[go: up one dir, main page]

JP2015227032A - Measuring control method of injection molding machine - Google Patents

Measuring control method of injection molding machine Download PDF

Info

Publication number
JP2015227032A
JP2015227032A JP2014114181A JP2014114181A JP2015227032A JP 2015227032 A JP2015227032 A JP 2015227032A JP 2014114181 A JP2014114181 A JP 2014114181A JP 2014114181 A JP2014114181 A JP 2014114181A JP 2015227032 A JP2015227032 A JP 2015227032A
Authority
JP
Japan
Prior art keywords
resin
screw
pressure
check valve
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014114181A
Other languages
Japanese (ja)
Other versions
JP6379686B2 (en
Inventor
岡本 昭男
Akio Okamoto
昭男 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Machinery Corp Ltd
Original Assignee
Ube Machinery Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Machinery Corp Ltd filed Critical Ube Machinery Corp Ltd
Priority to JP2014114181A priority Critical patent/JP6379686B2/en
Publication of JP2015227032A publication Critical patent/JP2015227032A/en
Application granted granted Critical
Publication of JP6379686B2 publication Critical patent/JP6379686B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a measuring control method of an injection molding machine capable of preventing backflow of resin from a storage part in an injection stand-by state after completion of a measuring step.SOLUTION: A measuring control method of an injection molding machine is configured so that: in a measuring step, after a screw 21 reaches a measuring completion position and rotation operation of the screw 21 is stopped, with respect to pressure drop of pressure P2 of the resin in a rear side of a check valve 24, the screw 21 is retreated before and after of rotation stop of the screw 21, and pressure P1 of the resin in a front side of the check valve 24 is dropped to almost equal pressure to the pressure P2, namely screw retreat operation is provided.

Description

本発明は、射出成形機の計量制御方法に関する。   The present invention relates to a metering control method for an injection molding machine.

インラインスクリュ式の射出成形機の射出装置においては、射出装置の材料供給部から供給される樹脂ペレット等の樹脂材料を、スクリュを回転させて、加熱バレルの内周面とスクリュの外周面との間に形成される樹脂流路において連続的に可塑化(溶融)させ、加熱バレルの先端内部の貯留部と呼称される空間に、1回の射出充填工程に必要な量の可塑化状態の樹脂を貯留させる計量工程が行われる。そして、計量工程の完了後、スクリュを前進させて、貯留部の樹脂を加熱バレル先端の射出ノズルを介して、金型のキャビティ内に射出充填させる射出工程が行われる。   In the injection device of the inline screw type injection molding machine, the resin material such as resin pellets supplied from the material supply unit of the injection device is rotated between the inner peripheral surface of the heating barrel and the outer peripheral surface of the screw by rotating the screw. In a resin flow path formed between them, plasticized (melted) continuously, and in a space called a reservoir inside the tip of the heating barrel, a quantity of plasticized resin necessary for one injection filling process A metering step for storing the is performed. Then, after completion of the metering step, an injection step is performed in which the screw is advanced to inject and fill the resin in the reservoir into the cavity of the mold through the injection nozzle at the tip of the heating barrel.

図1を参照しながら、インラインスクリュ式の射出成形機の計量工程及び射出工程を簡単に説明する。図1は、一般的な計量制御方法に係る、計量工程から射出工程への切り替え時における射出装置の概略断面図である。図1(a)は計量工程中、図1(b)は計量工程が完了した、射出待機状態、図1(c)は、射出工程開始直後を示す。   A measuring process and an injection process of an inline screw type injection molding machine will be briefly described with reference to FIG. FIG. 1 is a schematic cross-sectional view of an injection device at the time of switching from a measurement process to an injection process according to a general measurement control method. FIG. 1A shows a measuring process, FIG. 1B shows an injection standby state in which the measuring process is completed, and FIG. 1C shows a state immediately after the injection process starts.

加熱バレル10内のスクリュ21の先端部には、円錐形状で且つ長手方向に複数の凹部22aを有するスクリュヘッド22が固定されている。そして、スクリュヘッド22のスクリュ21の先端部側の小径部22bには、リング状の逆止弁24(チェックリング等とも呼称される。)が、スクリュ21の長手方向に所定量移動可能に配置されている。その移動量は、貯留部11側が、スクリュヘッド22の大径部22c(前進限)で、スクリュ21の先端部側が、リアシート23(後退限)で制限される距離S(エス)である。   A screw head 22 having a conical shape and having a plurality of recesses 22a in the longitudinal direction is fixed to the tip of the screw 21 in the heating barrel 10. A ring-shaped check valve 24 (also referred to as a check ring or the like) is arranged in the small diameter portion 22b of the screw head 22 on the tip end side of the screw 21 so as to be movable by a predetermined amount in the longitudinal direction of the screw 21. Has been. The movement amount is a distance S (es) that is restricted by the large-diameter portion 22c (forward limit) of the screw head 22 on the storage unit 11 side and the rear seat 23 (reverse limit) on the tip end side of the screw 21.

図1(a)に示すように、計量工程の間、材料供給部13から加熱バレル10内に供給されたペレット状の樹脂は、その外周面に螺旋状のフライト21aが形成されたスクリュ21の回転により、加熱バレル10の内周面とスクリュ21の外周面との間に形成される樹脂流路14において貯留部11側(前方)へ流動される。その間、加熱バレル10の外周面に配置された、図示しない加熱手段の熱エネルギーと、スクリュ21の回転により樹脂に直接付与されるせん断エネルギー(熱エネルギー)と、により溶融状態となる(可塑化)。この樹脂流動によって発生する樹脂圧力P2により、逆止弁24は貯留部11側へと押圧され、貯留部11側(前進限)へ移動され、逆止弁24とスクリュ21のリアシート23との間が距離Sだけ開放される。更に、この状態において、開放された樹脂流路14と、スクリュヘッド22の長手方向の凹部22aが連通され、スクリュ21のリアシート23側の樹脂がスクリュヘッド22前方の貯留部11に連続して貯留される。   As shown in FIG. 1 (a), the pellet-shaped resin supplied from the material supply unit 13 into the heating barrel 10 during the weighing process is a screw 21 having a spiral flight 21a formed on the outer peripheral surface thereof. By rotation, the resin flow channel 14 formed between the inner peripheral surface of the heating barrel 10 and the outer peripheral surface of the screw 21 flows toward the storage portion 11 (front). In the meantime, it becomes a molten state (plasticization) by the thermal energy of the heating means (not shown) arranged on the outer peripheral surface of the heating barrel 10 and the shear energy (thermal energy) directly applied to the resin by the rotation of the screw 21. . Due to the resin pressure P <b> 2 generated by this resin flow, the check valve 24 is pressed toward the storage unit 11, moved to the storage unit 11 (forward limit), and between the check valve 24 and the rear seat 23 of the screw 21. Is opened by a distance S. Further, in this state, the opened resin flow path 14 and the longitudinal concave portion 22a of the screw head 22 are communicated with each other, and the resin on the rear seat 23 side of the screw 21 is continuously stored in the storage portion 11 in front of the screw head 22. Is done.

また、計量工程の間、貯留部11に貯留される樹脂量の増加に伴い、スクリュ21は、
その回転動作は維持されつつ、材料供給部13側(後方)へ移動する。このスクリュ後退動作は、貯留部11に貯留される樹脂に所定の圧力P1を付与させるために、後退動作に伴う抵抗力(背圧=P1)をスクリュ21に付与させた状態で行われる。すなわち、計量工程における、逆止弁24より前方の貯留部11の樹脂の樹脂圧力P1と、逆止弁24より後方の樹脂流路14の樹脂の樹脂圧力P2との関係はP1<P2であり、この関係において、樹脂の貯留部11への樹脂流動が維持される。
Moreover, with the increase in the amount of resin stored in the storage unit 11 during the weighing process, the screw 21 is
The material moves to the material supply unit 13 side (rear) while maintaining the rotation. This screw retreat operation is performed in a state in which a resistance force (back pressure = P1) accompanying the retreat operation is applied to the screw 21 in order to apply a predetermined pressure P1 to the resin stored in the storage unit 11. That is, the relationship between the resin pressure P1 of the resin in the reservoir 11 in front of the check valve 24 and the resin pressure P2 of the resin in the resin flow path 14 behind the check valve 24 in the metering process is P1 <P2. In this relationship, the resin flow to the resin reservoir 11 is maintained.

予め設定された樹脂量が貯留部11に貯留された後、材料供給部13への材料供給及びスクリュ21の回転動作を停止させる(計量工程完了)。この状態を図1(b)に示す。この状態(計量工程完了直後)において、前進限にある逆止弁24と、スクリュ21のリアシート23との間は、距離Sだけ開放されている。そして、射出待機状態を経て、図1(c)に示すように、加熱バレル10先端の射出ノズル12以降の図示しない金型側の樹脂流路が開放されている状態において、スクリュ21を所定速度・所定圧力で前進させる(射出工程)。逆止弁24の長手方向の移動ストローク(距離S)は、射出装置のサイズ等によって異なるが、通常2〜3mmであり、長くても5〜6mm程度である。そのため、スクリュ21の前進開始直後に、スクリュ21のリアシート23が、距離Sだけ前進して、逆止弁24の後端に当接するような形で密着(後退限)し、逆止弁24とスクリュ21のリアシート23との間が閉鎖される。貯留部11の樹脂の樹脂圧力P1は、この逆止弁24の閉鎖とスクリュ21の前進動作とにより急激に増大し、P1とP2との関係は逆転しP1>P2となる。   After the resin amount set in advance is stored in the storage unit 11, the material supply to the material supply unit 13 and the rotation operation of the screw 21 are stopped (completion of the metering process). This state is shown in FIG. In this state (immediately after the completion of the metering process), the distance S is opened between the check valve 24 at the forward limit and the rear seat 23 of the screw 21. Then, after the injection standby state, as shown in FIG. 1 (c), the screw 21 is moved at a predetermined speed in a state where the resin flow path on the mold side (not shown) after the injection nozzle 12 at the tip of the heating barrel 10 is opened. -Advance at a predetermined pressure (injection process). The movement stroke (distance S) in the longitudinal direction of the check valve 24 varies depending on the size of the injection device and the like, but is usually 2 to 3 mm, and is about 5 to 6 mm at the longest. Therefore, immediately after the screw 21 starts moving forward, the rear seat 23 of the screw 21 moves forward by a distance S and comes into close contact with the rear end of the check valve 24 (reverse limit). The space between the screw 21 and the rear seat 23 is closed. The resin pressure P1 of the resin in the storage unit 11 is rapidly increased by the closing of the check valve 24 and the forward movement of the screw 21, and the relationship between P1 and P2 is reversed and P1> P2.

その結果、逆止弁24は、貯留部11側の樹脂から増大する樹脂圧力P1を受け、スクリュ21のリアシート23側に押圧され、リアシート23と密着状態を高める。このようにして、射出工程の間、逆止弁24とリアシート23との密着状態(樹脂流路14の閉鎖状態)が維持され、貯留部11の樹脂が逆止弁24を介してスクリュ21側の樹脂流路14に逆流することが防止される。   As a result, the check valve 24 receives the resin pressure P <b> 1 that increases from the resin on the storage unit 11 side, and is pressed to the rear seat 23 side of the screw 21, thereby enhancing the close contact state with the rear seat 23. In this way, during the injection process, the close contact state between the check valve 24 and the rear seat 23 (closed state of the resin flow path 14) is maintained, and the resin in the storage portion 11 passes through the check valve 24 to the screw 21 side. Back flow into the resin flow path 14 is prevented.

このように、駆動用の動力装置や、特殊な制御等を必要とせず、計量工程においては、貯留部側への樹脂流動(樹脂圧力)による樹脂流路及び貯留部間の開放動作が、射出工程においては、スクリュの前進動作による同間の閉鎖動作が行われ、これらにより、樹脂流路及び貯留部間の開閉動作の切り替えと、貯留部から樹脂流路側への射出工程中の樹脂の逆流防止が可能な逆止弁は、構造が簡単な上、射出工程時における逆流防止能力も比較的高く、インラインスクリュ式の射出成形機において一般的な構成となっている。しかしながら、近年、計量工程における計量精度の更なる向上が要求され、樹脂流路の開放状態から閉鎖状態へと切り替わる間に、貯留部の樹脂が、逆止弁を介してスクリュの樹脂流路側に逆流することに起因するとされる、計量樹脂量のバラつきが問題となっている。この樹脂の逆流量分だけ、想定した計量樹脂量に対して、実際の射出樹脂量が少なくなるが、この逆流量が成形サイクル毎に略一定であれば、計量工程において、想定した樹脂量に逆流量を加えたものを計量樹脂量とすれば良い。しかしながら、問題は、前述した樹脂の逆流量が、成形サイクル毎に必ずしも一定ではない点であるとされている。   In this way, no drive power unit or special control is required, and in the metering process, the opening operation between the resin flow path and the storage part due to the resin flow (resin pressure) to the storage part side is injected. In the process, the same closing operation is performed by the forward movement operation of the screw, thereby switching the opening / closing operation between the resin flow path and the storage part and the back flow of the resin during the injection process from the storage part to the resin flow path side. The check valve that can be prevented has a simple structure and a relatively high backflow prevention capability in the injection process, and is a general configuration in an inline screw type injection molding machine. However, in recent years, there has been a demand for further improvement in weighing accuracy in the weighing process, and while the resin flow path is switched from the open state to the closed state, the resin in the storage portion passes through the check valve to the resin flow path side of the screw. Variation in the amount of metered resin, which is attributed to backflow, is a problem. The actual amount of injected resin is smaller than the estimated measured resin amount by the reverse flow rate of this resin, but if this reverse flow rate is approximately constant for each molding cycle, the estimated resin amount is set in the weighing process. What added the reverse flow rate may be the amount of metered resin. However, the problem is that the aforementioned reverse flow rate of the resin is not always constant for each molding cycle.

特許文献1には、計量工程の完了後の、逆止弁の後退移動のバラつきによる計量樹脂量のバラつきを改善するために、計量完了後、スクリュの回転動作を停止させた状態で射出スクリュ(スクリュ)をサックバック(後退)させ、そのサックバック(後退)位置で射出スクリュの逆回転を所定量行った後、射出スクリュを前進させて射出工程に移行する射出方法が開示されている。   In order to improve the variation in the amount of the metering resin due to the variation in the reverse movement of the check valve after the completion of the metering process, Patent Document 1 discloses an injection screw (with the screw rotating stopped after the metering is completed). An injection method is disclosed in which a screw is sucked back (retracted), a reverse rotation of the injection screw is performed by a predetermined amount at the suck back (retracted) position, and then the injection screw is advanced to shift to an injection process.

計量完了後のスクリュの後退動作は、その前端を押圧されるリングバルブ(逆止弁)を開放状態のままスクリュとともに後退移動させるものだとしている(特許文献1段落0008)。更には、同文献内に記載はないが、本来の計量完了位置において、逆止弁を完全な閉鎖状態にするためのスクリュ前進距離を確保するための動作と推測される。続く、後退位置における逆回転動作は、計量工程における正回転とは逆方向にスクリュを回転させることにより、逆止弁より後方の樹脂流路の樹脂の樹脂圧力P2を減少させ、逆止弁より前方の貯留部の樹脂の樹脂圧力P1との関係をP1>P2とさせ、逆止弁の後退(閉鎖)動作を促進させるものである。そして、後退位置からの射出工程の開始により、後退位置から本来の計量完了位置まで、スクリュを前進させる間、逆止弁を完全な閉鎖状態となし、本来の計量完了位置からは、逆止弁が完全な閉鎖状態下において、射出工程が行われ、樹脂の逆流を防止できるとしている。   The backward movement of the screw after the completion of the measurement is such that the ring valve (check valve) whose front end is pressed is moved backward together with the screw in an open state (Patent Document 1, paragraph 0008). Furthermore, although not described in the document, it is presumed that the operation is for securing a screw advance distance for bringing the check valve into a completely closed state at the original measurement completion position. In the subsequent reverse rotation operation in the reverse position, the resin pressure P2 of the resin in the resin flow path behind the check valve is decreased by rotating the screw in the direction opposite to the normal rotation in the metering process. The relationship with the resin pressure P1 of the resin in the front reservoir is P1> P2, and the reverse (close) operation of the check valve is promoted. The check valve is completely closed while the screw is advanced from the reverse position to the original measurement completion position by starting the injection process from the reverse position, and from the original measurement completion position, the check valve is However, under the completely closed state, the injection process is performed and the back flow of the resin can be prevented.

特許文献2には、射出工程時の樹脂流路の閉鎖時間のバラつきによる射出樹脂量のバラつきを改善するために、計量工程完了時と射出工程開始時の間において、設定された距離だけスクリュを後退させ、再び計量完了位置に戻すことにより、逆流防止リング(逆止弁)をシールリング(リアシート)に当接させる手段を有する射出成形機が開示されている。   In Patent Document 2, in order to improve the variation in the amount of the injected resin due to the variation in the closing time of the resin flow path during the injection process, the screw is moved backward by a set distance between the completion of the weighing process and the start of the injection process. An injection molding machine having means for bringing the backflow prevention ring (check valve) into contact with the seal ring (rear seat) by returning to the measurement completion position again is disclosed.

特許文献2のスクリュの後退動作も、特許文献1の計量完了後の後退動作と同様に、本来の計量完了位置から、逆止弁が完全な閉鎖状態下において、射出工程が行われるようにするために、スクリュ前進距離を確保するために行われるものである。すなわち、特許文献1及び特許文献2は、射出工程開始時の逆止弁の位置が、完全な閉鎖位置(前進限)に移動(後退)させた後に射出工程を開始することにより、射出工程開始時の逆止弁の閉鎖(後退)動作の間に発生するとされている樹脂の逆流を防止するものである。   Similarly to the backward movement operation after the completion of measurement in Patent Document 1, the backward movement operation of the screw in Patent Document 2 is performed so that the injection process is performed from the original measurement completion position in a state where the check valve is completely closed. Therefore, it is performed in order to secure the screw advance distance. That is, Patent Document 1 and Patent Document 2 start the injection process by starting the injection process after the position of the check valve at the start of the injection process is moved (retracted) to the complete closed position (forward limit). This prevents the back flow of the resin that is supposed to occur during the closing (reverse) operation of the check valve.

特開平09−029794号公報JP 09-029794 A 特開平04−070316号公報Japanese Patent Laid-Open No. 04-070316

近年、計量工程から射出待機状態を経て射出工程へと切り替わる間の、逆止弁より前方の貯留部の樹脂の樹脂圧力P1と、逆止弁より後方の樹脂流路における樹脂の樹脂圧力P2の変化が検証され、この間における樹脂の逆流状況が次第に明らかになってきている。これを、図2を参照しながら説明する。図2は、一般的な計量制御方法に係る、計量工程から射出工程へと切り替わる間の、逆止弁前方の樹脂圧力P1と後方の樹脂圧力P2の変化を、時間経過に基づき表示したグラフである。横軸が時間tを、縦軸が圧力Pを示す。   In recent years, the resin pressure P1 of the resin in the reservoir in front of the check valve and the resin pressure P2 of the resin in the resin flow path behind the check valve while switching from the metering process to the injection process through the injection standby state. Changes have been verified, and the situation of resin backflow during this period has become increasingly clear. This will be described with reference to FIG. FIG. 2 is a graph showing changes in the resin pressure P1 in front of the check valve and the resin pressure P2 in the rear based on the passage of time during the switching from the metering process to the injection process according to a general metering control method. is there. The horizontal axis represents time t, and the vertical axis represents pressure P.

まず、図示はしていないが、計量工程開始時、スクリュ回転動作により生じさせた樹脂流路14における樹脂流動の樹脂圧力P2(P)により、逆止弁24が閉鎖位置(後退限)から開放位置(前進限)へと移動し、樹脂流路14の樹脂が貯留部11へと流動される。この時、スクリュ21自体に背圧(=樹脂圧力P1/P)を作用させているが、スクリュ21が射出前進限位置にあり、貯留部11の樹脂にスクリュ21を後退させるような樹脂圧力が発生していないため、逆止弁24の開放位置(前進限)への移動開始は、樹脂圧力P1と樹脂圧力P2の差圧ではなく、樹脂圧力P2によるものである。貯留部11に樹脂が流動され、貯留部11の樹脂にスクリュ21を後退させるような樹脂圧力が発生した後も、樹脂圧力P1(P)<樹脂圧力P2(P)の関係が維持されるため、逆止弁24の開放状態は継続され、計量工程も継続される。 First, although not shown, the metering process initiated by the resin pressure of the resin flow of the resin flow path 14 that caused by the screw rotation P2 (P F), a check valve 24 from the closed position (rearmost) It moves to the open position (advance limit), and the resin in the resin flow path 14 flows into the storage part 11. At this time, a back pressure (= resin pressure P1 / P B ) is applied to the screw 21 itself, but the resin pressure is such that the screw 21 is at the injection advance limit position and the screw 21 is moved backward by the resin in the storage portion 11. Therefore, the start of movement of the check valve 24 to the open position (forward limit) is not due to the differential pressure between the resin pressure P1 and the resin pressure P2, but due to the resin pressure P2. Resin is fluidized in the storage unit 11, even after the resin pressure such as to retract the screw 21 into the resin of the reservoir 11 occurs, the relationship between the resin pressure P1 (P B) <resin pressure P2 (P F) is maintained Therefore, the open state of the check valve 24 is continued and the metering process is continued.

ここで、逆止弁24後方の樹脂圧力P2は、本来その圧力発生限の略全てが、スクリュ回転動作により樹脂に与えられる樹脂流動の運動エネルギーによる圧力Pである。それ以外に、逆止弁24より後方の樹脂流路14を満たす溶融状態の樹脂に圧力を付与させるエネルギー源は基本的に何もない。そして、逆止弁24より後方の溶融状態の樹脂は、材料供給部13側になる程、徐々に未溶融状態の樹脂の割合が増加し、材料供給部13近傍は略完全にペレット状(固形)の樹脂のみで満たされた大気開放状態である。よって、計量工程が完了し、スクリュ21の回転動作を停止させる時間t1以降、逆止弁24より後方の溶融状態の樹脂の樹脂圧力P2は維持されることなく、時間t2までに、Pから急激に大気圧P近傍まで降下する。このP2のPから大気圧P近傍までの圧力降下に要する時間(t2−t1)は1秒程度とされている。 Here, the check valve 24 behind the resin pressure P2 is a substantially all of the original the pressure generating limit, the pressure P F according to the kinetic energy of the given resin resin flow by the screw rotation. Other than that, there is basically no energy source for applying pressure to the molten resin filling the resin flow path 14 behind the check valve 24. The molten resin behind the check valve 24 gradually increases in proportion to the unmelted resin as it approaches the material supply unit 13 side, and the vicinity of the material supply unit 13 is almost completely in a pellet form (solid ) In an atmosphere open state filled only with resin. Thus, the metering process is completed, rotation later time to stop t1 of the screw 21, the resin pressure P2 of the resin in molten state behind the check valve 24 without being maintained, by the time t2, the P F rapidly drops to the atmospheric pressure P A neighborhood. The time required from P F of the P2 pressure drop to atmospheric pressure P A proximity (t2-t1) is about 1 second.

次に、逆止弁24前方(貯留部11)の樹脂圧力P1は、先に説明したように、計量工程中、スクリュの後退抵抗(背圧)によって付与される圧力Pである。ここで、計量工程完了後の射出待機状態において、スクリュ21の計量工程完了の位置及び背圧を維持させたとしても、先に説明した樹脂圧力P2の圧力降下に伴い、P1<P2の関係が、点X(以後、移行点)以降においてP1>P2の関係に移行する。また、図1(b)に示すように、移行点Xにおいても、逆止弁24は開放状態(前進限)である。その結果、移行点X以降、貯留部11の樹脂は逆止弁24より後方の、リアシート23側の樹脂流路14に逆流する。 Next, as described above, the resin pressure P1 in front of the check valve 24 (reservoir 11) is the pressure P B applied by the backward resistance (back pressure) of the screw during the measurement process. Here, in the injection standby state after the completion of the weighing process, even if the position of the weighing process of the screw 21 and the back pressure are maintained, the relationship of P1 <P2 is associated with the pressure drop of the resin pressure P2 described above. After the point X (hereinafter referred to as a transition point), the relationship shifts to P1> P2. Moreover, as shown in FIG.1 (b), the check valve 24 is an open state (forward limit) also in the transition point X. As shown in FIG. As a result, after the transition point X, the resin in the storage portion 11 flows backward to the resin flow path 14 on the rear seat 23 side behind the check valve 24.

この移行点X以降の樹脂圧力P1の変化と樹脂の逆流には3つのパターンが考えられる。まず1つが、図2に示すパターンである。これをパターン1とする。このパターン1は、P1>P2の関係に移行した後、P1及びP2の差圧(P1−P2)により発生する樹脂の逆流によっても、開放位置(前進限)にある逆止弁24がほとんど閉鎖位置(後退限)側へ移動せず、逆止弁24の開放状態(前進限)が維持されるものである。この場合、計量工程完了後の射出待機状態において、スクリュ21の計量工程完了の位置及び背圧を維持させたとしても、逆止弁24の開放状態(前進限)が維持されるため、P1>P2の関係が維持される間、貯留部11から樹脂流路14への樹脂の逆流は継続され、図2に示すように、樹脂圧力P1(P)は大気圧P近傍まで降下する(時間t3)。この結果、P1=P2≒Pとなり、逆止弁24が開放状態のまま樹脂の逆流が停止する。移行点Xから時間t3までの樹脂の逆流量は、図2に斜線で示す領域Aの面積で示される。 There are three possible patterns for the change in the resin pressure P1 after the transition point X and the reverse flow of the resin. One is the pattern shown in FIG. This is pattern 1. In this pattern 1, after the transition to the relationship of P1> P2, the check valve 24 in the open position (advance limit) is almost closed by the back flow of the resin generated by the differential pressure between P1 and P2 (P1-P2). The check valve 24 is kept open (forward limit) without moving to the position (reverse limit) side. In this case, in the injection standby state after the completion of the weighing process, even if the position and back pressure of the screw 21 at the completion of the weighing process are maintained, the open state (advance limit) of the check valve 24 is maintained. while the relationship P2 is maintained, the backflow of resin from the reservoir 11 to the resin flow path 14 is continued, as shown in FIG. 2, the resin pressure P1 (P B) drops to the atmospheric pressure P a proximity ( Time t3). As a result, P1 = P2 ≒ P A, and the check valve 24 is resin backflow stops left open. The reverse flow rate of the resin from the transition point X to the time t3 is indicated by the area of the region A indicated by hatching in FIG.

2つめは、図示はしていないが、P1>P2の関係に移行した後、P1及びP2の差圧(P1−P2)により発生する樹脂の逆流によって、開放位置(前進限)にある逆止弁24が閉鎖位置(後退限)側へ移動するものの、同樹脂の逆流により、P1及びP2の差圧が次第に小さくなるため、閉鎖位置(後退限)までは移動せず、その移動ストロークの途中位置で停止するパターンである。この途中位置において逆止弁24の開放状態が維持され、その結果、P1=P2≒Pとなるまで樹脂の逆流が継続される。これをパターン2とする。このパターン2は、樹脂が逆流する逆止弁24とリアシート23と間の距離が距離Sより短いため、先に説明したパターン1よりも、樹脂が逆流する流路の断面積が狭くなる。しかしながら、流路の断面積が狭くなるため、貯留部11の樹脂圧力P1の圧力降下率はパターン1よりも小さくなり、樹脂を逆流させるP1及びP2の差圧(P1−P2)がパターン1よりも大きくなる。その結果、パターン2においては樹脂の逆流速度が速くなるため、樹脂の逆流が停止するタイミングはパターン1と異なるもの、樹脂の逆流量はパターン1と大差ないと考えられる。 The second is not shown in the figure, but after the transition to the relationship of P1> P2, the check is in the open position (advance limit) due to the back flow of the resin generated by the differential pressure between P1 and P2 (P1-P2). Although the valve 24 moves to the closed position (retreat limit) side, the pressure difference between P1 and P2 gradually decreases due to the back flow of the resin, so it does not move to the close position (retreat limit), and the middle of the movement stroke It is a pattern that stops at a position. The opened state of the check valve 24 is maintained in the intermediate position, as a result, backflow of the resin is continued until P1 = P2 ≒ P A. This is pattern 2. In this pattern 2, since the distance between the check valve 24 and the rear seat 23 where the resin flows back is shorter than the distance S, the cross-sectional area of the flow path through which the resin flows back becomes narrower than the pattern 1 described above. However, since the cross-sectional area of the flow path is narrowed, the pressure drop rate of the resin pressure P1 in the reservoir 11 is smaller than that of the pattern 1, and the differential pressure (P1-P2) between P1 and P2 that causes the resin to flow backward is greater than that of the pattern 1. Also grows. As a result, since the reverse flow speed of the resin is increased in the pattern 2, the timing at which the reverse flow of the resin is stopped is different from that in the pattern 1, and the reverse flow rate of the resin is not significantly different from that in the pattern 1.

3つめも図示はしていないが、P1>P2の関係に移行した後、P1及びP2の差圧(P1−P2)により発生する樹脂の逆流によって、開放位置(前進限)にある逆止弁24が閉鎖位置(後退限)側へ移動し、逆止弁24の閉鎖状態(後退限)が維持されるパターンである。これをパターン3とする。このパターン3においては、樹脂圧力P1が大気圧P近傍まで降下する可能性は低く、P1>P2の関係が維持された状態であっても、逆止弁24が閉鎖状態(後退限)になった時点からの樹脂の逆流はほとんどないと考えられる。言い換えれば、パターン3における樹脂の逆流量は、移行点Xから逆止弁24が閉鎖状態(後退限)になるまでの間の量であり、その逆流量は、パターン1やパターン2よりは少ないと考えられる。 Although not shown in the figure, the check valve is in the open position (advance limit) due to the back flow of the resin generated by the pressure difference between P1 and P2 (P1-P2) after the transition to the relationship of P1> P2. 24 is a pattern in which the check valve 24 is kept in the closed state (retreat limit) by moving to the closed position (retreat limit) side. This is pattern 3. In this pattern 3, a possibility that the resin pressure P1 falls to atmospheric pressure P A vicinity is low, even if the relationship is maintained in P1> P2, the check valve 24 is in the closed state (retreating limit) It is considered that there is almost no back flow of resin from the time point. In other words, the reverse flow rate of the resin in the pattern 3 is an amount from the transition point X to the time when the check valve 24 is in the closed state (retreat limit), and the reverse flow rate is smaller than that of the pattern 1 and the pattern 2. it is conceivable that.

射出工程後、計量工程と平行して、冷却固化工程、型開き工程、製品取出工程、型閉じ・型締工程が行われ、次の射出工程に移行する。一般的には、計量工程の方が先に完了し、図1(b)の状態で図2中の射出待機状態となることが多い。このように、射出待機状態においては、図2の領域Aに示すように、樹脂圧力P1及び樹脂圧力P2が、共に大気圧P近傍まで圧力降下するまで樹脂の逆流が生じるか、場合によっては、樹脂圧力P1及び樹脂圧力P2の差圧により逆止弁24が閉鎖状態(後退限)になるまで樹脂の逆流が生じるため、所望する樹脂量に対して、射出充填される樹脂量が少なくなるという問題がある。 After the injection process, in parallel with the measurement process, a cooling and solidification process, a mold opening process, a product take-out process, a mold closing / clamping process are performed, and the process proceeds to the next injection process. In general, the weighing process is completed first and the injection standby state in FIG. 2 is often obtained in the state of FIG. Thus, in the injection stand-by state, as shown in region A of FIG. 2, the resin pressure P1 and the resin pressure P2 is either resin backflow occurs until the pressure drop together to atmospheric pressure P A near some cases Since the back flow of the resin occurs until the check valve 24 is closed (retreat limit) due to the differential pressure between the resin pressure P1 and the resin pressure P2, the amount of resin to be injected and filled becomes smaller than the desired amount of resin. There is a problem.

ここで、先に説明した3パターンのように、P1>P2の関係に移行した後、P1及びP2の差圧(P1−P2)により発生する樹脂の逆流によって、開放位置(前進限)にある逆止弁24がどのような挙動を示すかは、P1及びP2の差圧の大きさが、逆止弁24を移動(後退)させるのに十分であるか否かという点と、逆止弁24を移動(後退)させる際の逆止弁24の摺動抵抗である。前者は、使用する樹脂材料の種類や、射出成形機のサイズや逆止弁24の仕様によるところが大きい。後者は、可塑化状態の樹脂の温度や粘性、あるいは、スクリュヘッド22の小径部22bと逆止弁24との間の摺動部に混入したコンタミや、成形時に摺動部に生じたキズや磨耗によるところが多い。   Here, as in the three patterns described above, after shifting to the relationship of P1> P2, the resin is in the open position (forward limit) due to the back flow of the resin generated by the differential pressure between P1 and P2 (P1-P2). The behavior of the check valve 24 depends on whether the magnitude of the pressure difference between P1 and P2 is sufficient to move (retract) the check valve 24, and the check valve. This is the sliding resistance of the check valve 24 when moving (retreating) 24. The former largely depends on the type of resin material used, the size of the injection molding machine, and the specifications of the check valve 24. The latter includes temperature and viscosity of the plasticized resin, contamination mixed in the sliding portion between the small diameter portion 22b of the screw head 22 and the check valve 24, scratches generated in the sliding portion during molding, There are many places due to wear.

前者は、仕様上、ある程度予想が可能であり、成形サイクル毎の、領域Aに示す樹脂の逆流量をバラつかせる要因となる可能性は低い。しかしながら、後者は、同じ樹脂材料で同じ成形条件で行う成形であっても、成形サイクル毎の領域Aに示す樹脂の逆流量をバラつかせる要因となる。そのため、図2の領域Aに示す射出待機状態における樹脂の逆流量は、成形サイクル毎に一定ではなくバラつくため、予め、逆流量に相当する量だけ多く計量する対策を困難なものにしている。   The former can be predicted to some extent in the specification, and is unlikely to cause a variation in the reverse flow rate of the resin shown in the region A for each molding cycle. However, the latter causes a variation in the reverse flow rate of the resin shown in the region A for each molding cycle even when molding is performed with the same resin material under the same molding conditions. Therefore, since the reverse flow rate of the resin in the injection standby state shown in the region A in FIG. 2 is not constant for each molding cycle, it is difficult to measure in advance by an amount corresponding to the reverse flow rate. .

一方、特許文献1及び特許文献2で防止しようとしている樹脂の逆流は、射出工程開始時の逆止弁の閉鎖(後退)動作の間に発生するとされている逆流量である。例えば、逆止弁24の移動ストロークを10mm、射出工程におけるスクリュ21の前進速度(射出速度)を30mm/sとした場合、パターン1のように、射出待機状態において、逆止弁24がほぼ完全に開放状態(前進限)においては、射出工程開始からスクリュ21が前進して逆止弁24の後端に当接するまで、すなわち、逆止弁24が閉鎖状態(後退限)になるのに要する時間(時間t5−t4)は略0.3秒と短い。大物薄肉成形、ハイサイクル成形、射出発泡成形においては、100mm/s以上の高速射出条件を必要とされるケースが多く、この場合においては、0.1秒以下とさらに短くなる。パターン2のように、逆止弁24が移動ストロークの途中位置にある状態においては、逆止弁24が閉鎖状態(後退限)になるのに要する時間(時間t5−t4)は更に短くなる。パターン3においては、射出工程開始時には、既に逆止弁24が閉鎖状態(後退限)のため、樹脂の逆流そのものが発生しない。   On the other hand, the reverse flow of the resin to be prevented in Patent Document 1 and Patent Document 2 is a reverse flow rate that is generated during the closing (retreating) operation of the check valve at the start of the injection process. For example, if the moving stroke of the check valve 24 is 10 mm and the forward speed (injection speed) of the screw 21 in the injection process is 30 mm / s, the check valve 24 is almost completely in the injection standby state as in pattern 1. In the open state (forward limit), from the start of the injection process until the screw 21 moves forward and contacts the rear end of the check valve 24, that is, it is necessary for the check valve 24 to be in the closed state (reverse limit). The time (time t5-t4) is as short as about 0.3 seconds. In large thin molding, high cycle molding, and injection foam molding, high speed injection conditions of 100 mm / s or more are often required, and in this case, it is further shortened to 0.1 seconds or less. In the state where the check valve 24 is in the middle of the movement stroke as in the pattern 2, the time (time t5-t4) required for the check valve 24 to be in the closed state (reverse limit) is further shortened. In pattern 3, since the check valve 24 is already in the closed state (retreat limit) at the start of the injection process, the resin backflow itself does not occur.

実際には、先に説明したように、この時間t4に至る前に、樹脂圧力P1及び樹脂圧力P2は共に大気圧P近傍まで圧力降下しており、この時間t4から時間t5までの間、逆止弁24の前後には、樹脂の逆流を生じさせるような差圧はほとんど発生していない状態である。また、この間、射出工程開始からスクリュ21が前進して逆止弁24の後端に当接するまで(逆止弁24が閉鎖状態になるまで)に要する時間は、先に説明したとおりである。そのため、射出工程開始時の逆止弁の閉鎖(後退)動作の間に発生するとされている逆流量は、図2中の領域Bで示すものとなる。一方、移行点Xから時間t3までの樹脂の逆流量、すなわち、図2中の領域Aで示される射出待機状態における樹脂の逆流量は、上記のパターン3を除き、逆止弁24の開放状態(時間)が領域Bよりも明らかに長く、その間、逆止弁24の前後に樹脂の逆流を生じさせるような差圧が生じているため、領域Bで示される逆流量よりも明らかに多い。これらを鑑みると、計量樹脂量への影響が大きいのは、図2中の領域Bで示される、射出工程開始時の逆止弁の閉鎖(後退)動作の間に発生するとされている逆流量よりも、図2の領域Aに示される、射出待機状態における樹脂の逆流量であることは明らかである。 In fact, as previously described, before reaching the time t4, the resin pressure P1 and the resin pressure P2 is then pressure drop together to atmospheric pressure P A proximity, during this time t4 to time t5, There is almost no differential pressure that causes a back flow of the resin before and after the check valve 24. During this time, the time required from the start of the injection process until the screw 21 moves forward and comes into contact with the rear end of the check valve 24 (until the check valve 24 is closed) is as described above. Therefore, the reverse flow rate that is supposed to be generated during the check valve closing (retreating) operation at the start of the injection process is indicated by a region B in FIG. On the other hand, the reverse flow rate of the resin from the transition point X to the time t3, that is, the reverse flow rate of the resin in the injection standby state indicated by the region A in FIG. (Time) is clearly longer than region B, and during that time, a differential pressure that causes a back flow of resin occurs before and after the check valve 24, so that it is clearly greater than the back flow rate shown in region B. In view of these, the large influence on the amount of metered resin is that the reverse flow rate that is generated during the check valve closing (retracting) operation at the start of the injection process, indicated by region B in FIG. It is clear that the reverse flow rate of the resin in the injection standby state shown in the region A of FIG.

特許文献1及び特許文献2で防止しようとしている樹脂の逆流は領域Bで示されるものであって、領域Aで示される、射出待機状態における樹脂の逆流を防止することについては何ら記載も示唆もない。そのため、特許文献1の射出方法や特許文献2の射出成形機では、射出樹脂量のバラつきを十分に改善することは困難であると言わざるを得ない。   The backflow of the resin to be prevented in Patent Document 1 and Patent Document 2 is indicated by the region B, and there is any description or suggestion about preventing the backflow of the resin in the injection standby state indicated by the region A. Absent. Therefore, in the injection method of Patent Document 1 and the injection molding machine of Patent Document 2, it must be said that it is difficult to sufficiently improve the variation in the amount of injected resin.

また、特許文献1は、計量後、スクリュをサックバック(スクリュ後退動作)させ、その位置でスクリュを逆回転させ、樹脂圧力P2を降下させることにより相対的にP1を上昇させて、P1>P2の関係における差圧の増大を図り、逆止弁の積極的な閉鎖動作を誘導させるものである。しかしながら、先に説明したように、樹脂圧力P2は、スクリュ回転停止後、略一秒で大気圧近傍まで圧力降下するため、このスクリュの逆回転は逆止弁の閉鎖動作に寄与することはない。先に説明したパターン3にように、このように生じさせたP1>P2の差圧が、開放位置(前進限)にある逆止弁を、完全に閉鎖位置(後退限)に移動させることが可能かどうかは、使用する樹脂材料の種類や、射出成形機のサイズや逆止弁24の仕様によるため、実施には制約が多い。更に、P1>P2の樹脂圧力の差異を増大させることは、パターン1やパターン2のように、逆止弁が完全に閉鎖状態にならない場合、樹脂の逆流量の増大を招き、計量樹脂量のバラつきを更に増大させる可能性がある。   Further, in Patent Document 1, after weighing, the screw is sucked back (retracted by a screw), the screw is reversely rotated at that position, and the resin pressure P2 is lowered to relatively increase P1, and P1> P2 In this relationship, the pressure difference is increased, and a positive closing operation of the check valve is induced. However, as described above, since the resin pressure P2 drops to near atmospheric pressure in about one second after the screw rotation is stopped, the reverse rotation of the screw does not contribute to the closing operation of the check valve. . As in pattern 3 described above, the check valve P1> P2 generated in this way can completely move the check valve in the open position (forward limit) to the closed position (reverse limit). Whether it is possible depends on the type of resin material to be used, the size of the injection molding machine, and the specifications of the check valve 24, so that there are many restrictions on implementation. Further, increasing the difference in the resin pressure of P1> P2 causes an increase in the back flow rate of the resin when the check valve is not completely closed as in pattern 1 or pattern 2, and the amount of metered resin There is a possibility of further increasing the variation.

本発明は、上記したような問題点に鑑みてなされたもので、具体的には、計量工程完了後の射出待機状態における貯留部からの樹脂の逆流を防止することができる、射出成形機の計量制御方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and specifically, an injection molding machine capable of preventing a back flow of resin from a storage portion in an injection standby state after completion of a weighing process. An object is to provide a weighing control method.

上記の目的を達成するため、本発明に係る、射出成形機の計量制御方法は、計量工程において、スクリュが計量完了位置に到達し、スクリュの回転動作を停止させた後の、逆止弁より後方の樹脂の圧力P2の圧力降下に対して、スクリュの回転停止の後に、スクリュを後退させて、逆止弁よりの樹脂の圧力P1を圧力P2と略同じ圧力まで降下させる、スクリュ後退動作を有する。   In order to achieve the above object, the metering control method for an injection molding machine according to the present invention is based on a check valve after the screw reaches the metering completion position and stops the screw rotating operation in the metering step. In response to the pressure drop of the resin pressure P2 on the rear side, after the screw stops rotating, the screw is moved backward to reduce the pressure P1 of the resin from the check valve to substantially the same pressure as the pressure P2. Have.

また、本発明に係る、射出成形機の計量制御方法は、スクリュ後退動作において、圧力P1の圧力降下率を圧力P2の圧力降下率と連動させても良い。   In the metering control method for an injection molding machine according to the present invention, the pressure drop rate of the pressure P1 may be interlocked with the pressure drop rate of the pressure P2 in the screw retreat operation.

更に、本発明に係る、射出成形機の計量制御方法は、スクリュ後退動作を1秒以内に完了させることが好ましい。   Furthermore, it is preferable that the metering control method for an injection molding machine according to the present invention completes the screw retreat operation within one second.

一方、本発明に係る、射出成形機の計量制御方法においては、スクリュの外径がD(ディー)、補正係数がα(アルファ)であるとき、スクリュ後退動作におけるスクリュの後退距離ΔL(デルタエル)を、式ΔL=αDとし、補正係数αが0.025から0.25の範囲であることが好ましい。   On the other hand, in the metering control method for an injection molding machine according to the present invention, when the outer diameter of the screw is D (dee) and the correction coefficient is α (alpha), the screw retraction distance ΔL (delta L) in the screw retraction operation. Is expressed by ΔL = αD, and the correction coefficient α is preferably in the range of 0.025 to 0.25.

本発明に係る、射出成形機の計量制御方法は、計量工程において、スクリュが計量完了位置に到達し、スクリュの回転動作を停止させた後の、逆止弁より後方の樹脂の圧力P2の圧力降下に対して、スクリュの回転停止の後に、スクリュを後退させて、逆止弁より前方の樹脂の圧力P1を圧力P2と略同じ圧力まで降下させる、スクリュ後退動作を有するため、計量工程完了後の射出待機状態における貯留部からの樹脂の逆流を防止することができる。   In the metering control method for an injection molding machine according to the present invention, the pressure of the resin pressure P2 behind the check valve after the screw reaches the metering completion position and stops the screw rotation operation in the metering step. In response to the descent, the screw is retracted after stopping the rotation of the screw, and the screw retracting operation is performed to lower the pressure P1 of the resin ahead of the check valve to substantially the same pressure as the pressure P2. It is possible to prevent the back flow of the resin from the storage part in the injection standby state.

一般的な計量制御方法に係る、計量工程から射出工程へと切り替わる間の射出装置の概略断面図である。It is a schematic sectional drawing of the injection device during a change from a measurement process to an injection process concerning a general measurement control method. 一般的な計量制御方法に係る、計量工程から射出工程へと切り替わる間の、逆止弁前方の樹脂圧力P1と後方の樹脂圧力P2の変化を、時間経過に基づき表示したグラフである。It is the graph which displayed the change of the resin pressure P1 of the front of a non-return valve and the resin pressure P2 of back based on time passage during the switching from a measurement process to an injection process concerning a general measurement control method. 本発明の計量制御方法に係る、実施例1の、計量工程から射出工程へと切り替わる間の、逆止弁前方の樹脂圧力P1と後方の樹脂圧力P2の変化を、時間経過に基づき表示したグラフである。The graph which displayed the change of the resin pressure P1 of the front of a non-return valve and the resin pressure P2 of the back based on progress of the time of switching from the measurement process to the injection process of Example 1 which concerns on the measurement control method of this invention. It is.

以下、本発明を実施するための形態について、添付図面を参照しながら詳細に説明する。   Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings.

図3を参照しながら、本発明の実施例1に係る、射出成形機の計量制御方法を説明する。図3は、実施例1の、計量工程から射出工程へと切り替わる間の、逆止弁前方の樹脂圧力P1と後方の樹脂圧力P2の変化を、時間経過に基づき表示したグラフである。また、本発明は、射出成形機の計量制御方法であって、使用する射出成形機に特段の構成はないため、必要に応じて、図1及び図2も参照するものとする。   With reference to FIG. 3, a measurement control method for an injection molding machine according to the first embodiment of the present invention will be described. FIG. 3 is a graph showing changes in the resin pressure P1 in front of the check valve and the resin pressure P2 in the rear based on the passage of time while switching from the metering process to the injection process in the first embodiment. Further, the present invention is a metering control method for an injection molding machine, and the injection molding machine to be used does not have a special configuration, so that FIGS. 1 and 2 are also referred to as necessary.

本発明の実施例1に係る、射出成形機の計量制御方法が、一般的な計量制御方法と異なる点は、スクリュ21の回転停止後に、スクリュ21を後退させて、逆止弁より前方の樹脂の樹脂圧力P1を樹脂圧力P2と略同じ圧力まで降下させる、スクリュ後退動作を有する点である。この点以外は、一般的な計量制御方法と基本的に同じであるため、その詳細な説明は省略、又は、図1及び図2を参照して説明し、相違点についてのみ詳細に説明する。よって、図3において、図2と同じ構成については同じ符号を使用し、図2と異なる構成については、相当する符号に”’(アポストロフィ)”を付して区別するものとする。   The metering control method of the injection molding machine according to the first embodiment of the present invention is different from the general metering control method in that after the screw 21 stops rotating, the screw 21 is retracted to the front of the check valve. This is the point of having a screw retraction operation that lowers the resin pressure P1 to approximately the same pressure as the resin pressure P2. Except for this point, the method is basically the same as a general measurement control method, and therefore, detailed description thereof will be omitted or will be described with reference to FIGS. 1 and 2, and only differences will be described in detail. Therefore, in FIG. 3, the same reference numerals are used for the same components as those in FIG. 2, and the configurations different from those in FIG. 2 are distinguished by adding “′ (apostrophe)” to the corresponding symbols.

図3に示すように、計量工程が完了し、スクリュ21の回転動作を停止させる時間t1以降、逆止弁24より後方の溶融状態の樹脂の樹脂圧力P2は維持されることなく、時間t2までに、Pから急激に大気圧P近傍まで降下する。ここで、本発明の実施例1に係る、射出成形機の計量制御方法においては、スクリュ21の回転動作を停止させた後、スクリュ21を距離ΔL後退させる(スクリュ後退動作)。 As shown in FIG. 3, the resin pressure P2 of the molten resin behind the check valve 24 is not maintained until the time t2 after the time t1 when the measuring process is completed and the rotation operation of the screw 21 is stopped. to rapidly drop to atmospheric pressure P a near from P F. Here, in the metering control method of the injection molding machine according to the first embodiment of the present invention, after the rotation operation of the screw 21 is stopped, the screw 21 is moved backward by a distance ΔL (screw backward movement operation).

このスクリュ後退動作は、逆止弁24より前方の貯留部11の樹脂圧力P1を、貯留部11の容積を拡張させることにより降下させるものである。このスクリュ後退動作により、時間t2にわずかに遅れた時間t3’までに、樹脂圧力P1を、逆止弁24より後方のリアシート側の樹脂圧力P2と略同じ大気圧Pまで圧力降下させれば、P1<P2の関係が、移行点X’においてP1>P2の関係に移行し、計量工程完了後の射出待機状態における貯留部から逆流する樹脂量は、図3に斜線で示す領域A’の面積で示される。 This screw retreat operation is to lower the resin pressure P1 of the storage portion 11 in front of the check valve 24 by expanding the volume of the storage portion 11. The screw retreat operation, until slightly later time t3 'in the time t2, the resin pressure P1, if ask substantially the pressure drop to the same atmospheric pressure P A from the check valve 24 and the resin pressure P2 behind the rear seat side , P1 <P2 shifts to a relationship of P1> P2 at the transition point X ′, and the amount of resin flowing backward from the storage portion in the injection standby state after the completion of the metering process is shown in the area A ′ indicated by hatching in FIG. Shown in area.

この領域A’が、図2の領域Aに対して十分に小さいことは明白であり、一般的な計量制御方法に対して、計量工程完了後の射出待機状態における貯留部から逆流する樹脂量を大幅に減少させることができる。すなわち、射出待機状態における貯留部から逆流する樹脂量自体が少ないため、この領域A’で示される樹脂の逆流量が、先に説明したパターン1からパターン3のいずれかのパターンでバラついた場合でも、そのバラつき量を、先の領域Aで示される樹脂の逆流量のバラつき量に対して大幅に減少させることができる。尚、時間t3’以降から射出工程開始の時間t4までの射出待機状態においては、樹脂圧力P1及びP2の圧力差が略ゼロであるため、逆止弁24が開放状態(前進限)であっても、閉鎖位置(後退限)側への移動ストロークの途中位置であっても、逆流する樹脂量は略ゼロであることは言うまでもない。   It is obvious that this area A ′ is sufficiently small with respect to the area A in FIG. 2, and the amount of resin flowing back from the storage portion in the injection standby state after the completion of the weighing process is reduced with respect to a general weighing control method. Can be greatly reduced. That is, since the amount of resin flowing back from the storage portion in the injection standby state is small, the reverse flow rate of the resin indicated in this region A ′ varies in any of the patterns 1 to 3 described above. However, the amount of variation can be significantly reduced with respect to the amount of variation in the reverse flow rate of the resin indicated in the previous region A. In the injection standby state from time t3 ′ onward to time t4 when the injection process starts, the pressure difference between the resin pressures P1 and P2 is substantially zero, so the check valve 24 is in the open state (forward limit). However, it goes without saying that the amount of resin flowing backward is substantially zero even at the midway position of the movement stroke toward the closed position (retreat limit).

本実施例1では、説明を容易にするため、時間t3’を時間t2からわずかに遅れた時間としたが、スクリュ21の距離ΔLまでの後退速度を適切に設定することにより、樹脂圧力P1の圧力降下率を樹脂圧力P2の圧力降下率と連動させたり、スクリュ21の距離ΔLまでの後退動作を一秒以内に完了させたりすることにより、時間t3’を時間t2に略一致させる、すなわち、樹脂圧力P1を樹脂圧力P2と略同じタイミングで大気圧P近傍まで圧力降下させることにより、移行点X’を発生させず、領域A’を実質的にゼロにすることが可能である。尚、1秒以内とは、先に説明したように、樹脂圧力P2が大気圧P近傍まで圧力降下するのに要するとされている時間を基準としたものである。 In the first embodiment, for ease of explanation, the time t3 ′ is set to a time slightly delayed from the time t2, but the resin pressure P1 can be set by appropriately setting the reverse speed to the distance ΔL of the screw 21. By linking the pressure drop rate with the pressure drop rate of the resin pressure P2, or by completing the backward movement to the distance ΔL of the screw 21 within one second, the time t3 ′ is substantially matched with the time t2, that is, by the resin pressure P1 is the pressure drop substantially to atmospheric pressure P a proximity at the same time the resin pressure P2, 'without generating an area a' transition point X can be substantially zero. Note that within one second, as described above, in which the resin pressure P2 is taken as a reference time, which is the required for pressure drop to atmospheric pressure P A neighborhood.

このようにして、計量工程から射出待機状態を経て射出工程へと切り替わる間の、貯留部から樹脂の逆流量を、図3の領域A’及び領域Bで示す樹脂量とすることができる。先に説明したように、領域A’で示す逆流量は、スクリュ21の距離ΔLまでの後退速度を適切に設定することにより更に減少させることができ、領域Bで示す逆流量はごくわずかであるため、本発明に係る、射出成形機の計量制御方法により、近年、計量工程に要求される高い計量精度を十分に満たすことができる。   In this manner, the reverse flow rate of the resin from the storage portion during the switching from the metering process to the injection process through the injection standby state can be set to the resin amount indicated by the areas A ′ and B in FIG. 3. As described above, the reverse flow rate indicated by the region A ′ can be further reduced by appropriately setting the reverse speed of the screw 21 up to the distance ΔL, and the reverse flow rate indicated by the region B is negligible. Therefore, the measurement control method for the injection molding machine according to the present invention can sufficiently satisfy the high measurement accuracy required for the measurement process in recent years.

また、計量工程完了後(スクリュ回転動作停止時)から、移行点X’までの間、樹脂圧力P1及び樹脂圧力P2の関係はP1<P2であるため、樹脂流路14から貯留部11への樹脂流動は完全には停止せず、移行点X’に到達するまで樹脂が貯留部11へオーバーフローする。そのため、スクリュ21の距離ΔLまでの後退速度を適切に設定することにより、領域A’を減少させるだけでなく、移行点X’を境とする、前半の樹脂の貯留部11へのオーバーフロー量と、後半の貯留部11からの逆流量(領域A’)とを相殺させて、射出待機状態における樹脂の逆流量を実質的に領域Bに示す量のみに留めることも可能である。   Further, since the relationship between the resin pressure P1 and the resin pressure P2 is P1 <P2 from the completion of the weighing process (when the screw rotation operation is stopped) to the transition point X ′, the relationship from the resin flow path 14 to the storage unit 11 is satisfied. The resin flow does not stop completely, and the resin overflows to the reservoir 11 until the transition point X ′ is reached. Therefore, by appropriately setting the reverse speed up to the distance ΔL of the screw 21, not only the area A ′ is reduced, but also the amount of overflow of the first half of the resin into the reservoir 11 at the transition point X ′ It is also possible to cancel the reverse flow rate (region A ′) from the storage unit 11 in the latter half, and to keep the reverse flow rate of the resin in the injection standby state substantially only in the amount shown in the region B.

次に、スクリュ後退動作におけるスクリュ後退量ΔLの設定について説明する。逆止弁24より前方の貯留部11の樹脂は、粘性と弾性の両方の特性を有する粘弾性体であって、このような粘弾性体の体積弾性率やヤング率を正確に求めることは難しい。しかしながら、出願人が検証を行った結果、スクリュ後退量ΔLを式ΔL=αDとし、補正係数αが0.025から0.25の範囲で、適切なΔLが求められることを見出した。Dはスクリュ21のリアシート23側(メータリングゾーン)外径である。   Next, the setting of the screw retraction amount ΔL in the screw retraction operation will be described. The resin in the reservoir 11 in front of the check valve 24 is a viscoelastic body having both viscous and elastic characteristics, and it is difficult to accurately obtain the volume modulus and Young's modulus of such a viscoelastic body. . However, as a result of verification by the applicant, it has been found that an appropriate ΔL can be obtained when the screw retraction amount ΔL is expressed by the equation ΔL = αD and the correction coefficient α is in the range of 0.025 to 0.25. D is the outer diameter of the screw 21 on the rear seat 23 side (metering zone).

具体的には、まず、試験成形において、ΔL=0.1D、すなわち、α=0.1で、スクリュ後退量をスクリュ21のリアシート23側の外径Dの1/10と仮設定して、本発明に係る計量制御方法にて射出成形を行う(スクリュ後退量仮設定工程)。この試験成形において得られた想定計量樹脂量と成形品重量との比較やバラつきのデータ取りを行う。次に、一回の設定変更におけるαの修正値を0.025として、例えば、ΔL=0.125D(又は、ΔL=0.075D)として試験成形を行い、同様にデータ取りを行い、αの増減方向や程度を確認する。これを、0.025≦α≦0.25の範囲で修正しながら、想定計量樹脂量と成形品重量との相違や、バラつきが最も少ないΔLを求める。   Specifically, first, in the test molding, ΔL = 0.1D, that is, α = 0.1, and the screw retraction amount is temporarily set to 1/10 of the outer diameter D of the screw 21 on the rear seat 23 side, Injection molding is performed by the metering control method according to the present invention (screw retraction amount temporary setting step). Comparison between the assumed measured resin amount obtained in this test molding and the weight of the molded product and data collection of variations are performed. Next, the correction value of α in a single setting change is set to 0.025, for example, ΔL = 0.125D (or ΔL = 0.075D), test molding is performed, data is taken similarly, and α Check the direction and degree of increase / decrease. While correcting this in the range of 0.025 ≦ α ≦ 0.25, ΔL with the smallest difference between the assumed measured resin amount and the molded product weight and the variation is obtained.

先に説明したように、出願人は、スクリュ後退量ΔLを、スクリュのリアシート側の外径Dから求めるための補正係数αの範囲、すなわち、下限値0.025及び上限値0.25を検証によって求めた。出願人が検証を行った結果、スクリュ後退量ΔL<0.025Dの場合は、樹脂圧力P1の圧力降下が不十分であるため、P1>P2の圧力差が維持され、射出待機状態における、貯留部11から樹脂流路14側への樹脂の逆流を十分に防止することができず、計量樹脂量が減少する方向のバラつきを解決することはできなかった。   As described above, the applicant verifies the range of the correction coefficient α for obtaining the screw retraction amount ΔL from the outer diameter D on the rear seat side of the screw, that is, the lower limit value 0.025 and the upper limit value 0.25. Sought by. As a result of verification by the applicant, when the screw retraction amount ΔL <0.025D, the pressure drop of the resin pressure P1 is insufficient, so the pressure difference of P1> P2 is maintained, and the storage in the injection standby state is performed. The backflow of the resin from the portion 11 to the resin flow path 14 side could not be sufficiently prevented, and the variation in the direction in which the amount of the metered resin decreased could not be solved.

また、スクリュ後退量ΔL>0.25の場合は、樹脂圧力P1の圧力降下が過剰となり、樹脂圧力P1は大気圧Pよりも低い負圧まで圧力降下した。そのため、射出待機状態の大部分において、P1<P2の圧力差が維持され、逆止弁24より後方の樹脂が貯留部11側へ流動するオーバーフロー現象が生じ、逆に、計量樹脂量は増加する方向にバラついた。樹脂種類や成形条件に基づいて上記のようなΔLのデータが蓄積されれば、より高い計量精度を得るために、あるいは、試験成形時間の短縮のために、一回の設定変更におけるαの修正値を0.025に依らず、任意に選択しても良い。 In the case of screw retracting amount [Delta] L> 0.25, the pressure drop across the resin pressure P1 becomes excessive, the resin pressure P1 was pressure drops to a negative pressure lower than the atmospheric pressure P A. Therefore, in most of the injection standby state, the pressure difference of P1 <P2 is maintained, an overflow phenomenon occurs in which the resin behind the check valve 24 flows toward the storage unit 11, and conversely, the amount of metered resin increases. The direction was uneven. If the above ΔL data is accumulated based on the resin type and molding conditions, α can be corrected in a single setting change in order to obtain higher weighing accuracy or shorten the test molding time. The value may be arbitrarily selected regardless of 0.025.

本実施例1は、本発明に係る、射出成形機の計量制御方法をわかりやすく説明するための一例であり、本発明は、上記の実施の形態に限定されることなく色々な形で実施できることは言うまでもない。   Example 1 is an example for easily explaining the measurement control method of an injection molding machine according to the present invention, and the present invention is not limited to the above-described embodiment, and can be implemented in various forms. Needless to say.

10 加熱バレル
11 貯留部
12 射出ノズル
13 材料供給部
14 樹脂流路
21 スクリュ
21a フライト
22 スクリュヘッド
22a 凹部
22b 小径部
22c 大径部
23 リアシート
24 逆止弁
DESCRIPTION OF SYMBOLS 10 Heating barrel 11 Storage part 12 Injection nozzle 13 Material supply part 14 Resin flow path 21 Screw 21a Flight 22 Screw head 22a Recessed part 22b Small diameter part 22c Large diameter part 23 Rear seat 24 Check valve

Claims (4)

計量工程において、スクリュが計量完了位置に到達し、前記スクリュの回転動作を停止させた後の、逆止弁より後方の樹脂の圧力P2の圧力降下に対して、前記スクリュの回転停止の後に、前記スクリュを後退させて、前記逆止弁より前方の樹脂の圧力P1を前記圧力P2と略同じ圧力まで降下させる、スクリュ後退動作を有する、射出成形機の計量制御方法。   In the measuring step, after the screw reaches the measuring completion position and stops the rotational operation of the screw, after the screw rotation stops, the pressure drop of the resin pressure P2 behind the check valve A metering control method for an injection molding machine having a screw retraction operation in which the screw is retracted and the pressure P1 of the resin in front of the check valve is lowered to substantially the same pressure as the pressure P2. 前記スクリュ後退動作において、前記圧力P1の圧力降下率を前記圧力P2の圧力降下率と連動させる、請求項1に記載の射出成形機の計量制御方法。 2. The metering control method for an injection molding machine according to claim 1, wherein in the screw retreat operation, the pressure drop rate of the pressure P <b> 1 is interlocked with the pressure drop rate of the pressure P <b> 2. 前記スクリュ後退動作を1秒以内に完了させる、請求項1及び請求項2のいずれか1項に記載の電動射出成形機の計量制御方法。   The weighing control method for an electric injection molding machine according to any one of claims 1 and 2, wherein the screw retreating operation is completed within one second. 前記スクリュの外径がD、補正係数がαであるとき、前記スクリュ後退動作における前記スクリュの後退距離ΔLを、式ΔL=αDとし、前記補正係数αが0.025から0.25の範囲である、請求項1乃至請求項3のいずれか1項に記載の射出成形機の計量制御方法。   When the outer diameter of the screw is D and the correction coefficient is α, the retraction distance ΔL of the screw in the screw retraction operation is expressed as ΔL = αD, and the correction coefficient α is in the range of 0.025 to 0.25. The metering control method for an injection molding machine according to any one of claims 1 to 3.
JP2014114181A 2014-06-02 2014-06-02 Measuring method for injection molding machine Active JP6379686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014114181A JP6379686B2 (en) 2014-06-02 2014-06-02 Measuring method for injection molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014114181A JP6379686B2 (en) 2014-06-02 2014-06-02 Measuring method for injection molding machine

Publications (2)

Publication Number Publication Date
JP2015227032A true JP2015227032A (en) 2015-12-17
JP6379686B2 JP6379686B2 (en) 2018-08-29

Family

ID=54884839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014114181A Active JP6379686B2 (en) 2014-06-02 2014-06-02 Measuring method for injection molding machine

Country Status (1)

Country Link
JP (1) JP6379686B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023203715A1 (en) * 2022-04-21 2023-10-26 ファナック株式会社 Control device and control method
WO2023203714A1 (en) * 2022-04-21 2023-10-26 ファナック株式会社 Control device and control method
WO2023203716A1 (en) * 2022-04-21 2023-10-26 ファナック株式会社 Control device and control method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0592461A (en) * 1991-10-01 1993-04-16 Ube Ind Ltd Measurement controlling method for injection molding machine of in-line screw type
JPH07227837A (en) * 1994-02-16 1995-08-29 Mitsui Toatsu Chem Inc How to stop and start the extrusion granulator
JPH0929794A (en) * 1995-07-19 1997-02-04 Nissei Plastics Ind Co Injection method for injecting unit
JPH1016016A (en) * 1996-07-03 1998-01-20 Sumitomo Heavy Ind Ltd Injection molding
JPH11245274A (en) * 1998-03-02 1999-09-14 Japan Steel Works Ltd:The Control method of resin pressure at the tip of plasticizing cylinder
US20010053392A1 (en) * 2000-06-16 2001-12-20 Nissei Plastic Industrial Co., Ltd. Injecting apparatus with check valve
JP2002337204A (en) * 2001-05-18 2002-11-27 Japan Steel Works Ltd:The Screw control method for injection molding machine
JP2005074828A (en) * 2003-09-01 2005-03-24 Japan Steel Works Ltd:The Method for controlling injection molding
WO2014038609A1 (en) * 2012-09-05 2014-03-13 Akimoto Hideo Molded foam and method for manufacturing molded foam
JP2014058066A (en) * 2012-09-14 2014-04-03 Japan Steel Works Ltd:The Method for controlling injection molding machine

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0592461A (en) * 1991-10-01 1993-04-16 Ube Ind Ltd Measurement controlling method for injection molding machine of in-line screw type
JPH07227837A (en) * 1994-02-16 1995-08-29 Mitsui Toatsu Chem Inc How to stop and start the extrusion granulator
JPH0929794A (en) * 1995-07-19 1997-02-04 Nissei Plastics Ind Co Injection method for injecting unit
US5756037A (en) * 1995-07-19 1998-05-26 Nissei Plastic Industrial Co., Ltd. Method for injecting molten resin by injection machine
JPH1016016A (en) * 1996-07-03 1998-01-20 Sumitomo Heavy Ind Ltd Injection molding
JPH11245274A (en) * 1998-03-02 1999-09-14 Japan Steel Works Ltd:The Control method of resin pressure at the tip of plasticizing cylinder
US20010053392A1 (en) * 2000-06-16 2001-12-20 Nissei Plastic Industrial Co., Ltd. Injecting apparatus with check valve
JP2002337204A (en) * 2001-05-18 2002-11-27 Japan Steel Works Ltd:The Screw control method for injection molding machine
JP2005074828A (en) * 2003-09-01 2005-03-24 Japan Steel Works Ltd:The Method for controlling injection molding
WO2014038609A1 (en) * 2012-09-05 2014-03-13 Akimoto Hideo Molded foam and method for manufacturing molded foam
JP2014058066A (en) * 2012-09-14 2014-04-03 Japan Steel Works Ltd:The Method for controlling injection molding machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023203715A1 (en) * 2022-04-21 2023-10-26 ファナック株式会社 Control device and control method
WO2023203714A1 (en) * 2022-04-21 2023-10-26 ファナック株式会社 Control device and control method
WO2023203716A1 (en) * 2022-04-21 2023-10-26 ファナック株式会社 Control device and control method

Also Published As

Publication number Publication date
JP6379686B2 (en) 2018-08-29

Similar Documents

Publication Publication Date Title
JP6092075B2 (en) Injection molding machine
JP2010000721A (en) Control method of injection molding, and controller of injection molding
JP6379686B2 (en) Measuring method for injection molding machine
JP2006082300A (en) Rubber injection molding machine and rubber product manufacturing method
JP2021535852A (en) Systems and approaches to control injection molding machines
WO2013051098A1 (en) Method of controlling pressure-maintaining step for injection-molding machine
US9090015B2 (en) Controller of injection molding machine
JP5661007B2 (en) Injection device and injection control method thereof
CN108656488B (en) Control method for injection molding machine
JP4889574B2 (en) Control method of injection molding machine
JPH11320630A (en) Method and apparatus for injecting plastic material
JP2005074970A (en) Mold for injection molding and injection molding machine equipped with the mold
JP6075694B2 (en) Control method of injection filling process of injection molding machine
US8568631B2 (en) Control method for screw of injection molding machine
JP5698814B2 (en) Control method of injection molding machine
JP2011110772A (en) Injection device and injection method of resin
JP5531814B2 (en) Injection molding method
CN108290330B (en) Method for ending molding cycle of injection molding machine
US20140361462A1 (en) Injection molding
US20240239029A1 (en) Injection molding device
JP5083656B2 (en) Forced opening of check ring in injection molding machine
JP6528616B2 (en) Injection filling control method for injection molding machine
JP6888483B2 (en) Screw for injection molding machine and injection molding method
WO2016039982A1 (en) Gate closing control for injection molding system
JP6731287B2 (en) Injection molding machine and injection molding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180716

R150 Certificate of patent or registration of utility model

Ref document number: 6379686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250