JP2015229743A - Infrared absorption resin composition and lens - Google Patents
Infrared absorption resin composition and lens Download PDFInfo
- Publication number
- JP2015229743A JP2015229743A JP2014117456A JP2014117456A JP2015229743A JP 2015229743 A JP2015229743 A JP 2015229743A JP 2014117456 A JP2014117456 A JP 2014117456A JP 2014117456 A JP2014117456 A JP 2014117456A JP 2015229743 A JP2015229743 A JP 2015229743A
- Authority
- JP
- Japan
- Prior art keywords
- infrared
- resin composition
- copper
- infrared absorbing
- absorbing resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011342 resin composition Substances 0.000 title claims abstract description 37
- 238000010521 absorption reaction Methods 0.000 title claims abstract description 29
- 239000000126 substance Substances 0.000 claims abstract description 19
- 229920005989 resin Polymers 0.000 claims abstract description 18
- 239000011347 resin Substances 0.000 claims abstract description 18
- 239000002253 acid Substances 0.000 claims abstract description 17
- 150000001875 compounds Chemical class 0.000 claims abstract description 17
- 239000003381 stabilizer Substances 0.000 claims abstract description 16
- 238000010494 dissociation reaction Methods 0.000 claims abstract description 15
- 230000005593 dissociations Effects 0.000 claims abstract description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 11
- -1 copper phosphate compound Chemical class 0.000 claims description 38
- 239000011358 absorbing material Substances 0.000 claims description 23
- 230000002378 acidificating effect Effects 0.000 claims description 16
- 125000004432 carbon atom Chemical group C* 0.000 claims description 9
- 230000008033 biological extinction Effects 0.000 claims description 5
- PEVJCYPAFCUXEZ-UHFFFAOYSA-J dicopper;phosphonato phosphate Chemical compound [Cu+2].[Cu+2].[O-]P([O-])(=O)OP([O-])([O-])=O PEVJCYPAFCUXEZ-UHFFFAOYSA-J 0.000 claims description 5
- 239000006096 absorbing agent Substances 0.000 claims description 4
- 125000003118 aryl group Chemical group 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- 125000003342 alkenyl group Chemical group 0.000 claims description 3
- 125000003545 alkoxy group Chemical group 0.000 claims description 3
- 125000000217 alkyl group Chemical group 0.000 claims description 3
- 125000004104 aryloxy group Chemical group 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- 239000000463 material Substances 0.000 abstract description 7
- 230000007613 environmental effect Effects 0.000 abstract description 3
- RRJHFUHAKCSNRY-UHFFFAOYSA-L [Cu+2].[O-]P([O-])=O Chemical class [Cu+2].[O-]P([O-])=O RRJHFUHAKCSNRY-UHFFFAOYSA-L 0.000 abstract description 2
- RAOSIAYCXKBGFE-UHFFFAOYSA-K [Cu+3].[O-]P([O-])([O-])=O Chemical class [Cu+3].[O-]P([O-])([O-])=O RAOSIAYCXKBGFE-UHFFFAOYSA-K 0.000 abstract description 2
- 230000006866 deterioration Effects 0.000 abstract 1
- 238000002835 absorbance Methods 0.000 description 13
- 238000002834 transmittance Methods 0.000 description 9
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 8
- 229910001431 copper ion Inorganic materials 0.000 description 8
- 239000007822 coupling agent Substances 0.000 description 8
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 8
- 239000000203 mixture Substances 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 7
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 238000003384 imaging method Methods 0.000 description 6
- 230000003595 spectral effect Effects 0.000 description 6
- 239000002245 particle Substances 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 4
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 4
- 239000005711 Benzoic acid Substances 0.000 description 3
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical group OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 3
- 235000010233 benzoic acid Nutrition 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 150000001925 cycloalkenes Chemical class 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- OKJIRPAQVSHGFK-UHFFFAOYSA-N N-acetylglycine Chemical compound CC(=O)NCC(O)=O OKJIRPAQVSHGFK-UHFFFAOYSA-N 0.000 description 2
- 239000006087 Silane Coupling Agent Substances 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 2
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 2
- 229960004889 salicylic acid Drugs 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- QBYIENPQHBMVBV-HFEGYEGKSA-N (2R)-2-hydroxy-2-phenylacetic acid Chemical compound O[C@@H](C(O)=O)c1ccccc1.O[C@@H](C(O)=O)c1ccccc1 QBYIENPQHBMVBV-HFEGYEGKSA-N 0.000 description 1
- 125000006701 (C1-C7) alkyl group Chemical group 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- KBJUTLZPKJLJGO-UHFFFAOYSA-L CCCCC(CC)CP(=O)([O-])[O-].[Cu+2] Chemical compound CCCCC(CC)CP(=O)([O-])[O-].[Cu+2] KBJUTLZPKJLJGO-UHFFFAOYSA-L 0.000 description 1
- ZWKRSEKKHAMQTA-UHFFFAOYSA-L CCCCCCCCOP(=O)([O-])[O-].[Cu+2] Chemical compound CCCCCCCCOP(=O)([O-])[O-].[Cu+2] ZWKRSEKKHAMQTA-UHFFFAOYSA-L 0.000 description 1
- IEUJDNGKRQQKJG-UHFFFAOYSA-L CCOP(=O)([O-])[O-].[Cu+2] Chemical compound CCOP(=O)([O-])[O-].[Cu+2] IEUJDNGKRQQKJG-UHFFFAOYSA-L 0.000 description 1
- 239000005635 Caprylic acid (CAS 124-07-2) Substances 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- APVWXKUNYQOLJE-UHFFFAOYSA-K P(=O)([O-])([O-])[O-].C(C)C(C[Cu+3])CCCC Chemical compound P(=O)([O-])([O-])[O-].C(C)C(C[Cu+3])CCCC APVWXKUNYQOLJE-UHFFFAOYSA-K 0.000 description 1
- IWYDHOAUDWTVEP-UHFFFAOYSA-N R-2-phenyl-2-hydroxyacetic acid Natural products OC(=O)C(O)C1=CC=CC=C1 IWYDHOAUDWTVEP-UHFFFAOYSA-N 0.000 description 1
- UKWCXEISCOJBSX-UHFFFAOYSA-L [Cu+2].P(=O)(OCCCC)([O-])[O-] Chemical compound [Cu+2].P(=O)(OCCCC)([O-])[O-] UKWCXEISCOJBSX-UHFFFAOYSA-L 0.000 description 1
- WJACFUFYDDXRAM-UHFFFAOYSA-N [Cu].OP(O)=O Chemical class [Cu].OP(O)=O WJACFUFYDDXRAM-UHFFFAOYSA-N 0.000 description 1
- 230000032900 absorption of visible light Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 125000005600 alkyl phosphonate group Chemical group 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- QHIWVLPBUQWDMQ-UHFFFAOYSA-N butyl prop-2-enoate;methyl 2-methylprop-2-enoate;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(=O)C(C)=C.CCCCOC(=O)C=C QHIWVLPBUQWDMQ-UHFFFAOYSA-N 0.000 description 1
- GYNFSAFNKRSLDD-UHFFFAOYSA-N butylphosphonic acid copper Chemical compound [Cu].CCCCP(O)(O)=O GYNFSAFNKRSLDD-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- OXILUCYIIWYNJD-UHFFFAOYSA-L copper 2-ethylhexyl phosphate Chemical compound [Cu+2].P(=O)(OCC(CCCC)CC)([O-])[O-] OXILUCYIIWYNJD-UHFFFAOYSA-L 0.000 description 1
- BMBHXJHGUQJBFX-UHFFFAOYSA-L copper ethyl-dioxido-oxo-lambda5-phosphane Chemical compound C(C)P([O-])([O-])=O.[Cu+2] BMBHXJHGUQJBFX-UHFFFAOYSA-L 0.000 description 1
- WQLXSRSLLUGMSX-UHFFFAOYSA-L copper;methyl-dioxido-oxo-$l^{5}-phosphane Chemical compound [Cu+2].CP([O-])([O-])=O WQLXSRSLLUGMSX-UHFFFAOYSA-L 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- UKFXDFUAPNAMPJ-UHFFFAOYSA-N ethylmalonic acid Chemical compound CCC(C(O)=O)C(O)=O UKFXDFUAPNAMPJ-UHFFFAOYSA-N 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 229960002510 mandelic acid Drugs 0.000 description 1
- NZRFSLMXTFGVGZ-UHFFFAOYSA-N n-[diethylamino(prop-2-enoxy)phosphoryl]-n-ethylethanamine Chemical compound CCN(CC)P(=O)(N(CC)CC)OCC=C NZRFSLMXTFGVGZ-UHFFFAOYSA-N 0.000 description 1
- 229960002446 octanoic acid Drugs 0.000 description 1
- 239000012788 optical film Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- RAMSRYWGPXAJQT-UHFFFAOYSA-N phenyl dihydrogen phosphate;phosphoric acid Chemical compound OP(O)(O)=O.OP(O)(=O)OC1=CC=CC=C1 RAMSRYWGPXAJQT-UHFFFAOYSA-N 0.000 description 1
- 150000003009 phosphonic acids Chemical class 0.000 description 1
- OXNIZHLAWKMVMX-UHFFFAOYSA-N picric acid Chemical compound OC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O OXNIZHLAWKMVMX-UHFFFAOYSA-N 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 150000007519 polyprotic acids Polymers 0.000 description 1
- DZMOLBFHXFZZBF-UHFFFAOYSA-N prop-2-enyl dihydrogen phosphate Chemical compound OP(O)(=O)OCC=C DZMOLBFHXFZZBF-UHFFFAOYSA-N 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Optical Elements Other Than Lenses (AREA)
- Optical Filters (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は、樹脂中に銅リン酸化合物が含有されてなる赤外線吸収樹脂組成物およびこの赤外線吸収樹脂組成物よりなるレンズに関するものである。 The present invention relates to an infrared absorbing resin composition in which a copper phosphate compound is contained in a resin and a lens made of the infrared absorbing resin composition.
例えば携帯電話に搭載されるカメラの一例における構成を図2に示す。このカメラ1は、光軸AXに沿って互いに離間して並ぶよう配置された複数(図示の例では5つ)のレンズL1〜L5よりなる撮像レンズ系2と、被写体からの光を撮像レンズ系2を介して受光する受光部3とを有する。撮像レンズ系2と受光部3との間には、近赤外線領域の光を吸収する赤外線カットフィルタ5が設けられている。このようなカメラ1において、撮像レンズ系2を構成するレンズL1〜L5や、赤外線カットフィルタ5としては、軽量化の観点から、樹脂材料よりなるものが用いられている。また、最近においては、カメラ1の小型・軽量化の要請から、赤外線カットフィルタ5を用いる代わりに、撮像レンズ系2を構成するレンズとして、近赤外線領域の光を吸収する赤外線吸収樹脂組成物よりなるものを用いることが検討されている。
従来、光学素子に用いられる赤外線吸収樹脂組成物としては、銅リン酸化合物が含有されてなるものが知られている(特許文献1参照。)。この銅リン酸化合物は、2価の銅イオンにリン酸基が配位した構造を有し、銅イオンとリン酸基との相互作用によって、近赤外線を吸収するものである。
For example, FIG. 2 shows a configuration of an example of a camera mounted on a mobile phone. The
Conventionally, as an infrared absorbing resin composition used for an optical element, a composition containing a copper phosphate compound is known (see Patent Document 1). This copper phosphate compound has a structure in which a phosphate group is coordinated to a divalent copper ion, and absorbs near infrared rays by the interaction between the copper ion and the phosphate group.
しかしながら、このような赤外線吸収樹脂組成物においては、高温高湿環境下に長時間曝されると、赤外線吸収能が低下すると共に、可視光線の透過性が低下する、という問題があることが判明した。このような現象は、以下のような原因により生ずるものと推測される。
銅リン酸化合物が高温高湿環境下に長時間曝されると、当該銅リン酸化合物において、配位子であるリン酸基が銅イオンから解離する。そのため、銅イオンとリン酸基との相互作用が小さくなる結果、赤外線吸収能が低下する。また、リン酸基が銅イオンから解離することによって生成された物質によって、可視光線が吸収される結果、可視光線透過性が低下する。
However, it has been found that such an infrared absorbing resin composition has a problem that when it is exposed to a high temperature and high humidity environment for a long time, the infrared absorbing ability is lowered and the transmittance of visible light is lowered. did. Such a phenomenon is presumed to be caused by the following causes.
When a copper phosphate compound is exposed to a high-temperature and high-humidity environment for a long time, in the copper phosphate compound, a phosphate group that is a ligand is dissociated from a copper ion. As a result, the interaction between the copper ion and the phosphate group is reduced, and as a result, the infrared absorption ability is reduced. In addition, visible light is reduced as a result of absorption of visible light by a substance generated by dissociation of a phosphate group from copper ions.
そこで、本発明の目的は、高温高湿環境下に長時間曝された場合であっても、赤外線吸収能の低下および可視光線透過性の低下が抑制され、赤外線吸収能について優れた環境安定性が得られる赤外線吸収樹脂組成物およびこの赤外線吸収樹脂組成物よりなるレンズを提供することにある。 Therefore, the object of the present invention is to suppress the decrease in infrared absorption ability and the decrease in visible light transmittance even when exposed to a high temperature and high humidity environment for a long period of time. Is to provide an infrared-absorbing resin composition and a lens comprising the infrared-absorbing resin composition.
本発明の赤外線吸収樹脂組成物は、700〜850nmの波長域に極大吸収波長λmax を有し、当該極大吸収波長λmax の光のモル吸光係数εが15以上である銅リン酸化合物および銅ホスホン酸化合物から選ばれた少なくとも1種の化合物よりなる赤外線吸収材と、
水中の酸解離定数pKaが2〜7である化合物から選ばれた少なくとも1種の酸性を示す物質よりなる安定剤と、
樹脂と
を含有してなることを特徴とする。
Infrared-absorbing resin composition of the present invention has a maximum absorption wavelength lambda max in a wavelength range of 700 to 850, copper phosphate compound molar absorption coefficient of light of the maximum absorption wavelength lambda max epsilon is 15 or more and copper An infrared absorber comprising at least one compound selected from phosphonic acid compounds;
A stabilizer comprising at least one acidic substance selected from compounds having an acid dissociation constant pKa of 2 to 7 in water;
It is characterized by containing resin.
本発明の赤外線吸収樹脂組成物においては、前記酸性を示す物質が常温で固体であることが好ましい。
また、前記安定剤の含有割合が0.1〜10質量%であることが好ましい。
また、前記赤外線吸収材の含有割合が1〜30質量%であることが好ましい。
また、前記赤外線吸収材は、ピロリン酸銅および下記一般式(1)で表される化合物から選ばれた少なくとも1種の化合物よりなることが好ましい。
In the infrared ray absorbing resin composition of the present invention, it is preferable that the acidic substance is solid at room temperature.
Moreover, it is preferable that the content rate of the said stabilizer is 0.1-10 mass%.
Moreover, it is preferable that the content rate of the said infrared absorber is 1-30 mass%.
The infrared absorbing material is preferably made of at least one compound selected from copper pyrophosphate and a compound represented by the following general formula (1).
[一般式(1)において、R1 およびR2 は、炭素数が1〜10のアルキル基、炭素数が1〜10のアルケニル基、アリール基、炭素数が1〜10のアルコキシ基、炭素数が1〜10のアルケノキシ基、またはアリーロキシ基を示す。] [In General Formula (1), R 1 and R 2 are each an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 1 to 10 carbon atoms, an aryl group, an alkoxy group having 1 to 10 carbon atoms, or a carbon number. Represents an alkenoxy group having 1 to 10 or an aryloxy group. ]
本発明のレンズは、上記の赤外線吸収樹脂組成物よりなることを特徴とする。 The lens of the present invention is characterized by comprising the above infrared absorbing resin composition.
本発明によれば、水中の酸解離定数pKaが特定の範囲にある酸性を示す物質よりなる安定剤が含有されているため、高温高湿環境下に長時間曝されても、赤外線吸収能の低下および可視光線透過性の低下が抑制され、従って、赤外線吸収能について優れた環境安定性が得られる。 According to the present invention, since the acid dissociation constant pKa in water contains a stabilizer having an acidity in a specific range, even when exposed to a high-temperature and high-humidity environment for a long time, it has infrared absorption ability. The decrease in the visible light transmittance and the decrease in the visible light transmittance are suppressed, and therefore, excellent environmental stability with respect to the infrared absorption ability is obtained.
以下、本発明の実施の形態について詳細に説明する。
本発明に係る赤外線吸収樹脂組成物は、銅リン酸化合物または銅ホスホン酸化合物よりなる赤外線吸収材と、酸性を示す物質(以下、「酸性物質」ともいう。)よりなる安定剤と樹脂とを含有してなるものである。
Hereinafter, embodiments of the present invention will be described in detail.
The infrared absorbing resin composition according to the present invention comprises an infrared absorbing material comprising a copper phosphate compound or a copper phosphonic acid compound, a stabilizer comprising an acidic substance (hereinafter also referred to as “acidic substance”), and a resin. It contains.
[赤外線吸収材]
赤外線吸収材を構成する銅リン酸化合物および銅ホスホン酸化合物としては、700〜850nmの範囲に極大吸収波長λmax を有し、当該極大吸収波長λmax の光のモル吸光係数εが15以上、好ましくは20以上のものが用いられる。モル吸光係数εが15未満の化合物を用いる場合には、高い赤外線吸収能を得ることが困難となる。
[Infrared absorbing material]
The copper phosphate compound and the copper phosphonic acid compound constituting the infrared absorbing material have a maximum absorption wavelength λ max in the range of 700 to 850 nm, and the molar absorption coefficient ε of light having the maximum absorption wavelength λ max is 15 or more, Preferably, 20 or more are used. When a compound having a molar extinction coefficient ε of less than 15 is used, it is difficult to obtain high infrared absorption ability.
このような赤外線吸収材としては、ピロリン酸銅および上記一般式(1)で表される化合物から選ばれた少なくとも1種の化合物よりなるものを用いることが好ましい。
上記一般式(1)において、R1 およびR2 は、炭素数が1〜10のアルキル基、炭素数が1〜10のアルケニル基、またはアリール基、炭素数が1〜10のアルコシキ基、炭素数が1〜10のアルケノキシ基、またはアリーロキシ基である。これらの中では、炭素数が1〜7のアルキル基が好ましい。
As such an infrared absorbing material, it is preferable to use a material comprising at least one compound selected from copper pyrophosphate and a compound represented by the above general formula (1).
In the general formula (1), R 1 and R 2 are each an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 1 to 10 carbon atoms, or an aryl group, an alkoxy group having 1 to 10 carbon atoms, carbon It is an alkenoxy group having 1 to 10 or an aryloxy group. In these, a C1-C7 alkyl group is preferable.
上記一般式(1)で表される化合物の具体例としては、メチルリン酸銅、2−エチルヘキシルリン酸銅、エチルリン酸銅、ブチルリン酸銅、ヘキシルリン酸銅、ヘプチルリン酸銅、オクチルリン酸銅等のアルキルリン酸銅、アリルリン酸銅等のアルケニルリン酸銅、フェニルリン酸銅等のアリールリン酸銅などのリン酸銅化合物、メチルホスホン酸銅、2−エチルヘキシルホスホン酸銅、エチルホスホン酸銅、ブチルホスホン酸銅、ヘキシルホスホン酸銅、ヘプチルホスホン酸銅、オクチルホスホン酸銅等のアルキルホスホン酸銅、アリルホスホン酸銅等のアルケニルホスホン酸銅、フェニルホスホン酸銅等のアリールホスホン酸銅などのホスホン酸銅化合物が挙げられる。
これらの銅リン酸化合物および銅ホスホン酸化合物は、1種単独でまたは2種以上を組み合わせて赤外線吸収材として用いることができる。
Specific examples of the compound represented by the above general formula (1) include methyl copper phosphate, copper 2-ethylhexyl phosphate, copper ethyl phosphate, copper butyl phosphate, copper hexyl phosphate, copper heptyl phosphate, and copper octyl phosphate. Alkyl phosphate copper, alkenyl phosphate copper such as allyl phosphate copper, copper phosphate compound such as aryl phosphate copper such as phenyl phosphate phosphate, copper methylphosphonate, copper 2-ethylhexylphosphonate, copper ethylphosphonate, butylphosphonic acid Copper, hexyl phosphonate copper, heptyl phosphonate copper, octyl phosphonate copper and other alkyl phosphonate copper, allyl phosphonate copper and other alkenyl phosphonate copper, phenyl phosphonate copper and other phosphonate copper compounds such as aryl phosphonate copper Is mentioned.
These copper phosphate compounds and copper phosphonic acid compounds can be used alone or in combination of two or more as an infrared absorber.
赤外線吸収材としては、通常、粉体状のものが用いられる。赤外線吸収材の平均粒径は、1μm以下であることが好ましく、より好ましくは0.01〜0.5μmである。この平均粒径が過大である場合には、得られる赤外線吸収樹脂組成物の透明性が低くなる。
また、赤外線吸収材は、分散性の向上を図ること目的として、シラン系カップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤カップリング剤、ジルコアルミネート系カップリング剤などのカップリング剤によって表面処理されたものであってもよい。
As the infrared absorbing material, a powdery material is usually used. The average particle diameter of the infrared absorbing material is preferably 1 μm or less, more preferably 0.01 to 0.5 μm. When this average particle diameter is excessively large, the transparency of the obtained infrared absorbing resin composition becomes low.
In addition, for the purpose of improving the dispersibility, the infrared absorbing material has a coupling agent such as a silane coupling agent, a titanate coupling agent, an aluminum coupling agent coupling agent, or a zircoaluminate coupling agent. The surface may be subjected to surface treatment.
赤外線吸収樹脂組成物全体における赤外線吸収材の含有割合は、1〜30質量%であることが好ましく、より好ましくは5〜25質量%である。赤外線吸収材の含有割合が過小である場合には、所要の赤外線吸収能を得ることが困難となる。一方、赤外線吸収材の含有割合が過大である場合には、赤外線吸収のピークがブロードになって可視光線の波長域の光も吸収してしまうため。光透過率が低下する。 The content ratio of the infrared absorbing material in the entire infrared absorbing resin composition is preferably 1 to 30% by mass, and more preferably 5 to 25% by mass. When the content ratio of the infrared absorbing material is too small, it is difficult to obtain a required infrared absorbing ability. On the other hand, when the content ratio of the infrared absorbing material is excessive, the peak of infrared absorption becomes broad and light in the visible wavelength range is also absorbed. Light transmittance is reduced.
[安定剤]
安定剤を構成する酸性物質としては、水中の酸解離定数pKaが2〜7、好ましくは3〜5である化合物(以下、「特定の酸性物質」ともいう。)が用いられる。ここで、酸性物質が多塩基酸である場合には、酸解離定数pKaは、最後の1個の水素イオンが解離するときの値である。
酸解離定数pKaが2未満の化合物を用いる場合には、組成物中の酸性の程度が大きすぎるため、銅リン酸化合物または銅ホスホン酸化合物におけるリン酸基またはホスホン酸基が銅イオンから解離しやすくなり、高温高湿環境下における赤外線吸収能の低下を抑制することが困難となる。一方、酸解離定数pKaが7を超える化合物を用いる場合には、組成物中の酸性の程度が小さすぎるため、高温高湿環境下における赤外線吸収能の低下を抑制することが困難となる。
[Stabilizer]
As the acidic substance constituting the stabilizer, a compound having an acid dissociation constant pKa in water of 2 to 7, preferably 3 to 5 (hereinafter also referred to as “specific acidic substance”) is used. Here, when the acidic substance is a polybasic acid, the acid dissociation constant pKa is a value when the last one hydrogen ion dissociates.
When a compound having an acid dissociation constant pKa of less than 2 is used, the degree of acidity in the composition is too large, so that the phosphate group or phosphonate group in the copper phosphate compound or copper phosphonate compound is dissociated from the copper ion. It becomes easy and it becomes difficult to suppress the fall of the infrared absorption ability in a high temperature, high humidity environment. On the other hand, when a compound having an acid dissociation constant pKa of more than 7 is used, the degree of acidity in the composition is too small, so that it is difficult to suppress a decrease in infrared absorptivity under a high temperature and high humidity environment.
また、特定の酸性物質としては、赤外線吸収組成物の製造上の観点から、常温で固体、例えば融点が70℃以上のものを用いることが好ましく、また、150〜250℃の温度で分解しないものを用いることが好ましい。
特定の酸性物質の具体例としては、安息香酸(pKa=4.2)、フタル酸(pKa=5.41)等の芳香族カルボン酸、サリチル酸(pKa=2.97)、マンデル酸(pKa=3.411)等の芳香族ヒドロキシカルボン酸、N−アセチルグリシン(pKa=3.67)等のN−アシルアミノ酸、エチルマロン酸(pKa=5.833)、コハク酸(pKa=5.638)、フマル酸(pKa=4.384)等の脂肪族ジカルボン酸、カプリル酸(pKa=4.894)等の脂肪酸、クエン酸(pKa=6.396)、乳酸(pKa=3.858)、リンゴ酸(pKa=5.05)等の脂肪族ヒドロキシカルボン酸などの有機酸が挙げられる。これらの中では、芳香族カルボン酸、芳香族ヒドロキシカルボン酸が好ましい。
Moreover, as a specific acidic substance, it is preferable to use a solid at room temperature, for example, one having a melting point of 70 ° C. or higher from the viewpoint of production of an infrared absorbing composition, and one that does not decompose at a temperature of 150 to 250 ° C. Is preferably used.
Specific examples of the specific acidic substance include aromatic carboxylic acids such as benzoic acid (pKa = 4.2), phthalic acid (pKa = 5.41), salicylic acid (pKa = 2.97), mandelic acid (pKa = Aromatic hydroxycarboxylic acid such as 3.411), N-acylamino acid such as N-acetylglycine (pKa = 3.67), ethylmalonic acid (pKa = 5.833), succinic acid (pKa = 5.638) , Aliphatic dicarboxylic acids such as fumaric acid (pKa = 4.384), fatty acids such as caprylic acid (pKa = 4.894), citric acid (pKa = 6.396), lactic acid (pKa = 3.858), apple Organic acids such as aliphatic hydroxycarboxylic acids such as acids (pKa = 5.05). Of these, aromatic carboxylic acids and aromatic hydroxycarboxylic acids are preferred.
赤外線吸収樹脂組成物全体における安定剤の含有割合は、0.1〜10質量%であることが好ましく、より好ましくは1〜8質量%である。安定剤の含有割合が過小である場合には、組成物中の酸性の程度が小さすぎるため、高温高湿環境下における赤外線吸収能の低下を抑制することが困難となる。一方、安定剤の含有割合が過大である場合には、組成物中の酸性の程度が大きすぎるため、銅リン酸化合物または銅ホスホン酸化合物におけるリン酸基またはホスホン酸基が銅イオンから解離しやすくなり、高温高湿環境下における赤外線吸収能の低下を抑制することが困難となる。 It is preferable that the content rate of the stabilizer in the whole infrared rays absorption resin composition is 0.1-10 mass%, More preferably, it is 1-8 mass%. When the content ratio of the stabilizer is too small, the degree of acidity in the composition is too small, so that it is difficult to suppress a decrease in infrared absorptivity under a high temperature and high humidity environment. On the other hand, when the content of the stabilizer is excessive, the acidity in the composition is too high, so that the phosphate group or phosphonate group in the copper phosphate compound or copper phosphonate compound is dissociated from the copper ion. It becomes easy and it becomes difficult to suppress the fall of the infrared absorption ability in a high temperature, high humidity environment.
〈樹脂〉
樹脂としては、上記の赤外線吸収材の分散性が良好であれば、特に限定されず、光学材料として使用可能な種々の樹脂を用いることができる。特に、本発明の赤外線吸収樹脂組成物によって得られる製品の形態において、可視光線透過率が90%以上の樹脂を用いることが好ましい。
このような樹脂の具体例としては、シクロオレフィン樹脂、アクリル系樹脂、ポリカーボネート樹脂、フルオレン系樹脂などが挙げられる。
赤外線吸収樹脂組成物全体における樹脂の含有割合は、50質量%以上であることが好ましく、より好ましくは70〜90質量%である。樹脂の割合が過小である場合には、赤外線吸収材の割合が相対的に過大となるため、可塑効果が生じる結果、得られる赤外線吸収樹脂組成物の力学的強度が低くなる。
<resin>
The resin is not particularly limited as long as the above-described infrared absorbing material has good dispersibility, and various resins that can be used as optical materials can be used. In particular, in the form of a product obtained by the infrared absorbing resin composition of the present invention, it is preferable to use a resin having a visible light transmittance of 90% or more.
Specific examples of such resins include cycloolefin resins, acrylic resins, polycarbonate resins, and fluorene resins.
The content of the resin in the entire infrared absorbing resin composition is preferably 50% by mass or more, and more preferably 70 to 90% by mass. When the proportion of the resin is too small, the proportion of the infrared absorbing material is relatively excessive, and as a result, a plastic effect is produced, and as a result, the mechanical strength of the resulting infrared absorbing resin composition is lowered.
〈その他の成分〉
本発明に係る赤外線吸収樹脂組成物においては、上記の赤外線吸収材および安定剤以外に、必要に応じてその他の成分が含有されていてもよい。その他の成分としては、界面活性剤、シラン系カップリング剤、シリコーンレジン、チタネート系カップリング剤、アルミニウム系カップリング剤、ジルコアルミネート系カップリング剤などの分散剤などを用いることができる。
<Other ingredients>
In the infrared-absorbing resin composition according to the present invention, other components may be contained as necessary in addition to the above-described infrared absorbing material and stabilizer. As other components, a dispersant such as a surfactant, a silane coupling agent, a silicone resin, a titanate coupling agent, an aluminum coupling agent, and a zircoaluminate coupling agent can be used.
〈赤外線吸収樹脂組成物の製造方法〉
本発明の赤外線吸収樹脂組成物は、上記の赤外線吸収材、安定剤、樹脂および必要に応じて用いられるその他の成分を、溶融混練することによって得られる。
混練機としては、ニーダー、バンバリーミキサー等のパッチ式混練機、単軸押出機、二軸押出機等の連続式混練機を用いることができる。
<Method for producing infrared absorbing resin composition>
The infrared absorbing resin composition of the present invention can be obtained by melt-kneading the above infrared absorbing material, stabilizer, resin, and other components used as necessary.
As the kneader, a patch kneader such as a kneader or a Banbury mixer, a continuous kneader such as a single screw extruder or a twin screw extruder can be used.
本発明の赤外線吸収樹脂組成物においては、水中の酸解離定数pKaが特定の範囲にある酸性物質よりなる安定剤が含有されている。これにより、赤外線吸収樹脂組成物による系は弱酸性の状態に保持されている。そのため、高温高湿環境下において長時間曝されても、赤外線吸収材を構成する銅リン酸化合物または銅ホスホン酸化合物において、銅イオンに対するリン酸基またはホスホン酸基の配位が安定に維持される。その結果、赤外線吸収能の低下および可視光線透過性の低下が抑制され、従って、赤外線吸収能について優れた環境安定性が得られる。 In the infrared ray absorbing resin composition of the present invention, a stabilizer made of an acidic substance having an acid dissociation constant pKa in water in a specific range is contained. Thereby, the system by the infrared ray absorbing resin composition is maintained in a weakly acidic state. Therefore, even when exposed for a long time in a high-temperature and high-humidity environment, in the copper phosphate compound or copper phosphonate compound constituting the infrared absorbing material, the coordination of the phosphate group or phosphonate group to the copper ion is stably maintained. The As a result, a decrease in infrared absorption ability and a reduction in visible light transmittance are suppressed, and thus excellent environmental stability is obtained for infrared absorption ability.
本発明の赤外線吸収樹脂組成物は、所要の形態に成形されることにより、レンズ、光学フィルターなどの光学素子や、光学フィルムとして利用することができる。特に、本発明の赤外線吸収樹脂組成物よりなるレンズを、例えば携帯電話に搭載されるカメラの光学系に用いることにより、当該光学系に近赤外線カットフィルタを設けることが不要となるため、当該カメラの小型・軽量化を図ることが可能である。
赤外線吸収樹脂組成物を成形する方法としては、射出成形法、押出成形法、プレス成形法、溶液流延法などを用いることができる。
The infrared ray absorbing resin composition of the present invention can be used as an optical element such as a lens or an optical filter or an optical film by being molded into a required form. In particular, since the lens made of the infrared absorbing resin composition of the present invention is used in, for example, an optical system of a camera mounted on a mobile phone, it becomes unnecessary to provide a near-infrared cut filter in the optical system. Can be reduced in size and weight.
As a method for molding the infrared absorbing resin composition, an injection molding method, an extrusion molding method, a press molding method, a solution casting method, or the like can be used.
以下、本発明の具体的な実施例について説明するが、本発明はこれらの実施例に限定されるものではない。
また、下記の実施例および比較例で使用した赤外線吸収材および酸性物質の特性は、以下の通りである。
Specific examples of the present invention will be described below, but the present invention is not limited to these examples.
The characteristics of the infrared absorbing material and acidic substance used in the following examples and comparative examples are as follows.
[赤外線吸収材]
ピロリン酸銅:
関東化学社製,極大吸収波長λmax =830nm,モル吸光係数ε=45,数平均粒径=0.1μm
メチルリン酸銅:
極大吸収波長λmax =818nm,モル吸光係数ε=20,数平均粒径=0.1μm
2−エチルヘキシルリン酸銅:
極大吸収波長λmax =806nm,モル吸光係数ε=20,数平均粒径=0.1μm
[Infrared absorbing material]
Copper pyrophosphate:
Manufactured by Kanto Chemical Co., Ltd., maximum absorption wavelength λ max = 830 nm, molar extinction coefficient ε = 45, number average particle size = 0.1 μm
Methyl copper phosphate:
Maximum absorption wavelength λ max = 818 nm, molar extinction coefficient ε = 20, number average particle size = 0.1 μm
2-ethylhexyl copper phosphate:
Maximum absorption wavelength λ max = 806 nm, molar extinction coefficient ε = 20, number average particle size = 0.1 μm
[酸性物質]
安息香酸:
水中の酸解離定数pKa=4.2,融点=122℃
サリチル酸:
水中の酸解離定数pKa=2.97,融点=159℃
フタル酸:
水中の酸解離定数pKa=2.94,融点=191℃
ピクリン酸:
水中の酸解離定数pKa=0.708
ホウ酸:
水中の酸解離定数pKa=9.24
[Acid substances]
benzoic acid:
Acid dissociation constant in water pKa = 4.2, melting point = 122 ° C.
Salicylic acid:
Acid dissociation constant in water pKa = 2.97, melting point = 159 ° C.
Phthalic acid:
Acid dissociation constant in water pKa = 2.94, melting point = 191 ° C.
Picric acid:
Acid dissociation constant in water pKa = 0.708
Boric acid:
Acid dissociation constant in water pKa = 9.24
〈実施例1〉
シクロオレフィン樹脂「APEL5014」(三井化学社製)162gに、赤外線吸収材としてピロリン酸銅30g、および酸性物質として安息香酸8gを添加した。その後、赤外線吸収材および安定剤が添加された樹脂材料を、二軸のバッチ式混練機「Haake PolyLab」(Thermo Fisher Scientific社製)によって設定温度が250℃、回転数が50rpmの条件で15分間混練した。得られた混練物をプレス成型機「ミニテストプレスMC−WCH」によって設定温度が200℃の条件で1分間プレス成型した。このようにして、赤外線吸収樹脂組成物よりなる厚みが3mmの板状の試験片を作製した。
<Example 1>
To 162 g of cycloolefin resin “APEL5014” (manufactured by Mitsui Chemicals), 30 g of copper pyrophosphate as an infrared absorbing material and 8 g of benzoic acid as an acidic substance were added. Thereafter, the resin material to which the infrared absorbing material and the stabilizer are added is placed in a biaxial batch kneader “Haake PolyLab” (manufactured by Thermo Fisher Scientific) for 15 minutes at a set temperature of 250 ° C. and a rotational speed of 50 rpm. Kneaded. The obtained kneaded material was press-molded with a press molding machine “Mini Test Press MC-WCH” for 1 minute at a set temperature of 200 ° C. In this way, a plate-shaped test piece having a thickness of 3 mm made of the infrared absorbing resin composition was produced.
〈実施例2〜11および比較例1〜3〉
シクロオレフィン樹脂、赤外線吸収材および酸性物質の使用量を、下記表1に示す配合に従って変更したこと以外は、実施例1と同様にして試験片を作製した。
<Examples 2 to 11 and Comparative Examples 1 to 3>
A test piece was prepared in the same manner as in Example 1 except that the amounts of the cycloolefin resin, the infrared absorbing material, and the acidic substance were changed according to the formulation shown in Table 1 below.
〈高温高湿環境下における耐久性試験〉
(1)試験方法
実施例1〜11および比較例1〜3で作製した試験片について、分光光度計「U−3900H」(日立ハイテクノロジーズ社製)によって波長400〜1200nmの吸光度を測定した。次いで、各試験片に対して、温度が80℃、相対湿度が80%に保持された恒温槽内に100時間放置する高温高湿試験を行った。その後、各試験片について、分光光度計「U−3900H」(日立ハイテクノロジーズ社製)によって波長400〜1200nmの吸光度を測定した。
(2)赤外線吸収能の評価
高温高湿試験前の試験片における波長830nmの光の吸光度をA0 、高温高湿試験後の試験片における波長830nmの光の吸光度をA1 とし、下記式により、試験後の波長830nmの光の吸光度の低下率を算出した。この吸光度の低下率が20%以下であれば、高温高湿環境下における耐久性が良好であると判断される。
吸光度の低下率=〔(A0 −A1 )/A0 〕×100[%]
(3)可視光線透過性の評価
高温高湿試験後の試験片について、波長400〜600nmの範囲における最大吸光度が0.1以下である場合を○、0.1を超える場合を×として評価した。
以上、結果を下記表1に結果を示す。
また、実施例1に係る試験片の高温高湿試験前後における分光吸光度曲線および比較例1に係る試験片の高温高湿試験後における分光吸光度曲線を図1に示す。図1において、曲線aは、実施例1に係る試験片の高温高湿試験前における分光吸光度曲線、曲線bは、実施例1に係る試験片の高温高湿試験後における分光吸光度曲線、曲線cは、比較例1に係る試験片の高温高湿試験後における分光吸光度曲線である。
<Durability test under high temperature and high humidity>
(1) Test method About the test piece produced in Examples 1-11 and Comparative Examples 1-3, the light absorbency of wavelength 400-1200 nm was measured with the spectrophotometer "U-3900H" (made by Hitachi High-Technologies Corporation). Next, a high-temperature and high-humidity test was performed on each test piece by leaving it in a thermostatic bath maintained at a temperature of 80 ° C. and a relative humidity of 80% for 100 hours. Then, about each test piece, the light absorbency of wavelength 400-1200 nm was measured with the spectrophotometer "U-3900H" (made by Hitachi High-Technologies Corporation).
(2) Evaluation of infrared absorptivity A 0 is the absorbance of light at a wavelength of 830 nm in a test piece before a high temperature and high humidity test, and A 1 is the absorbance of light at a wavelength of 830 nm in a test piece after a high temperature and high humidity test. The decrease rate of the absorbance of light having a wavelength of 830 nm after the test was calculated. If the rate of decrease in absorbance is 20% or less, it is judged that the durability under a high temperature and high humidity environment is good.
Decrease rate of absorbance = [(A 0 −A 1 ) / A 0 ] × 100 [%]
(3) Evaluation of visible light transmittance About the test piece after the high-temperature and high-humidity test, the case where the maximum absorbance in the wavelength range of 400 to 600 nm was 0.1 or less was evaluated as ○, and the case where it exceeded 0.1 was evaluated as ×. .
The results are shown in Table 1 below.
Moreover, the spectral absorbance curve before and after the high temperature and high humidity test of the test piece according to Example 1 and the spectral absorbance curve after the high temperature and high humidity test of the test piece according to Comparative Example 1 are shown in FIG. In FIG. 1, a curve a is a spectral absorbance curve of the test piece according to Example 1 before the high temperature and high humidity test, a curve b is a spectral absorbance curve of the test piece according to Example 1 after the high temperature and high humidity test, and a curve c. These are the spectral-absorbance curves after the high temperature, high humidity test of the test piece which concerns on the comparative example 1. FIG.
表1の結果から明らかなように、実施例1〜11に係る赤外線吸収樹脂組成物によれば、高温高湿環境下に長時間曝されても、赤外線吸収能の低下および可視光線透過性の低下が抑制されることが確認された。 As is apparent from the results in Table 1, according to the infrared absorbing resin compositions according to Examples 1 to 11, even when exposed to a high temperature and high humidity environment for a long time, the infrared absorbing ability is reduced and the visible light transmittance is reduced. It was confirmed that the decrease was suppressed.
1 カメラ
2 撮像レンズ系
3 受光部
5 赤外線カットフィルタ
L1,L2,L3,L4,L5 レンズ
DESCRIPTION OF
Claims (6)
水中の酸解離定数pKaが2〜7である化合物から選ばれた少なくとも1種の酸性を示す物質よりなる安定剤と、
樹脂と
を含有してなることを特徴とする赤外線吸収樹脂組成物。 At least one selected from a copper phosphate compound and a copper phosphonate compound having a maximum absorption wavelength λ max in the wavelength range of 700 to 850 nm, and having a molar extinction coefficient ε of light having the maximum absorption wavelength λ max of 15 or more An infrared absorber made of a compound of
A stabilizer comprising at least one acidic substance selected from compounds having an acid dissociation constant pKa of 2 to 7 in water;
An infrared-absorbing resin composition comprising a resin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014117456A JP2015229743A (en) | 2014-06-06 | 2014-06-06 | Infrared absorption resin composition and lens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014117456A JP2015229743A (en) | 2014-06-06 | 2014-06-06 | Infrared absorption resin composition and lens |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015229743A true JP2015229743A (en) | 2015-12-21 |
Family
ID=54886706
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014117456A Pending JP2015229743A (en) | 2014-06-06 | 2014-06-06 | Infrared absorption resin composition and lens |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2015229743A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017531053A (en) * | 2014-09-17 | 2017-10-19 | エルジー・ケム・リミテッド | Conductive pattern forming composition and resin structure having conductive pattern |
KR20200028023A (en) * | 2017-07-27 | 2020-03-13 | 니혼 이타가라스 가부시키가이샤 | Optical filter |
US11585968B2 (en) | 2017-07-27 | 2023-02-21 | Nippon Sheet Glass Company, Limited | Optical filter and camera-equipped information device |
US12287501B2 (en) | 2019-05-23 | 2025-04-29 | Nippon Sheet Glass Company, Limited | Light-absorbing composition, light-absorbing film, and optical filter |
-
2014
- 2014-06-06 JP JP2014117456A patent/JP2015229743A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017531053A (en) * | 2014-09-17 | 2017-10-19 | エルジー・ケム・リミテッド | Conductive pattern forming composition and resin structure having conductive pattern |
US10065860B2 (en) | 2014-09-17 | 2018-09-04 | Lg Chem, Ltd. | Composition for forming conductive pattern and resin structure having conductive pattern |
US10183866B2 (en) | 2014-09-17 | 2019-01-22 | Lg Chem, Ltd. | Composition for forming conductive pattern and resin structure having conductive pattern |
KR20200028023A (en) * | 2017-07-27 | 2020-03-13 | 니혼 이타가라스 가부시키가이샤 | Optical filter |
KR102351046B1 (en) * | 2017-07-27 | 2022-01-13 | 니혼 이타가라스 가부시키가이샤 | optical filter |
US11585968B2 (en) | 2017-07-27 | 2023-02-21 | Nippon Sheet Glass Company, Limited | Optical filter and camera-equipped information device |
US11592603B2 (en) | 2017-07-27 | 2023-02-28 | Nippon Sheet Glass Company, Limited | Optical filter |
US11885993B2 (en) | 2017-07-27 | 2024-01-30 | Nippon Sheet Glass Company, Limited | Optical filter and method of manufacturing |
US12072517B2 (en) | 2017-07-27 | 2024-08-27 | Nippon Sheet Glass Company, Limited | Light-absorbing composition and method of manufacturing |
US12287501B2 (en) | 2019-05-23 | 2025-04-29 | Nippon Sheet Glass Company, Limited | Light-absorbing composition, light-absorbing film, and optical filter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2015229743A (en) | Infrared absorption resin composition and lens | |
TWI585151B (en) | Polyester resin composition, method for producing the same, camera module, molded body, electric and electronic parts, and automobile body parts containing the same | |
JP6812985B2 (en) | Thermoplastic resin composition and its molded article | |
JP7655361B2 (en) | Near infrared absorbing composition, near infrared absorbing film, and image sensor for solid-state imaging device | |
TWI580727B (en) | A polycarbonate resin composition and a molded body | |
TW201219442A (en) | Cation-curable resin composition | |
JP6492544B2 (en) | Resin composition for optical semiconductor encapsulation and optical semiconductor device | |
KR20190013745A (en) | Resin composition and molded product | |
JP7099251B2 (en) | Image sensor for near-infrared absorbing composition, near-infrared absorbing film and solid-state image sensor | |
KR102465624B1 (en) | Light-absorbing composition and optical filter | |
JP7103362B2 (en) | Method for Producing Near Infrared Absorbent Composition and Near Infrared Absorbent Film | |
EP3091051A1 (en) | Polyoxymethylene resin composition and molded article containing same | |
CN105339422B (en) | The halogen-free flame-retardant polyester of stress crack resistant | |
JP6327025B2 (en) | Infrared absorbing resin composition and method for producing the same | |
KR102039805B1 (en) | Lens barrel member | |
KR102532381B1 (en) | Near-infrared absorbing composition, near-infrared absorbing film and image sensor for solid-state imaging device | |
WO2019232818A1 (en) | Granule for cable having relatively high tensile strength and hardness, and preparation process thereof | |
TWI690557B (en) | High-reflection flame-retardant thermoplastic resin composition, molded body, and reflector for lighting equipment | |
JP5345302B2 (en) | Organic-inorganic composite composition and optical component | |
JP5972321B2 (en) | Near infrared light absorbing glass, near infrared light absorbing element, and near infrared light absorbing optical filter | |
KR20210079780A (en) | Lens barrel member | |
JP2022053617A (en) | Near-infrared absorptive composition, near-infrared cut filter, image sensor for solid state imaging element, and camera module | |
KR20210127752A (en) | Near-infrared absorptive composition, near-infrared absorptive film, and image sensor for solid-state image sensor | |
CN106117599A (en) | Antistatic additive preparation method, the antistatic additive of preparation and the resin combination containing it | |
WO2019181587A1 (en) | Near-infrared-absorbing composition, near-infrared-absorbing film, and image sensor for solid-state imaging element |