[go: up one dir, main page]

JP2016018704A - All solid battery - Google Patents

All solid battery Download PDF

Info

Publication number
JP2016018704A
JP2016018704A JP2014141402A JP2014141402A JP2016018704A JP 2016018704 A JP2016018704 A JP 2016018704A JP 2014141402 A JP2014141402 A JP 2014141402A JP 2014141402 A JP2014141402 A JP 2014141402A JP 2016018704 A JP2016018704 A JP 2016018704A
Authority
JP
Japan
Prior art keywords
battery element
battery
positive electrode
negative electrode
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014141402A
Other languages
Japanese (ja)
Inventor
重規 濱
Shigeki Hama
重規 濱
雄志 鈴木
Yushi Suzuki
雄志 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014141402A priority Critical patent/JP2016018704A/en
Publication of JP2016018704A publication Critical patent/JP2016018704A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

【課題】全固体電池において中央部の温度の上昇を抑制する。【解決手段】全固体電池Aは、正極11と、負極12と、正極と負極との間に配置された固体電解質層13と、を含む電池素子1を備えている。全固体電池は、充放電時における電池素子の中央部の発熱量が電池素子の外周部の発熱量よりも小さくなるように構成されている。【選択図】図1An object of the present invention is to suppress an increase in the temperature of a central portion in an all solid state battery. An all solid state battery includes a battery element including a positive electrode, a negative electrode, and a solid electrolyte layer disposed between the positive electrode and the negative electrode. The all-solid-state battery is configured such that the amount of heat generated at the center of the battery element during charge / discharge is smaller than the amount of heat generated at the outer periphery of the battery element. [Selection] Figure 1

Description

本発明は、全固体電池に関する。   The present invention relates to an all solid state battery.

リチウム電池は、電圧やエネルギー密度が高くメモリー効果が少ないなどの特徴を有していることから、自動車や携帯機器など様々な分野で利用されている。その利用が進むに連れて、リチウム電池には性能や安全性の更なる向上が望まれている。   Lithium batteries are used in various fields such as automobiles and portable devices because they have characteristics such as high voltage and energy density and low memory effect. As its use progresses, further improvements in performance and safety are desired for lithium batteries.

性能や安全性の向上を実現する方法として、有機溶媒電解質ではなく固体電解質を用いる全固体電池が研究されている。全固体電池は、負極と、正極と、負極と正極との間に挟持された固体電解質とを備えている。負極と固体電解質と正極とはこの順に積層され、必要に応じて両側から圧力が印加される。例えば、特許文献1には、1.5〜200MPaの圧力を印加する全固体電池が開示されている。この特許文献1は、固体電解質層の全面に対して平準な加圧を可能とし、電池中央部での電池の膨れを抑制し、イオン伝導性を高めることを目的としている。   As a method for improving performance and safety, an all-solid battery using a solid electrolyte instead of an organic solvent electrolyte has been studied. The all solid state battery includes a negative electrode, a positive electrode, and a solid electrolyte sandwiched between the negative electrode and the positive electrode. The negative electrode, the solid electrolyte, and the positive electrode are laminated in this order, and pressure is applied from both sides as necessary. For example, Patent Document 1 discloses an all-solid battery that applies a pressure of 1.5 to 200 MPa. This patent document 1 is intended to make it possible to apply uniform pressure to the entire surface of the solid electrolyte layer, to suppress the swelling of the battery at the center of the battery, and to increase the ionic conductivity.

特開2008−103284号公報JP 2008-103284 A

特許文献1のように全固体電池の固体電解質層の全面に対して均一に圧力を印加すると、電極−固体電解質界面の接合を改善でき、接触不良による電池特性の低下を抑制できると考えられる。しかし、全固体電池の中央部と外周部とでは、熱を放散する性能、すなわち放熱性が異なっており、中央部よりも外周部の方が熱を放散しやすい。そのため、外周部では熱が放散されて温度が低下するが、中央部では熱があまり放散されず温度が上昇してしまう。そうなると、温度の高い中央部の電極や固体電解質が劣化してしまうおそれがある。したがって、全固体電池において中央部と外周部との温度差を従来よりも小さくすることが可能な技術が望まれる。   When pressure is uniformly applied to the entire surface of the solid electrolyte layer of the all-solid-state battery as in Patent Document 1, it is considered that bonding at the electrode-solid electrolyte interface can be improved, and deterioration of battery characteristics due to poor contact can be suppressed. However, the center part and the outer peripheral part of the all-solid-state battery are different in heat dissipation performance, that is, heat dissipation, and the outer peripheral part is more likely to dissipate heat than the central part. Therefore, heat is dissipated at the outer peripheral portion and the temperature is lowered, but heat is not dissipated so much at the central portion and the temperature is increased. If so, there is a risk that the central electrode and the solid electrolyte having a high temperature deteriorate. Therefore, a technique capable of making the temperature difference between the central portion and the outer peripheral portion smaller in the all-solid battery than in the prior art is desired.

本発明によれば、正極と、負極と、前記正極と前記負極との間に配置された固体電解質層と、を含む電池素子を備える全固体電池であって、充放電時における前記電池素子の中央部での発熱量が前記電池素子の外周部での発熱量よりも小さくなるように構成された、全固体電池、が提供される。   According to the present invention, there is provided an all-solid battery comprising a battery element including a positive electrode, a negative electrode, and a solid electrolyte layer disposed between the positive electrode and the negative electrode. An all-solid-state battery is provided that is configured such that the amount of heat generated at the center is smaller than the amount of heat generated at the outer periphery of the battery element.

本発明によれば、全固体電池において中央部と外周部との温度差を従来よりも小さくすることができる。   ADVANTAGE OF THE INVENTION According to this invention, the temperature difference of a center part and an outer peripheral part in an all-solid-state battery can be made smaller than before.

図1は、実施の形態に係る全固体電池の構成例を示す概略側面図である。FIG. 1 is a schematic side view illustrating a configuration example of an all-solid battery according to an embodiment. 図2は、実施の形態に係る全固体電池の構成例を示す概略平面図である。FIG. 2 is a schematic plan view showing a configuration example of the all solid state battery according to the embodiment. 図3は、電池素子における中央部と外周部との関係を示す概略図である。FIG. 3 is a schematic diagram showing the relationship between the central portion and the outer peripheral portion of the battery element. 図4は、従来の電池素子の圧力分布及びIV抵抗分布を概念的に示すグラフである。FIG. 4 is a graph conceptually showing the pressure distribution and IV resistance distribution of a conventional battery element. 図5は、従来の電池素子の発熱量分布及び温度分布を概念的に示すグラフである。FIG. 5 is a graph conceptually showing a calorific value distribution and a temperature distribution of a conventional battery element. 図6は、本実施の形態に係る電池素子の圧力分布及びIV抵抗分布を概念的に示すグラフである。FIG. 6 is a graph conceptually showing the pressure distribution and IV resistance distribution of the battery element according to the present embodiment. 図7は、本実施の形態に係る電池素子の発熱量分布及び温度分布を概念的に示すグラフである。FIG. 7 is a graph conceptually showing the calorific value distribution and temperature distribution of the battery element according to the present embodiment. 図8は、実施例における拘束力と電池抵抗との関係を示すグラフである。FIG. 8 is a graph showing the relationship between the binding force and the battery resistance in the example.

本発明によれば、正極と、負極と、前記正極と前記負極との間に配置された固体電解質層と、を含む電池素子を備える全固体電池であって、充放電時における前記電池素子の中央部での発熱量が前記電池素子の外周部での発熱量よりも小さくなるように構成された、全固体電池、が提供される。   According to the present invention, there is provided an all-solid battery comprising a battery element including a positive electrode, a negative electrode, and a solid electrolyte layer disposed between the positive electrode and the negative electrode. An all-solid-state battery is provided that is configured such that the amount of heat generated at the center is smaller than the amount of heat generated at the outer periphery of the battery element.

このような全固体電池によれば、充放電時において、外部に熱を放出し難い中央部での発熱量が、外部に熱を放出し易い外周部での発熱量よりも小さいので、外周部の温度よりも中央部の温度の方が上昇することを抑制できる。すなわち、外周部は外部に熱を放出し易いので発熱量が大きくても温度が低下し易く、かつ、中央部は発熱量が小さいので外部に熱を放出し難くても温度の上昇が抑制できるので、電池素子の面内方向での温度の均一化を図ることができる。ただし、本発明における「全固体電池」とは、正極、負極、及び電解質などの電池素子を構成する各要素がすべて固体である電池を意味する。また、電池素子における「外周部」は、電池素子の面内のうち、外周縁に沿った、外周縁の近傍の領域である。「外周部」が矩形の場合、「外周部」は、横幅の1〜3割程度の幅かつ縦幅の1〜3割程度の幅の帯状の領域に例示され、電池素子の外周縁から0.5〜1.5cmの幅の領域であってもよい。電池素子における「中央部」は、電池素子の面内のうち、外周部に囲まれた内側の領域である。「中央部」は、中心の近傍の領域、例えば中心を含む横幅の1〜8割程度の幅かつ縦幅の1〜8割程度の幅を有する領域であってもよい。   According to such an all-solid-state battery, at the time of charging / discharging, the amount of heat generated at the central portion where it is difficult to release heat to the outside is smaller than the amount of heat generated at the outer peripheral portion where heat is easily released to the outside. It can suppress that the temperature of a center part rises rather than temperature of this. That is, since the outer peripheral portion easily releases heat to the outside, the temperature is likely to decrease even if the amount of heat generation is large, and the central portion has a small amount of heat generation, so that an increase in temperature can be suppressed even if it is difficult to release heat to the outside. Therefore, the temperature can be made uniform in the in-plane direction of the battery element. However, the “all-solid battery” in the present invention means a battery in which each element constituting the battery element such as the positive electrode, the negative electrode, and the electrolyte is solid. Further, the “outer peripheral portion” in the battery element is a region in the vicinity of the outer peripheral edge along the outer peripheral edge in the plane of the battery element. When the “peripheral part” is rectangular, the “peripheral part” is exemplified by a band-like region having a width of about 30 to 30% of the horizontal width and a width of about 10 to 30% of the vertical width. It may be a region having a width of 5 to 1.5 cm. The “central part” in the battery element is an inner region surrounded by the outer peripheral part in the plane of the battery element. The “central portion” may be a region in the vicinity of the center, for example, a region having a width of about 10 to 80% of the horizontal width including the center and a width of about 10 to 80% of the vertical width.

電池素子の中央部の発熱量が電池素子の外周部の発熱量よりも小さくなるような構成の一例としては、例えば、電池素子の中央部に印加する圧力(拘束力)を外周部に印加する圧力(拘束力)よりも大きくするように電池素子を拘束する拘束部材を用いる方法がある。例えば、中央部の圧力を15MPa以上とし外周部の圧力を15MPa未満とすることができる。中央部の圧力は外周部の圧力の好ましくは2倍以上、より好ましくは3倍以上である。中央部と外周部との圧力の差の上限は、好ましくは10倍以下である。   As an example of a configuration in which the calorific value at the central part of the battery element is smaller than the calorific value at the outer peripheral part of the battery element, for example, pressure (binding force) applied to the central part of the battery element is applied to the outer peripheral part. There is a method of using a restraining member that restrains the battery element so as to be larger than the pressure (restraint force). For example, the pressure at the center can be 15 MPa or more, and the pressure at the outer periphery can be less than 15 MPa. The pressure at the center is preferably 2 times or more, more preferably 3 times or more than the pressure at the outer periphery. The upper limit of the pressure difference between the central portion and the outer peripheral portion is preferably 10 times or less.

以下、本発明の実施の形態に係る全固体電池について図面を参照して説明する。   Hereinafter, an all-solid battery according to an embodiment of the present invention will be described with reference to the drawings.

図1及び図2は、それぞれ本実施の形態に係る全固体電池Aの構成例を示す概略側面図及び概略平面図である。全固体電池Aは、電池素子1と、拘束部材2とを備えている。   1 and 2 are a schematic side view and a schematic plan view showing a configuration example of the all solid state battery A according to the present embodiment, respectively. The all solid state battery A includes a battery element 1 and a restraining member 2.

電池素子1は、充放電可能なセルであり、正極11と、負極12と、正極11と負極12との間に配置され、固体電解質を含む固体電解質層13とを備えている。正極11、負極12、及び固体電解質層13は、固体で形成されている。正極11は、正極合剤を含む正極活物質層14と、正極活物質層14の集電を行う正極集電体16とを備え、負極12は、負極合剤を含む負極活物質層15と、負極活物質層15の集電を行う負極集電体17とを備えている。   The battery element 1 is a chargeable / dischargeable cell, and includes a positive electrode 11, a negative electrode 12, and a solid electrolyte layer 13 that is disposed between the positive electrode 11 and the negative electrode 12 and contains a solid electrolyte. The positive electrode 11, the negative electrode 12, and the solid electrolyte layer 13 are formed of solid. The positive electrode 11 includes a positive electrode active material layer 14 including a positive electrode mixture and a positive electrode current collector 16 that collects current from the positive electrode active material layer 14. The negative electrode 12 includes a negative electrode active material layer 15 including a negative electrode mixture; And a negative electrode current collector 17 for collecting current of the negative electrode active material layer 15.

拘束部材2は、正極11と固体電解質層13と負極12とを含む積層体の積層面に垂直方向に、電池素子1の正極11側及び負極12側から圧力を印加して、電池素子1を拘束する。拘束部材2は、拘束板23、22、24と、連結棒21と、ナット26、25、27とを備えている。   The restraining member 2 applies the pressure from the positive electrode 11 side and the negative electrode 12 side of the battery element 1 in the direction perpendicular to the laminate surface of the laminate including the positive electrode 11, the solid electrolyte layer 13, and the negative electrode 12, thereby to bound. The restraining member 2 includes restraining plates 23, 22, 24, a connecting rod 21, and nuts 26, 25, 27.

拘束板23は電池素子1を負極12側から支持・拘束し、拘束板22は電池素子1を正極11側から支持・拘束する。言い換えると、電池素子1は、拘束板23と拘束板22との間に挟持されている。拘束板24は、拘束板22における電池素子1と接する側と反対の側に配置されている。拘束板24は、拘束板22や拘束板23と同様の板部分24aと、板部分24aの中央部に設けられ、板部分24aから電池素子1側に突き出した突き出し部分24bとを含んでいる。突き出し部分24bは拘束板22の中央部に接している。ただし、拘束板24は、拘束板23における電池素子1と接する側と反対の側に配置されていてもよく、その場合、突き出し部分24bは拘束板23の中央部に接している。また、板部分24aと突き出し部分24bとは別体であってもよい。   The restraint plate 23 supports and restrains the battery element 1 from the negative electrode 12 side, and the restraint plate 22 supports and restrains the battery element 1 from the positive electrode 11 side. In other words, the battery element 1 is sandwiched between the restraining plate 23 and the restraining plate 22. The restraint plate 24 is disposed on the side of the restraint plate 22 opposite to the side in contact with the battery element 1. The restraint plate 24 includes a plate portion 24a similar to the restraint plate 22 and the restraint plate 23, and a protruding portion 24b provided at the center of the plate portion 24a and projecting from the plate portion 24a toward the battery element 1 side. The protruding portion 24 b is in contact with the central portion of the restraining plate 22. However, the restraint plate 24 may be disposed on the side of the restraint plate 23 opposite to the side in contact with the battery element 1, and in this case, the protruding portion 24 b is in contact with the central portion of the restraint plate 23. The plate portion 24a and the protruding portion 24b may be separate.

連結棒21は、拘束板23、22、24に設けられた穴を貫通する。ナット26、25、27は、それぞれ拘束板23、22、24を連結棒21の所望の位置に固定する。ナット26、25の締め付け位置により、拘束板23、22が電池素子1を挟み込む力、すなわち電池素子1全体に印加される圧力が設定される。ナット27の締め付け位置により、拘束板24の突き出し部分24bが拘束板22の中央部を押し込む力、すなわち電池素子1の中央部に印加される圧力が設定される。   The connecting rod 21 passes through holes provided in the restraining plates 23, 22, and 24. The nuts 26, 25, and 27 fix the restraining plates 23, 22, and 24 to desired positions of the connecting rod 21, respectively. Depending on the tightening positions of the nuts 26 and 25, the force with which the restraining plates 23 and 22 sandwich the battery element 1, that is, the pressure applied to the entire battery element 1 is set. Depending on the tightening position of the nut 27, the force by which the protruding portion 24 b of the restraint plate 24 pushes the central portion of the restraint plate 22, that is, the pressure applied to the central portion of the battery element 1 is set.

ここで、拘束板24は、ナット27の締め付けにより突き出し部分24bを拘束板22の中央部へ押し込むことができる剛性の高い材料を用いる。例えば、金属材料やセラミックス材料や樹脂材料が例示される。拘束板22は、突き出し部分24bの力で弾性変形して電池素子1の中央部に圧力を印加できる材料を用いる。例えば、樹脂材料や金属材料が例示される。弾性変形の程度は、材料の選択だけでなく厚みの選択によっても調整することが可能である。拘束板23は、拘束板22の変形で電池素子1の中央部の圧力が高くても変形しない剛性の高い材料を用いる。例えば、金属材料やセラミックス材料や樹脂材料が例示される。硬さという点では、拘束板24、23が相対的に硬く、拘束板22が相対的に柔らかいと言える。   Here, the restraint plate 24 is made of a highly rigid material that can push the protruding portion 24 b into the central portion of the restraint plate 22 by tightening the nut 27. For example, a metal material, a ceramic material, or a resin material is exemplified. The restraint plate 22 is made of a material that can be elastically deformed by the force of the protruding portion 24 b and apply pressure to the central portion of the battery element 1. For example, a resin material or a metal material is exemplified. The degree of elastic deformation can be adjusted not only by selecting the material but also by selecting the thickness. The restraint plate 23 is made of a highly rigid material that does not deform even when the pressure at the center of the battery element 1 is high due to deformation of the restraint plate 22. For example, a metal material, a ceramic material, or a resin material is exemplified. In terms of hardness, it can be said that the restraint plates 24 and 23 are relatively hard and the restraint plate 22 is relatively soft.

例えば、ナット27の締め付けを増加させると、拘束板24の突き出し部分24bが拘束板22の中央部を押す力が増加することになる。その結果、拘束板22の中央部が強く押されて、電池素子1の中央部に印加される圧力が増加する。その結果、電池素子1の中央部に印加される圧力が、電池素子1の外周部に印加される圧力よりも高く設定されることになる。ただし、拘束部材2における電池素子1の中央部を押す構成は一例であり、電池素子1の中央部を押すことが可能であれば、上記例に限定されるものではない。   For example, when the tightening of the nut 27 is increased, the force with which the protruding portion 24 b of the restraint plate 24 pushes the central portion of the restraint plate 22 increases. As a result, the central portion of the restraining plate 22 is strongly pressed, and the pressure applied to the central portion of the battery element 1 increases. As a result, the pressure applied to the central part of the battery element 1 is set higher than the pressure applied to the outer peripheral part of the battery element 1. However, the structure which pushes the center part of the battery element 1 in the restraint member 2 is an example, and if it can push the center part of the battery element 1, it will not be limited to the said example.

図3は、電池素子1における中央部と外周部との関係を示す概略図である。この図は積層方向から見た電池素子1を示し、電池素子1における正極11、負極12及び固体電解質層13をまとめて要素30として示している。   FIG. 3 is a schematic diagram showing the relationship between the central portion and the outer peripheral portion of the battery element 1. This figure shows the battery element 1 viewed from the stacking direction, and the positive electrode 11, the negative electrode 12, and the solid electrolyte layer 13 in the battery element 1 are collectively shown as an element 30.

以下の説明では、電池素子1の外周部32として、概ね、電池素子1の要素30(正極11、負極12及び固体電解質層13)の外周縁に沿った領域、例えば縦幅(縦方向の長さL1)のうちの両端からそれぞれ1〜3割程度の幅かつ横幅(横方向の長さL2)のうちの両端からそれぞれ1〜3割程度の幅の帯状の領域を考える。また、電池素子1の中央部31として、電池素子1の要素30の中心31aを含む領域、すなわち縦幅のうちの中心31aから両端へそれぞれ1〜4割程度の幅かつ横幅のうちの中心31aから両端へそれぞれ1〜4割程度の幅の略矩形状の領域を考える。なお、これら外周部32や中央部31の領域は例示であり、他の形状を有していても本質的な機能は同じである。   In the following description, as the outer peripheral portion 32 of the battery element 1, a region along the outer peripheral edge of the element 30 (the positive electrode 11, the negative electrode 12, and the solid electrolyte layer 13) of the battery element 1, for example, a vertical width (longitudinal length) Let us consider a band-like region having a width of about 10 to 30% from both ends of the width L1) and a width of about 10 to 30% from both ends of the lateral width (lateral length L2). Further, as the central portion 31 of the battery element 1, a region including the center 31a of the element 30 of the battery element 1, that is, a center 31a of about 10 to 40% of the width from the center 31a of the longitudinal width to both ends and the center 31a of the lateral width. Consider a substantially rectangular region having a width of about 10 to 40% from the center to both ends. In addition, the area | region of these outer peripheral parts 32 and the center part 31 is an illustration, and even if it has another shape, an essential function is the same.

次に、従来の電池素子における発熱量と温度について説明する。
図4は、従来の電池素子の圧力分布及びIV抵抗分布を概念的に示すグラフである。この図は、電池素子を側面から見た場合での圧力分布及び抵抗分布の一例を示している。ただし、左側の縦軸は圧力(MPa)を示し、右側の縦軸はIV抵抗(面抵抗:Ω・cm)を示し、横軸は面内位置を示している。
Next, the calorific value and temperature in the conventional battery element will be described.
FIG. 4 is a graph conceptually showing the pressure distribution and IV resistance distribution of a conventional battery element. This figure shows an example of pressure distribution and resistance distribution when the battery element is viewed from the side. However, the left vertical axis represents pressure (MPa), the right vertical axis represents IV resistance (surface resistance: Ω · cm 2 ), and the horizontal axis represents the in-plane position.

特許文献1のような電池素子では、直線P1に示すように、その全面に対して圧力が均一に印加される(PCON1)。すなわち、電池素子の中央部に印加される圧力は、外周部に印加される圧力と概ね同じである。このような場合、直線R1に示すように、電池素子の全面に対してIV抵抗も均一となる(RCON1)。すなわち、電池素子の中央部のIV抵抗は、外周部のIV抵抗と概ね同じである。   In a battery element such as Patent Document 1, as shown by a straight line P1, pressure is uniformly applied to the entire surface (PCON1). That is, the pressure applied to the central portion of the battery element is substantially the same as the pressure applied to the outer peripheral portion. In such a case, as indicated by the straight line R1, the IV resistance is uniform over the entire surface of the battery element (RCON1). That is, the IV resistance at the center of the battery element is substantially the same as the IV resistance at the outer periphery.

そのときの電池素子の発熱量分布及び温度分布の一例を概念的に図5に示す。左側の縦軸は電池素子の温度を示し、右側の縦軸は電池素子の発熱量を示し、横軸は面内位置を示している。ここで、一般に、抵抗と発熱量との関係は、Q=RIt、(ただし、Q:ジュール熱、R:抵抗、I:電流、t:時間)で表される。これを電池素子に適用すると、中央部と外周部とで電流密度が一定であるならば、発熱量はIV抵抗に比例することになる。したがって、IV抵抗の面内分布が均一であれば(直線R1:RCON1)、直線A1に示すように、発熱量の面内分布は均一となる(QCON1)。 An example of the calorific value distribution and temperature distribution of the battery element at that time is conceptually shown in FIG. The left vertical axis indicates the temperature of the battery element, the right vertical axis indicates the amount of heat generated by the battery element, and the horizontal axis indicates the in-plane position. Here, in general, the relationship between resistance and calorific value is represented by Q = RI 2 t (where Q: Joule heat, R: resistance, I: current, t: time). When this is applied to the battery element, the heat generation amount is proportional to the IV resistance if the current density is constant between the central portion and the outer peripheral portion. Therefore, if the in-plane distribution of the IV resistance is uniform (straight line R1: RCON1), the in-plane distribution of the heat generation amount is uniform (QCON1) as shown by the straight line A1.

そのとき、放熱性の高い外周部では熱が放散されて温度が下がるが、放熱性の低い中央部では熱が放散され難く温度は高いままである。すなわち、曲線B1に示すように、電池素子の温度の面内分布は、中央部が最高温度TMAX1となり、外周部に向かって温度が低下し、外周部が最低温度TMIN1となる。このとき、中央部と外周部との温度差Δ1=TMAX1−TMIN1は、比較的大きな値となり、例えば3℃以上の温度差となる。   At that time, heat is dissipated in the outer peripheral portion having high heat dissipation and the temperature is lowered, but heat is hardly dissipated in the central portion having low heat dissipation and the temperature remains high. That is, as shown in the curve B1, the in-plane distribution of the temperature of the battery element has the maximum temperature TMAX1 at the center, the temperature decreases toward the outer periphery, and the minimum temperature TMIN1 at the outer periphery. At this time, the temperature difference Δ1 = TMAX1-TMIN1 between the central portion and the outer peripheral portion is a relatively large value, for example, a temperature difference of 3 ° C. or more.

続いて、本実施の形態に係る電池素子における発熱量と温度について説明する。
図6は、電池素子に印加される圧力分布及び抵抗分布を概念的に示すグラフである。この図は、電池素子を側面から見た場合での圧力分布及び抵抗分布の一例を示している。ただし、左側の縦軸は圧力(MPa)を示し、右側の縦軸はIV抵抗(面抵抗:Ω・cm)を示し、横軸は面内位置を示している。
Next, the heat generation amount and temperature in the battery element according to the present embodiment will be described.
FIG. 6 is a graph conceptually showing the pressure distribution and the resistance distribution applied to the battery element. This figure shows an example of pressure distribution and resistance distribution when the battery element is viewed from the side. However, the left vertical axis represents pressure (MPa), the right vertical axis represents IV resistance (surface resistance: Ω · cm 2 ), and the horizontal axis represents the in-plane position.

本実施の形態の電池素子1では、曲線P2に示すように、拘束部材2により、電池素子1の中央部31に印加される圧力が、外周部32に印加される圧力よりも高く設定されている。すなわち、電池素子1(の要素30)に印加される圧力は、中央部31で最大圧力PMAX2となり、外周部32に向かって低下し、外周部32で最小圧力PMIN2となる。言い換えると、全固体電池Aにおいて、中央部31の拘束力が外周部32の拘束力よりも強くなるように拘束力に傾斜がつけられている。このような場合、曲線R2に示すように、電池素子1の中央部31のIV抵抗が、外周部32のIV抵抗よりも低くなる。すなわち、電池素子1のIV抵抗は、中央部31で最小抵抗RMIN2となり、外周部32に向かって増加し、外周部32で最大抵抗RMAX2となる。   In the battery element 1 of the present embodiment, the pressure applied to the central part 31 of the battery element 1 is set higher than the pressure applied to the outer peripheral part 32 by the restraining member 2 as shown by the curve P2. Yes. That is, the pressure applied to the battery element 1 (element 30 thereof) reaches the maximum pressure PMAX2 at the central portion 31, decreases toward the outer peripheral portion 32, and reaches the minimum pressure PMIN2 at the outer peripheral portion 32. In other words, in the all solid state battery A, the restraining force is inclined so that the restraining force of the central portion 31 is stronger than the restraining force of the outer peripheral portion 32. In such a case, as indicated by the curve R2, the IV resistance of the central portion 31 of the battery element 1 is lower than the IV resistance of the outer peripheral portion 32. That is, the IV resistance of the battery element 1 becomes the minimum resistance RMIN2 at the central portion 31, increases toward the outer peripheral portion 32, and becomes the maximum resistance RMAX2 at the outer peripheral portion 32.

そのときの本実施の形態に係る電池素子1の発熱量分布及び温度分布の一例を概念的に図7に示す。左側と右側の縦軸、及び、横軸は図5と同様である。本実施の形態の電池素子1では、電池素子1の中央部31に印加される圧力が外周部32に印加される圧力よりも高いため、電池素子1の中央部31のIV抵抗は、外周部32のIV抵抗よりも低くなる(図6)。その結果、上記Q=RItを適用し、中央部と外周部とで電流密度が一定であるならば、電池素子1の発熱量の面内分布は、曲線A2に示すように、中央部の発熱量が、外周部の発熱量よりも低くなる。すなわち、電池素子1の発熱量は、中央部31で最小値QMIN2となり、外周部32に向かって増加し、外周部32で最大値QMAX2となる。 An example of the calorific value distribution and temperature distribution of the battery element 1 according to the present embodiment at that time is conceptually shown in FIG. The left and right vertical and horizontal axes are the same as in FIG. In the battery element 1 of the present embodiment, since the pressure applied to the central part 31 of the battery element 1 is higher than the pressure applied to the outer peripheral part 32, the IV resistance of the central part 31 of the battery element 1 is the outer peripheral part. It becomes lower than the IV resistance of 32 (FIG. 6). As a result, when the above Q = RI 2 t is applied and the current density is constant between the central portion and the outer peripheral portion, the in-plane distribution of the calorific value of the battery element 1 is as shown in the curve A2. The amount of heat generated is lower than the amount of heat generated at the outer periphery. That is, the calorific value of the battery element 1 reaches the minimum value QMIN2 at the central portion 31, increases toward the outer peripheral portion 32, and reaches the maximum value QMAX2 at the outer peripheral portion 32.

そのとき、放熱性の高い外周部では、発熱量は多いが、その熱が放散されて温度が下がる。加えて、放熱性の低い中央部では、発熱量が少なく、その熱が放散され難くても温度は上がりにくい。したがって、電池素子1の温度は、例えば、曲線B2に示すように、中央部31で最低温度TMIN2となり、外周部32に向かって上昇し、外周部32で最低温度TMAX2となる。この場合、中央部31の発熱量が小さいため、中央部31と外周部32との温度差Δ2=TMAX2−TMIN2は、図5の場合の温度差Δ1と比較して、非常に小さくすることができる。Δ2は、好ましくは2℃以内、より好ましくは1℃以内、さらに好ましくは0.5℃以内、さらにより好ましくは実質的に0℃、すなわち、電池素子1の温度分布は、全体として実質的に均一である。なお、状況によっては、中央部31の方が外周部32より温度が高くなる場合も考えられるが、その場合でも、最高温度と最低温度との温度差Δ2は、上述のように図5の場合の温度差Δ1と比較して非常に小さくすることができる。すなわち、電池素子1の温度分布は、全体として実質的に均一である。   At that time, in the outer peripheral portion having high heat dissipation, the heat generation amount is large, but the heat is dissipated and the temperature decreases. In addition, in the central part where heat dissipation is low, the amount of heat generation is small, and even if the heat is not easily dissipated, the temperature is difficult to rise. Therefore, the temperature of the battery element 1 becomes, for example, the lowest temperature TMIN2 at the central portion 31, rises toward the outer peripheral portion 32, and becomes the lowest temperature TMAX2 at the outer peripheral portion 32, as shown by a curve B2. In this case, since the calorific value of the central portion 31 is small, the temperature difference Δ2 = TMAX2−TMIN2 between the central portion 31 and the outer peripheral portion 32 can be made very small compared to the temperature difference Δ1 in the case of FIG. it can. Δ2 is preferably within 2 ° C., more preferably within 1 ° C., further preferably within 0.5 ° C., and even more preferably substantially 0 ° C., that is, the temperature distribution of the battery element 1 is substantially substantially as a whole. It is uniform. Depending on the situation, the temperature at the central portion 31 may be higher than that at the outer peripheral portion 32, but even in this case, the temperature difference Δ2 between the maximum temperature and the minimum temperature is as shown in FIG. The temperature difference Δ1 can be made very small. That is, the temperature distribution of the battery element 1 is substantially uniform as a whole.

また、従来の電池素子の圧力(拘束力)PCON1に対し、本実施の形態に係る電池素子1の圧力(拘束力)PMAX2、PMIN2の関係が、PCON1≒PMIN2<PMAX2であれば、従来の電池素子の抵抗値RCON1に対し、電池素子1の抵抗値RMAX2、RMIN2の関係が、RCON1≒RMAX2>RMIN2となる。その結果、従来の電池素子の発熱量QCON1に対し、電池素子1の発熱量QMAX2、QMIN2の関係が、QCON1≒QMAX2>QMIN2となる。すなわち、従来の電池素子と比較して、電池素子1の発熱量を全体的に低減することができる。また、最高温度TMAX2<最高温度TMAX1にすることができるので、電池素子1における最高温度を下げることができる。最高温度を下げることは、安全性を担保するために最高温度を基準に電池システムの設計することを考慮すると、冷却機構を削減又は簡略化することができ、コストを低減することも可能になる。   In addition, when the relationship between the pressure (binding force) PMAX2 and PMIN2 of the battery element 1 according to the present embodiment is PCON1≈PMIN2 <PMAX2 with respect to the pressure (binding force) PCON1 of the conventional battery element, the conventional battery The relationship of the resistance values RMAX2 and RMIN2 of the battery element 1 with respect to the resistance value RCON1 of the element is RCON1≈RMAX2> RMIN2. As a result, the relationship between the heat generation amounts QMAX2 and QMIN2 of the battery element 1 with respect to the heat generation amount QCON1 of the conventional battery element is QCON1≈QMAX2> QMIN2. That is, compared with the conventional battery element, the calorific value of the battery element 1 can be reduced as a whole. Further, since the maximum temperature TMAX2 <the maximum temperature TMAX1 can be set, the maximum temperature in the battery element 1 can be lowered. Lowering the maximum temperature can reduce or simplify the cooling mechanism and also reduce the cost, considering the design of the battery system based on the maximum temperature to ensure safety. .

次に、電池素子1の材料について説明する。
正極11、負極12、及び固体電解質層13を構成する材料は、所望の全固体電池を形成可能であれば特に限定されるものではない。以下では、典型例として、全固体リチウム二次電池の正極11、負極12及び固体電解質層13について説明する。
Next, the material of the battery element 1 will be described.
The material which comprises the positive electrode 11, the negative electrode 12, and the solid electrolyte layer 13 will not be specifically limited if a desired all-solid-state battery can be formed. Below, the positive electrode 11, the negative electrode 12, and the solid electrolyte layer 13 of an all-solid-state lithium secondary battery are demonstrated as a typical example.

(正極及び負極)
正極11は、既述のように正極活物質層14と正極集電体16とを備え、更に正極集電体16に接続された正極リード(図示されず)を備えている。負極12は、既述のように負極活物質層15と負極集電体17とを備え、更に負極集電体17に接続された負極リード(図示されず)を備えている。
(Positive electrode and negative electrode)
The positive electrode 11 includes the positive electrode active material layer 14 and the positive electrode current collector 16 as described above, and further includes a positive electrode lead (not shown) connected to the positive electrode current collector 16. The negative electrode 12 includes the negative electrode active material layer 15 and the negative electrode current collector 17 as described above, and further includes a negative electrode lead (not shown) connected to the negative electrode current collector 17.

(正極活物質層)
正極活物質層14は、正極活物質と固体電解質とを含む正極合剤を備えている。
正極活物質としては、Liイオン電池に使用できる活物質であれば特に限定されず、層状、オリビン系、スピネル型の化合物が例示される。具体的には、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、ニッケルマンガンコバルト酸リチウム(LiNi1−y−zCoMn、例えばLiNi1/3Co1/3Mn1/3)、ニッケルコバルト酸リチウム(LiNi1−xCo)、ニッケルマンガン酸リチウム(LiNi1−xMn)、マンガン酸リチウム(LiMn)、リチウムマンガン酸化合物(Li1+xMn2−x−y;M=Al、Mg、Fe、Cr、Co、Ni、Zn)、リン酸金属リチウム(LiMPO、M=Fe、Mn、Co、Ni)、フッ化リン酸金属リチウム(LiMPOF、M=Fe、Mn、Co、Ni)、リン酸金属リチウム(LiMP、M=Fe、Mn、Co、Ni)、チタン酸リチウム(LiTiO)、などが例示される。
(Positive electrode active material layer)
The positive electrode active material layer 14 includes a positive electrode mixture containing a positive electrode active material and a solid electrolyte.
The positive electrode active material is not particularly limited as long as it is an active material that can be used for a Li ion battery, and examples thereof include layered, olivine-based, and spinel type compounds. Specifically, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), lithium nickel manganese cobaltate (LiNi 1-yz Co y Mn z O 2 , such as LiNi 1/3 Co 1/3 Mn 1/3 O 2 ), lithium nickel cobaltate (LiNi 1-x Co x O 2 ), nickel lithium manganate (LiNi 1-x Mn x O 2 ), lithium manganate (LiMn) 2 O 4 ), a lithium manganate compound (Li 1 + x M y Mn 2−xy O 4 ; M = Al, Mg, Fe, Cr, Co, Ni, Zn), lithium metal phosphate (LiMPO 4 , M = Fe, Mn, Co, Ni), lithium metal fluorophosphate (Li 2 MPO 4 F, M = Fe, Mn, Co, Ni ), Lithium metal phosphate (Li 2 MP 2 O 7 , M = Fe, Mn, Co, Ni), lithium titanate (Li x TiO y ), and the like.

正極合剤は、上述の正極活物質と固体電解質、好適には硫化物固体電解質とを含み、他の成分、例えば導電助剤及びバインダーを更に含んでもよい。固体電解質については後述される。導電助剤としては、VGCF(気相成長法炭素繊維、Vapor Grown Carbon Fiber)、カーボンブラック、黒鉛などの炭素材、金属材が例示される。バインダーとしてはポリテトラフロオロエチレン、スチレンブタジエンゴム、ポリフッ化ビニリデンなどが例示される。バインダーの含有量は、バインダーの種類によって異なるが、通常1〜10質量%の範囲である。正極合剤100質量%中の各構成材の割合は、好適には、正極活物質が25〜90質量%の範囲、固体電解質が10〜75質量%の範囲、導電助剤が0〜10質量%の範囲、バインダーが0〜10質量%の範囲である。   The positive electrode mixture includes the positive electrode active material described above and a solid electrolyte, preferably a sulfide solid electrolyte, and may further include other components such as a conductive additive and a binder. The solid electrolyte will be described later. Examples of the conductive assistant include VGCF (vapor grown carbon fiber), carbon black, carbon materials such as graphite, and metal materials. Examples of the binder include polytetrafluoroethylene, styrene butadiene rubber, and polyvinylidene fluoride. Although content of a binder changes with kinds of binder, it is the range of 1-10 mass% normally. The proportion of each constituent material in 100% by mass of the positive electrode mixture is preferably in the range of 25 to 90% by mass of the positive electrode active material, in the range of 10 to 75% by mass of the solid electrolyte, and 0 to 10% of the conductive assistant. %, The binder is in the range of 0 to 10% by mass.

(正極集電体)
正極集電体16は、上記の正極活物質層14の集電を行う機能を有する。正極集電体16の材料としては、アルミニウム、SUS、ニッケル、鉄、チタン等が例示される。また、正極集電体16の形状としては、箔状、板状、メッシュ状等が例示される。
(Positive electrode current collector)
The positive electrode current collector 16 has a function of collecting the positive electrode active material layer 14 described above. Examples of the material of the positive electrode current collector 16 include aluminum, SUS, nickel, iron, and titanium. Examples of the shape of the positive electrode current collector 16 include a foil shape, a plate shape, and a mesh shape.

(負極活物質)
負極活物質としては、Liイオン電池に用い得る活物質であれば特に限定されず、金属、炭素材などが例示される。金属としては、Li、Sn、Si、Al、In、Sbなどの金属、これらのいくつかを組み合わせた合金などが例示される。炭素材としては、少なくとも一部にグラファイト構造(層状構造)を含む炭素材料等、具体的には、天然又は人造のグラファイト、ソフトカーボン、ハードカーボン、低温焼成炭素、又は、これらのうちのいくつかを組み合わせた材料、が例示される。
(Negative electrode active material)
The negative electrode active material is not particularly limited as long as it is an active material that can be used for a Li ion battery, and examples thereof include metals and carbon materials. Examples of the metal include metals such as Li, Sn, Si, Al, In, and Sb, alloys that combine some of these, and the like. As the carbon material, a carbon material including a graphite structure (layered structure) at least partially, specifically, natural or artificial graphite, soft carbon, hard carbon, low-temperature calcined carbon, or some of these The material which combined these is illustrated.

負極合剤は、負極活物質と固体電解質、好適には硫化物固体電解質とを含み、他の成分、例えば導電助剤及びバインダーを更に含んでもよい。固体電解質、導電助剤及びバインダーについては、上述の正極合剤の場合と同様である。   The negative electrode mixture includes a negative electrode active material and a solid electrolyte, preferably a sulfide solid electrolyte, and may further include other components such as a conductive additive and a binder. About a solid electrolyte, a conductive support agent, and a binder, it is the same as that of the case of the above-mentioned positive electrode mixture.

(負極集電体)
負極集電体17は、負極活物質層15の集電を行う機能を有する。負極集電体17の材料としては、正極集電体16の材料に加え、銅を用いることができる。負極集電体17の形状としては、上述した正極集電体16の形状と同様のものを採用することができる。
(Negative electrode current collector)
The negative electrode current collector 17 has a function of collecting the negative electrode active material layer 15. As a material for the negative electrode current collector 17, copper can be used in addition to the material for the positive electrode current collector 16. As the shape of the negative electrode current collector 17, the same shape as that of the positive electrode current collector 16 described above can be adopted.

(固体電解質層)
固体電解質層13の固体電解質としては、特に限定されるものではなく、硫化物や酸化物や窒化物やハロゲン化物のような無機系固体電解質が例示される。また、固体電解質は結晶、非結晶あるいはガラスセラミックのいずれでであってよい。無機系固体電解質としては、LiS−SiS、LiI−LiS−SiS、LiI−LiS−P、LiI−LiS−B、LiPO−LiS−SiS、LiPO−LiS−SiS、LiPO−LiS−SiS、LiI−LiS−P、LiI−LiPO−P、Li11、LiPS、LiS−Pなどの固体硫化物系非晶質電解質粉末が例示される。無機系固体電解質としては、LiO−B−P、LiO−SiO、LiO−B、LiO−B−ZnOなどの固体酸化物系非晶質電解質粉末が例示される。無機系固体電解質としては、LiI、LiI−Al、LiN、LiN−LiI−LiOH、Li1.3Al0.3Ti0.7(PO、Li1+x+yTi2−xSi3−y12(A=Al又はGa、0≦x≦0.4、0<y≦0.6)、[(B1/2Li1/21−z]TiO(B=La、Pr、Nd、Sm、C=Sr又はBa、0≦x≦0.5)、LiLaTa12、LiLaZr12、LiPON、LiBaLaTa12、LiPO(4−3/2w)(w<1)、Li3.6Si0.60.4の結晶質の酸化物粉末やハロゲン化物粉末や窒化物粉末や酸窒化物粉末が例示される。
(Solid electrolyte layer)
The solid electrolyte of the solid electrolyte layer 13 is not particularly limited, and examples thereof include inorganic solid electrolytes such as sulfides, oxides, nitrides, and halides. The solid electrolyte may be crystalline, amorphous or glass ceramic. Examples of inorganic solid electrolytes include Li 2 S—SiS 2 , LiI—Li 2 S—SiS 2 , LiI—Li 2 S—P 2 S 5 , LiI—Li 2 S—B 2 S 3 , Li 3 PO 4 —. Li 2 S-Si 2 S, Li 3 PO 4 -Li 2 S-SiS 2, LiPO 4 -Li 2 S-SiS, LiI-Li 2 S-P 2 O 5, LiI-Li 3 PO 4 -P 2 S 5 , solid sulfide-based amorphous electrolyte powders such as Li 7 P 3 S 11 , Li 3 PS 4 , and Li 2 S—P 2 S 5 are exemplified. Examples of the inorganic solid electrolyte include solids such as Li 2 O—B 2 O 3 —P 2 O 5 , Li 2 O—SiO 2 , Li 2 O—B 2 O 3 , Li 2 O—B 2 O 3 —ZnO. An oxide-based amorphous electrolyte powder is exemplified. The inorganic solid electrolyte, LiI, LiI-Al 2 O 3, Li 3 N, Li 3 N-LiI-LiOH, Li 1.3 Al 0.3 Ti 0.7 (PO 4) 3, Li 1 + x + y A x Ti 2-x Si y P 3-y O 12 (A = Al or Ga, 0 ≦ x ≦ 0.4, 0 <y ≦ 0.6), [(B 1/2 Li 1/2 ) 1-z C z ] TiO 3 (B = La, Pr, Nd, Sm, C = Sr or Ba, 0 ≦ x ≦ 0.5), Li 5 La 3 Ta 2 O 12 , Li 7 La 3 Zr 2 O 12 , LiPON Li 6 BaLa 2 Ta 2 O 12 , Li 3 PO (4-3 / 2w) N w (w <1), Li 3.6 Si 0.6 P 0.4 O 4 crystalline oxide powder, Examples thereof include halide powder, nitride powder, and oxynitride powder.

(その他の構成要素)
その他の構成要素として、セパレータ(図示されず)を全固体リチウム二次電池に用いてもよい。セパレータは、上述した正極集電体16と負極集電体17との間に配置される。セパレータの材料としては、ポリエチレン及びポリプロピレンに例示される。上記セパレータは、単層構造であっても良く、複層構造であっても良い。
(Other components)
As another component, a separator (not shown) may be used for the all-solid lithium secondary battery. The separator is disposed between the positive electrode current collector 16 and the negative electrode current collector 17 described above. Examples of the material for the separator include polyethylene and polypropylene. The separator may have a single layer structure or a multilayer structure.

なお、本実施の形態に係る電池素子1は、上述した全固体リチウム二次電池に必ずしも限定されない。少なくとも正極と、負極と、当該正極と当該負極との間に介在した固体電解質とを備える固体電池単位であれば、本実施の形態に係る電池素子1に含まれる。   Battery element 1 according to the present embodiment is not necessarily limited to the above-described all solid lithium secondary battery. Any solid battery unit that includes at least a positive electrode, a negative electrode, and a solid electrolyte interposed between the positive electrode and the negative electrode is included in battery element 1 according to the present embodiment.

本実施の形態の全固体電池は、電池素子の中央部の発熱量を、外周部の発熱量よりも多くすることで、電池素子の中央部の温度が上昇し過ぎることを抑制することができる。その結果、電池素子の中央部での劣化を抑制することができ、電池素子での最高温度を低減することができる。   The all solid state battery of the present embodiment can suppress the temperature of the central portion of the battery element from excessively rising by making the heat generation amount at the central portion of the battery element larger than the heat generation amount of the outer peripheral portion. . As a result, deterioration at the center of the battery element can be suppressed, and the maximum temperature in the battery element can be reduced.

以下、本発明の実施例を示す。以下の実施例は単に説明するためのものであり、本発明を限定するものではない。
実施例での充放電の動作及び放電時の電池電圧の測定は以下の充放電装置で行った。
充電時の電池電圧の測定装置:東洋システム製TOSCAT−3200
Examples of the present invention will be described below. The following examples are for illustrative purposes only and are not intended to limit the invention.
The charging / discharging operation and the measurement of the battery voltage at the time of discharging were performed by the following charging / discharging device in the examples.
Battery voltage measuring device during charging: TOSCAT-3200 manufactured by Toyo System

(1)固体電解質の合成
LiS(日本化学工業株式会社)0.7656gとP(シグマ−アルドリッチ株式会社)1.2344gとを秤量し、メノウ乳鉢で5分間混合し、その後ヘプタンを4g入れ、遊星型ボールミルを用いて40時間メカニカルミリングすることにより硫化物固体電解質を得た。
(1) Synthesis of solid electrolyte Li 2 S (Nippon Chemical Industry Co., Ltd.) 0.7656 g and P 2 S 5 (Sigma-Aldrich Co.) 1.2344 g are weighed and mixed in an agate mortar for 5 minutes, and then heptane 4 g was added and mechanically milled for 40 hours using a planetary ball mill to obtain a sulfide solid electrolyte.

(2)硫化物固体電池(電池素子)の作製
正極活物質としてのLiNi1/3Co1/3Mn1/3(日亜化学工業株式会社)12.03mg、VGCF(昭和電工株式会社)0.51mg、及び上述の硫化物固体電解質材料5.03mgを秤量し、混合して正極合剤を得た。
負極活物質としてのグラファイト(三菱化学株式会社)9.06mgと上述の硫化物固体電解質8.24mgとを秤量し、混合して負極合剤を得た。
1cmの金型に上述の硫化物固体電解質18mgを投入し、1ton/cmでプレスして固体電解質層を形成し、その片側に上述の正極合剤17.57mgを入れ、1ton/cmでプレスし正極を形成した。その逆側に上述の負極合剤17.3mgを入れ、4ton/cmでプレスし負極を形成した。また、正極集電体として、15μm厚のAl箔(株式会社UACJ製箔)を用い、負極集電体として10μm厚のCu箔(株式会社UACJ製箔)を用いた。
(2) Preparation of sulfide solid state battery (battery element) LiNi 1/3 Co 1/3 Mn 1/3 O 2 (Nichia Corporation) as positive electrode active material 12.03 mg, VGCF (Showa Denko Corporation) ) 0.51 mg and the above-mentioned sulfide solid electrolyte material 5.03 mg were weighed and mixed to obtain a positive electrode mixture.
9.06 mg of graphite (Mitsubishi Chemical Corporation) as a negative electrode active material and 8.24 mg of the above-mentioned sulfide solid electrolyte were weighed and mixed to obtain a negative electrode mixture.
1cm to mold 2 was charged with sulfide solid electrolyte 18mg described above, and pressed at 1 ton / cm 2 to form a solid electrolyte layer, placed above positive electrode mixture 17.57mg one side thereof, 1 ton / cm 2 To form a positive electrode. On the opposite side, 17.3 mg of the negative electrode mixture described above was put and pressed at 4 ton / cm 2 to form a negative electrode. Moreover, 15-micrometer-thick Al foil (made by UACJ Co., Ltd.) was used as a positive electrode collector, and 10-micrometer-thick Cu foil (made by UACJ Co., Ltd.) was used as a negative electrode collector.

(3)電池評価
得られた硫化物固体電池(電池素子1)を2枚の拘束板の間に挟み、正極と固体電解質層と負極とを含む積層体の積層面に垂直方向に拘束板を介して拘束力を印加した。そして、拘束力を1MPa〜45MPaまで変化させて、硫化物固体電池を0.3mAで3.6Vまで充電し、3Cの電流Iで放電したとき、放電開始から5秒後の電圧降下Vを用いて、R=V/Iの式によりIV抵抗Rを求めた。
(3) Battery evaluation The obtained sulfide solid state battery (battery element 1) is sandwiched between two constraining plates, and the constraining plate is interposed in a direction perpendicular to the laminate surface of the laminate including the positive electrode, the solid electrolyte layer, and the negative electrode. A restraining force was applied. Then, when the binding force is changed from 1 MPa to 45 MPa, the sulfide solid state battery is charged to 0.3 V at 0.3 mA and discharged at a current I 0 of 3 C, and the voltage drop V 0 after 5 seconds from the start of discharge. Was used to determine the IV resistance R 0 according to the formula R 0 = V 0 / I 0 .

(4)評価結果
図8は、実施例における拘束力と電池抵抗との関係を示すグラフである。横軸は拘束力(拘束荷重)、すなわち電池素子1の中央部に印加される圧力を示し、縦軸は電池抵抗(IV抵抗R)を示す。図8に示すように、拘束力の増加と共に電池抵抗は減少することが見出された。特に、拘束力を15MPa以上にすると、拘束力が15MPa未満のときと比較して、電池抵抗は約10%低減されることが判明した。ここで、上述のQ=RIt、に示す関係から、電流(密度)が一定であれば、IV抵抗を10%低減できれば、発熱量も10%低減することができる。したがって、例えば、図1のような拘束部材2を備える全固体電池Aにおいて、中央部の拘束力を15MPa以上、例えば15MPaとし、外周部の拘束力を15MPa未満、例えば1MPaとすることにより、中央部の電池抵抗が外周部の電池抵抗よりも約10%低下するので、中央部の発熱量を外周部の発熱量よりも約10%低減することができる。その結果、放熱性の低い電池素子1の中央部では温度上昇が低く抑えられる。加えて、放熱性の高い外周部では熱が放散されて温度上昇が抑えられるので、電池素子1全体の温度上昇を抑えることができる。
(4) Evaluation Results FIG. 8 is a graph showing the relationship between binding force and battery resistance in the examples. The horizontal axis represents restraining force (restraining load), that is, the pressure applied to the central portion of the battery element 1, and the vertical axis represents battery resistance (IV resistance R 0 ). As shown in FIG. 8, it was found that the battery resistance decreases with increasing binding force. In particular, it was found that when the restraining force is 15 MPa or more, the battery resistance is reduced by about 10% compared to when the restraining force is less than 15 MPa. Here, from the relationship shown in the above Q = RI 2 t, if the current (density) is constant, if the IV resistance can be reduced by 10%, the heat generation amount can also be reduced by 10%. Therefore, for example, in the all-solid-state battery A including the restraining member 2 as shown in FIG. 1, the restraining force at the central portion is 15 MPa or more, for example, 15 MPa, and the restraining force at the outer peripheral portion is less than 15 MPa, for example, 1 MPa. Since the battery resistance of the portion is lower by about 10% than the battery resistance of the outer peripheral portion, the calorific value of the central portion can be reduced by about 10% than the calorific value of the outer peripheral portion. As a result, the temperature rise is suppressed to a low level at the center of the battery element 1 having low heat dissipation. In addition, since heat is dissipated at the outer peripheral portion having high heat dissipation and the temperature rise is suppressed, the temperature rise of the entire battery element 1 can be suppressed.

1 電池素子
2 後続部材
11 正極
12 負極
13 固体電解質層
14 正極活物質層
15 負極活物質層
16 正極集電体
17 負極集電体
21 連結棒
22、23、24 拘束板
24a 板部分
24b 突き出し部分
25、26、27 ナット
30 要素
31 中央部
31a 中心
32 外周部
A 全固体電池
L1 縦方向長さ
L2 横方向長さ
DESCRIPTION OF SYMBOLS 1 Battery element 2 Subsequent member 11 Positive electrode 12 Negative electrode 13 Solid electrolyte layer 14 Positive electrode active material layer 15 Negative electrode active material layer 16 Positive electrode collector 17 Negative electrode collector 21 Connecting rod 22, 23, 24 Constraining plate 24a Plate part 24b Protrusion part 25, 26, 27 Nut 30 Element 31 Center part 31a Center 32 Outer part A All solid state battery L1 Vertical length L2 Horizontal length

Claims (2)

正極と、負極と、前記正極と前記負極との間に配置された固体電解質層と、を含む電池素子を備える全固体電池であって、
充放電時における前記電池素子の中央部での発熱量が前記電池素子の外周部での発熱量よりも小さくなるように構成された、
全固体電池。
An all-solid battery comprising a battery element comprising a positive electrode, a negative electrode, and a solid electrolyte layer disposed between the positive electrode and the negative electrode,
The amount of heat generated at the center of the battery element during charging and discharging is configured to be smaller than the amount of heat generated at the outer periphery of the battery element.
All solid battery.
前記正極と前記固体電解質層と前記負極とを含む積層体の積層面に垂直方向に、前記電池素子の正極側及び負極側から積層体に圧力を印加する拘束部材を更に備え、
前記拘束部材は、前記中央部に印加する圧力が前記外周部に印加する圧力よりも高くなるように構成された、
請求項1に記載の全固体電池。
A restraining member that applies pressure to the laminate from the positive electrode side and the negative electrode side of the battery element in a direction perpendicular to a laminate surface of the laminate including the positive electrode, the solid electrolyte layer, and the negative electrode;
The constraining member is configured such that a pressure applied to the central portion is higher than a pressure applied to the outer peripheral portion,
The all-solid-state battery according to claim 1.
JP2014141402A 2014-07-09 2014-07-09 All solid battery Pending JP2016018704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014141402A JP2016018704A (en) 2014-07-09 2014-07-09 All solid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014141402A JP2016018704A (en) 2014-07-09 2014-07-09 All solid battery

Publications (1)

Publication Number Publication Date
JP2016018704A true JP2016018704A (en) 2016-02-01

Family

ID=55233785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014141402A Pending JP2016018704A (en) 2014-07-09 2014-07-09 All solid battery

Country Status (1)

Country Link
JP (1) JP2016018704A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018014286A (en) * 2016-07-22 2018-01-25 トヨタ自動車株式会社 All solid battery
EP3435467A1 (en) * 2017-07-25 2019-01-30 Panasonic Intellectual Property Management Co., Ltd. Battery
DE102018221292A1 (en) 2017-12-14 2019-06-19 Toyota Jidosha Kabushiki Kaisha Control device and battery system
KR20190089071A (en) * 2016-12-16 2019-07-29 히다치 조센 가부시키가이샤 All solid secondary battery and manufacturing method thereof
KR20190106692A (en) * 2018-03-06 2019-09-18 도요타 지도샤(주) Method for testing all solid state battery, method for producing all solid state battery, and method for producing battery pack
WO2020137006A1 (en) * 2018-12-28 2020-07-02 パナソニックIpマネジメント株式会社 Battery
WO2020137005A1 (en) * 2018-12-28 2020-07-02 パナソニックIpマネジメント株式会社 Battery
US10753978B2 (en) 2018-04-27 2020-08-25 Toyota Jidosha Kabushiki Kaisha Method for testing all solid state battery, method for producing all solid state battery, and method for producing battery pack
CN111864252A (en) * 2019-04-29 2020-10-30 中国科学院苏州纳米技术与纳米仿生研究所 Secondary battery device
US10985413B2 (en) 2018-03-06 2021-04-20 Toyota Jidosha Kabushiki Kaisha Method for testing all solid state battery, method for producing all solid state battery, and method for producing battery pack
CN112840413A (en) * 2018-12-28 2021-05-25 松下知识产权经营株式会社 Solid electrolyte material and battery using same
JP2021150126A (en) * 2020-03-18 2021-09-27 トヨタ自動車株式会社 All-solid battery, method for manufacturing battery element, and method for manufacturing all-solid battery
US11271243B2 (en) 2017-12-18 2022-03-08 Samsung Electronics Co., Ltd. All-solid secondary battery
WO2022131301A1 (en) * 2020-12-15 2022-06-23 トヨタ自動車株式会社 Solid battery and manufacturing method for solid battery

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018014286A (en) * 2016-07-22 2018-01-25 トヨタ自動車株式会社 All solid battery
KR20190089071A (en) * 2016-12-16 2019-07-29 히다치 조센 가부시키가이샤 All solid secondary battery and manufacturing method thereof
KR102508381B1 (en) * 2016-12-16 2023-03-08 히다치 조센 가부시키가이샤 All-solid-state secondary battery and its manufacturing method
US11784353B2 (en) 2016-12-16 2023-10-10 Hitachi Zosen Corporation All-solid state secondary cell and production method for the same
EP3435467A1 (en) * 2017-07-25 2019-01-30 Panasonic Intellectual Property Management Co., Ltd. Battery
KR20190071625A (en) 2017-12-14 2019-06-24 도요타 지도샤(주) Control apparatus and battery system
US20190190066A1 (en) * 2017-12-14 2019-06-20 Toyota Jidosha Kabushiki Kaisha Control apparatus and battery system
JP2019106336A (en) * 2017-12-14 2019-06-27 トヨタ自動車株式会社 Control device and battery system
US11316192B2 (en) 2017-12-14 2022-04-26 Toyota Jidosha Kabushiki Kaisha Control apparatus and battery system
DE102018221292B4 (en) * 2017-12-14 2025-07-24 Toyota Jidosha Kabushiki Kaisha Battery system
CN109962301B (en) * 2017-12-14 2022-07-01 丰田自动车株式会社 Control device and battery system
DE102018221292A1 (en) 2017-12-14 2019-06-19 Toyota Jidosha Kabushiki Kaisha Control device and battery system
CN109962301A (en) * 2017-12-14 2019-07-02 丰田自动车株式会社 Control gear and battery system
KR102169103B1 (en) * 2017-12-14 2020-10-30 도요타 지도샤(주) Control apparatus and battery system
US11271243B2 (en) 2017-12-18 2022-03-08 Samsung Electronics Co., Ltd. All-solid secondary battery
KR102224752B1 (en) * 2018-03-06 2021-03-08 도요타 지도샤(주) Method for testing all solid state battery, method for producing all solid state battery, and method for producing battery pack
US10985413B2 (en) 2018-03-06 2021-04-20 Toyota Jidosha Kabushiki Kaisha Method for testing all solid state battery, method for producing all solid state battery, and method for producing battery pack
KR20190106692A (en) * 2018-03-06 2019-09-18 도요타 지도샤(주) Method for testing all solid state battery, method for producing all solid state battery, and method for producing battery pack
US10753978B2 (en) 2018-04-27 2020-08-25 Toyota Jidosha Kabushiki Kaisha Method for testing all solid state battery, method for producing all solid state battery, and method for producing battery pack
CN112840413A (en) * 2018-12-28 2021-05-25 松下知识产权经营株式会社 Solid electrolyte material and battery using same
CN112868124A (en) * 2018-12-28 2021-05-28 松下知识产权经营株式会社 Battery with a battery cell
JPWO2020137006A1 (en) * 2018-12-28 2021-11-25 パナソニックIpマネジメント株式会社 battery
WO2020137006A1 (en) * 2018-12-28 2020-07-02 パナソニックIpマネジメント株式会社 Battery
US20210296694A1 (en) * 2018-12-28 2021-09-23 Panasonic Intellectual Property Management Co., Ltd. Battery
US12155034B2 (en) * 2018-12-28 2024-11-26 Panasonic Intellectual Property Management Co., Ltd. Battery
CN112840413B (en) * 2018-12-28 2024-04-26 松下知识产权经营株式会社 Solid electrolyte material and battery using the same
JPWO2020137005A1 (en) * 2018-12-28 2021-11-25 パナソニックIpマネジメント株式会社 battery
CN112868124B (en) * 2018-12-28 2024-04-19 松下知识产权经营株式会社 Battery cell
WO2020137005A1 (en) * 2018-12-28 2020-07-02 パナソニックIpマネジメント株式会社 Battery
CN111864252A (en) * 2019-04-29 2020-10-30 中国科学院苏州纳米技术与纳米仿生研究所 Secondary battery device
JP2021150126A (en) * 2020-03-18 2021-09-27 トヨタ自動車株式会社 All-solid battery, method for manufacturing battery element, and method for manufacturing all-solid battery
JPWO2022131301A1 (en) * 2020-12-15 2022-06-23
JP7578722B2 (en) 2020-12-15 2024-11-06 トヨタ自動車株式会社 Solid-state battery and method for manufacturing the same
WO2022131301A1 (en) * 2020-12-15 2022-06-23 トヨタ自動車株式会社 Solid battery and manufacturing method for solid battery

Similar Documents

Publication Publication Date Title
JP2016018704A (en) All solid battery
CN102468476B (en) All-solid battery
JP5333184B2 (en) All solid state secondary battery
JP5902287B2 (en) Lithium ion conductive sulfide, solid electrolyte secondary battery and battery pack
JP6856042B2 (en) All solid state battery
CN110021783B (en) All-solid-state battery
KR20150031288A (en) All-solid-state battery
US9564655B2 (en) Manufacturing method of all-solid battery
US11489238B2 (en) Stacked battery
JP2020021551A (en) All-solid battery and manufacturing method thereof
KR20150098573A (en) Method of producing solid state lithium battery module
US11888158B2 (en) Battery
JP2021177448A (en) All-solid-state secondary battery
JP2016207614A (en) Solid battery
US20140370379A1 (en) Secondary battery and manufacturing method thereof
CN105374994B (en) All-solid-state battery system
JP2015018670A (en) Bipolar battery
JP7025714B2 (en) All solid state battery
JP2024516983A (en) Lithium secondary battery with easy state estimation
JP7223279B2 (en) All-solid battery
JP6973310B2 (en) All solid state battery
JPWO2012157120A1 (en) Sulfide-based solid battery module
JP2017111890A (en) Composite electrolyte for lithium ion secondary battery
JP2015090791A (en) Bipolar battery
JP7666403B2 (en) battery