JP2015205304A - Flux-cored wire for gas shield arc welding - Google Patents
Flux-cored wire for gas shield arc welding Download PDFInfo
- Publication number
- JP2015205304A JP2015205304A JP2014086845A JP2014086845A JP2015205304A JP 2015205304 A JP2015205304 A JP 2015205304A JP 2014086845 A JP2014086845 A JP 2014086845A JP 2014086845 A JP2014086845 A JP 2014086845A JP 2015205304 A JP2015205304 A JP 2015205304A
- Authority
- JP
- Japan
- Prior art keywords
- flux
- welding
- weld metal
- cored wire
- total
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003466 welding Methods 0.000 title claims abstract description 149
- 230000004907 flux Effects 0.000 claims abstract description 80
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 50
- 239000010959 steel Substances 0.000 claims abstract description 50
- 238000006243 chemical reaction Methods 0.000 claims abstract description 22
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 11
- 239000012535 impurity Substances 0.000 claims abstract description 5
- 230000006872 improvement Effects 0.000 claims description 27
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 23
- 229910052797 bismuth Inorganic materials 0.000 claims description 19
- 150000001875 compounds Chemical class 0.000 claims description 16
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 11
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 11
- 238000010276 construction Methods 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 abstract description 111
- 239000002184 metal Substances 0.000 abstract description 111
- 229910052710 silicon Inorganic materials 0.000 abstract description 7
- 229910052748 manganese Inorganic materials 0.000 abstract description 6
- 229910052799 carbon Inorganic materials 0.000 abstract description 3
- 229910052759 nickel Inorganic materials 0.000 abstract description 3
- 230000002349 favourable effect Effects 0.000 abstract 1
- 239000002893 slag Substances 0.000 description 42
- 239000011324 bead Substances 0.000 description 41
- 230000000694 effects Effects 0.000 description 25
- 239000011734 sodium Substances 0.000 description 16
- 239000007789 gas Substances 0.000 description 15
- 238000005336 cracking Methods 0.000 description 12
- 229910001021 Ferroalloy Inorganic materials 0.000 description 9
- 230000007423 decrease Effects 0.000 description 9
- 239000010936 titanium Substances 0.000 description 9
- 238000005538 encapsulation Methods 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910006639 Si—Mn Inorganic materials 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 238000009863 impact test Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000007665 sagging Methods 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- 229910002551 Fe-Mn Inorganic materials 0.000 description 2
- 229910017082 Fe-Si Inorganic materials 0.000 description 2
- 229910017133 Fe—Si Inorganic materials 0.000 description 2
- 239000004115 Sodium Silicate Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 235000019353 potassium silicate Nutrition 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 229910052911 sodium silicate Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 229910052845 zircon Inorganic materials 0.000 description 2
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910018134 Al-Mg Inorganic materials 0.000 description 1
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229910018467 Al—Mg Inorganic materials 0.000 description 1
- 229910000521 B alloy Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910017116 Fe—Mo Inorganic materials 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 229910000914 Mn alloy Inorganic materials 0.000 description 1
- 229910001182 Mo alloy Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 239000004111 Potassium silicate Substances 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- DLHONNLASJQAHX-UHFFFAOYSA-N aluminum;potassium;oxygen(2-);silicon(4+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Si+4].[Si+4].[Si+4].[K+] DLHONNLASJQAHX-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- NNHHDJVEYQHLHG-UHFFFAOYSA-N potassium silicate Chemical compound [K+].[K+].[O-][Si]([O-])=O NNHHDJVEYQHLHG-UHFFFAOYSA-N 0.000 description 1
- 229910052913 potassium silicate Inorganic materials 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- BFXAWOHHDUIALU-UHFFFAOYSA-M sodium;hydron;difluoride Chemical compound F.[F-].[Na+] BFXAWOHHDUIALU-UHFFFAOYSA-M 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Landscapes
- Nonmetallic Welding Materials (AREA)
Abstract
Description
本発明は、590MPa級高張力鋼のガスシールドアーク溶接用フラックス入りワイヤに関し、特に、高能率施工が可能な大入熱の溶接施工条件において、立向上進姿勢溶接での溶接作業性が良好で、機械的性能に優れた溶接金属を得ることができる立向上進溶接向けガスシールドアーク溶接用フラックス入りワイヤに関する。 The present invention relates to a flux-cored wire for gas shielded arc welding of high-strength steel of 590 MPa class, and in particular, welding workability is improved in vertical welding with high heat input under high heat input welding conditions where high efficiency construction is possible. The present invention relates to a flux-cored wire for gas shielded arc welding for standing-up progress welding capable of obtaining a weld metal having excellent mechanical performance.
ガスシールドアーク溶接用フラックス入りワイヤは、ソリッドワイヤに比較してビード外観などの溶接作業性が良好で、さらに溶着効率に優れていることから、年々その使用量が増加している。近年、鉄骨分野においては、構造物の大型化に伴って鋼材の高強度化が検討され、590MPa級の高張力鋼が用いられるようになり、これに対応した溶接材料の需要が大きくなっている。さらに、溶接能率向上の目的から、溶接の入熱量が30〜50kJ/cmのような大入熱での多層盛溶接においても、立向上進姿勢溶接で良好な溶接作業が得られ、かつ、靭性に優れる溶接金属が要求されている。 The flux-cored wire for gas shielded arc welding has better welding workability such as a bead appearance than the solid wire, and further has excellent welding efficiency, so that its usage is increasing year by year. In recent years, in the steel frame field, with the increase in size of structures, higher strength of steel materials has been studied, and high-tensile steel of 590 MPa class has been used, and the demand for welding materials corresponding to this has increased. . Furthermore, for the purpose of improving the welding efficiency, even in multi-layered welding with a large heat input such as a heat input of 30 to 50 kJ / cm, good welding work can be obtained by standing up posture welding and toughness There is a demand for a weld metal that excels in resistance.
ところが、このような大入熱での溶接施工条件の下では、特に590MPa級の高張力鋼の溶接部は、溶接金属の機械的性能が劣化しやすく、また、立向上進姿勢溶接において、スパッタ発生量が多く、溶融金属が垂れる現象(以下、メタル垂れという。)が発生しやすいという問題がある。 However, under such welding conditions with high heat input, the welded portion of 590 MPa class high-strength steel tends to deteriorate the mechanical performance of the weld metal. There is a problem that the amount of generated metal is large and a phenomenon that the molten metal droops (hereinafter referred to as metal dripping) is likely to occur.
このような大入熱の施工条件に対応した溶接用フラックス入りワイヤについて、例えば、特許文献1には、立向上進姿勢溶接に必要なスラグ生成剤を合金成分として溶接用フラックス入りワイヤ中に添加することにより、立向上進姿勢溶接でのメタル垂れを押さえつつ、脱酸作用を利用して良好な靭性を有する溶接金属が得られる溶接用フラックス入りワイヤが開示されている。しかし、特許文献1に記載の溶接用フラックス入りワイヤは、490MPa級高張力鋼用のもので、590MPa級の高張力鋼での溶接を想定していないので、大入熱の溶接施工条件では、要求される機械的性能を得ることができない。 Regarding the flux-cored wire for welding corresponding to the construction conditions of such a large heat input, for example, in Patent Document 1, a slag generating agent necessary for the standing improvement advance welding is added as an alloy component to the flux-cored wire for welding. By doing so, a flux-cored wire for welding is disclosed in which a weld metal having good toughness can be obtained by utilizing a deoxidizing action while suppressing metal sag in standing improvement posture welding. However, the flux-cored wire for welding described in Patent Document 1 is for 490 MPa class high strength steel and does not assume welding with 590 MPa class high strength steel. The required mechanical performance cannot be obtained.
また、特許文献2には、490〜520MPa級高張力鋼の溶接において、溶接用フラックス入りワイヤ中の合金成分およびスラグ形成剤の含有量を限定することで、大入熱の溶接施工条件で溶接した再熱部でも靭性の劣化を招くことがない溶接用フラックス入りワイヤが開示されているが、立向上進姿勢溶接を想定していないので、立向上進姿勢での溶接では、メタル垂れが発生しやすく、ビード形状も不良になりやすい。 Further, in Patent Document 2, in welding of 490 to 520 MPa class high-tensile steel, welding is performed under welding conditions with large heat input by limiting the contents of alloy components and slag forming agents in the flux-cored wire for welding. Although a flux-cored wire for welding that does not cause deterioration in toughness even in a reheated part has been disclosed, it does not assume welding in a standing posture, so metal dripping occurs in welding in a standing posture It is easy to do and the bead shape tends to be bad.
さらに、特許文献3には、490〜520MPa級高張力鋼の溶接では、立向上進姿勢溶接において、靭性およびビード形状を劣化させることなく、高性能で優れた溶接作業性を得ることができる溶接用フラックス入りワイヤが開示されている。しかし、特許文献3に記載の溶接用フラックス入りワイヤは、大入熱での溶接を想定していないので、このような大入熱の溶接施工条件での溶接では、必要な強度が得られず、メタル垂れも発生しやすくなるという問題があった。 Further, in Patent Document 3, in welding of 490 to 520 MPa class high-tensile steel, high-performance and excellent welding workability can be obtained without degrading toughness and bead shape in vertical improvement welding. A flux cored wire is disclosed. However, since the flux-cored wire for welding described in Patent Document 3 does not assume welding with large heat input, the required strength cannot be obtained by welding under such large heat input welding conditions. There is a problem that metal dripping is likely to occur.
本発明は、上述した問題を鑑みて案出されたものであり、590MPa級高張力鋼用のガスシールドアーク溶接用フラックス入りワイヤに関し、高能率施工が可能な大入熱の溶接施工条件において、立向上進溶接における溶接作業性が良好で、かつ、機械的性能に優れる溶接金属を得ることができる立向上進溶接向けガスシールドアーク溶接用フラックス入りワイヤを提供することを目的とする。 The present invention has been devised in view of the above-described problems, and relates to a flux-cored wire for gas shielded arc welding for 590 MPa class high-strength steel. It is an object of the present invention to provide a flux-cored wire for gas shielded arc welding for vertical improvement welding, which can obtain a weld metal having good welding workability in vertical improvement welding and excellent mechanical performance.
本発明者らは、上記課題を解決すべく、590MPa級高張力鋼の立向上進姿勢溶接において、大入熱の溶接施工条件で溶接した場合においても、溶接作業性が良好で、溶接金属の強度及び靭性などの機械的性質に優れた溶接金属を得るべく、溶接用フラックス入りワイヤの成分構成について種々検討を行った。 In order to solve the above-described problems, the present inventors have achieved good welding workability even when welding is performed under high heat input welding conditions in 590 MPa class high-strength steel standing improvement welding. In order to obtain a weld metal having excellent mechanical properties such as strength and toughness, various investigations were made on the composition of the flux-cored wire for welding.
その結果、入熱量30〜50kJ/cmの溶接施工条件で、十分な溶接金属の強度および靭性を確保するためには、溶接用フラックス入りワイヤ中のC、Si、MnおよびMoの含有量を適正とすることで溶接金属の強度を確保し、Ni、B、Mg、Alの含有量を適正とすることで必要な溶接金属の強度および靭性が得られることが知見した。 As a result, in order to ensure sufficient strength and toughness of the weld metal under welding conditions of heat input of 30-50 kJ / cm, the contents of C, Si, Mn and Mo in the flux-cored wire for welding are appropriate. As a result, it was found that the strength and toughness of the weld metal required can be obtained by ensuring the strength of the weld metal and making the contents of Ni, B, Mg and Al appropriate.
また、立向上進姿勢溶接における溶接作業性については、溶接用フラックス入りワイヤ中のTiO2、SiO2,ZrO2、Al、Al2O3、Mg、Na2OおよびK2Oの含有量を適正とすることで、立向上進姿勢溶接でのアーク状態、スパッタ発生量、スラグ被包性、スラグ剥離性、ビード外観およびビード形状を良好にし、メタル垂れ、溶接欠陥、高温割れを防止できることを知見した。 As for the welding workability in vertical upward advance position welding, TiO 2, SiO 2, ZrO 2, Al of welding flux cored in the wire, Al 2 O 3, Mg, the content of Na 2 O and K 2 O By making it appropriate, it is possible to improve the arc state, spatter generation amount, slag encapsulation, slag peelability, bead appearance and bead shape in the vertical improvement welding, and prevent metal dripping, welding defects, and hot cracking. I found out.
さらに、溶接用フラックス入りワイヤ中のBiの含有量を適正とすることで、スラグ剥離性を改善できることも知見した。 Furthermore, it also discovered that slag peelability can be improved by making the content of Bi in the flux-cored wire for welding appropriate.
本発明は、これらの知見に基づいて完成したもので、その発明の要旨は、次の通りである。 The present invention has been completed based on these findings, and the gist of the invention is as follows.
(1)鋼製外皮にフラックスを充填してなるガスシールドアーク溶接用フラックス入りワイヤにおいて、鋼製外皮とフラックスの合計で、
C:0.02〜0.08%、
Si:0.3〜1.0%、
Mn:2.0〜3.5%、
Ni:0.1〜1.0%、
AlのAl2O3換算値およびAl2O3との合計:0.4〜2.3%、かつ、Al:0.2〜1.1%、
B:0.002〜0.015%を含有し、
フラックスに、
Ti酸化物のTiO2換算値:5.5〜6.8%、
Si酸化物のSiO2換算値:0.4〜1.6%、
Zr酸化物のZrO2換算値:0.1〜0.6%、
Mg:0.1〜0.3%、
Na化合物のNa2O換算値およびK化合物のK2O換算値との合計:0.10〜0.20%を含有し、
残部はFeおよび不可避不純物からなることを特徴とする入熱量30〜50kJ/cmの溶接施工条件で立向上進溶接向けガスシールドアーク溶接用フラックス入りワイヤ。
(1) In a flux-cored wire for gas shielded arc welding formed by filling a steel sheath with flux, the total of the steel sheath and flux
C: 0.02 to 0.08%,
Si: 0.3 to 1.0%,
Mn: 2.0 to 3.5%
Ni: 0.1 to 1.0%,
Total of Al 2 O 3 equivalent and Al 2 O 3 : 0.4 to 2.3%, and Al: 0.2 to 1.1%,
B: contains 0.002 to 0.015%,
To the flux,
TiO 2 conversion value of Ti oxide: 5.5 to 6.8%,
SiO 2 conversion value of Si oxide: 0.4 to 1.6%,
ZrO 2 conversion value of Zr oxide: 0.1 to 0.6%,
Mg: 0.1 to 0.3%
The sum of the K 2 O conversion value of terms of Na 2 O values and K compounds of Na compound: containing 0.10 to 0.20%,
A flux-cored wire for gas shielded arc welding for rapid improvement welding under welding conditions of heat input of 30 to 50 kJ / cm, characterized in that the balance consists of Fe and inevitable impurities.
(2)ワイヤ全質量に対する質量%で、フラックスに、さらに、Mo:0.1〜0.3%、BiおよびBi酸化物のBi換算値との合計:0.003〜0.02%を含有することを特徴とするガスシールドアーク溶接用フラックス入りワイヤ。 (2) In mass% with respect to the total mass of the wire, the flux further includes Mo: 0.1 to 0.3%, and the sum of Bi and Bi oxide Bi converted values: 0.003 to 0.02% A flux-cored wire for gas shielded arc welding.
本発明のガスシールドアーク溶接用フラックス入りワイヤによれば、590MPa級高張力鋼板での立向上進姿勢溶接において、大入熱の溶接施工条件で溶接した場合でも、溶接作業性が良好で、かつ、機械的性能に優れた溶接金属を得ることが可能となる。 According to the flux-cored wire for gas shielded arc welding of the present invention, the welding workability is good even when welding is performed under a high heat input welding condition in a standing posture advance welding with a 590 MPa class high-tensile steel plate, and It becomes possible to obtain a weld metal excellent in mechanical performance.
以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.
まず、本発明に係るガスシールドアーク溶接用フラックス入りワイヤの立向上進姿勢での溶接の溶接施工条件の限定理由について説明する。 First, the reasons for limiting the welding conditions for welding in the standing improvement posture of the flux-cored wire for gas shielded arc welding according to the present invention will be described.
[入熱量:30〜50kJ/cm]
入熱量は、溶接によって与えられる熱量を示すパラメータであり、溶接電流、溶接電圧および溶接速度から算出される。この入熱量が高くなると、多層盛溶接の1パス毎の溶着量も多くなり、溶接効率も向上させることができる。入熱量が30kJ/cm未満では、1パス毎の溶着量も少なく、必然的に積層数が増加するので、溶接効率が低下する。一方、入熱量が50kJ/cmを超えると、溶接部の温度が非常に高くなって溶接部の冷却速度が遅くなるため、溶接金属の組織が粗大化して必要な溶接金属の強度および靭性が得られなくなり、高温割れも発生しやすくなる。したがって、入熱量は30〜50kJ/cmとする。
[Amount of heat input: 30-50 kJ / cm]
The amount of heat input is a parameter indicating the amount of heat given by welding, and is calculated from the welding current, welding voltage, and welding speed. When this heat input becomes high, the amount of welding for each pass of multi-layer welding increases, and the welding efficiency can be improved. If the heat input is less than 30 kJ / cm, the welding amount per pass is also small, and the number of layers is inevitably increased, so that the welding efficiency is lowered. On the other hand, if the heat input exceeds 50 kJ / cm, the temperature of the welded part becomes very high and the cooling rate of the welded part becomes slow, so that the weld metal structure becomes coarse and the necessary weld metal strength and toughness are obtained. It becomes difficult to generate hot cracks. Therefore, the heat input is 30 to 50 kJ / cm.
なお、各層毎のパス間温度は、溶接金属の組織の粗大化による機械的性質の低下を防ぐ観点から、150℃以下とすることが好ましい。 In addition, the temperature between passes for each layer is preferably set to 150 ° C. or less from the viewpoint of preventing deterioration of mechanical properties due to coarsening of the structure of the weld metal.
次に、本発明のフラックス入りワイヤの成分組成の限定理由について説明する。各成分の組成は、ワイヤ全質量に対する質量%で表すこととし、その質量%を表すときには単に%と記載して表すこととする。 Next, the reason for limiting the component composition of the flux-cored wire of the present invention will be described. The composition of each component is expressed by mass% with respect to the total mass of the wire, and when expressing the mass%, it is simply expressed as%.
[C:0.02〜0.08%]
Cは、溶接時にアークの安定化に寄与するとともに、溶接金属に歩留まって焼入れ性を高めて溶接金属の強度上昇に寄与する。Cが0.02%未満では、この効果が十分に得られず、大入熱の溶接施工条件での立向上進姿勢溶接では、アーク状態が不安定になってスパッタ発生量が増加するとともに、必要な溶接金属の強度が得られない。一方、Cが0.08%を超えると、Cが溶接金属中に過剰に歩留まり、溶接金属の強度が過剰に高くなり、靱性が低下する。また、溶接金属の割れ感受性が高くなって高温割れが発生しやすくなる。したがって、鋼製外皮とフラックスの合計でCは、0.02〜0.08%とする。なお、Cは、鋼製外皮やフラックス中の金属粉および合金(フェロアロイ)粉等から添加される。
[C: 0.02 to 0.08%]
C contributes to the stabilization of the arc during welding and also contributes to increasing the strength of the weld metal by increasing the yield in the weld metal and increasing the hardenability. When C is less than 0.02%, this effect is not sufficiently obtained, and in the vertical improvement welding under large heat input welding conditions, the arc state becomes unstable and the amount of spatter generated increases. The required weld metal strength cannot be obtained. On the other hand, when C exceeds 0.08%, C is excessively yielded in the weld metal, the strength of the weld metal is excessively increased, and the toughness is lowered. In addition, the cracking sensitivity of the weld metal is increased and high temperature cracking is likely to occur. Therefore, C is 0.02 to 0.08% in total of the steel outer shell and the flux. Note that C is added from a steel outer shell, metal powder in a flux, alloy (ferroalloy) powder, or the like.
[Si:0.3〜1.0%]
Siは、溶接時に一部がスラグとなって溶接ビードのビード外観およびビード形状を良好にして溶接作業性の向上に寄与するとともに、溶接金属中に歩留まって溶接金属の強度および靭性を向上させる効果がある。Siが0.3%未満では、大入熱の溶接施工条件での立向上進姿勢溶接では、ビード外観およびビード形状を良好にする効果が十分に得られず、また、必要な溶接金属の強度が得られない。一方、Siが1.0%を超えると、Siが溶接金属中に過剰に歩留まって靱性が低下する。したがって、鋼製外皮とフラックスの合計でSiは、0.3〜1.0%とする。なお、Siは、鋼製外皮やフラックス中の金属Siの他、Fe−Si、Fe−Si−MnのようなSi合金(フェロアロイ)等から添加される。
[Si: 0.3-1.0%]
Si is partly slag during welding to improve the bead appearance and bead shape of the weld bead and contribute to the improvement of welding workability, and the yield in the weld metal improves the strength and toughness of the weld metal. effective. When Si is less than 0.3%, the effect of improving the bead appearance and bead shape is not sufficiently obtained in the standing improvement welding under the high heat input welding conditions, and the required strength of the weld metal is not obtained. Cannot be obtained. On the other hand, if Si exceeds 1.0%, Si is excessively yielded in the weld metal and the toughness is lowered. Therefore, Si is 0.3 to 1.0% in total of the steel outer shell and the flux. In addition, Si is added from Si alloy (ferroalloy) etc. like Fe-Si and Fe-Si-Mn other than steel outer skin and metal Si in the flux.
[Mn:2.0〜3.5%]
Mnは、Siと同様、溶接時に一部がスラグとなって溶接ビードのビード外観やビード形状を良好にし、溶接作業性の向上に寄与するとともに、溶接金属に歩留まって溶接金属の強度と靱性を向上させる効果がある。Mnが2.0%未満では、大入熱の溶接施工条件での立向上進姿勢溶接では、これらの効果が十分に得られず、ビード外観およびビード形状が不良になるとともに、必要な溶接金属の強度および靭性が得られない。一方、Mnが3.5%を超えると、Mnが溶接金属中に過剰に歩留まるため、溶接金属の強度が過剰に高くなり、靱性が低下する。したがって、鋼製外皮とフラックスの合計でMnは、2.0〜3.5%とする。なお、Mnは、鋼製外皮やフラックス中の金属Mnの他、Fe−Mn、Fe−Si−MnのようなMn合金(フェロアロイ)等から添加される。
[Mn: 2.0 to 3.5%]
Mn, like Si, becomes part of the slag during welding to improve the bead appearance and bead shape of the weld bead and contribute to improving the workability of the weld, while yielding to the weld metal and the strength and toughness of the weld metal. There is an effect of improving. When Mn is less than 2.0%, these effects cannot be obtained sufficiently in the standing improvement welding under the high heat input welding conditions, the bead appearance and the bead shape become poor, and the necessary weld metal Strength and toughness cannot be obtained. On the other hand, when Mn exceeds 3.5%, since Mn is excessively yielded in the weld metal, the strength of the weld metal is excessively increased and the toughness is lowered. Therefore, Mn is 2.0 to 3.5% in total of the steel outer shell and the flux. In addition, Mn is added from Mn alloys (ferroalloy) such as Fe—Mn and Fe—Si—Mn, in addition to the steel outer sheath and metal Mn in the flux.
[Ni:0.1〜1.0%]
Niは、溶接金属の靱性を向上させる効果がある。Niが0.1%未満では、この効果が十分に得られず、大入熱の溶接施工条件での立向上進姿勢溶接では、溶接金属の靭性が低下する。一方、Niが1.0%を超えると、溶接金属の靭性が低下する。また、高温割れが発生しやすくなる。したがって、鋼製外皮とフラックスの合計でNiは、0.1〜1.0%とする。なお、Niは、鋼製外皮やフラックス中の金属Niの他、Fe−NiのようなNi合金(フェロアロイ)等から添加される。
[Ni: 0.1 to 1.0%]
Ni has the effect of improving the toughness of the weld metal. If Ni is less than 0.1%, this effect cannot be sufficiently obtained, and the toughness of the weld metal is lowered in the standing improvement posture welding under the high heat input welding conditions. On the other hand, if Ni exceeds 1.0%, the toughness of the weld metal decreases. Moreover, it becomes easy to generate | occur | produce a hot crack. Therefore, Ni is 0.1 to 1.0% in total of the steel outer shell and the flux. In addition, Ni is added from Ni alloy (ferroalloy) etc. like Fe-Ni other than steel outer shell and metal Ni in the flux.
[AlのAl2O3換算値およびAl2O3との合計:0.4〜2.3%、かつ、Al:0.2〜1.1%]
AlおよびAl2O3は、溶融プール内でAl2O3として含まれることによってスラグの粘性や融点を調整し、特に、立向上進姿勢溶接でのメタル垂れを防止する効果がある。AlのAl2O3換算値およびAl2O3との合計が0.4%未満では、この効果が十分に得られず、大入熱の溶接施工条件での立向上進姿勢溶接では、メタル垂れが発生しやすくなり、ビード外観およびビード形状が不良になる。一方、AlのAl2O3換算値およびAl2O3の合計が2.3%を超えると、融合不良やスラグ巻込みなどの溶接欠陥が発生しやすくなる。また、溶接金属中にAl酸化物が介在物として残留して靭性が低下する。したがって、鋼製外皮とフラックスの合計でAlのAl2O3換算値およびAl2O3との合計は、0.4〜2.3%とする。
[Total Al 2 O 3 conversion value of Al and Al 2 O 3 : 0.4 to 2.3% and Al: 0.2 to 1.1%]
Al and Al 2 O 3 adjusts the viscosity and melting point of the slag by being included as Al 2 O 3 in the melt pool, in particular, the effect of preventing metal sagging in vertical upward advance position welding. This effect is not sufficiently obtained when the total of Al converted to Al 2 O 3 and Al 2 O 3 is less than 0.4%. Dripping easily occurs, and the bead appearance and bead shape become poor. On the other hand, if the total of Al 2 O 3 converted value of Al and Al 2 O 3 exceeds 2.3%, welding defects such as poor fusion and slag entrainment tend to occur. In addition, Al oxide remains in the weld metal as inclusions and the toughness decreases. Therefore, the total of Al 2 O 3 converted value of Al and Al 2 O 3 is 0.4 to 2.3% in the total of the steel outer shell and the flux.
また、AlをAl単体として添加した場合、脱酸力が非常に強力であり、他の脱酸剤より早く溶融プール中の酸素を取り込むので、溶接金属中のSiおよびMnの歩留まり率を上げて溶接金属の強度および靭性を高める効果がある。Alが0.2%未満では、その効果が得られず、大入熱の溶接施工条件での立向上進姿勢溶接では、溶接金属中のSiおよびMnの歩留まりが下がり、必要な溶接金属の強度および靭性が得られない。一方、Alが1.1%を超えると、アーク状態が粗くなり、スパッタ発生量が多くなる。また、溶接金属中に介在物として残留して靭性が低下する。したがって、鋼製外皮とフラックスの合計でAlは、0.2〜1.1%とする。なお、AlおよびAl2O3は、鋼製外皮やフラックス中の金属Alの他、Fe−AlのようなAl合金(フェロアロイ))等から、また、Al2O3は、フラックス中のアルミナ等から添加される。 In addition, when Al is added as a simple substance of Al, the deoxidizing power is very strong, and oxygen in the molten pool is taken in earlier than other deoxidizing agents, so the yield rate of Si and Mn in the weld metal is increased. It has the effect of increasing the strength and toughness of the weld metal. If the Al content is less than 0.2%, the effect cannot be obtained, and in the vertical improvement welding under the high heat input welding conditions, the yield of Si and Mn in the weld metal decreases, and the required weld metal strength And toughness is not obtained. On the other hand, if Al exceeds 1.1%, the arc state becomes rough and the amount of spatter generated increases. Moreover, it remains as an inclusion in the weld metal and the toughness decreases. Therefore, Al is 0.2 to 1.1% in total of the steel outer shell and the flux. In addition, Al and Al 2 O 3 are made of steel outer shell or metal Al in the flux, Al alloy (ferroalloy) such as Fe—Al, etc., and Al 2 O 3 is alumina in the flux, etc. From.
[B:0.002〜0.015%]
Bは、微量の添加により溶接金属のミクロ組織を微細化し、溶接金属の靱性を向上させる効果がある。Bが0.002%未満では、この効果が十分に得られず、大入熱の溶接施工条件での立向上進姿勢溶接では、溶接金属の靭性が低下する。一方、Bが0.015%を超えると、溶接金属が過度に硬化するために溶接金属の靱性が低下するとともに、高温割れが発生しやすくなる。したがって、鋼製外皮とフラックスの合計でBは、0.002〜0.015%とする。なお、Bは、鋼製外皮やフラックス中のFe−B、Fe−Mn−BのようなB合金(フェロアロイ)等から添加される。
[B: 0.002 to 0.015%]
B has an effect of refining the microstructure of the weld metal by adding a small amount and improving the toughness of the weld metal. If B is less than 0.002%, this effect cannot be obtained sufficiently, and the toughness of the weld metal is lowered in the standing improvement posture welding under the high heat input welding conditions. On the other hand, if B exceeds 0.015%, the weld metal is excessively hardened, so that the toughness of the weld metal is lowered and hot cracking is likely to occur. Therefore, the total B of the steel outer shell and the flux is set to 0.002 to 0.015%. B is added from a steel alloy or a B alloy (ferroalloy) such as Fe—B or Fe—Mn—B in the flux.
[Ti酸化物のTiO2換算値:5.5〜6.8%]
Ti酸化物は、溶接時にアークの安定化に寄与するとともに、溶接時にスラグとなって溶接ビードのビード外観およびビード形状を良好にし、溶接作業性を向上させる効果がある。また、立向上進姿勢溶接において、スラグの粘性や融点を調整し、メタル垂れを防止する効果がある。Ti酸化物のTiO2換算値が5.5%未満では、これらの効果が十分に得られず、大入熱の溶接施工条件での立向上進姿勢溶接では、アーク状態が不安定になり、スパッタ発生量が増加する。また、メタル垂れが発生しやすくなり、ビード形状およびビード外観も不良になる。一方、Ti酸化物のTiO2換算値が6.8%を超えると、溶接金属中にTi酸化物が過剰に残存して靱性が低下する。したがって、フラックス中のTi酸化物のTiO2換算値は、5.5〜6.8%とする。なお、Ti酸化物は、フラックス中のルチール、酸化チタン、チタンスラグ、イルミナイト等から添加される。
[TiO 2 converted value of Ti oxides: 5.5 to 6.8%]
Ti oxide contributes to the stabilization of the arc during welding and also has the effect of improving the welding workability by forming a bead appearance and bead shape of the weld bead as a slag during welding. In addition, in the vertical improvement welding, there is an effect of adjusting the viscosity and melting point of the slag and preventing metal dripping. When the TiO 2 equivalent value of the Ti oxide is less than 5.5%, these effects cannot be obtained sufficiently, and in the standing posture advance welding under the high heat input welding conditions, the arc state becomes unstable, Spatter generation increases. Also, metal dripping is likely to occur, and the bead shape and bead appearance also become poor. On the other hand, when the TiO 2 equivalent value of the Ti oxide exceeds 6.8%, the Ti oxide remains excessively in the weld metal and the toughness is lowered. Therefore, the TiO 2 equivalent value of the Ti oxide in the flux is set to 5.5 to 6.8%. The Ti oxide is added from rutile, titanium oxide, titanium slag, illuminite or the like in the flux.
[Si酸化物のSiO2換算値:0.4〜1.6%]
Si酸化物は、溶融スラグの粘性や融点を調整してスラグ被包性およびスラグ剥離性を向上させる効果がある。Si酸化物のSiO2換算値が0.4%未満では、この効果が十分に得られず、大入熱の溶接施工条件での立向上進姿勢溶接では、スラグ被包性およびスラグ剥離性が不良になる。一方、Si酸化物のSiO2換算値が1.6%を超えると、溶融スラグの塩基度が低下し、溶接金属の酸素量が増加して靭性が低下する。したがって、フラックス中のSi酸化物のSiO2換算値は、0.4〜1.6%とする。なお、Si酸化物は、フラックス中の珪砂、ジルコンサンド等から添加される。
[SiO 2 converted value of Si oxide: 0.4 to 1.6%]
Si oxide has the effect of adjusting the viscosity and melting point of molten slag to improve slag encapsulation and slag peelability. If the SiO 2 equivalent value of the Si oxide is less than 0.4%, this effect cannot be obtained sufficiently, and the slag encapsulation and slag peelability are not improved in the standing improvement advance welding under the welding conditions with high heat input. breaking bad. On the other hand, if the SiO 2 equivalent value of the Si oxide exceeds 1.6%, the basicity of the molten slag decreases, the oxygen content of the weld metal increases, and the toughness decreases. Accordingly, the SiO 2 equivalent value of the Si oxide in the flux is 0.4 to 1.6%. Si oxide is added from silica sand, zircon sand or the like in the flux.
[Zr酸化物のZrO2換算値:0.1〜0.6%]
Zr酸化物は、溶接時にスラグにZr酸化物として含まれることによってスラグの粘性や融点を調整し、特に、立向上進姿勢溶接におけるメタル垂れを防止する効果がある。Zr酸化物のZrO2換算値が0.1%未満では、この効果が十分に得られず、大入熱の溶接施工条件での立向上進姿勢溶接では、メタル垂れが発生しやすくなる。一方、Zr酸化物のZrO2換算値が0.6%を超えると、スラグが緻密になって硬化し、スラグ剥離性が不良になる。また、溶接金属の酸素量が増加して靭性が低下する。したがって、フラックス中のZr酸化物のZrO2換算値は、0.1〜0.6%とする。なお、Zr酸化物は、フラックス中のジルコンサンドおよび酸化ジルコニウム等から添加される。
[ZrO 2 converted value of Zr oxide: 0.1 to 0.6%]
The Zr oxide is included in the slag as Zr oxide during welding, thereby adjusting the viscosity and melting point of the slag, and in particular, has an effect of preventing metal sag in the standing improvement posture welding. If the ZrO 2 conversion value of the Zr oxide is less than 0.1%, this effect cannot be obtained sufficiently, and metal dripping is likely to occur in the standing improvement posture welding under the high heat input welding conditions. On the other hand, when the ZrO 2 conversion value of the Zr oxide exceeds 0.6%, the slag becomes dense and hardens, resulting in poor slag removability. In addition, the oxygen content of the weld metal increases and the toughness decreases. Therefore, the ZrO 2 conversion value of the Zr oxide in the flux is set to 0.1 to 0.6%. The Zr oxide is added from zircon sand and zirconium oxide in the flux.
[Mg:0.1〜0.3%]
Mgは、強脱酸剤として機能することで溶接金属中の酸素量を低減し、溶接金属の靱性を高める効果がある。Mgが0.1%未満では、この効果が十分に得られず、大入熱の溶接施工条件での立向上進姿勢溶接では、溶接金属中の酸素量が下がらず、靭性が低下する。一方、Mgが0.3%を超えると、アーク状態が粗くなり、スパッタ発生量が多くなるうえ、メタル垂れが発生しやすくなる。したがって、フラックス中のMgは、0.1〜0.3%とする。なお、Mgは、フラックス中の金属Mgの他、Al−MgのようなMg合金(フェロアロイ)等から添加される。
[Mg: 0.1-0.3%]
Mg functions as a strong deoxidizer, thereby reducing the amount of oxygen in the weld metal and increasing the toughness of the weld metal. If Mg is less than 0.1%, this effect cannot be sufficiently obtained, and in the standing improvement posture welding under the high heat input welding conditions, the amount of oxygen in the weld metal does not decrease, and the toughness decreases. On the other hand, if Mg exceeds 0.3%, the arc state becomes rough, the amount of spatter generation increases, and metal dripping is likely to occur. Therefore, Mg in the flux is 0.1 to 0.3%. In addition, Mg is added from Mg alloy (ferroalloy) etc. like Al-Mg other than metal Mg in a flux.
[Na化合物のNa2O換算値およびK化合物のK2O換算値との合計:0.10〜0.20%]
Na化合物およびK化合物は、溶接時のアーク安定剤およびスラグ形成剤として作用する。Na化合物のNa2O換算値およびK化合物のK2O換算値との合計が0.10%未満であると、大入熱の溶接施工条件での立向上進姿勢溶接では、アーク状態が不安定となり、スパッタ発生量が多くなるとともに、ビード外観およびビード形状が不良になる。一方、Na化合物のNa2O換算値およびK化合物のK2O換算値との合計が0.20%を超えると、スラグ剥離性が不良になるとともに、メタル垂れが発生しやすくなる。したがって、フラックス中のNa化合物のNa2O換算値およびK化合物のK2O換算値との合計は、0.10〜0.20%とする。なお、Na化合物およびK化合物は、フラックス中のカリ長石、珪酸ソーダや珪酸カリからなる水ガラスの固質成分、弗化ソーダ弗化ソーダや珪酸化カリ等の弗素化合物から添加される。
[Sum of the K 2 O conversion value of terms of Na 2 O values and K compounds of Na compound: 0.10 to 0.20%]
Na compound and K compound act as an arc stabilizer and a slag forming agent during welding. When the sum of the K 2 O conversion value of terms of Na 2 O values and K compounds of Na compound is less than 0.10%, in the vertical upward advance position welding in welding conditions high heat input arc state not As a result, the amount of spatter generated becomes stable, and the bead appearance and bead shape become poor. On the other hand, if the total of the K 2 O conversion value of terms of Na 2 O values and K compounds of Na compound exceeds 0.20%, the slag removability is poor, so the metal dripping is likely to occur. Therefore, the sum of K 2 O conversion value of terms of Na 2 O values and K compounds of Na compound in flux, and 0.10 to 0.20%. The Na compound and the K compound are added from a potassium feldspar, a solid component of water glass made of sodium silicate or potassium silicate, or a fluorine compound such as sodium fluoride fluoride or sodium silicate in the flux.
[Mo:0.1〜0.3%]
Moは、溶接金属中に歩留ることで、焼入れ性を高めて組織を微細化し、溶接金属の強度および靱性を高める効果がある。Moが0.1%未満では、この効果が十分に得られず、大入熱の溶接施工条件での立向上進姿勢溶接では、必要とする溶接金属の強度が得られない。一方、Moが0.3%を超えると、Moが溶接金属中に過剰に歩留まって溶接金属の強度が過剰に高くなり、靱性が低下する。したがって、フラックス中のMoは、0.1〜0.3%とする。なお、Moは、フラックス中の金属Moの他、Fe−MoのようなMo合金(フェロアロイ)等から添加される。
[Mo: 0.1 to 0.3%]
Mo has the effect of increasing the hardenability and refining the structure by increasing the yield in the weld metal, and increasing the strength and toughness of the weld metal. If Mo is less than 0.1%, this effect cannot be obtained sufficiently, and the required strength of the weld metal cannot be obtained in the stand-up improvement posture welding under the high heat input welding conditions. On the other hand, when Mo exceeds 0.3%, Mo is excessively yielded in the weld metal, the strength of the weld metal is excessively increased, and the toughness is reduced. Therefore, Mo in the flux is 0.1 to 0.3%. In addition, Mo is added from Mo alloy (ferroalloy) etc. like Fe-Mo other than the metal Mo in a flux.
[BiおよびBi酸化物のBi換算値との合計:0.003〜0.02%]
Biは、多層盛溶接においてスラグの溶接金属からの剥離を促進してスラグ剥離性を良好にする効果がある。BiおよびBi酸化物のBi換算値との合計が0.003%未満では、その効果が得られず、大入熱の溶接施工条件での立向上進姿勢溶接では、スラグ剥離性が不良になる。一方、BiおよびBi酸化物のBi換算値との合計が0.02%を超えると、溶接金属の靭性が低下するとともに、高温割れが発生しやすくなる。したがって、フラックス中のBiおよびBi酸化物のBi換算値との合計は、0.003〜0.02%とする。なお、BiおよびBi酸化物は、フラックス中の金属Bi、酸化Bi等から添加される。
[Total with Bi converted value of Bi and Bi oxide: 0.003 to 0.02%]
Bi has the effect of facilitating the slag peeling from the weld metal and improving the slag peelability in multi-layer welding. If the sum of Bi and Bi oxide with Bi converted value is less than 0.003%, the effect cannot be obtained, and the slag peelability becomes poor in the standing improvement posture welding under the high heat input welding conditions. . On the other hand, if the total of Bi and Bi oxide with Bi converted value exceeds 0.02%, the toughness of the weld metal is lowered and hot cracking is likely to occur. Therefore, the sum of Bi in the flux and Bi converted value of Bi oxide is set to 0.003 to 0.02%. Bi and Bi oxide are added from metal Bi, oxide Bi, etc. in the flux.
以上、本発明のガスシールドアーク溶接用フラックス入りワイヤの成分組成の構成要件の限定理由を述べたが、残部は、Feおよび不可避不純物からなっている。Feは、鋼製外皮のFe、フラックスの鉄粉、Fe−Mn、Fe−Si、Fe−Si−Mn合金などの鉄合金(フェロアロイ)粉のFeであり、溶着速度を高めるとともに、溶接用フラックス入りワイヤのフラックス充填率の調整目的から適量添加することができる。不可避不純物は、P、Sなどの不可避に混入する不純物であり、耐高温割れ性の観点から、P:0.050%以下、S:0.05%以下が好ましい。 The reason for limiting the constituent requirements of the component composition of the flux-cored wire for gas shielded arc welding according to the present invention has been described above. Fe is a steel outer shell Fe, iron powder of flux, Fe of iron alloy (ferroalloy) powder such as Fe-Mn, Fe-Si, Fe-Si-Mn alloy, etc. An appropriate amount can be added for the purpose of adjusting the flux filling rate of the cored wire. Inevitable impurities are impurities inevitably mixed in such as P and S. From the viewpoint of hot cracking resistance, P: 0.050% or less and S: 0.05% or less are preferable.
なお、溶接用フラックス入りワイヤは、鋼製外皮をパイプ状に成形して内部にフラックスを充填したもので、鋼製外皮の端部同士を溶接した継ぎ目のないシームレスタイプと、鋼製外皮の端部同士をかしめて繋げたかしめタイプがあるが、低温環境での溶接で使用する場合、低温割れ防止および予熱温度低減の理由から、耐吸湿性に優れたシームレスタイプが好ましく、さらに、ワイヤ送給性が良好である銅めっきを施した溶接用フラックス入りワイヤであることが好ましい。 In addition, the flux cored wire for welding consists of a steel outer shell formed into a pipe shape and filled with flux inside, and a seamless seamless type in which the ends of the steel outer shell are welded to each other, and the end of the steel outer shell. There is a caulking type in which the parts are caulked together, but when used in welding in a low temperature environment, a seamless type with excellent moisture absorption resistance is preferable because of low temperature cracking prevention and preheating temperature reduction. It is preferable that it is a flux-cored wire for welding to which copper plating having good properties is applied.
また、本発明のガスシールドアーク溶接用フラックス入りワイヤは、シールドガスとしてCO2を用いることが好ましい。また、溶接用フラックス入りワイヤのワイヤ径は1.2〜1.6mm、フラックスの充填率は特に制限はしないが、生産性の観点から11〜20%であることが好ましい。 The flux-cored wire for gas shielded arc welding of the present invention preferably uses CO 2 as the shielding gas. Moreover, the wire diameter of the flux-cored wire for welding is 1.2 to 1.6 mm, and the filling rate of the flux is not particularly limited, but is preferably 11 to 20% from the viewpoint of productivity.
以下、本発明の効果を実施例により具体的に説明する。
JIS G 3141に記載のSPHC(C:0.02%、Si:0.01%、Mn:0.40%、P:0.02%、S:0.01%)を鋼製外皮として使用し、表1に示す各種フラックスをフラックス充填率15%で充填し、1.2mmまで縮径したNo.1〜24の成分の溶接用フラックス入りワイヤを各種試作した。
Hereinafter, the effect of the present invention will be described in detail with reference to examples.
SPHC (C: 0.02%, Si: 0.01%, Mn: 0.40%, P: 0.02%, S: 0.01%) described in JIS G 3141 is used as a steel outer shell. No. 1 filled with various fluxes shown in Table 1 at a flux filling rate of 15% and reduced in diameter to 1.2 mm. Various types of flux-cored wires for welding having components of 1 to 24 were produced.
表1に示す各種試作ワイヤを用いて、表2に示す溶接施工条件(W1〜W5)で立向上進姿勢にてガスシールドアーク溶接を行い、溶接作業性および機械的性質の調査を行った。 Using various prototype wires shown in Table 1, gas shielded arc welding was performed in a standing improvement posture under the welding conditions (W1 to W5) shown in Table 2 to investigate welding workability and mechanical properties.
試験板に板厚20mmのJIS G3136 SM570鋼を用い、開先角度35°、ルート間隔7mm、裏当材付きの試験体を、表2に示す溶接条件で立向上進姿勢にてガスシールドアーク溶接を行い、アークの安定性、スパッタ発生量、スラグ被包性、スラグ剥離性、ビード外観およびビード形状、メタル垂れの有無、高温割れの有無などについて調査した。なお、融合不良やスラグ巻込みなどの溶接欠陥については、JIS Z 3104に準拠してX線透過試験を行い、溶接欠陥の有無を調査した。 JIS G3136 SM570 steel with a plate thickness of 20 mm is used as a test plate, and a gas shielded arc welding is performed on a test piece with a groove angle of 35 °, a root interval of 7 mm, and a backing material in a standing improvement posture under the welding conditions shown in Table 2. The arc stability, spatter generation amount, slag encapsulation, slag peelability, bead appearance and bead shape, presence of metal dripping, presence of hot cracking, etc. were investigated. For welding defects such as poor fusion and slag entrainment, an X-ray transmission test was conducted in accordance with JIS Z 3104 to investigate the presence or absence of welding defects.
溶着金属試験は、溶着金属の板厚中央部から引張試験片(JIS Z 2201 A0号)および衝撃試験片(JIS Z 2202 4号)を採取し、引張試験および衝撃試験を行った。引張試験は、引張強さが610〜710MPa以上、衝撃試験は、試験温度−20℃での吸収エネルギーの3本の平均値が60J以上を合格とした。それらの結果を表3にまとめて示す。なお、表3中に示すNo.は、表1に示すフラックス入りワイヤ成分のNo.を示している。 In the weld metal test, a tensile test piece (JIS Z 2201 A0) and an impact test piece (JIS Z 2204 No. 4) were collected from the central part of the thickness of the weld metal, and a tensile test and an impact test were performed. In the tensile test, the tensile strength was 610 to 710 MPa or more, and in the impact test, the average value of three absorbed energy at a test temperature of −20 ° C. was 60 J or more. The results are summarized in Table 3. In addition, No. shown in Table 3 No. of the flux-cored wire component shown in Table 1. Is shown.
表3中、No.1〜9は本発明例、No.10〜26は比較例である。 In Table 3, No. 1-9 are examples of the present invention, No. 10 to 26 are comparative examples.
本発明例であるNo.1〜5は、フラックス入りワイヤ中の鋼製外皮とフラックスの合計のC、Si、Mn、Ni、Al、AlのAl2O3換算値およびAl2O3との合計、Bの含有量が適量で、フラックス中のTiO2換算値、SiO2換算値、ZrO2換算値、Mg、Na2O換算値およびK2O換算値との合計、Mo、BiおよびBi酸化物のBi換算値との合計が適量であり、入熱量も適正であるので、大入熱の溶接施工条件の立向上進姿勢溶接において、アーク状態が安定し、スパッタ発生量が少なく、スラグ被包性、スラグ剥離性、ビード外観およびビード形状が良好で、メタル垂れもなく、高温割れも発生しておらず、溶接作業性が良好であった。また、融合不良やスラグ巻込みなどの溶接欠陥も発生せず、溶接金属の引張強さおよび吸収エネルギーも良好であり、極めて満足な結果であった。なお、No.6およびNo.7は、フラックス中にMoが含有されていないので、溶接金属の引張強さおよび吸収エネルギーがやや低かったが、製品の品質上の問題はなかった。また、No.8およびNo.9は、フラックス中にBiおよびBi酸化物が含有されていないので、スラグ剥離性がやや不良であったが、ビード形状は良好であり、製品としての品質は問題なかった。 No. which is an example of the present invention. 1-5, C of the sum of the steel sheath and the flux in the flux cored wire, Si, Mn, Ni, Al , the sum of terms of Al 2 O 3 value and Al 2 O 3 of Al, the content of B Appropriate amounts of TiO 2 converted value, SiO 2 converted value, ZrO 2 converted value, Mg, Na 2 O converted value, and K 2 O converted value in the flux, and Bi converted values of Mo, Bi, and Bi oxides The total amount of heat is appropriate and the heat input is also appropriate, so the welding conditions for large heat input are improved and the arc state is stable, the spatter generation is small, slag encapsulation, and slag peelability The bead appearance and bead shape were good, there was no metal dripping, no hot cracking occurred, and the welding workability was good. In addition, welding defects such as poor fusion and slag entrainment did not occur, and the tensile strength and absorbed energy of the weld metal were good, which was a very satisfactory result. In addition, No. 6 and no. In No. 7, since Mo was not contained in the flux, the tensile strength and absorbed energy of the weld metal were slightly low, but there was no problem in product quality. No. 8 and no. In No. 9, since Bi and Bi oxide were not contained in the flux, the slag peelability was slightly poor, but the bead shape was good and the quality as a product was satisfactory.
比較例中No.10は、鋼製外皮とフラックスの合計のCが少ないので、大入熱の溶接施工条件での立向上進姿勢溶接において、アーク状態が不安定で、スパッタ発生量が多く、溶着金属の引張強さが低かった。また、フラックス中のZrO2換算値が少ないので、メタル垂れが発生した。さらに、フラックス中のMgが少ないので、溶接金属の吸収エネルギーが低かった。 No. in the comparative examples. No. 10, because the total C of the steel outer shell and the flux is small, the arc state is unstable, the spatter generation amount is large, and the tensile strength of the weld metal in the vertical improvement welding under the high heat input welding conditions. Was low. In addition, since there is little in terms of ZrO 2 value in the flux, metal dripping has occurred. Furthermore, since there is little Mg in a flux, the absorbed energy of the weld metal was low.
No.11は、鋼製外皮とフラックスの合計のCが多いので、高温割れが発生した。また、溶接金属の引張強さが高く、吸収エネルギーが低かった。さらに、フラックス中のNa2O換算値およびK2O換算値との合計が少ないので、アーク状態が不安定で、スパッタ発生量が多くなり、ビード外観およびビード形状が不良であった。 No. No. 11 had a high total of C of the steel outer shell and the flux, and therefore hot cracking occurred. Moreover, the tensile strength of the weld metal was high and the absorbed energy was low. Further, since the total of Na 2 O converted value and K 2 O converted value in the flux was small, the arc state was unstable, the amount of spatter was increased, and the bead appearance and bead shape were poor.
No.12は、鋼製外皮とフラックスの合計のSiが少ないので、ビード外観およびビード形状が不良であり、溶接金属の引張強さが低かった。また、フラックス中のSiO2換算値が多いので、溶接金属の吸収エネルギーが低かった。 No. In No. 12, since the total amount of Si in the steel outer shell and the flux was small, the bead appearance and bead shape were poor, and the tensile strength of the weld metal was low. Also, since there are many terms of SiO 2 value in the flux was less absorbed energy of the weld metal.
No.13は、鋼製外皮とフラックスの合計のSiが多いので、溶接金属の吸収エネルギーが低かった。また、フラックス中のMgが多いので、アーク状態が粗く、スパッタ発生量が多く、メタル垂れも発生した。さらに、フラックス中にMoが含有されていないので、溶接金属の引張強さが低かった。 No. No. 13 had a large amount of Si in the steel outer shell and flux, so the absorbed energy of the weld metal was low. Moreover, since there was much Mg in a flux, the arc state was rough, spatter generation amount was large, and metal dripping also generate | occur | produced. Furthermore, since Mo is not contained in the flux, the tensile strength of the weld metal was low.
No.14は、鋼製外皮とフラックスの合計のMnが少ないので、メタル垂れが発生し、ビード外観およびビード形状が不良であり、溶接金属の引張強さおよび吸収エネルギーが低かった。また、フラックス中のSiO2換算値が少ないので、スラグ被包性およびスラグ剥離性が不良であった。 No. In No. 14, since the total Mn of the steel outer shell and the flux was small, metal sagging occurred, the bead appearance and the bead shape were poor, and the tensile strength and absorbed energy of the weld metal were low. Also, since less in terms of SiO 2 value in the flux, the slag encapsulated and the slag removability was poor.
No.15は、鋼製外皮とフラックスの合計のMnが多いので、溶接金属の引張強さが高く、吸収エネルギーが低かった。また、フラックス中のNa2O換算値およびK2O換算値との合計が多いので、スラグ剥離性が不良で、メタル垂れが発生した。 No. In No. 15, since the total amount of Mn of the steel outer shell and the flux was large, the tensile strength of the weld metal was high and the absorbed energy was low. Further, since the sum of the terms of Na 2 O values and K 2 O conversion value of the flux is large, the slag removability is bad, metal sagging occurs.
No.16は、鋼製外皮とフラックスの合計のNiが少ないので、溶接金属の吸収エネルギーが低かった。また、フラックス中にBiおよびBi酸化物が含有されていないので、スラグ剥離性が不良であった。 No. No. 16 had a low absorbed energy of the weld metal because the total Ni of the steel outer shell and the flux was small. Moreover, since Bi and Bi oxide were not contained in the flux, the slag peelability was poor.
No.17は、鋼製外皮とフラックスの合計のNiが多いので、高温割れが発生し、溶接金属の吸収エネルギーが低かった。 No. In No. 17, since the total amount of Ni of the steel outer shell and the flux was large, hot cracking occurred and the absorbed energy of the weld metal was low.
No.18は、鋼製外皮とフラックスの合計のAlのAl2O3換算値およびAl2O3との合計が少ないので、メタル垂れが発生し、ビード外観およびビード形状も不良であった。また、鋼製外皮とフラックスの合計のAlが少ないので、溶接金属の引張強さおよび吸収エネルギーが低かった。 No. 18, since the sum of terms of Al 2 O 3 value and Al 2 O 3 of a total of Al steel sheath and the flux is small, the metal sag occurs, bead appearance and the bead shape was also poor. Moreover, since the total Al of the steel outer shell and the flux was small, the tensile strength and absorbed energy of the weld metal were low.
No.19は、鋼製外皮とフラックスの合計のAlのAl2O3換算値およびAl2O3との合計が多いので、スラグ巻込みが発生し、溶接金属の吸収エネルギーも低かった。また、鋼製外皮とフラックスの合計のAlが多いので、アーク状態が粗く、スパッタ発生量も多かった。 No. In No. 19, since the sum of Al of the steel outer shell and flux and the Al 2 O 3 conversion value of Al and the total of Al 2 O 3 were large, slag entrainment occurred and the absorbed energy of the weld metal was low. Moreover, since there was much Al of the sum total of a steel outer_layer | skin and a flux, the arc state was rough and there was much spatter generation amount.
No.20は、鋼製外皮とフラックスの合計のBが少ないので、溶接金属の吸収エネルギーが低かった。また、フラックス中のTiO2換算値が少ないので、アーク状態が不安定で、スパッタ発生量が多く、メタル垂れも発生してビード外観およびビード形状も不良であった。 No. In No. 20, since the total B of the steel outer shell and the flux was small, the absorbed energy of the weld metal was low. Further, since the TiO 2 equivalent value in the flux was small, the arc state was unstable, the amount of spatter was large, metal dripping occurred, and the bead appearance and bead shape were also poor.
No.21は、鋼製外皮とフラックスの合計のBが多いので、高温割れが発生した。また、溶接金属の吸収エネルギーも低かった。さらに、入熱量が低かったので、溶接効率が悪かった。 No. In No. 21, since the total B of the steel outer shell and the flux was large, hot cracking occurred. Also, the absorbed energy of the weld metal was low. Furthermore, since the heat input was low, the welding efficiency was poor.
No.22は、フラックス中のTiO2換算値が多いので、溶接金属の吸収エネルギーが低かった。 No. 22, since there are many terms of TiO 2 values in the flux was less absorbed energy of the weld metal.
No.23は、フラックス中のZrO2換算値が多いので、スラグ剥離性が不良で、溶接金属の吸収エネルギーが低かった。 No. 23, since there are many terms of ZrO 2 value in the flux, the slag removability is poor, was less absorbed energy of the weld metal.
No.24は、入熱量が高いので、溶接金属の引張強さおよび吸収エネルギーが低かった。 No. No. 24 had a high heat input, so the tensile strength and absorbed energy of the weld metal were low.
No.25は、フラックス中のSiO2換算値が少ないので、スラグ被包性およびスラグ剥離性が不良であった。また、フラックス中のMoが多いので、溶接金属の引張強さが高く、吸収エネルギーが低かった。 No. No. 25 had poor slag encapsulation and slag removability because the SiO 2 conversion value in the flux was small. Moreover, since there was much Mo in a flux, the tensile strength of the weld metal was high and the absorbed energy was low.
No.26は、TiO2換算値が少ないので、アーク状態が不安定で、スパッタ発生量が多く、メタル垂れも発生し、ビード外観およびビード形状が不良であった。また、フラックス中のBiおよびBi酸化物のBi換算値との合計が多いので、高温割れが発生し、溶接金属の吸収エネルギーが低かった。 No. No. 26 had a small TiO 2 conversion value, so the arc state was unstable, the amount of spatter was large, metal dripping occurred, and the bead appearance and bead shape were poor. Moreover, since there were many sum totals with the Bi conversion value of Bi and Bi oxide in a flux, the high temperature crack generate | occur | produced and the absorbed energy of the weld metal was low.
Claims (2)
鋼製外皮とフラックスの合計で、
C:0.02〜0.08%、
Si:0.3〜1.0%、
Mn:2.0〜3.5%、
Ni:0.1〜1.0%、
AlのAl2O3換算値およびAl2O3との合計:0.4〜2.3%、かつ、Al:0.2〜1.1%、
B:0.002〜0.015%を含有し、
フラックスに、
Ti酸化物のTiO2換算値:5.5〜6.8%、
Si酸化物のSiO2換算値:0.4〜1.6%、
Zr酸化物のZrO2換算値:0.1〜0.6%、
Mg:0.1〜0.3%、
Na化合物のNa2O換算値およびK化合物のK2O換算値との合計:0.10〜0.20%を含有し、
残部はFeおよび不可避不純物からなることを特徴とする入熱量30〜50kJ/cmの溶接施工条件での立向上進溶接向けガスシールドアーク溶接用フラックス入りワイヤ。 In the flux-cored wire for gas shielded arc welding formed by filling the steel outer shell with flux,
The total of steel outer shell and flux,
C: 0.02 to 0.08%,
Si: 0.3 to 1.0%,
Mn: 2.0 to 3.5%
Ni: 0.1 to 1.0%,
Total of Al 2 O 3 equivalent and Al 2 O 3 : 0.4 to 2.3%, and Al: 0.2 to 1.1%,
B: contains 0.002 to 0.015%,
To the flux,
TiO 2 conversion value of Ti oxide: 5.5 to 6.8%,
SiO 2 conversion value of Si oxide: 0.4 to 1.6%,
ZrO 2 conversion value of Zr oxide: 0.1 to 0.6%,
Mg: 0.1 to 0.3%
The sum of the K 2 O conversion value of terms of Na 2 O values and K compounds of Na compound: containing 0.10 to 0.20%,
A flux-cored wire for gas shielded arc welding for stand-up improvement welding under welding conditions with a heat input of 30 to 50 kJ / cm, wherein the balance is made of Fe and inevitable impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014086845A JP2015205304A (en) | 2014-04-18 | 2014-04-18 | Flux-cored wire for gas shield arc welding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014086845A JP2015205304A (en) | 2014-04-18 | 2014-04-18 | Flux-cored wire for gas shield arc welding |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015205304A true JP2015205304A (en) | 2015-11-19 |
Family
ID=54602611
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014086845A Pending JP2015205304A (en) | 2014-04-18 | 2014-04-18 | Flux-cored wire for gas shield arc welding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2015205304A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016203179A (en) * | 2015-04-15 | 2016-12-08 | 日鐵住金溶接工業株式会社 | Flux-cored wire for gas-shielded arc welding |
KR101859373B1 (en) | 2016-10-28 | 2018-05-18 | 현대종합금속 주식회사 | Titania Based Flux Cored Wire of Gas Shielded Arc Welding for Low Temperature Service |
KR20180117135A (en) | 2016-03-25 | 2018-10-26 | 가부시키가이샤 고베 세이코쇼 | Flux cored wire for gas shield arc welding |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6233094A (en) * | 1985-07-31 | 1987-02-13 | Daido Steel Co Ltd | Flux cored wire for welding |
JP2012040570A (en) * | 2010-08-12 | 2012-03-01 | Nippon Steel & Sumikin Welding Co Ltd | Flux-cored wire for gas-shielding arc welding |
JP2013151001A (en) * | 2012-01-25 | 2013-08-08 | Nippon Steel & Sumikin Welding Co Ltd | Flux-cored wire for gas-shielded arc welding for weather-resistant steel |
JP2013158777A (en) * | 2012-02-01 | 2013-08-19 | Nippon Steel & Sumikin Welding Co Ltd | Flux-cored wire for gas shield arc welding |
JP2013226577A (en) * | 2012-04-25 | 2013-11-07 | Nippon Steel & Sumikin Welding Co Ltd | Flux-cored wire for gas shielded arc welding of crude oil tank steel |
-
2014
- 2014-04-18 JP JP2014086845A patent/JP2015205304A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6233094A (en) * | 1985-07-31 | 1987-02-13 | Daido Steel Co Ltd | Flux cored wire for welding |
JP2012040570A (en) * | 2010-08-12 | 2012-03-01 | Nippon Steel & Sumikin Welding Co Ltd | Flux-cored wire for gas-shielding arc welding |
JP2013151001A (en) * | 2012-01-25 | 2013-08-08 | Nippon Steel & Sumikin Welding Co Ltd | Flux-cored wire for gas-shielded arc welding for weather-resistant steel |
JP2013158777A (en) * | 2012-02-01 | 2013-08-19 | Nippon Steel & Sumikin Welding Co Ltd | Flux-cored wire for gas shield arc welding |
JP2013226577A (en) * | 2012-04-25 | 2013-11-07 | Nippon Steel & Sumikin Welding Co Ltd | Flux-cored wire for gas shielded arc welding of crude oil tank steel |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016203179A (en) * | 2015-04-15 | 2016-12-08 | 日鐵住金溶接工業株式会社 | Flux-cored wire for gas-shielded arc welding |
KR20180117135A (en) | 2016-03-25 | 2018-10-26 | 가부시키가이샤 고베 세이코쇼 | Flux cored wire for gas shield arc welding |
KR101859373B1 (en) | 2016-10-28 | 2018-05-18 | 현대종합금속 주식회사 | Titania Based Flux Cored Wire of Gas Shielded Arc Welding for Low Temperature Service |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5179073B2 (en) | Flux-cored wire for gas shielded arc welding | |
JP6437327B2 (en) | Flux-cored wire for carbon dioxide shielded arc welding | |
JP6188621B2 (en) | Flux-cored wire for carbon dioxide shielded arc welding | |
JP6434387B2 (en) | Low hydrogen coated arc welding rod | |
JP6382117B2 (en) | Flux-cored wire for Ar-CO2 mixed gas shielded arc welding | |
JP2013151001A (en) | Flux-cored wire for gas-shielded arc welding for weather-resistant steel | |
JP5153421B2 (en) | Flux-cored wire for gas shielded arc welding | |
JP6177177B2 (en) | Low hydrogen coated arc welding rod | |
JP5356142B2 (en) | Gas shield arc welding method | |
JP5400472B2 (en) | Flux cored wire | |
JP2013158777A (en) | Flux-cored wire for gas shield arc welding | |
JP2018153853A (en) | Flux-cored wire for gas shield arc welding | |
JP2016203253A (en) | Low hydrogen type coated arc welding rod | |
JP6110800B2 (en) | Stainless steel flux cored wire | |
JP6437419B2 (en) | Flux-cored wire for carbon dioxide shielded arc welding | |
JP5314414B2 (en) | Flux cored wire | |
JP6434381B2 (en) | Stainless steel flux cored wire | |
JP2017185521A (en) | Flux-cored wire for gas shielded arc welding | |
JP6669613B2 (en) | Flux-cored wire for gas shielded arc welding | |
JP5558406B2 (en) | Flux-cored wire for carbon dioxide shielded arc welding | |
JP6385879B2 (en) | Flux-cored wire for gas shielded arc welding | |
JP6322096B2 (en) | Flux-cored wire for gas shielded arc welding | |
JP2015112625A (en) | Stainless steel flux cored wire for self shielded arc welding | |
JP2015205304A (en) | Flux-cored wire for gas shield arc welding | |
JP6084948B2 (en) | Flux-cored wire for gas shielded arc welding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160929 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170613 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170620 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20171219 |