636 Mentha x rotundifolia Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000007730 finishing process Methods 0.000 description 1
- 230000013632 homeostatic process Effects 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 239000002932 luster Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Adornments (AREA)
- Mold Materials And Core Materials (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
本発明は、999(3ナイン、又はスリーナイン)の純度を有するにもかかわらず、高硬度と高圧縮強度を有する白金合金、及びその製造方法に関するものである。
ここで3ナインとは、(イ)品位検定独立法人造幣局の基準値99.9%、(ロ)独立行政法人 造幣局ホールマーク Pt999、又は(ハ)リング・ペンダント・ピアスなど貴金属製品品位の単位を表記している100分率 999/1000、等をいう。
The present invention relates to a platinum alloy having high hardness and high compressive strength despite having a purity of 999 (3 nines or three nines), and a method for producing the same.
Here, 3 nines means the unit of quality of precious metal products such as (b) standard value 99.9% of the Mint Bureau, (b) Mint Hallmark Pt999, or (c) ring pendant earrings. This means 100 percent 999/1000, etc.
白金(Pt)は、資産価値の高い貴金属として、また高級宝飾品(身飾品)の材料として、極めて重要かつ高価な元素(物質)である。
従来、白金の加工品を製作するには、その加工特性等を改良するために、一部に他の金属を配合して溶解・鋳造することが行われている。
Platinum (Pt) is an extremely important and expensive element (substance) as a noble metal having a high asset value and as a material for luxury jewelry (jewelry).
Conventionally, in order to manufacture a processed product of platinum, in order to improve the processing characteristics and the like, a part of the other metal is mixed and melted and cast.
ところが、白金の有する高級感(金属色、光沢、重量感)や資産価値を考慮して、純度の高い白金の加工品(宝飾品、身飾品)の製作を試みても、その硬度や強度が不足し、加工が困難である。
すなわち、3ナインの純度を維持する白金のビッカーズ硬度は、高々85Hv程度しかないため、実用品たる宝飾品や身飾品として加工しても、加工が困難であるばかりでなく、その機能や変形を防止(恒常性を維持)することができなかった。
However, considering the high-grade feeling (metal color, luster, and weight) of platinum and the asset value, even if you try to manufacture high-purity platinum products (jewelry and jewelry), the hardness and strength of Insufficient and difficult to process.
In other words, since the Vickers hardness of platinum that maintains the purity of 3 nines is only about 85 Hv, it is not only difficult to process even if it is processed as a jewelry or jewelery that is a practical product, but its function and deformation are also reduced. It was not possible to prevent (maintain homeostasis).
発明者は、純度99.9重量%以上の純度を有する白金に、極めて微量のGaを配合し、N2ガス雰囲気下で鋳造することにより、3ナインを維持しつつ、白金合金のビッカーズ硬度を90Hv以上に上げることに成功し、本発明を完成した。 The inventor mixes a very small amount of Ga with platinum having a purity of 99.9% by weight or more, and casts it in an N 2 gas atmosphere to maintain the Vickers hardness of the platinum alloy while maintaining 3 nines. The present invention was completed by succeeding in raising it to 90 Hv or more.
本願発明は、下記の請求項1〜請求項11により構成されている。
<請求項1>999(スリーナイン)の純度を有すると共に、幅4.00mm、厚み1.50mmの平内リングのビッカーズ硬度が90Hv以上であることを特徴とする白金合金。
<請求項2>999(スリーナイン)の純度を有すると共に、幅4.00mm、厚み1.50mmの平内リングの10%変形圧縮強度が14kgf以上であることを特徴とする白金合金。
<請求項3>鋳造法により作製される請求項1、又は請求項2のいずれかに記載する白金合金。
<請求項4>鋳造法が、高純度のPtと微小量のGaを溶解炉に入れ、所定の方法により成形し、冷却することを特徴とする請求項3に記載する白金合金。
<請求項5>鋳造法が、高純度のPtと微小量のGaを溶解炉に入れ、窒素ガス雰囲気下で溶解した後、所定の方法により成形し、冷却することを特徴とする請求項3に記載する白金合金。
<請求項6>高純度のPtと微小量のGaを溶解炉に入れ、所定の方法により成形し、冷却することを特徴とする請求項1〜請求項4のいずれかに記載する白金合金の製造方法。
<請求項7>高純度のPtと微小量のGaを溶解炉に入れ、窒素ガス雰囲気下で溶解した後、所定の方法により成形し、冷却することを特徴とする請求項1〜請求項3、又は請求項5のいずれかに記載する白金合金の製造方法。
<請求項8>高純度のPtと微小量のGaを溶解炉に入れ、鋳造して鋳物とした後、前記鋳物を溶解炉に入れ、窒素ガス雰囲気下で再度溶解して成形し、冷却することを特徴とする請求項7に記載する白金合金の製造方法。
<請求項9>溶解炉内を窒素ガス雰囲気にする手段が、下記の(A)及び(B)の条件を満たす請求項7又は請求項8のいずれかに記載する白金合金(999Pt)の製造方法。
(A)溶解炉内の圧力を700mmHg以下に保持すること。
(B)溶解炉内の温度が、溶解物の融点より10℃低い温度に到達した時点からN2ガスを導入すること。
<請求項10>白金合金が、身飾品、又は宝飾品である請求項1〜請求項4のいずれかに記載する白金合金。
<請求項11>白金合金が、身飾品、又は宝飾品である請求項5〜請求項7のいずれかに記載する白金合金の製造方法。
The present invention is constituted by the following claims 1 to 11.
<Claim 1> A platinum alloy having a purity of 999 (Three Nine) and having a Vickers hardness of 90 Hv or more in a flat inner ring having a width of 4.00 mm and a thickness of 1.50 mm.
<2> A platinum alloy having a purity of 999 (Three Nine) and having a 10% deformation compressive strength of a flat inner ring having a width of 4.00 mm and a thickness of 1.50 mm of 14 kgf or more.
<Claim 3> The platinum alloy according to claim 1 or 2, which is produced by a casting method.
<Claim 4> The platinum alloy according to claim 3, wherein the casting method is carried out by putting high-purity Pt and a minute amount of Ga into a melting furnace, forming by a predetermined method, and cooling.
<Claim 5> The casting method is characterized in that high-purity Pt and a minute amount of Ga are put in a melting furnace and melted in a nitrogen gas atmosphere, and then molded and cooled by a predetermined method. Platinum alloys described in 1.
<Claim 6> The platinum alloy according to any one of claims 1 to 4, wherein high purity Pt and a minute amount of Ga are put into a melting furnace, molded by a predetermined method, and cooled. Production method.
<7> A high-purity Pt and a minute amount of Ga are put in a melting furnace and melted in a nitrogen gas atmosphere, and then molded and cooled by a predetermined method. Or the manufacturing method of the platinum alloy in any one of Claim 5.
<Claim 8> After putting high-purity Pt and a minute amount of Ga into a melting furnace and casting it into a casting, the casting is put into the melting furnace, melted again in a nitrogen gas atmosphere, molded, and cooled. The method for producing a platinum alloy according to claim 7.
<Claim 9> Manufacture of a platinum alloy (999Pt) according to any one of claims 7 and 8, wherein the means for bringing the melting furnace into a nitrogen gas atmosphere satisfies the following conditions (A) and (B): Method.
(A) Maintain the pressure in the melting furnace at 700 mmHg or less.
(B) N 2 gas is introduced when the temperature in the melting furnace reaches 10 ° C. lower than the melting point of the melt.
<Claim 10> The platinum alloy according to any one of claims 1 to 4, wherein the platinum alloy is a jewelry or a jewelry.
<11> The method for producing a platinum alloy according to any one of claims 5 to 7, wherein the platinum alloy is a jewelry or a jewelry.
本願発明を以上のように構成する理由は、下記のとおりである。
(a)従来、単なる地金以外に、公的にスリーナインが保証されたPtの実用品(身飾品、宝飾品等)は、その加工性、機能性、恒常性(変形の防止等)を付加(維持)することが困難なため、ほとんど存在しない。
(b)Ptは、純品に不純物(Pt以外の元素)を配合して鋳造することによって、その加工性、機能性、恒常性(変形防止等)を付与することができるが、純度999を維持するためには、配合する不純物の総量を、最大で0.1重量部以下に抑える必要がある。
したがってPtに配合するAlは、0.1重量%以下に制限される(100/100.1=0.99900…)。
(c)999の純度を維持し、かつ前記特性を付加するために配合できる不純物(Pt以外の他の金属)の量は、非常に微量に制限されるので、鋳造方法を工夫し、厳密に管理する必要がある。
(d)微量元素(不純物)としてGaを配合するのは、Gaは融点が低く、アマルガムを形成して溶解し、Pt(固溶体)内に侵入しやすいからである。また、PtとGaは、原子半径の差が大きく、母体金属に歪を起させ強度が上がるからである。
(e)鋳造を窒素ガス(N2)雰囲気下で行うのは、必ずしも酸素の影響を除外するためばかりではなく、Gaと共にNを合金(固溶体)の内部に取込むためである。
(f)溶解炉内の圧力を700mmHg以下に保持する(請求項7)のは、溶解炉内の酸素(空気)を速やか、かつ完全に除去し、N2ガスに置換してNを合金(固溶体)の内部に取込むためである。
また、溶解炉内をN2ガスに置換する時期は、溶解炉内が溶解物の融点(1776℃)より10℃低い温度に到達した時点、すなわち実温度で約1766℃が、繰り返し試験した結果、適していることが判明したからである。
The reason why the present invention is configured as described above is as follows.
(A) Conventionally, in addition to mere bullion, Pt practical products (jewelry, jewelry, etc.) that have been officially guaranteed three nines have added workability, functionality, and constancy (preventing deformation, etc.) It is almost nonexistent because it is difficult to maintain.
(B) Pt can be imparted with workability, functionality, and constancy (deformation prevention, etc.) by blending and casting impurities (elements other than Pt) into a pure product. In order to maintain, it is necessary to suppress the total amount of impurities to be blended to a maximum of 0.1 parts by weight or less.
Therefore, Al mixed with Pt is limited to 0.1 wt% or less (100 / 100.1 = 0.99900...).
(C) The amount of impurities (other metals other than Pt) that can be blended in order to maintain the purity of 999 and add the above characteristics is limited to a very small amount. Need to manage.
(D) The reason why Ga is added as a trace element (impurity) is that Ga has a low melting point, forms an amalgam, dissolves, and easily enters Pt (solid solution). Further, Pt and Ga have a large difference in atomic radius, which causes distortion in the base metal and increases the strength.
(E) The casting is performed in a nitrogen gas (N 2 ) atmosphere not only to exclude the influence of oxygen but also to incorporate N together with Ga into the alloy (solid solution).
(F) Maintaining the pressure in the melting furnace at 700 mmHg or less (Claim 7) is to quickly and completely remove oxygen (air) in the melting furnace and replace it with N 2 gas to replace N with an alloy ( It is for taking in the inside of a solid solution).
The time when the inside of the melting furnace is replaced with N 2 gas is a result of repeated tests at a time when the temperature in the melting furnace reaches 10 ° C. lower than the melting point of the melt (1776 ° C.), that is, about 1766 ° C. at the actual temperature This is because it turned out to be suitable.
本願発明によれば、公的に999が保証されたPtの実用品(身飾品、宝飾品等)が製作できるので、資産価値を維持したまま製作された実用品を、実生活に利用して楽しむことができるという効果を有する。 According to the present invention, a Pt practical product (jewelry, jewelry, etc.) that is officially guaranteed 999 can be produced, so that the practical product produced while maintaining the asset value is used in real life. It has the effect that it can be enjoyed.
下記に記載する配合と方法により白金合金の地金を鋳造した。
(1)地金(合金)の配合
(イ)Pt(純度99.99重量%):100g
(ロ)Ga:0.040g
(2)鋳造条件
使用鋳造機:TR式高周波発振器 型式NTR−0502SHI−S 出力5Kw 周波数50KHz カーボン坩堝使用(株)日精販売 メーカー(株)日電高周波
電気炉:(株)安井インターテック
鋳型温度:850℃
鋳造温度:1860℃
鋳型へセットしてから鋳造までの時間:3分30秒
A platinum alloy ingot was cast according to the composition and method described below.
(1) Blending of bare metal (alloy) (a) Pt (purity 99.99% by weight): 100 g
(B) Ga: 0.040 g
(2) Casting condition casting machine: TR type high frequency oscillator Model NTR-0502SHI-S Output 5Kw Frequency 50KHz Using carbon crucible Co., Ltd. Nissei Sales Manufacturer Co., Ltd. ℃
Casting temperature: 1860 ° C
Time from casting to casting: 3 minutes 30 seconds
(3)平打ちリングの作製
検体の寸法:幅4.00mm、厚み1.50mm
検体数:20本
使用合金量:100g
使用鋳造機:TR式高周波発振器 型式NTR−0502SHI−S 出力5Kw 周波数50KHz
カーボン坩堝使用(株)日精販売 メーカー(株)日電高周波
電気炉:(株)安井インターテック
なお、前記鋳造機は、ガス注入(噴射)孔を、先端にノズルの付いた金属製のパイプを接続して延長し、ノズルから噴射するN2ガスが、坩堝内の溶解物に直接吹き付けられるように改造したものを使用した(図2)。
(3) Fabrication of flat ring Specimen dimensions: width 4.00 mm, thickness 1.50 mm
Number of specimens: 20 Amount of alloy used: 100 g
Casting machine used: TR type high frequency oscillator Model NTR-0502SHI-S Output 5Kw Frequency 50KHz
Nissei Sales Co., Ltd. using carbon crucible Manufacturer Nidec High Frequency Electric Furnace: Yasui Intertech Co., Ltd. The casting machine is connected to a gas injection (injection) hole and a metal pipe with a nozzle at the tip. The N 2 gas sprayed from the nozzle was extended so that it was directly sprayed on the melted material in the crucible (FIG. 2).
前記リングの作製において、ツリー形状(鋳型になる形状)、埋没方法、脱漏方法、及び鋳造方法は、下記の条件で行った。
ツリー形状:直径8mm、高さ120mmの円柱に、試験資材を円柱に対して、上方向へ角度25度で上から4本ずつ配置し、20mm下の段から付けて、5段のツリー形状とした。
埋没方法:(株)吉田キャスト社のオール89を使用し、水との混合比36%で、(株)愛工舎製作所の混和器で2分混合し、(株)安井インターテックの脱法器で1分空気を抜き、1時間乾燥の為放置した(室温25℃、湿度60%)。
脱漏方法:(株)カトーの温風ヒーターを使用し、温度設定150℃、1時間タイマーオフで中のワックスを抜いた。
鋳造方法:鋳型温度850℃、鋳造温度1860℃に設定して、溶解炉内の圧力を720ヘクトパスカル(Hp)に下げ、溶解温度が融点(1600℃)を超えてから、元圧5気圧のN2ガスを、前記ノズルから注入(噴霧、500ml/秒)した(溶解炉内の圧力は720mmHgに保持した)。
なお、以上に記載した平打ちリングは、Pt、Gaの地金(Pt合金)を予め作製してから、再度溶解してN2ガスを付加したが、地金作製工程を省略して、Pt、Gaを溶解してN2ガスを付加することもできる。
In the production of the ring, a tree shape (a shape to become a mold), a burying method, a leakage method, and a casting method were performed under the following conditions.
Tree shape: In a cylinder with a diameter of 8 mm and a height of 120 mm, four test materials are arranged from the top at an angle of 25 degrees upward with respect to the cylinder. did.
Method of burying: Using All 89 of Yoshida Cast Co., Ltd., mixing with water at a mixing ratio of 36%, mixing for 2 minutes with a mixer at Aikosha Manufacturing Co., Ltd. The air was evacuated for 1 minute and left to dry for 1 hour (room temperature 25 ° C., humidity 60%).
Leakage method: Using a hot air heater of Kato Co., Ltd., the wax was removed by setting the temperature at 150 ° C. for 1 hour with the timer off.
Casting method: mold temperature is set to 850 ° C, casting temperature is set to 1860 ° C, the pressure in the melting furnace is lowered to 720 hectopascals (Hp), and after the melting temperature exceeds the melting point (1600 ° C), N2 with an original pressure of 5 atm. Gas was injected (sprayed, 500 ml / sec) from the nozzle (pressure in the melting furnace was kept at 720 mmHg).
In the flat ring described above, Pt and Ga ingots (Pt alloy) were prepared in advance and then dissolved again and N 2 gas was added, but the ingot preparation step was omitted. , Ga can be dissolved to add N 2 gas.
以下、通常の磨き仕上げ工程(電解研磨、磁気バレル、表面処理、形状成型、磨き工程等)を経て平打ちリング(検体)を得た(D)。 Hereinafter, a flat ring (specimen) was obtained through a normal polishing finishing process (electropolishing, magnetic barrel, surface treatment, shape molding, polishing process, etc.) (D).
前記〔0013〕〜〔0016〕と同様の方法で、下記の(A)〜(C)の配合で平打ちリングを作製した。
(A)Pt9999
(B)Pt9999+N2
(C)Pt9999+Ga(〔0013〕の(1)の配合、N2を使用せず。)
なお、前記(A)〜(D)の平打ちリングは、999の純度を保持していた。
A flat ring was produced by the following methods (A) to (C) in the same manner as in the above [0013] to [0016].
(A) Pt9999
(B) Pt9999 + N 2
(C) Pt9999 + Ga (composition of (1) of [0013], N 2 is not used.)
The flat rings (A) to (D) had a purity of 999.
(4)ビッカーズ硬度の測定
ビッカーズ硬度の測定(微小硬度試験)は、アカシ微小硬度試験器MVK−G3500ATを用いた(図3)。
ビッカーズ硬度は、平打ちリングにダイアモンドの圧痕を付け(微小硬度測定1)、次に微小硬度距離を測定し、硬度表を参照して数値をだした(図3)。
測定はJIS規格の測定方法に則り、硬度測定を5回行い、その最低数値及び最高数値の2つを切り捨て、中旬値である、3つの数値の平均値を算出した。
表1に測定結果を示す。
(4) Measurement of Vickers hardness Vickers hardness was measured (microhardness test) using an Akashi microhardness tester MVK-G3500AT (FIG. 3).
The Vickers hardness was obtained by making a diamond indentation on a flat ring (microhardness measurement 1), then measuring the microhardness distance, and referring to the hardness table (FIG. 3).
In accordance with the measurement method of the JIS standard, the measurement was performed five times, and the lowest value and the highest value were rounded down, and the average value of the three values, which was the mid value, was calculated.
Table 1 shows the measurement results.
表1によれば、Pt9999にN2を併用(噴霧)しても、硬度はあまり増加しないが(B)、Gaを添加したPt9999は硬度が増し、更にこれにN2を併用(噴霧)すれば、Nの効果により更に硬度が増すことがわかる((C)及び(D)参照)。
すなわち、(C)及び(D)の硬度を有する白金合金(Pt999)からは、実用品を製作することができる。
According to Table 1, even when N 2 is used (sprayed) together with Pt9999, the hardness does not increase much (B), but Pt9999 added with Ga increases the hardness, and N 2 is used (sprayed) together. It can be seen that the hardness is further increased by the effect of N (see (C) and (D)).
That is, a practical product can be manufactured from a platinum alloy (Pt999) having the hardness of (C) and (D).
(5)変形圧縮強度の測定
変形圧縮強度の測定(微小硬度試験)は、万能試験機オリエンテック RTC1310を用いた。(図4)。
検体は、ビッカーズ硬度の測定と同一の製造方法で作製したもの((A)〜(D))を用いた。測定結果を表2に示す。
この測定は、ユーザーが本発明に係る999Ptを、身飾品等として身に付けたとき、何キロの圧力に耐えるかを測定しているものである。
(5) Measurement of deformation compression strength Measurement of deformation compression strength (micro hardness test) was performed using a universal testing machine, Orientec RTC1310. (FIG. 4).
Samples ((A) to (D)) produced by the same production method as the measurement of Vickers hardness were used. The measurement results are shown in Table 2.
In this measurement, when the user wears 999Pt according to the present invention as an ornament or the like, it measures how many kilograms of pressure it can withstand.
表2の結果は、圧縮強度についても、表1と同様の効果が得られることを示している。 The results in Table 2 indicate that the same effects as in Table 1 can be obtained with respect to the compressive strength.
表1の圧縮強度測定結果によれば、Pt9999にGaを配合した(C)、更にこれにN2を併用(噴霧)した(D)区分において、顕著な効果が得られた。
(D)区分においては、Gaを配合したPt9999は、N原子がPt及びGaの原子間に間隙(浸透)し易くなり、固溶体を強化するため強度が増している。
すなわち、PtにGaを配合したPt合金は、Pt(溶媒原子:solvent atom)の格子点にGa(溶質原子:solute atom)が置換して、置換型固溶体(subsutitutional solid solution)を形成し、さらにN(溶質原子:solute atom)は原子半径が小さいので、Ptの結晶格子の空間に入り込み、侵入型固溶体(interstitial solid solution)を形成して、固溶体が強化され、強度が増したと理解出来る。
According to the compressive strength measurement results in Table 1, a remarkable effect was obtained in the category (D) in which Ga was mixed with Pt9999 (C) and N2 was combined (sprayed) with this (D).
In the (D) section, Pt9999 containing Ga is easy to allow N atoms to intercalate (penetrate) between Pt and Ga atoms, and the strength is increased to strengthen the solid solution.
That is, in a Pt alloy in which Ga is mixed with Pt, Ga (solute atom) is substituted at a lattice point of Pt (solvent atom) to form a subsutitutional solid solution, Since N (solute atom) has a small atomic radius, it can be understood that it enters the space of the crystal lattice of Pt, forms an interstitial solid solution, strengthens the solid solution, and increases the strength.
(イ)前記実施例1と同一の仕様(同じ配合、同じ鋳造方法)により、直径8mm、厚さ5mmの円形のコイン状の検体A、B、C、Dを作製した。
(ロ)次に、エポキシ樹脂を使用して、この検体が円柱形のエポキシ樹脂の上面から、検体の側面を上部にして垂直に埋め込まれた検体埋没円柱Pを作製した(図5A、図5B)。
(ハ)次にPを、その上面と平行(高さ方向に垂直)に切断して、円柱の上面に検体の切断面が露出した圧縮硬度測定用検体Qを作製した(図5C、図5D)。
Qとして、コイン状の検体A、B、C、Dのそれぞれについて、コイン状の検体の上部(側面)から0.5mm、1.5mm、4.0mm(中心部)の位置で切断したもの(4×3)種類を用意した。
(ニ)前記A、B、C、Dから製作した12個のQについて、実施例1と同様にビッカーズ硬度を測定した。
測定結果を表3と図6に示す。
(B) Circular coin-shaped specimens A, B, C, and D having a diameter of 8 mm and a thickness of 5 mm were produced according to the same specifications as in Example 1 (the same composition and the same casting method).
(B) Next, using an epoxy resin, a specimen-embedded cylinder P was prepared in which the specimen was embedded vertically from the top surface of the cylindrical epoxy resin with the side surface of the specimen facing upward (FIGS. 5A and 5B). ).
(C) Next, P was cut in parallel to the upper surface (perpendicular to the height direction) to produce a specimen Q for measurement of compression hardness in which the cut surface of the specimen was exposed on the upper surface of the cylinder (FIGS. 5C and 5D). ).
As Q, each of the coin-shaped specimens A, B, C, D is cut at a position of 0.5 mm, 1.5 mm, 4.0 mm (center part) from the top (side surface) of the coin-shaped specimen ( 4 × 3) types were prepared.
(D) Vickers hardness was measured in the same manner as in Example 1 for 12 Q manufactured from A, B, C, and D.
The measurement results are shown in Table 3 and FIG.
表3及び図6は、検体(C及びD)の表面のみではなく、内部(中心部)の硬度が増していることを示している。これは、本願発明の鋳造法によれば、Pt合金の内部にまでGa及びNを侵入させることができ、その結果、内部の硬度(強度)まで増加させることができることを示していると思われる。 Table 3 and FIG. 6 show that not only the surface of the specimen (C and D) but also the internal (center) hardness is increased. This seems to indicate that according to the casting method of the present invention, Ga and N can penetrate into the Pt alloy, and as a result, the hardness (strength) can be increased. .
(1)実施例2で作製した検体(D)について、N原子がPt金属結合内部において、如何なる形態(N、N2、窒化物等)で存在するのか調べるために、X線光電子分光分析法 (X-ray Photoelectron Spectroscopy:XPS)により、分析した。
(2)測定条件:X線源:MgKα
管電圧:10kv
管電流:10mA
Step:1.0eV(ワイドレンジ)、0.05eV(ナローレンジ)
Dwell:100ms
Pass: 50eV(ワイドレンジ)、20eV(ナローレンジ)
(3)測定結果を表4に示す。
(1) For the specimen (D) prepared in Example 2, in order to examine what form (N, N 2 , nitride, etc.) N atoms exist in the Pt metal bond, X-ray photoelectron spectroscopy Analysis was performed by (X-ray Photoelectron Spectroscopy: XPS).
(2) Measurement conditions: X-ray source: MgKα
Tube voltage: 10kv
Tube current: 10 mA
Step: 1.0eV (wide range), 0.05eV (narrow range)
Dwell: 100ms
Pass: 50 eV (wide range), 20 eV (narrow range)
(3) Table 4 shows the measurement results.
表4によれば、N原子(単体窒素)がPt固溶体に存在することが理解される。 According to Table 4, it is understood that N atoms (single nitrogen) are present in the Pt solid solution.
本願発明に係る白金合金からは、公的に999の純度が保証された白金の実用品(身飾品、宝飾品等)が製作できる。
したがって、資産価値を維持したままの白金を、実生活に利用して楽しむことができ、宝飾(ジュエリー)業界の需要を刺激し、活性化させることができるので十分な産業上の利用可能性がある。
From the platinum alloy according to the invention of the present application, it is possible to produce a practical product (jewelry, jewelry, etc.) of platinum that is publicly guaranteed purity of 999.
Therefore, platinum that maintains its asset value can be enjoyed by using it in real life, and it can stimulate and activate demand in the jewelry industry, so there is sufficient industrial applicability. is there.
1 N2吹付用パイプ(ノズル)
2 坩堝
11 検体
12 アクリル樹脂
1 N 2 Pipe for spraying (nozzle)
2 Crucible 11 Sample 12 Acrylic resin
本願発明は、下記の請求項1〜請求項11により構成されている。
<請求項1>
999(スリーナイン)の純度を有すると共に、幅4.00mm、厚み1.50mmの平内リングのビッカーズ硬度が90Hv以上であることを特徴とする白金合金。
<請求項2>
999(スリーナイン)の純度を有すると共に、幅4.00mm、厚み1.50mmの平内リングの10%変形圧縮強度が14kgf以上であることを特徴とする白金合金。
<請求項3>
鋳造法により作製される請求項1、又は請求項2のいずれかに記載する白金合金。
<請求項4>
鋳造法が、高純度のPtと微小量のGaを溶解炉に入れ、所定の方法により成形し、冷却することを特徴とする請求項3に記載する白金合金。
<請求項5>
鋳造法が、高純度のPtと微小量のGaを溶解炉に入れ、窒素ガス雰囲気下で溶解した後、所定の方法により成形し、冷却することを特徴とする請求項3に記載する白金合金。
<請求項6>
高純度のPtと微小量のGaを溶解炉に入れ、所定の方法により成形し、冷却することを特徴とする請求項1〜請求項4のいずれかに記載する白金合金の製造方法。
<請求項7>
高純度のPtと微小量のGaを溶解炉に入れ、窒素ガス雰囲気下で溶解した後、所定の方法により成形し、冷却することを特徴とする請求項1〜請求項3、又は請求項5のいずれかに記載する白金合金の製造方法。
<請求項8>
高純度のPtと微小量のGaを溶解炉に入れ、鋳造して鋳物とした後、前記鋳物を溶解炉に入れ、窒素ガス雰囲気下で再度溶解して成形し、冷却することを特徴とする請求項7に記載する白金合金の製造方法。
<請求項9>
溶解炉内を窒素ガス雰囲気にする手段が、下記の(A)及び(B)の条件を満たす請求項7又は請求項8のいずれかに記載する白金合金(999Pt)の製造方法。
(A)溶解炉内の圧力を700mmHg以下に保持すること。
(B)溶解炉内の温度が、溶解物の融点より10℃低い温度に到達した時点からN2ガスを導入すること。
<請求項10>白金合金が、身飾品、又は宝飾品である請求項1〜請求項5のいずれかに記載する白金合金。
<請求項11>白金合金が、身飾品、又は宝飾品である請求項6〜請求項9のいずれかに記載する白金合金の製造方法。
The present invention is constituted by the following claims 1 to 11.
<Claim 1>
A platinum alloy having a purity of 999 (Three Nine) and having a Vickers hardness of 90 Hv or more in a flat inner ring having a width of 4.00 mm and a thickness of 1.50 mm.
<Claim 2>
A platinum alloy having a purity of 999 (Three Nine) and having a 10% deformation compressive strength of a flat inner ring having a width of 4.00 mm and a thickness of 1.50 mm of 14 kgf or more.
<Claim 3>
The platinum alloy according to claim 1 or 2 manufactured by a casting method.
<Claim 4>
4. The platinum alloy according to claim 3, wherein the casting method is performed by putting high-purity Pt and a minute amount of Ga into a melting furnace, forming a predetermined method, and cooling.
<Claim 5>
4. The platinum alloy according to claim 3, wherein the casting method is a method in which high-purity Pt and a minute amount of Ga are put in a melting furnace and melted in a nitrogen gas atmosphere, and then molded and cooled by a predetermined method. .
<Claim 6>
The method for producing a platinum alloy according to any one of claims 1 to 4, wherein high-purity Pt and a minute amount of Ga are put into a melting furnace, molded by a predetermined method, and cooled.
<Claim 7>
A high purity Pt and a minute amount of Ga are put in a melting furnace and melted in a nitrogen gas atmosphere, and then molded by a predetermined method and cooled. A method for producing a platinum alloy according to any one of the above.
<Claim 8>
High purity Pt and a minute amount of Ga are put into a melting furnace, cast into a casting, and then the casting is put into a melting furnace, melted again in a nitrogen gas atmosphere, molded, and cooled. A method for producing a platinum alloy according to claim 7.
<Claim 9>
The method for producing a platinum alloy (999Pt) according to any one of claims 7 and 8, wherein the means for bringing the melting furnace into a nitrogen gas atmosphere satisfies the following conditions (A) and (B).
(A) Maintain the pressure in the melting furnace at 700 mmHg or less.
(B) N 2 gas is introduced when the temperature in the melting furnace reaches 10 ° C. lower than the melting point of the melt.
<Claim 10> The platinum alloy according to any one of claims 1 to 5 , wherein the platinum alloy is a jewelry or a jewelry.
<11> The method for producing a platinum alloy according to any one of claims 6 to 9 , wherein the platinum alloy is a jewelry or a jewelry.
本願発明を以上のように構成する理由は、下記のとおりである。
(a)従来、単なる地金以外に、公的にスリーナインが保証されたPtの実用品(身飾品、宝飾品等)は、その加工性、機能性、恒常性(変形の防止等)を付加(維持)することが困難なため、ほとんど存在しない。
(b)Ptは、純品に不純物(Pt以外の元素)を配合して鋳造することによって、その加工性、機能性、恒常性(変形防止等)を付与することができるが、純度999を維持す
るためには、配合する不純物の総量を、最大で0.1重量部以下に抑える必要がある。
したがってPtに配合するGaは、0.1重量%以下に制限される(100/100.1=0.99900…)。
(c)999の純度を維持し、かつ前記特性を付加するために配合できる不純物(Pt以外の他の金属)の量は、非常に微量に制限されるので、鋳造方法を工夫し、厳密に管理する必要がある。
(d)微量元素(不純物)としてGaを配合するのは、Gaは融点が低く、アマルガムを形成して溶解し、Pt(固溶体)内に侵入しやすいからである。また、PtとGaは、原子半径の差が大きく、母体金属に歪を起させ強度が上がるからである。
(e)鋳造を窒素ガス(N2)雰囲気下で行うのは、必ずしも酸素の影響を除外するためばかりではなく、Gaと共にNを合金(固溶体)の内部に取込むためである。
(f)溶解炉内の圧力を700mmHg以下に保持する(請求項9)のは、溶解炉内の酸素(空気)を速やか、かつ完全に除去し、N2ガスに置換してNを合金(固溶体)の内部に取込むためである。
また、溶解炉内をN2ガスに置換する時期は、溶解炉内が溶解物の融点(1776℃)より10℃低い温度に到達した時点、すなわち実温度で約1766℃が、繰り返し試験した結果、適していることが判明したからである。
The reason why the present invention is configured as described above is as follows.
(A) Conventionally, in addition to mere bullion, Pt practical products (jewelry, jewelry, etc.) that have been officially guaranteed three nines have added workability, functionality, and constancy (preventing deformation, etc.) It is almost nonexistent because it is difficult to maintain.
(B) Pt can be imparted with workability, functionality, and constancy (deformation prevention, etc.) by blending and casting impurities (elements other than Pt) into a pure product. In order to maintain, it is necessary to suppress the total amount of impurities to be blended to a maximum of 0.1 parts by weight or less.
Therefore, Ga blended in Pt is limited to 0.1% by weight or less (100 / 100.1 = 0.99900...).
(C) The amount of impurities (other metals other than Pt) that can be blended in order to maintain the purity of 999 and add the above characteristics is limited to a very small amount. Need to manage.
(D) The reason why Ga is added as a trace element (impurity) is that Ga has a low melting point, forms an amalgam, dissolves, and easily enters Pt (solid solution). Further, Pt and Ga have a large difference in atomic radius, which causes distortion in the base metal and increases the strength.
(E) The casting is performed in a nitrogen gas (N 2 ) atmosphere not only to exclude the influence of oxygen but also to incorporate N together with Ga into the alloy (solid solution).
(F) Maintaining the pressure in the melting furnace at 700 mmHg or less ( Claim 9 ) is to quickly and completely remove oxygen (air) in the melting furnace and replace it with N 2 gas to replace N with an alloy ( It is for taking in the inside of a solid solution).
The time when the inside of the melting furnace is replaced with N 2 gas is a result of repeated tests at a time when the temperature in the melting furnace reaches 10 ° C. lower than the melting point of the melt (1776 ° C.), that is, about 1766 ° C. at the actual temperature This is because it turned out to be suitable.
前記〔0010〕〜〔0013〕と同様の方法で、下記の(A)〜(C)の配合で平打
ちリングを作製した。
(A)Pt9999
(B)Pt9999+N2
(C)Pt9999+Ga(〔0010〕の(1)の配合、N2を使用せず。)
なお、前記(A)〜(D)の平打ちリングは、999の純度を保持していた。
A flat ring was produced in the same manner as in the above [0010] to [0013] by blending the following (A) to (C).
(A) Pt9999
(B) Pt9999 + N 2
(C) Pt9999 + Ga (composition of (1) of [ 0010 ], N 2 is not used.)
The flat rings (A) to (D) had a purity of 999.
Claims (11)
4. The platinum alloy according to claim 3, wherein the casting method is a method in which high-purity Pt and a minute amount of Ga are put in a melting furnace and melted in a nitrogen gas atmosphere, and then molded and cooled by a predetermined method. .
(A)溶解炉内の圧力を700mmHg以下に保持すること。
(B)溶解炉内の温度が、溶解物の融点より10℃低い温度に到達した時点からN2ガスを導入すること。 The method for producing a platinum alloy (999Pt) according to any one of claims 7 and 8, wherein the means for bringing the melting furnace into a nitrogen gas atmosphere satisfies the following conditions (A) and (B).
(A) Maintain the pressure in the melting furnace at 700 mmHg or less.
(B) N2 gas is introduced when the temperature in the melting furnace reaches a temperature 10 ° C. lower than the melting point of the melt.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014144289A JP6302779B2 (en) | 2014-07-14 | 2014-07-14 | Method for producing 999 platinum alloy having high hardness and high strength |
CN201510043888.1A CN105266291B (en) | 2014-07-14 | 2015-01-28 | Platinum alloy and manufacture method thereof |
HK16108754.1A HK1220591A1 (en) | 2014-07-14 | 2016-07-21 | Platinum alloy and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014144289A JP6302779B2 (en) | 2014-07-14 | 2014-07-14 | Method for producing 999 platinum alloy having high hardness and high strength |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016020525A true JP2016020525A (en) | 2016-02-04 |
JP6302779B2 JP6302779B2 (en) | 2018-03-28 |
Family
ID=55136790
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014144289A Active JP6302779B2 (en) | 2014-07-14 | 2014-07-14 | Method for producing 999 platinum alloy having high hardness and high strength |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6302779B2 (en) |
CN (1) | CN105266291B (en) |
HK (1) | HK1220591A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115233027B (en) * | 2022-07-29 | 2023-09-15 | 英特派铂业股份有限公司 | Platinum-gallium alloy for platinum jewelry or platinum spring and preparation method thereof |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57145950A (en) * | 1981-03-03 | 1982-09-09 | Tanaka Kikinzoku Kogyo Kk | Platinum alloy for accessory |
JPH07258768A (en) * | 1994-03-18 | 1995-10-09 | Tanaka Kikinzoku Kogyo Kk | Production of material for ornamental goods |
JPH07310132A (en) * | 1994-05-13 | 1995-11-28 | Ishifuku Metal Ind Co Ltd | High purity hard platinum material |
JPH0820830A (en) * | 1994-07-08 | 1996-01-23 | Ijima Kikinzoku Seiren Kk | Production of pure platinum for ornament, having high hardness |
JPH08104974A (en) * | 1994-08-11 | 1996-04-23 | Tazaki Shinjiyu Kk | Method for hardening platinum or platinum alloy and method for hardening palladium or palladium alloy |
JPH08311583A (en) * | 1995-05-16 | 1996-11-26 | Pilot Corp:The | High-purity platinum alloy |
JPH11199951A (en) * | 1998-01-19 | 1999-07-27 | Tanaka Kikinzoku Kogyo Kk | Platinum alloy |
JP2007239089A (en) * | 2006-02-10 | 2007-09-20 | Seki:Kk | High-grade platinum alloy and its products |
JP2008075162A (en) * | 2006-09-25 | 2008-04-03 | Citizen Holdings Co Ltd | Ornamental part |
JP2012520392A (en) * | 2009-03-13 | 2012-09-06 | ヘレーウス マテリアルズ テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト | Oxidation treatment of boron-containing alloys based on platinum group metals |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1978118A1 (en) * | 2004-02-04 | 2008-10-08 | Allgemeine Gold- Und Silberscheideanstalt AG | Platinium alloy and method of production thereof |
CN100554492C (en) * | 2004-05-18 | 2009-10-28 | 株式会社桑山 | The hardened platinum ornament |
CN102031407B (en) * | 2009-09-29 | 2012-12-12 | 深圳市福麒珠宝首饰有限公司 | Method for manufacturing hard thousand full platinum |
-
2014
- 2014-07-14 JP JP2014144289A patent/JP6302779B2/en active Active
-
2015
- 2015-01-28 CN CN201510043888.1A patent/CN105266291B/en active Active
-
2016
- 2016-07-21 HK HK16108754.1A patent/HK1220591A1/en unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57145950A (en) * | 1981-03-03 | 1982-09-09 | Tanaka Kikinzoku Kogyo Kk | Platinum alloy for accessory |
JPH07258768A (en) * | 1994-03-18 | 1995-10-09 | Tanaka Kikinzoku Kogyo Kk | Production of material for ornamental goods |
JPH07310132A (en) * | 1994-05-13 | 1995-11-28 | Ishifuku Metal Ind Co Ltd | High purity hard platinum material |
JPH0820830A (en) * | 1994-07-08 | 1996-01-23 | Ijima Kikinzoku Seiren Kk | Production of pure platinum for ornament, having high hardness |
JPH08104974A (en) * | 1994-08-11 | 1996-04-23 | Tazaki Shinjiyu Kk | Method for hardening platinum or platinum alloy and method for hardening palladium or palladium alloy |
JPH08311583A (en) * | 1995-05-16 | 1996-11-26 | Pilot Corp:The | High-purity platinum alloy |
JPH11199951A (en) * | 1998-01-19 | 1999-07-27 | Tanaka Kikinzoku Kogyo Kk | Platinum alloy |
JP2007239089A (en) * | 2006-02-10 | 2007-09-20 | Seki:Kk | High-grade platinum alloy and its products |
JP2008075162A (en) * | 2006-09-25 | 2008-04-03 | Citizen Holdings Co Ltd | Ornamental part |
JP2012520392A (en) * | 2009-03-13 | 2012-09-06 | ヘレーウス マテリアルズ テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト | Oxidation treatment of boron-containing alloys based on platinum group metals |
Also Published As
Publication number | Publication date |
---|---|
HK1220591A1 (en) | 2017-05-12 |
CN105266291B (en) | 2017-03-22 |
JP6302779B2 (en) | 2018-03-28 |
CN105266291A (en) | 2016-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6451064B2 (en) | Decorative article, skin contact material, metal powder for powder metallurgy, and method for producing decorative article | |
JP2007520632A (en) | Platinum alloy and method for producing the same | |
CH714785B1 (en) | Gold alloy resistant to discoloration and method of production of the same. | |
CN104968813A (en) | Chronograph made of rose gold alloy | |
JP6302779B2 (en) | Method for producing 999 platinum alloy having high hardness and high strength | |
JP6302780B2 (en) | Method for producing 999 gold alloy and silver alloy having high hardness and high strength | |
JP6782056B2 (en) | A method for producing a colored gold alloy having a purity of 22 gold with improved processing characteristics. | |
RU2593255C1 (en) | Method of producing of molded articles from titanium nickelide-based alloy | |
RU2561562C1 (en) | Platinum alloy for jewellery and alloy manufacture method | |
RU2405051C1 (en) | White palladium-based jewel alloy | |
CH714786B1 (en) | Gold alloy with color compatible with the 5N standard and method of production of the same. | |
JP2018044228A (en) | Platinum alloy hardly inducing metallic allergy, and production method therefor | |
JP4879729B2 (en) | Gold alloy | |
JP2009515034A (en) | Platinum alloy and method for producing the same | |
JP5553301B2 (en) | Individualized decorative alloy and method for producing the same | |
RU2439181C1 (en) | Jewellery alloy based on platinum of rate 950 | |
US20120000582A1 (en) | Treatment of boron-containing, platinum group metal-based alloys | |
JP2021031690A (en) | Method for manufacturing 999 platinum alloy having high hardness and high compressive strength | |
RU2349660C1 (en) | Jewelry alloy on basis of palladium | |
JP6049813B1 (en) | Alloy for decoration, method for producing alloy for decoration, and decoration | |
RU2439180C1 (en) | Jewellery alloy based on platinum | |
RU2331683C2 (en) | Jewelry alloy on base of palladium | |
RU2356971C2 (en) | Platinum alloy and method of its manufacturing | |
JP2011132569A (en) | Platinum alloy and ornament using it | |
JPH0734162A (en) | Hard high purity platinum alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160720 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170316 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170411 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170608 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170829 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171024 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180220 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180305 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6302779 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |