[go: up one dir, main page]

JP2015193897A - High strength cold rolled steel sheet and high strength hot-dip galvanized steel sheet having excellent ductility and bendability, and methods for producing the same - Google Patents

High strength cold rolled steel sheet and high strength hot-dip galvanized steel sheet having excellent ductility and bendability, and methods for producing the same Download PDF

Info

Publication number
JP2015193897A
JP2015193897A JP2014192757A JP2014192757A JP2015193897A JP 2015193897 A JP2015193897 A JP 2015193897A JP 2014192757 A JP2014192757 A JP 2014192757A JP 2014192757 A JP2014192757 A JP 2014192757A JP 2015193897 A JP2015193897 A JP 2015193897A
Authority
JP
Japan
Prior art keywords
steel sheet
less
strength
concentration
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014192757A
Other languages
Japanese (ja)
Other versions
JP6306481B2 (en
Inventor
康二 粕谷
Koji Kasuya
康二 粕谷
紗江 水田
Sae Mizuta
紗江 水田
二村 裕一
Yuichi Futamura
裕一 二村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2014192757A priority Critical patent/JP6306481B2/en
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to PCT/JP2014/084315 priority patent/WO2015141097A1/en
Priority to KR1020167028034A priority patent/KR20160132926A/en
Priority to MX2016011756A priority patent/MX2016011756A/en
Priority to CN201480077035.3A priority patent/CN106103768B/en
Priority to KR1020187014630A priority patent/KR102165992B1/en
Priority to US15/126,936 priority patent/US20170096723A1/en
Publication of JP2015193897A publication Critical patent/JP2015193897A/en
Application granted granted Critical
Publication of JP6306481B2 publication Critical patent/JP6306481B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high strength cold rolled steel sheet which has a tensile strength of 980 MPa or greater and which exhibits excellent ductility and bendability.SOLUTION: There is provided the high strength cold rolled steel sheet which has a tensile strength of 980 MPa or greater and exhibits excellent ductility and bendability, and satisfies a specified component composition, and in which structure at a depth corresponding to a quarter of the sheet thickness satisfies all of (1) to (5) below when measured using specified methods. (1) The areal ratio of ferrite relative to the overall structure is 5% or more but less than 50%, with the remainder being hard phases. (2) The areal ratio of a mixed structure of fresh martensite and residual austenite relative to the overall structure is greater than 0% but 30% or less (3) A region in which the concentration of Mn is enriched to 1.2 times or more the concentration of Mn in the steel sheet is present at 5% by area or greater. (4) When the fraction of a region in which the concentration of Mn is enriched to 1.2 times or more the concentration of Mn in the steel sheet is measured for 100 sections in a section of 2 μm square, the standard deviation is 4.0% or greater. (5) The concentration of Mn in a ferrite phase is 0.9 times or less the concentration of Mn in the steel sheet.

Description

本発明は、延性及び曲げ性に優れた高強度冷延鋼板および高強度溶融亜鉛めっき鋼板、並びにそれらの製造方法に関する。詳細には、引張強度が980MPa以上の領域で、延性と曲げ性に優れた高強度冷延鋼板、高強度電気亜鉛めっき鋼板、高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板、並びにこれらの鋼板を効率良く製造することのできる製造方法に関するものである。   The present invention relates to a high-strength cold-rolled steel sheet and a high-strength hot-dip galvanized steel sheet excellent in ductility and bendability, and methods for producing them. Specifically, in a region where the tensile strength is 980 MPa or more, a high-strength cold-rolled steel sheet having high ductility and bendability, a high-strength electrogalvanized steel sheet, a high-strength hot-dip galvanized steel sheet, and a high-strength galvannealed steel sheet, The present invention relates to a production method capable of producing these steel plates efficiently.

自動車や輸送機等の低燃費化を実現するために、自動車や輸送機の自重を軽量化することが望まれている。例えば軽量化には高強度鋼板を使用し、板厚を薄くすることが有効である。しかし、鋼板を高強度化すると延性が劣化するため、加工性が悪くなる。したがって高強度鋼板には、プレス成形に必要な延性、および曲げ性に優れた特性が求められている。また自動車用鋼部品には、耐食性の観点から、電気亜鉛めっき(EG)や溶融亜鉛めっき(GI)、合金化溶融亜鉛めっき(GA)などの亜鉛めっきを施した鋼板(以下、「亜鉛めっき鋼板」で代表させる場合がある)が使用される場合が多い。これら亜鉛めっき鋼板においても高強度鋼板と同様の特性が求められている。   In order to reduce fuel consumption of automobiles and transport aircraft, it is desired to reduce the weight of automobiles and transport aircraft. For example, it is effective to use a high-strength steel plate and reduce the thickness to reduce the weight. However, when the strength of the steel plate is increased, the ductility deteriorates and the workability deteriorates. Therefore, high strength steel sheets are required to have excellent ductility and bendability necessary for press forming. In addition, from the viewpoint of corrosion resistance, steel parts for automobiles are galvanized steel sheets such as electrogalvanized (EG), hot dip galvanized (GI), and alloyed hot dip galvanized (GA). Is often used as a representative). These galvanized steel sheets are also required to have the same characteristics as high-strength steel sheets.

高強度鋼板の加工性を改善する技術として、例えば特許文献1〜4には、曲げ性に優れた超高強度冷延鋼板が提案されている。   As techniques for improving the workability of high-strength steel sheets, for example, Patent Documents 1 to 4 propose ultra-high-strength cold-rolled steel sheets with excellent bendability.

特開2011−179030号公報JP 2011-179030 A 特許第5299591号公報Japanese Patent No. 5299591 特開2011−225976号公報JP 2011-225976 A 国際公開第2012/036269号International Publication No. 2012/036269

しかしながら引張強度が980MPa以上の領域で、延性と曲げ性に優れた鋼板は未だ提供されていなかった。   However, a steel sheet excellent in ductility and bendability in a region where the tensile strength is 980 MPa or more has not yet been provided.

本発明は上記の様な事情に着目してなされたものであって、その目的は、引張強度が980MPa以上であって、延性と曲げ性に優れた高強度冷延鋼板および高強度溶融亜鉛めっき鋼板、並びにそれらを生産性よく製造できる方法、詳細には、引張強度が980MPa以上の領域で、延性と曲げ性に優れた高強度冷延鋼板、高強度電気亜鉛めっき鋼板、高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板、並びにこれらの鋼板を効率良く製造することのできる製造方法を提供することにある。   The present invention has been made paying attention to the above-mentioned circumstances, and the purpose thereof is a high-strength cold-rolled steel sheet and a high-strength hot-dip galvanized plate having a tensile strength of 980 MPa or more and excellent ductility and bendability. Steel sheets and methods for producing them with high productivity, specifically, high strength cold-rolled steel sheets, high-strength electrogalvanized steel sheets, high-strength hot-dip galvanized steels with excellent ductility and bendability in the region where the tensile strength is 980 MPa or more An object of the present invention is to provide a steel plate, a high-strength galvannealed steel plate, and a production method capable of efficiently producing these steel plates.

上記課題を解決し得た本発明とは、鋼板の成分組成が、質量%で、C:0.10%以上0.30%以下、Si:1.2%以上3%以下、Mn:0.5%以上3.0%以下、P:0%超0.1%以下、S:0%超0.05%以下、Al:0.005%以上0.2%以下、N:0%超0.01%以下、およびO:0%超0.01%以下を満たし、残部が鉄および不可避的不純物からなり、かつ、鋼板の板厚1/4位置の組織が、下記(1)〜(5)の全てを満たすことに要旨を有する。以下、鋼板の成分組成について「%」は「質量%」を意味する。
(1)走査型電子顕微鏡で観察したときに、全組織に対するフェライトの面積率が5%以上50%未満であり、残部は硬質相である。
(2)レペラー腐食を行い、光学顕微鏡で観察したときに、全組織に対するフレッシュマルテンサイトと残留オーステナイトの混合組織の面積率が0%超30%以下である。
(3)電子線マイクロプローブ分析計で分析したときに、Mn濃度が前記鋼板中のMn濃度の1.2倍以上濃縮している領域が5面積%以上存在し、且つ
(4)□2μm区画でMn濃度が前記鋼板中のMn濃度の1.2倍以上濃縮している領域の分率を計測し、100区画測定したときの標準偏差が4.0%以上である。
(5)電子線マイクロプローブ分析計で分析したときに、フェライト相中のMn濃度が前記鋼板中のMn濃度の0.90倍以下である。
The present invention that can solve the above-mentioned problems is that the composition of the steel sheet is, by mass, C: 0.10% to 0.30%, Si: 1.2% to 3%, Mn: 0.00. 5% to 3.0%, P: more than 0% to 0.1%, S: more than 0% to 0.05%, Al: 0.005% to 0.2%, N: more than 0% 0 .01% or less, and O: more than 0% and 0.01% or less are satisfied, the balance is made of iron and unavoidable impurities, and the structure of the steel plate at the 1/4 position is the following (1) to (5 ) To meet all of the above. Hereinafter, “%” means “mass%” for the component composition of the steel sheet.
(1) When observed with a scanning electron microscope, the area ratio of ferrite to the entire structure is 5% or more and less than 50%, and the remainder is a hard phase.
(2) When the repeller corrosion is performed and observed with an optical microscope, the area ratio of the mixed structure of fresh martensite and retained austenite with respect to the entire structure is more than 0% and 30% or less.
(3) When analyzed with an electron beam microprobe analyzer, there are 5 area% or more of regions where the Mn concentration is 1.2 times or more the Mn concentration in the steel sheet, and (4) 2 μm sections The fraction of the region where the Mn concentration is concentrated 1.2 times or more of the Mn concentration in the steel sheet is measured, and the standard deviation when measuring 100 sections is 4.0% or more.
(5) When analyzed with an electron microprobe analyzer, the Mn concentration in the ferrite phase is 0.90 times or less of the Mn concentration in the steel sheet.

本発明では、X線回折法で測定したときに、全組織に対する残留オーステナイトの体積率が5%以上であることも好ましい実施態様である。   In the present invention, it is also a preferred embodiment that the volume ratio of retained austenite with respect to the entire structure is 5% or more when measured by the X-ray diffraction method.

また上記硬質相は、前記フレッシュマルテンサイトと残留オーステナイトの混合組織と;ベイニティックフェライト、ベイナイト、および焼戻しマルテンサイよりなる群から選択される少なくとも一種の組織と;からなることが好ましい。   The hard phase preferably comprises a mixed structure of the fresh martensite and retained austenite; and at least one structure selected from the group consisting of bainitic ferrite, bainite, and tempered martensite.

本発明を実施するにあたっては更に他の元素として、(A)Cr:0%超1%以下、およびMo:0%超1%以下よりなる群から選択される少なくとも一種;(B)Ti:0%超0.15%以下、Nb:0%超0.15%以下、およびV:0%超0.15%以下よりなる群から選択される少なくとも一種;(C)Cu:0%超1%以下、およびNi:0%超1%以下よりなる群から選択される少なくとも一種;(D)B:0%超0.005%以下;(E)Ca:0%超0.01%以下、Mg:0%超0.01%以下、およびREM:0%超0.01%以下よりなる群から選択される少なくとも一種;の少なくともいずれかを含有することも好ましい実施態様である。   In practicing the present invention, as another element, (A) Cr: at least one selected from the group consisting of more than 0% and not more than 1% and Mo: more than 0% and not more than 1%; (B) Ti: 0 %: At least one selected from the group consisting of more than 0.15% or less, Nb: more than 0% and 0.15% or less, and V: more than 0% and less than 0.15%; (C) Cu: more than 0% and 1% And at least one selected from the group consisting of Ni: more than 0% and 1% or less; (D) B: more than 0% and 0.005% or less; (E) Ca: more than 0% and 0.01% or less; Mg It is also a preferred embodiment that contains at least one selected from the group consisting of: more than 0% and not more than 0.01%, and REM: more than 0% and not more than 0.01%.

本発明には更に、前記高強度冷延鋼板の表面に、電気亜鉛めっき層が形成されている高強度電気亜鉛めっき鋼板;前記高強度冷延鋼板の表面に、溶融亜鉛めっき層が形成されている高強度溶融亜鉛めっき鋼板;および前記高強度冷延鋼板の表面に、合金化溶融亜鉛めっき層が形成されている高強度合金化溶融亜鉛めっき鋼板;も含まれる。   The present invention further includes a high-strength electrogalvanized steel sheet having an electrogalvanized layer formed on the surface of the high-strength cold-rolled steel sheet; a hot-dip galvanized layer formed on the surface of the high-strength cold-rolled steel sheet. And a high-strength galvanized steel sheet having an alloyed galvanized layer formed on the surface of the high-strength cold-rolled steel sheet.

また上記課題を解決し得た本発明に係る高強度冷延鋼板の製造方法は、上記成分組成からなる鋼板の熱延工程で、巻取り温度500℃以上800℃以下で巻取り、その後500℃以上800℃以下で3時間以上保持した後室温まで冷却し、冷延後、(Ac1点+20℃)以上Ac3点未満の温度域で均熱保持し、その後、500℃までを平均冷却速度10℃/秒以上、500℃以下を平均冷却速度10℃/秒以上で、500℃以下の温度域まで冷却し、次いで250℃以上500℃以下の温度域まで再加熱を行い、30秒間以上保持してから室温まで冷却することに要旨を有する。 The method for producing a high-strength cold-rolled steel sheet according to the present invention that has solved the above problems is a hot-rolling step of a steel sheet having the above component composition, and is wound at a winding temperature of 500 ° C. or more and 800 ° C. or less, and then 500 ° C. Hold at 800 ° C. or lower for 3 hours or longer, then cool to room temperature, and after cold rolling, keep soaked in a temperature range of (Ac 1 point + 20 ° C.) to less than Ac 3 point, and then average cooling rate to 500 ° C. Cool from 10 ° C / second to 500 ° C at an average cooling rate of 10 ° C / second to a temperature range of 500 ° C or lower, then reheat to a temperature range of 250 ° C to 500 ° C and hold for 30 seconds or longer Then, it has a gist in cooling to room temperature.

本発明では上記製造方法で得られた鋼板に、更に電気亜鉛めっきを施すことも好ましい。   In the present invention, it is also preferred that the steel sheet obtained by the above production method is further subjected to electrogalvanization.

また上記課題を解決し得た本発明に係る高強度溶融亜鉛めっき鋼板の製造方法は、上記成分組成からなる鋼板の熱延工程で、巻取り温度500℃以上800℃以下で巻取り、その後500℃以上800℃以下で3時間以上保持した後室温まで冷却し、冷延後、(Ac1点+20℃)以上Ac3点未満の温度域で均熱保持し、その後、500℃までを平均冷却速度10℃/秒以上、500℃以下を平均冷却速度10℃/秒以上で、500℃以下の温度域まで冷却し、次いで250℃以上500℃以下の温度域まで再加熱を行い、30秒間以上保持すると共に、該保持時間内で溶融亜鉛めっきを施してから室温まで冷却することに要旨を有する。 Moreover, the manufacturing method of the high intensity | strength hot-dip galvanized steel plate which concerns on this invention which could solve the said subject is a hot-rolling process of the steel plate which consists of the said component composition, and is wound up by coiling temperature 500 degreeC or more and 800 degrees C or less, and then 500 Hold at 3 ° C to 800 ° C for 3 hours or more, then cool to room temperature, and after cold rolling, keep soaked in a temperature range of (Ac 1 point + 20 ° C) to less than Ac 3 point, then average cooling to 500 ° C Cool at a rate of 10 ° C./second or more and 500 ° C. or less at an average cooling rate of 10 ° C./second or more to a temperature range of 500 ° C. or less, and then reheat to a temperature range of 250 ° C. or more and 500 ° C. or less, for 30 seconds or more The main point is to hold and to cool to room temperature after hot dip galvanization within the holding time.

本発明では上記溶融亜鉛めっきを施した後、450℃以上550℃以下の温度域で合金化を行うことも好ましい。   In the present invention, it is also preferable to perform alloying in a temperature range of 450 ° C. or more and 550 ° C. or less after performing the hot dip galvanization.

本発明によれば、980MPa以上であっても、延性および曲げ性に優れた高強度冷延鋼板および高強度溶融亜鉛めっき鋼板、詳細には、前記特性に優れた高強度冷延鋼板、高強度電気亜鉛めっき鋼板、高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板を提供できる。また本発明の製造方法によれば、これらの鋼板を効率良く製造することができる。従って、本発明の高強度冷延鋼板等は、特に自動車等の産業分野において極めて有用である。   According to the present invention, a high-strength cold-rolled steel sheet and a high-strength hot-dip galvanized steel sheet that are excellent in ductility and bendability even at 980 MPa or more, in particular, a high-strength cold-rolled steel sheet that has excellent characteristics, a high strength An electrogalvanized steel sheet, a high-strength hot-dip galvanized steel sheet, and a high-strength galvannealed steel sheet can be provided. Moreover, according to the manufacturing method of this invention, these steel plates can be manufactured efficiently. Therefore, the high-strength cold-rolled steel sheet of the present invention is extremely useful particularly in the industrial field such as automobiles.

図1は、本発明の製造方法における熱処理パターンの一例を示す概略説明図である。FIG. 1 is a schematic explanatory view showing an example of a heat treatment pattern in the production method of the present invention.

本発明者らは、引張強度が980MPa以上の特に高強度冷延鋼板や高強度溶融亜鉛めっき鋼板の、延性および曲げ性を改善するために、鋭意検討を重ねて来た。   In order to improve the ductility and bendability of particularly high-strength cold-rolled steel sheets and high-strength hot-dip galvanized steel sheets having a tensile strength of 980 MPa or more, the present inventors have made extensive studies.

その結果、成分組成を適切に制御することを前提として、鋼板の金属組織におけるフェライト相と硬質相を最適化すると共に、Mnの偏析を適切に制御すれば、980MPa以上の高強度を確保しつつ、延性、および曲げ性を改善できることを見出し、本発明に至った。   As a result, assuming that the component composition is appropriately controlled, the ferrite phase and the hard phase in the metallographic structure of the steel sheet are optimized, and if segregation of Mn is appropriately controlled, a high strength of 980 MPa or more is secured. The present inventors have found that ductility and bendability can be improved, and have reached the present invention.

以下、本発明で金属組織を規定した理由について詳述する。なお、顕微鏡観察によって測定される分率は鋼板の全組織(100%)に占める割合を意味する。本発明を構成する金属組織は、金属組織によって測定方法が相違している。そのため、本発明で規定する金属組織を全て合計した場合、100%を超える場合があるが、これはフレッシュマルテンサイトと残留オーステナイトの混合組織を構成する残留γが光学顕微鏡観察によって測定されるだけでなく、X線回折によっても重複して測定されるためである。以下、残留オーステナイトを「残留γ」といい、フレッシュマルテンサイトと残留オーステナイトの混合組織を、「MA(Martensite−Austenite Constituent)組織」ということがある。   Hereinafter, the reason for defining the metal structure in the present invention will be described in detail. In addition, the fraction measured by microscopic observation means the ratio for the whole structure (100%) of a steel plate. The measurement method of the metal structure constituting the present invention differs depending on the metal structure. Therefore, when all the metal structures defined in the present invention are totaled, it may exceed 100%. This is because the residual γ constituting the mixed structure of fresh martensite and residual austenite is only measured by optical microscope observation. This is because it is also measured by X-ray diffraction. Hereinafter, retained austenite is referred to as “residual γ”, and the mixed structure of fresh martensite and retained austenite is sometimes referred to as “MA (Martensite-Austenite Constituent) structure”.

[フェライトの面積率:5%以上50%未満]
フェライトは鋼板の延性と曲げ性を向上させる効果を有する組織である。本発明ではフェライトの面積分率を高めることで、引張強度が980MPa以上の高強度領域における延性、および曲げ性を向上させることができる。このような効果を発揮させるには、フェライトの面積率を5%以上、好ましくは7%以上、より好ましくは10%以上とする。しかし、フェライトが過剰になると鋼板の強度が低下して、980MPa以上の高強度を確保するのが困難となる。したがってフェライトの面積率は50%未満、好ましくは45%以下、より好ましくは40%以下とする。フェライトの面積率は鋼板の板厚1/4位置を走査型電子顕微鏡(SEM:Scanning Electron Microscope)観察によって測定した値である。
[Area ratio of ferrite: 5% or more and less than 50%]
Ferrite is a structure having an effect of improving the ductility and bendability of a steel sheet. In the present invention, ductility and bendability in a high strength region having a tensile strength of 980 MPa or more can be improved by increasing the area fraction of ferrite. In order to exert such an effect, the area ratio of ferrite is 5% or more, preferably 7% or more, more preferably 10% or more. However, when the ferrite is excessive, the strength of the steel sheet is lowered, and it becomes difficult to ensure a high strength of 980 MPa or more. Therefore, the area ratio of ferrite is less than 50%, preferably 45% or less, more preferably 40% or less. The area ratio of the ferrite is a value obtained by observing the position of the steel sheet with a thickness of 1/4 by observation with a scanning electron microscope (SEM: Scanning Electron Microscope).

[硬質相]
硬質相は引張強度を向上させるのに必要な組織である。本発明では硬質相の面積分率を高めることで、軟質なフェライトを上記面積率の範囲内で存在させつつ、980MPa以上の高強度を達成できる。このような効果を発揮させるには、フェライト以外の残部金属組織が硬質相である必要がある。本発明において硬質相とは、フェライトよりも硬い相であり、例えばベイニティックフェライト、ベイナイト、焼戻しマルテンサイト、およびMA組織よりなる群から選択される少なくとも一種であり、本発明では、下記に示す通り、少なくともMA組織を含む。上記硬質相のうち、ベイニティックフェライト、ベイナイト、および焼戻しマルテンサイトは鋼板の板厚1/4位置のSEM観察による測定値である。尚、残留γはベイニティックフェライトのラス間もしくはMA組織に含まれて存在している。
[Hard phase]
The hard phase is a structure necessary for improving the tensile strength. In the present invention, by increasing the area fraction of the hard phase, high strength of 980 MPa or more can be achieved while allowing soft ferrite to exist within the range of the area ratio. In order to exert such an effect, the remaining metal structure other than ferrite needs to be a hard phase. In the present invention, the hard phase is a phase harder than ferrite, and is at least one selected from the group consisting of bainitic ferrite, bainite, tempered martensite, and MA structure. In the present invention, the following is shown. As such, it includes at least the MA organization. Among the hard phases, bainitic ferrite, bainite, and tempered martensite are measured values by SEM observation at a 1/4 thickness position of the steel sheet. Residual γ is included between the laths of bainitic ferrite or in the MA structure.

[全組織に対するMA組織の面積率:0%超30%以下]
MA組織が存在すると強度や延性を向上させることができる。よって、強度−延性バランスを向上させる観点からは、MA組織の面積率は好ましくは3%以上、より好ましくは4%以上とする。一方、MA組織の面積率が多くなりすぎると、曲げ性が悪化する。よって本発明では、MA組織の面積率を30%以下、好ましくは20%以下、より好ましくは15%以下とする。
[Area ratio of MA structure to all structures: more than 0% and 30% or less]
If the MA structure is present, the strength and ductility can be improved. Therefore, from the viewpoint of improving the strength-ductility balance, the area ratio of the MA structure is preferably 3% or more, more preferably 4% or more. On the other hand, if the area ratio of the MA structure is too large, the bendability deteriorates. Therefore, in the present invention, the area ratio of the MA structure is 30% or less, preferably 20% or less, more preferably 15% or less.

なお、MA組織を構成するフレッシュマルテンサイトとは、鋼板を加熱温度から室温まで冷却する過程で未変態オーステナイトがマルテンサイト変態した状態のものをいい、加熱処理後の焼戻しマルテンサイトとは区別している。本発明ではレペラー腐食して光学顕微鏡観察したときに白色化した箇所をMA組織とした。なお、フレッシュマルテンサイトと残留γは、光学顕微鏡観察では区別することは困難なため、フレッシュマルテンサイトと残留γの複合組織をMA組織として測定している。MA組織は鋼板の板厚1/4位置の光学顕微鏡観察による測定値である。   In addition, the fresh martensite which comprises MA structure means the state in which the untransformed austenite was martensitic transformed in the process of cooling a steel plate from heating temperature to room temperature, and is distinguished from tempered martensite after heat treatment. . In the present invention, the portion that has been whitened when observed with an optical microscope due to repeller corrosion is defined as the MA structure. Since fresh martensite and residual γ are difficult to distinguish by observation with an optical microscope, a composite structure of fresh martensite and residual γ is measured as an MA structure. The MA structure is a value measured by observation with an optical microscope at a ¼ position of the steel sheet thickness.

[Mn濃度が鋼板中のMn濃度の1.2倍以上濃縮している領域:5面積%以上、且つ
□2μm区画でMn濃度が鋼板中のMn濃度の1.2倍以上濃縮している領域の面積分率の標準偏差:4.0%以上]
本発明においてMn濃度の濃縮している領域は、鋼板の横断面をビーム径1μm以下で20μm×20μmの範囲を電子線マイクロプローブ分析計(Electron Probe Microanalyzer:EPMA)を用いた分析によって得られるMn濃度を用いて規定される。また「鋼板中のMn濃度」とは、母材鋼板を誘導結合プラズマ発光分光法で化学分析して得られるMn濃度である。したがってMn濃度が鋼板中のMn濃度の1.2倍以上濃縮している領域とは、母材鋼板中のMn濃度よりもEPMA分析によって得られたMn濃度の測定値が1.2倍以上高い領域であり、20μm×20μmの範囲で測定している。
[A region where the Mn concentration is concentrated 1.2 times or more of the Mn concentration in the steel plate: 5 area% or more, and a region where the Mn concentration is concentrated 1.2 times or more the Mn concentration in the steel plate in □ 2 μm section. Standard deviation of the area fraction of the product: 4.0% or more]
In the present invention, the region where the Mn concentration is concentrated is the Mn obtained by analyzing the cross section of the steel sheet with a beam diameter of 1 μm or less and 20 μm × 20 μm using an electron probe microanalyzer (EPMA). It is defined using the concentration. The “Mn concentration in the steel plate” is a Mn concentration obtained by chemical analysis of the base steel plate by inductively coupled plasma emission spectroscopy. Therefore, the region where the Mn concentration is concentrated 1.2 times or more of the Mn concentration in the steel sheet means that the measured value of the Mn concentration obtained by EPMA analysis is 1.2 times or more higher than the Mn concentration in the base steel sheet. This is a region and is measured in the range of 20 μm × 20 μm.

また「□2μm区画」とは、2μm四方の区画であって、本発明では20μm×20μmのEPMA測定範囲を縦横各2μm間隔の線を引いて得られる1区画2μm四方の区画100個に分割し、各区画内でMn濃度が1.2倍以上高い領域の面積分率を測定し、100個の区画で統計学的に標準偏差を求めている。   The “□ 2 μm section” is a 2 μm square section. In the present invention, an EPMA measurement range of 20 μm × 20 μm is divided into 100 sections of 1 μm 2 μm square obtained by drawing lines 2 μm apart in length and width. In each section, the area fraction of the region where the Mn concentration is 1.2 times or more is measured, and the standard deviation is statistically obtained in 100 sections.

本発明では、Mn濃度分布において鋼板中のMn濃度の1.2倍以上濃縮している領域が、5面積%以上存在し、且つ□2μmの区画でMnが1.2倍以上濃縮している領域の分率を計測したときの標準編差が4.0%以上であれば、曲げ性が大幅に向上することを見出した。以下では、鋼板中のMn濃度の1.2倍以上濃縮している領域を「Mn濃度1.2倍以上の領域」といい、□2μmの区画でMnが1.2倍以上濃縮している領域の分率を計測したときの標準編差を「Mn濃度が1.2倍以上濃縮している領域の標準偏差」あるいは単に「標準偏差」ということがある。   In the present invention, in the Mn concentration distribution, a region where the concentration of Mn in the steel plate is concentrated 1.2 times or more is 5 area% or more, and Mn is concentrated 1.2 times or more in the square of 2 μm. It has been found that if the standard knitting difference when measuring the area fraction is 4.0% or more, the bendability is greatly improved. Below, the region where the Mn concentration in the steel sheet is concentrated 1.2 times or more is referred to as the “region where the Mn concentration is 1.2 times or more”, and Mn is concentrated 1.2 times or more in the 2 μm section. The standard stitch difference when the area fraction is measured may be referred to as “standard deviation of a region where the Mn concentration is concentrated 1.2 times or more” or simply “standard deviation”.

すなわち、Mn濃度1.2倍以上の領域は主に硬質相となる。そしてMn濃度1.2倍以上の領域の面積率が大きい程、相対的にフェライト相中のMn濃度が低下してフェライト相の硬度を低下させることができ、曲げ性を向上できる。またMnの偏析が多いほど標準偏差が大きくなるが、曲げ性向上に寄与するフェライト相中のMn濃度が低くなり、フェライト相の硬度を低下させることができる。   That is, the region having a Mn concentration of 1.2 times or more mainly becomes a hard phase. And, as the area ratio of the region having a Mn concentration of 1.2 times or more is larger, the Mn concentration in the ferrite phase is relatively lowered, the hardness of the ferrite phase can be lowered, and the bendability can be improved. The standard deviation increases as the amount of segregation of Mn increases. However, the Mn concentration in the ferrite phase that contributes to improvement in bendability decreases, and the hardness of the ferrite phase can be reduced.

このような効果を得るためには、Mn濃度1.2倍以上の領域は5.0面積%以上、好ましくは5.2面積%以上、より好ましくは5.5面積%以上とする。一方、Mn濃度1.2倍以上の領域の占める割合が高すぎるとオーステナイトのMs点が低下してMA組織が増加することがあるため、Mn濃度1.2倍以上の領域は好ましくは20面積%以下、より好ましくは15面積%以下とする。   In order to obtain such an effect, the region having a Mn concentration of 1.2 times or more is 5.0 area% or more, preferably 5.2 area% or more, more preferably 5.5 area% or more. On the other hand, if the ratio of the Mn concentration of 1.2 times or more is too high, the Ms point of austenite may decrease and the MA structure may increase, so the region of Mn concentration of 1.2 times or more is preferably 20 areas. % Or less, more preferably 15 area% or less.

また、Mn濃度が1.2倍以上濃縮している領域の標準偏差は4.0%以上、好ましくは4.5%以上、より好ましくは5.0%以上とする。標準偏差が4.0%より小さい場合は、Mnの分布が不十分で均一に分布しているため、曲げ性向上に寄与する上記フェライト相の硬度低下が不十分である。一方、標準偏差の上限は特に限定されず、好ましくは10%以下である。   The standard deviation of the region where the Mn concentration is 1.2 times or more is 4.0% or more, preferably 4.5% or more, more preferably 5.0% or more. When the standard deviation is smaller than 4.0%, since the distribution of Mn is insufficient and uniform, the hardness reduction of the ferrite phase that contributes to improvement of bendability is insufficient. On the other hand, the upper limit of the standard deviation is not particularly limited, and is preferably 10% or less.

そして上記Mn濃度1.2倍以上の領域を5面積%以上、且つ標準偏差を4.0%以上とすることで、球状化した硬質相をフェライト相中に分散させることができ、鋼材の強度向上効果とフェライトによる曲げ性向上効果を兼備できる。以下、前記球状化した硬質相を「球状硬質相」という。ここで、球状硬質相は硬質相の一部であり、上記硬質相と同じくベイニティックフェライト、ベイナイト、焼戻しマルテンサイト、MA組織などから構成される。従来から硬質相とフェライト相の硬度差が大きいと曲げ加工時に界面亀裂が生じ、曲げ性が悪化すると考えられていたが、フェライト相中の球状硬質相によって界面亀裂を抑制できることがわかった。このような効果を得るためには、フェライト相中の球状硬質相は小さい方がよく、アスペクト比で好ましくは3以下、より好ましくは2.5以下、さらに好ましくは、2以下で、円相当径で好ましくは2μm以下、より好ましくは1.8μm以下、更に好ましくは1.5μm以下とする。また上記効果を奏するためには球状硬質相は、上記硬質相に対して好ましくは0.70体積%以上、より好ましくは、0.75体積%以上、更に好ましくは、0.80体積%以上とする。   And by making the region of Mn concentration 1.2 times or more 5 area% or more and the standard deviation 4.0% or more, the spheroidized hard phase can be dispersed in the ferrite phase, and the strength of the steel material The improvement effect and the bendability improvement effect by ferrite can be combined. Hereinafter, the spheroidized hard phase is referred to as “spherical hard phase”. Here, the spherical hard phase is a part of the hard phase, and is composed of bainitic ferrite, bainite, tempered martensite, MA structure and the like as the hard phase. Conventionally, it was thought that when the hardness difference between the hard phase and the ferrite phase was large, an interface crack was generated during bending and the bendability was deteriorated. However, it was found that the interface crack can be suppressed by the spherical hard phase in the ferrite phase. In order to obtain such an effect, the spherical hard phase in the ferrite phase should be small, and the aspect ratio is preferably 3 or less, more preferably 2.5 or less, still more preferably 2 or less, and the equivalent circle diameter. Is preferably 2 μm or less, more preferably 1.8 μm or less, and still more preferably 1.5 μm or less. In order to achieve the above effect, the spherical hard phase is preferably 0.70% by volume or more, more preferably 0.75% by volume or more, and further preferably 0.80% by volume or more with respect to the hard phase. To do.

[フェライト中のMn濃度が鋼板中のMn濃度の0.90倍以下]
フェライト相中のMn濃度が高すぎると、フェライト相の硬度を十分に低減できず、曲げ性が悪化することから、フェライト相中のMn濃度は鋼板中のMn濃度よりも低くする必要がある。したがってフェライト相中のMn濃度は、鋼板中のMn濃度の0.90倍以下、好ましくは0.85倍以下、より好ましくは0.80倍以下とする。一方、フェライト中のMn濃度が低くなりすぎると、フェライトの硬度が低下し、強度が不足することがあるため、フェライト中のMn濃度は鋼板中のMn濃度の好ましくは0.3倍以上、より好ましくは0.4倍以上とする。なお、フェライト相中のMn濃度はEPMAにて測定できる。
[Mn concentration in ferrite is less than 0.90 times Mn concentration in steel sheet]
If the Mn concentration in the ferrite phase is too high, the hardness of the ferrite phase cannot be sufficiently reduced, and the bendability deteriorates. Therefore, the Mn concentration in the ferrite phase needs to be lower than the Mn concentration in the steel sheet. Therefore, the Mn concentration in the ferrite phase is 0.90 times or less, preferably 0.85 times or less, more preferably 0.80 times or less the Mn concentration in the steel sheet. On the other hand, if the Mn concentration in the ferrite is too low, the ferrite hardness decreases and the strength may be insufficient. Therefore, the Mn concentration in the ferrite is preferably 0.3 times or more the Mn concentration in the steel sheet. Preferably it is 0.4 times or more. The Mn concentration in the ferrite phase can be measured by EPMA.

[全組織に対する残留γの体積率:5%以上]
残留γは、鋼板を加工する際に歪を受けて変形し、マルテンサイトに変態することにより良好な延性を確保できると共に、加工時に変形部の硬化を促進して歪の集中を抑制する効果を有することから、鋼板の強度−延性バランス向上に必要な組織である。このような効果を有効に発揮させるには、残留γの体積率は好ましくは5%以上、より好ましくは6%以上、更に好ましくは7%以上とする。なお、残留γの体積率の上限は、特に限定されないが、本発明の成分組成および製造条件の範囲内では、多くても20%以下となる。残留γは鋼板の板厚1/4位置のX線回折法による測定値である。
[Volume ratio of residual γ with respect to all tissues: 5% or more]
Residual γ is deformed in response to the deformation of the steel sheet and transforms into martensite, thereby ensuring good ductility and promoting the hardening of the deformed part during processing, thereby suppressing the concentration of strain. Therefore, it is a structure necessary for improving the strength-ductility balance of the steel sheet. In order to effectively exhibit such an effect, the volume ratio of the residual γ is preferably 5% or more, more preferably 6% or more, and further preferably 7% or more. The upper limit of the volume ratio of residual γ is not particularly limited, but is 20% or less at most within the range of the component composition and production conditions of the present invention. Residual γ is a value measured by an X-ray diffraction method at a position of 1/4 of the thickness of the steel sheet.

なお、残留γはベイニティックフェライトのラス間もしくはMA組織に含まれて存在する。上記残留γの効果は存在形態によらず発揮されるため、本発明では、測定した際に確認できる残留γは、存在形態に係わらず残留γとした。   Residual γ is present between the laths of bainitic ferrite or in the MA structure. Since the effect of the residual γ is exhibited regardless of the existence form, in the present invention, the residual γ that can be confirmed upon measurement is the residual γ regardless of the existence form.

次に本発明の高強度鋼板の成分組成について説明する。   Next, the component composition of the high-strength steel sheet of the present invention will be described.

[C:0.10%以上0.30%以下]
Cは、強度を確保し、且つ、残留γの安定性を高めるのに必要な元素である。980MPa以上の引張強度を確保するには、C含有量は0.10%以上、好ましくは0.12%以上、より好ましくは0.15%以上とする。しかし、C含有量が過剰になると、熱延後の強度が上昇し、冷間圧延時に割れが生じたり、最終製品の溶接性が低下するため、C含有量は0.30%以下、好ましくは0.26%以下、より好ましくは0.23%以下とする。
[C: 0.10% to 0.30%]
C is an element necessary for ensuring strength and enhancing the stability of residual γ. In order to ensure a tensile strength of 980 MPa or more, the C content is 0.10% or more, preferably 0.12% or more, more preferably 0.15% or more. However, if the C content is excessive, the strength after hot rolling increases, cracking occurs during cold rolling, and the weldability of the final product decreases, so the C content is 0.30% or less, preferably It is made 0.26% or less, more preferably 0.23% or less.

[Si:1.2%以上3%以下]
Siは、固溶強化元素として鋼の高強度化に寄与する元素である。また、炭化物の生成を抑え、残留γの生成に有効に作用し、優れたTS×ELバランスを確保するのに有効な元素である。こうした作用を有効に発揮させるには、Si含有量は1.2%以上、好ましくは1.35%以上、より好ましくは1.5%以上とする。しかし、Si含有量が過剰になると、熱間圧延時に著しいスケールが形成されて鋼板表面にスケール跡疵が付き、表面性状が悪くなることがある。また、酸洗性を劣化させる。よってSi含有量は、3%以下、好ましくは2.8%以下、より好ましくは2.6%以下とする。
[Si: 1.2% to 3%]
Si is an element that contributes to increasing the strength of steel as a solid solution strengthening element. Moreover, it is an element effective in suppressing the generation of carbides, effectively acting on the generation of residual γ, and ensuring an excellent TS × EL balance. In order to effectively exert such effects, the Si content is set to 1.2% or more, preferably 1.35% or more, more preferably 1.5% or more. However, when the Si content is excessive, a significant scale is formed during hot rolling, and scale marks are formed on the surface of the steel sheet, which may deteriorate the surface properties. Moreover, pickling property is deteriorated. Therefore, the Si content is 3% or less, preferably 2.8% or less, more preferably 2.6% or less.

[Mn:0.5%以上3.0%以下]
Mnは、焼入れ性を向上させて鋼板の高強度化に寄与する元素である。また、γを安定化させて、残留γを生成させるのにも有効に作用する元素である。このような作用を有効に発揮させるには、Mn含有量は0.5%以上、好ましくは0.6%以上、より好ましくは1.0%以上、更に好ましくは1.5%以上、より更に好ましくは2.0%以上とする。しかしMn含有量が過剰になると、熱延後の強度が上昇し、冷間圧延時に割れが生じたり、最終製品の溶接性が劣化する原因となる。また過剰なMnの添加は、Mnが偏析して加工性が劣化する原因となる。よってMn含有量は、3.0%以下、好ましくは2.8%以下、より好ましくは2.6%以下とする。
[Mn: 0.5% to 3.0%]
Mn is an element that contributes to increasing the strength of the steel sheet by improving the hardenability. Further, it is an element that effectively acts to stabilize γ and generate residual γ. In order to effectively exert such action, the Mn content is 0.5% or more, preferably 0.6% or more, more preferably 1.0% or more, still more preferably 1.5% or more, and still more. Preferably it is 2.0% or more. However, if the Mn content is excessive, the strength after hot rolling is increased, causing cracks during cold rolling, or causing the weldability of the final product to deteriorate. Excessive Mn addition causes segregation of Mn and deteriorates workability. Therefore, the Mn content is 3.0% or less, preferably 2.8% or less, more preferably 2.6% or less.

[P:0%超0.1%以下]
Pは不可避的に含有する元素であり、鋼板の溶接性を劣化させる元素である。したがってP含有量は、0.1%以下、好ましくは0.08%以下、より好ましくは0.05%以下とする。なお、P含有量はできるだけ少ない方がよいため、下限は特に限定されないが、工業的には下限は0.0005%である。
[P: more than 0% and 0.1% or less]
P is an element unavoidably contained, and is an element that deteriorates the weldability of the steel sheet. Therefore, the P content is 0.1% or less, preferably 0.08% or less, more preferably 0.05% or less. In addition, since it is better that the P content is as small as possible, the lower limit is not particularly limited, but industrially the lower limit is 0.0005%.

[S:0%超0.05%以下]
Sは、Pと同様、不可避的に含有する元素であり、鋼板の溶接性を劣化させる元素である。また、Sは、鋼板中に硫化物系介在物を形成し、鋼板の加工性を低下させる原因となる。したがってS含有量は、0.05%以下、好ましくは0.01%以下、より好ましくは0.005%以下とする。S含有量はできるだけ少ない方がよいため、下限は特に限定されないが、工業的には下限は0.0001%とする。
[S: more than 0% and 0.05% or less]
S, like P, is an element that is inevitably contained, and is an element that degrades the weldability of the steel sheet. Further, S forms sulfide inclusions in the steel sheet and causes the workability of the steel sheet to deteriorate. Therefore, the S content is 0.05% or less, preferably 0.01% or less, more preferably 0.005% or less. Since the S content is preferably as low as possible, the lower limit is not particularly limited, but industrially the lower limit is 0.0001%.

[Al:0.005%以上0.2%以下]
Alは、脱酸剤として作用する元素である。このような作用を有効に発揮させるには、Al含有量は0.005%以上、より好ましくは0.01%以上とする。しかしAl含有量が過剰になると、鋼板の溶接性が著しく劣化するため、Al含有量は0.2%以下、好ましくは0.15%以下、より好ましくは0.10%以下とする。
[Al: 0.005% to 0.2%]
Al is an element that acts as a deoxidizer. In order to effectively exhibit such an action, the Al content is set to 0.005% or more, more preferably 0.01% or more. However, if the Al content is excessive, the weldability of the steel sheet is remarkably deteriorated, so the Al content is 0.2% or less, preferably 0.15% or less, more preferably 0.10% or less.

[N:0%超0.01%以下]
Nは、不可避的に含有する元素であるが、鋼板中に窒化物を析出させて鋼板の高強度化に寄与する元素である。この観点から、N含有量は好ましくは0.001%以上とする。しかしN含有量が過剰になると、窒化物が多量に析出して伸び、伸びフランジ性(λ)、曲げ性などの劣化を引き起こす。従ってN含有量は0.01%以下、好ましくは0.008%以下、より好ましくは0.005%以下とする。
[N: more than 0% and 0.01% or less]
N is an element inevitably contained, but is an element that contributes to increasing the strength of the steel sheet by precipitating nitrides in the steel sheet. In this respect, the N content is preferably 0.001% or more. However, if the N content is excessive, a large amount of nitride precipitates and stretches, causing deterioration of stretch flangeability (λ), bendability, and the like. Therefore, the N content is 0.01% or less, preferably 0.008% or less, more preferably 0.005% or less.

[O:0%超0.01%以下]
Oは不可避的に含まれる元素であり、過剰に含まれると延性や加工時の曲げ性の低下を招く元素である。従ってO含有量は、0.01%以下、好ましくは0.005%以下、より好ましくは0.003%以下とする。なお、O含有量はできるだけ少ない方がよいため、下限は特に限定されないが、工業的には下限は0.0001%である。
[O: more than 0% and 0.01% or less]
O is an element that is unavoidably included, and if excessively included, it is an element that causes a decrease in ductility and bendability during processing. Therefore, the O content is 0.01% or less, preferably 0.005% or less, more preferably 0.003% or less. In addition, since it is better that the O content is as small as possible, the lower limit is not particularly limited, but industrially the lower limit is 0.0001%.

[その他の成分]
本発明の鋼板は、上記成分組成を満足し、残部は鉄および不可避的不純物である。該不可避的不純物としては、例えば鋼中に原料、資材、製造設備等の状況によって持ち込まれることがある上記P、S、N、Oや、Pb、Bi、Sb、Snなどのトランプ元素が含まれることがある。また上記本発明の作用に悪影響を与えない範囲で、更に他の元素として以下の元素を積極的に含有させることも可能である。
[Other ingredients]
The steel sheet of the present invention satisfies the above component composition, and the balance is iron and inevitable impurities. The inevitable impurities include, for example, the above-mentioned P, S, N, O, and other trump elements such as Pb, Bi, Sb, Sn that may be brought into steel depending on the conditions of raw materials, materials, manufacturing equipment, and the like. Sometimes. Moreover, it is also possible to positively contain the following elements as other elements as long as the effects of the present invention are not adversely affected.

本発明の鋼板は、更に他の元素として、
(A)Cr:0%超1%以下およびMo:0%超1%以下よりなる群から選択される少なくとも一種、
(B)Ti:0%超0.15%以下、Nb:0%超0.15%以下、およびV:0%超0.15%以下よりなる群から選択される少なくとも一種、
(C)Cu:0%超1%以下およびNi:0%超1%以下よりなる群から選択される少なくとも一種、
(D)B:0%超0.005%以下、
(E)Ca:0%超0.01%以下、Mg:0%超0.01%以下、およびREM:0%超0.01%以下よりなる群から選択される少なくとも一種、などを含有してもよい。これら(A)〜(E)の元素は、単独、或いは任意に組み合わせて含有させることもできる。こうした範囲を定めた理由は次の通りである。
The steel sheet of the present invention is further as another element,
(A) at least one selected from the group consisting of Cr: more than 0% and 1% or less and Mo: more than 0% and 1% or less,
(B) Ti: at least one selected from the group consisting of more than 0% and 0.15% or less, Nb: more than 0% and 0.15% or less, and V: more than 0% and 0.15% or less,
(C) at least one selected from the group consisting of Cu: more than 0% and 1% or less and Ni: more than 0% and 1% or less,
(D) B: more than 0% and 0.005% or less,
(E) Ca: more than 0% 0.01% or less, Mg: more than 0% 0.01% or less, and REM: at least one selected from the group consisting of more than 0% and 0.01% or less. May be. These elements (A) to (E) may be contained alone or in any combination. The reason for setting this range is as follows.

[(A)Cr:0%超1%以下およびMo:0%超1%以下よりなる群から選択される少なくとも一種]
CrとMoは、いずれも焼入れ性を高めて鋼板の強度を向上させるのに有効な元素であり、単独で、或いは併用して使用できる。こうした作用を有効に発揮させるには、Cr、Moの含有量は、夫々好ましくは0.1%以上、より好ましくは0.3%以上とする。しかし、過剰に含有すると加工性が低下し、また高コストとなるため、Cr、Moの含有量は、夫々単独で含有させる場合は、好ましくは1%以下、より好ましくは0.8%以下、更に好ましくは0.5%以下である。CrとMoを併用する場合は、夫々単独で上記上限の範囲内であって、且つ好ましくは合計量を1.5%以下とする。
[(A) Cr: at least one selected from the group consisting of more than 0% and 1% or less and Mo: more than 0% and 1% or less]
Cr and Mo are both effective elements for improving the hardenability and improving the strength of the steel sheet, and can be used alone or in combination. In order to effectively exhibit such an action, the contents of Cr and Mo are preferably 0.1% or more, more preferably 0.3% or more, respectively. However, if it is excessively contained, the workability is reduced and the cost is increased. Therefore, when Cr and Mo are contained alone, preferably 1% or less, more preferably 0.8% or less, More preferably, it is 0.5% or less. When Cr and Mo are used in combination, each is independently within the above upper limit range, and preferably the total amount is 1.5% or less.

[(B)Ti:0%超0.15%以下、Nb:0%超0.15%以下、およびV:0%超0.15%以下よりなる群から選択される少なくとも一種]
Ti、Nb、およびVは、いずれも鋼板中に炭化物や窒化物の析出物を形成し、鋼板の強度を向上させると共に、旧γ粒を微細化させる作用を有する元素であり、単独で、或いは併用して使用できる。こうした作用を有効に発揮させるには、Ti、Nb、およびVの含有量は、夫々好ましくは0.005%以上、より好ましくは0.010%以上とする。しかし、過剰に含有すると粒界に炭化物が析出し、鋼板の伸びフランジ性や曲げ性が劣化する。従って、Ti、NbおよびVの含有量は、夫々好ましくは0.15%以下、より好ましくは0.12%以下、更に好ましくは0.10%以下とする。
[(B) At least one selected from the group consisting of Ti: more than 0% and 0.15% or less, Nb: more than 0% and 0.15% or less, and V: more than 0% and 0.15% or less]
Ti, Nb, and V are all elements that have the effect of forming carbide and nitride precipitates in the steel sheet, improving the strength of the steel sheet, and refining the old γ grains, alone or Can be used in combination. In order to effectively exhibit such an action, the contents of Ti, Nb, and V are each preferably 0.005% or more, more preferably 0.010% or more. However, when it contains excessively, carbide will precipitate to a grain boundary and the stretch flangeability and bendability of a steel plate will deteriorate. Therefore, the contents of Ti, Nb and V are each preferably 0.15% or less, more preferably 0.12% or less, and still more preferably 0.10% or less.

[(C)Cu:0%超1%以下およびNi:0%超1%以下よりなる群から選択される少なくとも一種]
CuとNiは、残留オーステナイトの生成、安定化に有効に作用する元素であり、更に耐食性を向上させる効果も有する元素であり、単独で、或いは併用して使用できる。こうした作用を発揮させるには、Cu、Niの含有量は、夫々好ましくは0.05%以上、より好ましくは0.10%以上とする。しかし、Cuは過剰に含有すると熱間加工性が劣化するため、単独で添加する場合には、Cu含有量は好ましくは1%以下、より好ましくは0.8%以下、更に好ましくは0.5%以下とする。Niは過剰に含有すると高コストとなるため、Ni含有量は好ましくは1%以下、より好ましくは0.8%以下、更に好ましくは0.5%以下とする。CuとNiは併用すると上記作用が発現し易くなり、またNiを含有させることによってCu添加による熱間加工性の劣化が抑制されるため、CuとNiを併用する場合、合計量で好ましくは1.5%以下、より好ましくは1.0%以下とする。
[(C) Cu: at least one selected from the group consisting of more than 0% and 1% or less and Ni: more than 0% and 1% or less]
Cu and Ni are elements that effectively act to generate and stabilize retained austenite, and also have an effect of improving corrosion resistance, and can be used alone or in combination. In order to exert such an effect, the contents of Cu and Ni are preferably 0.05% or more, more preferably 0.10% or more, respectively. However, since hot workability deteriorates when Cu is contained excessively, the Cu content is preferably 1% or less, more preferably 0.8% or less, and even more preferably 0.5% when added alone. % Or less. When Ni is excessively contained, the cost becomes high, so the Ni content is preferably 1% or less, more preferably 0.8% or less, and still more preferably 0.5% or less. When Cu and Ni are used in combination, the above-described effect is easily exhibited, and the deterioration of hot workability due to the addition of Cu is suppressed by containing Ni. Therefore, when Cu and Ni are used in combination, the total amount is preferably 1. .5% or less, more preferably 1.0% or less.

[(D)B:0%超0.005%以下]
Bは焼入れ性を向上させる元素であり、オーステナイトを安定に室温まで存在させるのに有効な元素である。こうした作用を有効に発揮させるには、B含有量は好ましくは0.0005%以上、より好ましくは0.0010%以上、更に好ましくは0.0015%以上とする。しかし、過剰に含有すると、ホウ化物を生成して延性を劣化させるため、B含有量は、好ましくは0.005%以下、より好ましくは0.004%以下、更に好ましくは0.0035%以下とする。
[(D) B: more than 0% and 0.005% or less]
B is an element that improves hardenability, and is an element that is effective for allowing austenite to stably exist up to room temperature. In order to effectively exert such effects, the B content is preferably 0.0005% or more, more preferably 0.0010% or more, and still more preferably 0.0015% or more. However, if contained excessively, a boride is produced and ductility is deteriorated. Therefore, the B content is preferably 0.005% or less, more preferably 0.004% or less, and further preferably 0.0035% or less. To do.

[(E)Ca:0%超0.01%以下、Mg:0%超0.01%以下、およびREM:0%超0.01%以下よりなる群から選択される少なくとも一種]
Ca、Mg、およびREMは、鋼板中の介在物を微細分散させる作用を有する元素であり、夫々単独で含有させてもよいし、任意に選ばれる2種以上を含有させてもよい。こうした作用を有効に発揮させるには、Ca、Mg、REMの含有量は、夫々単独で好ましくは0.0005%以上、より好ましくは0.0010%以上とする。しかし、過剰に含まれると、鋳造性や熱間加工性などを劣化させる原因となる。従ってCa、Mg、REMの含有量は、夫々単独で好ましくは0.01%以下、より好ましくは0.008%以下、更に好ましくは0.007%以下とする。
[(E) Ca: at least one selected from the group consisting of more than 0% and 0.01% or less, Mg: more than 0% and 0.01% or less, and REM: more than 0% and 0.01% or less]
Ca, Mg, and REM are elements that have the effect of finely dispersing inclusions in the steel sheet, and may be contained alone or in combination of two or more selected arbitrarily. In order to effectively exhibit such an action, the contents of Ca, Mg, and REM are each preferably preferably 0.0005% or more, more preferably 0.0010% or more. However, when it is contained excessively, it causes deterioration of castability and hot workability. Accordingly, the contents of Ca, Mg, and REM are each preferably preferably 0.01% or less, more preferably 0.008% or less, and still more preferably 0.007% or less.

なお、本発明においてREMとは希土類元素の略であり、ランタノイド元素、即ちLaからLuまでの15元素、およびスカンジウムとイットリウムを含む意味である。   In the present invention, REM is an abbreviation for rare earth elements, and includes lanthanoid elements, that is, 15 elements from La to Lu, and scandium and yttrium.

次に、本発明の高強度冷延鋼板、高強度電気亜鉛めっき鋼板、高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板の製造方法、特には高強度冷延鋼板と高強度溶融亜鉛めっき鋼板の製造方法について説明する。尚、高強度冷延鋼板の製造方法と高強度溶融亜鉛めっき鋼板の製造方法とは、「前記成分組成からなる鋼板の熱延工程で、巻取り温度500℃以上800℃以下で巻取り、その後500℃以上800℃以下で3時間以上保持した後室温まで冷却し、冷延後、(Ac1点+20℃)以上Ac3点未満の温度域で均熱保持し、その後、500℃までを平均冷却速度10℃/秒以上、500℃以下を平均冷却速度10℃/秒以上で、500℃以下の温度域まで冷却」するまでの工程は同一であるため、該工程については併せて説明し、前記「500℃以下の温度域まで冷却」後の再加熱工程は両者で異なるため、該工程については高強度冷延鋼板と高強度溶融亜鉛めっき鋼板の場合に分けて説明する。 Next, a method for producing the high-strength cold-rolled steel sheet, high-strength electrogalvanized steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength galvannealed steel sheet according to the present invention, particularly high-strength cold-rolled steel sheet and high-strength hot-dip zinc The manufacturing method of a plated steel plate is demonstrated. In addition, the manufacturing method of a high-strength cold-rolled steel sheet and the manufacturing method of a high-strength hot-dip galvanized steel sheet are “in a hot-rolling step of a steel sheet having the above-mentioned component composition, and wound at a winding temperature of 500 ° C. to 800 ° C. Hold at 500 ° C. or more and 800 ° C. or less for 3 hours or more, then cool to room temperature, and after cold rolling, keep soaked in a temperature range of (Ac 1 point + 20 ° C.) to less than Ac 3 point, and then average up to 500 ° C. The process until the cooling rate of 10 ° C./second or more and 500 ° C. or less is cooled to a temperature range of 500 ° C. or less at an average cooling rate of 10 ° C./second or more is the same. Since the reheating process after “cooling to a temperature range of 500 ° C. or lower” is different between the two, the process will be described separately for high-strength cold-rolled steel sheets and high-strength hot-dip galvanized steel sheets.

本発明の高強度冷延鋼板と高強度溶融亜鉛めっき鋼板の製造方法では、上記成分組成を満足する鋼に熱間圧延、および冷間圧延を行って得られた鋼板に対し、後記する焼鈍を行う。高強度冷延鋼板の製造方法では、前記焼鈍後、再加熱を行う。更には必要に応じて、電気亜鉛めっき処理を適宜組み合わせて行うことにより高強度電気亜鉛めっき鋼板を得ることができる。高強度溶融亜鉛めっき鋼板の製造方法では焼鈍を行った後、再加熱すると共に溶融亜鉛めっき処理を行う。更には必要に応じて、合金化処理を適宜組み合わせて行うことによって高強度合金化溶融亜鉛めっき鋼板を得ることができる。本発明では製造条件を適切に制御することによって、所望の組織を有する高強度冷延鋼板や高強度溶融亜鉛めっき鋼板等を得ることができる。   In the manufacturing method of the high-strength cold-rolled steel sheet and the high-strength hot-dip galvanized steel sheet of the present invention, the steel sheet obtained by performing hot rolling and cold rolling on the steel satisfying the above component composition is subjected to annealing described later. Do. In the manufacturing method of a high-strength cold-rolled steel sheet, reheating is performed after the annealing. Furthermore, if necessary, a high-strength electrogalvanized steel sheet can be obtained by appropriately combining electrogalvanizing treatments. In the manufacturing method of a high-strength hot-dip galvanized steel sheet, after annealing, it is reheated and hot-dip galvanized. Furthermore, if necessary, a high-strength galvannealed steel sheet can be obtained by appropriately combining alloying treatments. In the present invention, a high-strength cold-rolled steel sheet or a high-strength hot-dip galvanized steel sheet having a desired structure can be obtained by appropriately controlling the manufacturing conditions.

例えば図1に示すように上記成分組成を有する鋼を用いて常法に基づき、熱間圧延を行う。熱間圧延では、例えば仕上げ圧延温度がAc3点以上となるように熱間圧延した後、巻取り温度500℃以上、800℃以下で巻取る。その後500℃以上800℃以下で3時間以上保持した後、室温まで冷却して冷間圧延を行う。尚、仕上げ圧延後の冷却は操業上の上限で約500℃/秒である。 For example, as shown in FIG. 1, hot rolling is performed based on a conventional method using steel having the above-described composition. In hot rolling, for example, after hot rolling so that the finish rolling temperature becomes Ac 3 point or higher, winding is performed at a winding temperature of 500 ° C. or higher and 800 ° C. or lower. Thereafter, it is kept at 500 ° C. or more and 800 ° C. or less for 3 hours or more, then cooled to room temperature and cold-rolled. In addition, the cooling after finish rolling is about 500 ° C./second at the upper limit in operation.

冷間圧延後、焼鈍工程として、Ac1点+20℃以上、Ac3点未満の2相温度域で均熱保持し、その後、500℃までを平均冷却速度10℃/秒以上で冷却し、次いで500℃以下を平均冷却速度10℃/秒以上で、500℃以下の温度域まで冷却する。高強度冷延鋼板の製造方法では、次いで250℃以上500℃以下の温度域に再加熱して該温度域で30秒間以上保持してから室温まで冷却する工程を含むようにする。また高強度溶融亜鉛めっき鋼板の製造方法では、前記500℃以下の温度域まで冷却後、次いで250℃以上500℃以下の温度域に再加熱して該温度域で30秒間以上保持すると共に、該保持時間内で溶融亜鉛めっきを施してから室温まで冷却する工程を含むようにする。 After cold rolling, as an annealing process, soaking is maintained in a two-phase temperature range of Ac 1 point + 20 ° C. or more and less than Ac 3 point, and then cooled to 500 ° C. at an average cooling rate of 10 ° C./second or more. Cool at 500 ° C. or lower to a temperature range of 500 ° C. or lower at an average cooling rate of 10 ° C./second or higher. The method for producing a high-strength cold-rolled steel sheet includes a step of reheating to a temperature range of 250 ° C. or more and 500 ° C. or less, holding the temperature range for 30 seconds or more, and then cooling to room temperature. In the method for producing a high-strength hot-dip galvanized steel sheet, after cooling to the temperature range of 500 ° C. or lower, reheat to a temperature range of 250 ° C. or higher and 500 ° C. or lower and hold in the temperature range for 30 seconds or longer. A process of cooling to room temperature after hot dip galvanizing within the holding time is included.

以下、上記各条件を規定した理由について詳述する。   Hereinafter, the reason why each of the above conditions is specified will be described in detail.

[巻取り温度500℃以上、800℃以下で巻き取り、その後500℃以上800℃以下で3時間以上保持した後、室温まで冷却]
熱間圧延後、巻き取り温度500℃以上、800℃以下で巻き取り、その後500℃以上800℃以下で3時間以上保持することで、上記所定のMn濃度分布を生じさせ、Mnを含む炭化物が析出すると共に、冷間圧延後の焼鈍によってフェライト相中で球状化した硬質相となる。このような効果を得るためには、巻き取り温度は500℃以上、好ましくは550℃以上、より好ましくは600℃以上とする。しかし巻き取り温度が高すぎると鋼板に多量のスケールや、粒界酸化などを生じ、酸洗性が劣化することから、巻き取り温度は800℃以下、好ましくは750℃以下、より好ましくは700℃以下とする。また巻き取り後に保持する温度域は、500℃以上、好ましくは510℃以上、より好ましくは520℃以上、更に好ましくは550℃以上、より更に好ましくは580℃以上とする。一方、保持温度が高すぎると巻き取り温度が高すぎる場合と同じく鋼板に多量のスケールや、粒界酸化などを生じ、酸洗性が劣化することがあるため、保持温度は800℃以下、好ましくは780℃以下、より好ましくは750℃以下、更に好ましくは700℃以下とする。該温度域での保持時間は3時間以上、好ましくは4時間以上、より好ましくは5時間以上、更に好ましくは7時間以上、より更に好ましくは10時間以上である。一方、保持時間が長すぎると巻き取り温度が高すぎることと同様に鋼板に多量のスケールや、粒界酸化などを生じ、酸洗性が劣化することがあるため、保持時間は好ましくは72時間以下、より好ましくは60時間以下とする。
[Winding at a winding temperature of 500 ° C. or higher and 800 ° C. or lower, and then holding at 500 ° C. or higher and 800 ° C. or lower for 3 hours or more, then cooling to room temperature]
After hot rolling, winding is performed at a winding temperature of 500 ° C. or higher and 800 ° C. or lower, and then held at 500 ° C. or higher and 800 ° C. or lower for 3 hours or longer to produce the predetermined Mn concentration distribution, and the carbide containing Mn It precipitates and becomes a hard phase spheroidized in the ferrite phase by annealing after cold rolling. In order to obtain such an effect, the coiling temperature is 500 ° C. or higher, preferably 550 ° C. or higher, more preferably 600 ° C. or higher. However, if the coiling temperature is too high, a large amount of scale or grain boundary oxidation occurs in the steel sheet and the pickling property deteriorates. Therefore, the coiling temperature is 800 ° C. or lower, preferably 750 ° C. or lower, more preferably 700 ° C. The following. The temperature range to be maintained after winding is 500 ° C. or higher, preferably 510 ° C. or higher, more preferably 520 ° C. or higher, still more preferably 550 ° C. or higher, and still more preferably 580 ° C. or higher. On the other hand, if the holding temperature is too high, the steel plate may cause a large amount of scale, grain boundary oxidation, etc., as in the case where the coiling temperature is too high, and the pickling property may deteriorate. Is 780 ° C. or lower, more preferably 750 ° C. or lower, and still more preferably 700 ° C. or lower. The holding time in the temperature range is 3 hours or more, preferably 4 hours or more, more preferably 5 hours or more, still more preferably 7 hours or more, and still more preferably 10 hours or more. On the other hand, if the holding time is too long, the holding time is preferably 72 hours because the steel sheet may cause a large amount of scale and grain boundary oxidation as well as the winding temperature is too high, and the pickling property may deteriorate. Below, more preferably 60 hours or less.

本発明において、所定の温度で保持するとは、必ずしも同一温度で保持し続けなくてもよく、所定の温度範囲内であれば、変動してもよい趣旨である。例えば上記保持温度の範囲内で恒温保持してもよいし、この範囲内で変化、即ち、温度低下や加熱による温度上昇、変態に伴う復熱による温度上昇等を含む趣旨である。   In the present invention, holding at a predetermined temperature does not necessarily have to be held at the same temperature, and may vary as long as it is within a predetermined temperature range. For example, the temperature may be kept constant within the range of the holding temperature, and changes within this range, that is, temperature rise due to temperature drop or heating, temperature rise due to recuperation due to transformation, and the like are intended.

本発明では上記温度域で所定の時間保持した後、室温まで冷却するが、その際の冷却速度は特に限定されず、例えば空冷などでよい。   In this invention, after hold | maintaining for the predetermined time in the said temperature range, it cools to room temperature, The cooling rate in that case is not specifically limited, For example, air cooling etc. may be sufficient.

[酸洗、冷延]
熱間圧延後は、必要に応じて酸洗し、冷延率30〜80%程度の冷間圧延を行う。
[Pickling, cold rolling]
After hot rolling, pickling is performed as necessary, and cold rolling with a cold rolling rate of about 30 to 80% is performed.

[焼鈍]
冷間圧延後の焼鈍工程として、Ac1点+20℃以上、Ac3点未満の2相域で均熱保持し、その後、500℃までの温度域を平均冷却速度10℃/秒以上で冷却し、次いで500℃以下の温度域を平均冷却速度10℃/秒以上で冷却し、500℃以下の温度域まで冷却する。
[Annealing]
As an annealing process after cold rolling, soaking is maintained in a two-phase region of Ac 1 point + 20 ° C. or more and less than Ac 3 point, and then the temperature region up to 500 ° C. is cooled at an average cooling rate of 10 ° C./second or more. Then, the temperature range of 500 ° C. or lower is cooled at an average cooling rate of 10 ° C./second or higher, and the temperature range is cooled to 500 ° C. or lower.

均熱保持温度をAc1点+20℃以上、Ac3点未満の2相域で均熱保持することで、本発明の上記Mn濃度分布を維持しながら、上記所望量のフェライトを確保できる。均熱保持温度がAc1点+20℃よりも低いと、最終的に得られる鋼板の金属組織のフェライト量が多くなり過ぎて十分な強度を確保できない。そのため、均熱保持温度はAc1点+20℃以上、好ましくはAc1点+25℃以上、より好ましくはAc1点+50℃以上、更に好ましくはAc1点+80℃以上とする。一方、Ac3点以上になると、均熱保持中にフェライトを十分に生成・成長させることができず、延性が低下すると共に、Mn濃度分布が均一となり、フェライト相中に生成する球状硬質相が減少する。そのため、均熱保持温度はAc3点未満、好ましくはAc3点−5℃以下、より好ましくはAc3点−10℃以下、更に好ましくはAc3点−20℃以下の温度とする。 The desired amount of ferrite can be ensured while maintaining the Mn concentration distribution of the present invention by maintaining soaking in a two-phase region of Ac 1 point + 20 ° C. or higher and less than Ac 3 point. If the soaking temperature is lower than Ac 1 point + 20 ° C., the amount of ferrite in the metal structure of the finally obtained steel sheet increases so much that sufficient strength cannot be ensured. Therefore, the soaking temperature is Ac 1 point + 20 ° C. or higher, preferably Ac 1 point + 25 ° C. or higher, more preferably Ac 1 point + 50 ° C. or higher, and further preferably Ac 1 point + 80 ° C. or higher. On the other hand, when the Ac point is 3 or more, ferrite cannot be sufficiently formed / grown during soaking, the ductility is lowered, the Mn concentration distribution is uniform, and the spherical hard phase formed in the ferrite phase is reduced. Decrease. For this reason, the soaking temperature is set to a temperature lower than Ac 3 point, preferably Ac 3 point −5 ° C. or lower, more preferably Ac 3 point −10 ° C. or lower, and further preferably Ac 3 point −20 ° C. or lower.

なお、上記均熱保持温度域に昇温する際の平均昇温速度は特に限定されず、適宜選択することが可能であり、例えば0.5〜50℃/秒程度の平均昇温速度でもよい。   In addition, the average temperature rising rate at the time of raising the temperature to the soaking temperature holding range is not particularly limited, and can be appropriately selected. For example, an average temperature rising rate of about 0.5 to 50 ° C./second may be used. .

本発明では上記均熱保持温度域での保持時間は特に限定されない。しかしながら保持時間が短すぎると加工組織が残存し、鋼の延性が低下することがあるため、保持時間は好ましくは40秒以上、より好ましくは60秒以上とする。一方、保持時間が長すぎるとオーステナイト相へのMnの濃縮が進み、Ms点が低下してMA組織が増加することがあるため、保持時間は好ましくは3600秒以下、より好ましくは3000秒以下とする。   In the present invention, the holding time in the soaking temperature holding range is not particularly limited. However, if the holding time is too short, the processed structure remains and the ductility of the steel may be lowered. Therefore, the holding time is preferably 40 seconds or more, more preferably 60 seconds or more. On the other hand, if the retention time is too long, the concentration of Mn into the austenite phase proceeds, and the Ms point may decrease and the MA structure may increase. Therefore, the retention time is preferably 3600 seconds or less, more preferably 3000 seconds or less. To do.

また上述の通り本発明において所定の温度で保持するとは、必ずしも同一温度で保持し続けなくてもよく、所定の温度範囲内であれば、変動してもよい趣旨である。例えば上記均熱保持温度で保持する場合は、Ac1点+20℃以上、Ac3点未満の範囲内で恒温保持してもよいし、この範囲内で変化させてもよい。 In addition, as described above, in the present invention, holding at a predetermined temperature does not necessarily need to be held at the same temperature, and may be varied within a predetermined temperature range. For example, in the case of holding at the soaking temperature, the temperature may be kept constant within the range of Ac 1 point + 20 ° C. or more and less than Ac 3 point, or may be changed within this range.

上記Ac1点とAc3点は、「レスリー鉄鋼材料化学」(丸善株式会社、1985年5月31日発行、273頁)に記載されている下記(a)式、(b)式から算出できる。式中[ ]は各元素の含有量(質量%)を示しており、鋼板に含まれない元素の含有量は0質量%として計算すればよい。
Ac1(℃)=723−10.7×[Mn]−16.9×[Ni]+29.1×[Si]+16.9×[Cr]+290×[As]+6.38×[W]・・・(a)
Ac3(℃)=910−203×√[C]−15.2×[Ni]+44.7×[Si]+104×[V]+31.5×[Mo]+13.1×[W]−(30×[Mn]+11×[Cr]+20×[Cu]−700×[P]−400×[Al]−120×[As]−400×[Ti])・・・(b)
The Ac 1 point and Ac 3 point can be calculated from the following formulas (a) and (b) described in “Leslie Steel Material Chemistry” (Maruzen Co., Ltd., issued May 31, 1985, page 273). . In the formula, [] indicates the content (% by mass) of each element, and the content of elements not included in the steel sheet may be calculated as 0% by mass.
Ac 1 (° C.) = 723-10.7 × [Mn] −16.9 × [Ni] + 29.1 × [Si] + 16.9 × [Cr] + 290 × [As] + 6.38 × [W] · .. (a)
Ac 3 (° C.) = 910−203 × √ [C] −15.2 × [Ni] + 44.7 × [Si] + 104 × [V] + 31.5 × [Mo] + 13.1 × [W] − ( 30 × [Mn] + 11 × [Cr] + 20 × [Cu] −700 × [P] −400 × [Al] −120 × [As] −400 × [Ti]) (b)

上記均熱保持した後、500℃までの温度域を平均冷却速度10℃/秒以上で冷却する。上記均熱保持温度からの冷却速度を制御することによってMn濃度の高いフェライトの生成を抑制すると共に、フェライトの生成量を抑制できる。平均冷却速度が遅い場合は、冷却中にMn濃度が高いフェライトが生成し、曲げ性を劣化させたり、強度が低下することがある。そのため、平均冷却速度は10℃/秒以上、好ましくは15℃/秒以上であり、より好ましくは20℃/秒以上とする。平均冷却速度の上限は特になく、水冷や油冷でもよい。   After the soaking is maintained, the temperature range up to 500 ° C. is cooled at an average cooling rate of 10 ° C./second or more. By controlling the cooling rate from the soaking temperature, the generation of ferrite with a high Mn concentration can be suppressed and the amount of ferrite generated can be suppressed. When the average cooling rate is low, ferrite having a high Mn concentration is generated during cooling, which may deteriorate the bendability and the strength. Therefore, the average cooling rate is 10 ° C./second or more, preferably 15 ° C./second or more, more preferably 20 ° C./second or more. There is no particular upper limit on the average cooling rate, and water cooling or oil cooling may be used.

上記500℃までの温度域を上記平均冷却速度で冷却した後、500℃以下を平均冷却速度10℃/秒以上で冷却する。500℃以下の平均冷却速度を10℃/秒以上とすることで、軟質な高温ベイナイトの生成を抑制すると共に、マルテンサイトの自己焼戻しを抑制して、強度を向上させることができる。このような効果を得るためには、500℃以下の平均冷却速度は10℃/秒以上、好ましくは15℃/秒以上、より好ましくは20℃/秒以上とする。平均冷却速度の上限は特になく、水冷や油冷でもよい。   After the temperature range up to 500 ° C. is cooled at the average cooling rate, 500 ° C. or lower is cooled at an average cooling rate of 10 ° C./second or higher. By controlling the average cooling rate of 500 ° C. or lower to 10 ° C./second or higher, the formation of soft high-temperature bainite can be suppressed, and the self-tempering of martensite can be suppressed to improve the strength. In order to obtain such an effect, the average cooling rate of 500 ° C. or lower is 10 ° C./second or higher, preferably 15 ° C./second or higher, more preferably 20 ° C./second or higher. There is no particular upper limit on the average cooling rate, and water cooling or oil cooling may be used.

なお、500℃までの平均冷却速度と500℃以下の平均冷却速度は同じであっても異なっていてもよく、上記範囲内で適宜調整すればよい。   The average cooling rate up to 500 ° C. and the average cooling rate below 500 ° C. may be the same or different, and may be adjusted as appropriate within the above range.

上記500℃以下を平均冷却速度10℃/秒以上で冷却する場合の冷却停止温度は、500℃以下の温度域である。冷却停止温度が500℃よりも高いと、硬質相が少なくなってしまい、強度を確保できず、またMA組織が増加して曲げ性が劣化する。そのため、冷却停止温度は500℃以下、好ましくは400℃以下、より好ましくは350℃以下、さらに好ましくは300℃以下とする。冷却停止温度の下限は特に限定されないが、操業上、室温までである。   The cooling stop temperature when cooling the above 500 ° C. or lower at an average cooling rate of 10 ° C./second or higher is a temperature range of 500 ° C. or lower. When the cooling stop temperature is higher than 500 ° C., the hard phase is decreased, the strength cannot be ensured, and the MA structure increases and the bendability deteriorates. Therefore, the cooling stop temperature is 500 ° C. or lower, preferably 400 ° C. or lower, more preferably 350 ° C. or lower, and further preferably 300 ° C. or lower. The lower limit of the cooling stop temperature is not particularly limited, but is up to room temperature for operation.

以下、再加熱工程については、冷延鋼板の製造方法と溶融亜鉛めっき鋼板の製造方法に分けて説明する。   Hereinafter, the reheating process will be described separately for a method for manufacturing a cold-rolled steel sheet and a method for manufacturing a hot-dip galvanized steel sheet.

[冷延鋼板の製造方法における再加熱]
上記500℃以下の温度域で冷却を停止した後、次いで250℃以上、500℃以下の温度域まで再加熱を行い、30秒間以上保持してから室温まで冷却する。
[Reheating in manufacturing method of cold-rolled steel sheet]
After stopping the cooling in the above temperature range of 500 ° C. or lower, reheating is performed to a temperature range of 250 ° C. or higher and 500 ° C. or lower, and the temperature is kept for 30 seconds or more and then cooled to room temperature.

冷却停止後、250℃以上、500℃以下の温度域まで再加熱を行い、30秒間以上保持することで、マルテンサイトなどの硬質相を焼戻しすると共に、未変態オーステナイトを変態させることができる。再加熱を行わない場合や保持温度が低すぎる場合は、硬質相の焼き戻しが進まず、高密度の転位が生じたり、MA組織が多量に残存し、曲げ性を悪化させることがある。したがって再加熱温度は、250℃以上、好ましくは300℃以上、より好ましくは350℃以上とする。一方、前記保持温度が高くなりすぎると強度が低下する。したがって再加熱温度は500℃以下、好ましくは470℃以下、より好ましくは450℃以下とする。なお、本発明において、この「再加熱」は文言通り、前記500℃以下までの冷却停止温度からの加熱、即ち、昇温を意味する。従って、再加熱温度は上記冷却停止温度よりも高い温度であり、上記250℃以上、500℃以下の温度域であっても、冷却停止温度と再加熱温度が同じである等温保持や、冷却停止温度から更に低い温度への冷却過程は、この再加熱に含まれない。   After the cooling is stopped, reheating is performed to a temperature range of 250 ° C. or more and 500 ° C. or less, and holding for 30 seconds or more can temper a hard phase such as martensite and transform untransformed austenite. When reheating is not performed or when the holding temperature is too low, tempering of the hard phase does not proceed, and high-density dislocations may be generated, or a large amount of MA structure may remain and bendability may be deteriorated. Therefore, the reheating temperature is 250 ° C. or higher, preferably 300 ° C. or higher, more preferably 350 ° C. or higher. On the other hand, if the holding temperature becomes too high, the strength decreases. Therefore, the reheating temperature is 500 ° C. or lower, preferably 470 ° C. or lower, more preferably 450 ° C. or lower. In the present invention, “reheating” means heating from the cooling stop temperature up to 500 ° C. or lower, that is, raising the temperature. Therefore, the reheating temperature is higher than the cooling stop temperature, and even in the temperature range of 250 ° C. or more and 500 ° C. or less, the isothermal holding or cooling stop where the cooling stop temperature and the reheating temperature are the same. The cooling process from temperature to lower temperature is not included in this reheating.

また上記再加熱温度域での保持時間が短すぎると、硬質相を十分に焼き戻すことができず、また未変態オーステナイトを変態させることができない。したがって保持時間は30秒以上、好ましくは50秒以上、より好ましくは100秒以上、更に好ましくは200秒以上とする。一方、保持時間の上限は特に限定されないが、長時間保持し過ぎると、生産性が低下する他、強度が低下するため、好ましくは1500秒以下、より好ましくは1000秒以下とする。   If the holding time in the reheating temperature range is too short, the hard phase cannot be tempered sufficiently, and the untransformed austenite cannot be transformed. Accordingly, the holding time is 30 seconds or more, preferably 50 seconds or more, more preferably 100 seconds or more, and further preferably 200 seconds or more. On the other hand, the upper limit of the holding time is not particularly limited. However, if the holding time is too long, the productivity is lowered and the strength is lowered. Therefore, the holding time is preferably 1500 seconds or less, more preferably 1000 seconds or less.

上記再加熱温度域で所定時間保持した後は、室温まで冷却する。この際の平均冷却速度は特に限定されず、好ましくは0.1℃/秒以上、より好ましくは0.4℃/秒以上、好ましくは200℃/秒以下、より好ましくは150℃/秒以下の平均冷却速度で冷却すればよい。   After holding for a predetermined time in the above reheating temperature range, it is cooled to room temperature. The average cooling rate at this time is not particularly limited, and is preferably 0.1 ° C./second or more, more preferably 0.4 ° C./second or more, preferably 200 ° C./second or less, more preferably 150 ° C./second or less. What is necessary is just to cool at an average cooling rate.

本発明では、上記得られた鋼板表面に、電気亜鉛めっき層(EG)が形成されていてもよい。   In the present invention, an electrogalvanized layer (EG) may be formed on the obtained steel plate surface.

上記の電気亜鉛めっき層の形成方法は特に限定されず、常法の電気亜鉛めっき処理法を採用することができる。例えば、電気亜鉛めっき鋼板を製造する場合、55℃の亜鉛溶液に浸漬しつつ通電し、電気亜鉛めっき処理を行う方法が挙げられる。また片面あたりのめっき付着量も特に限定されず、例えば電気亜鉛めっき鋼板の場合は10〜100g/m2程度とすることが挙げられる。 The formation method of said electrogalvanization layer is not specifically limited, The conventional electrogalvanization process method is employable. For example, in the case of producing an electrogalvanized steel sheet, a method of conducting an electrogalvanization process by energizing while being immersed in a zinc solution at 55 ° C. can be mentioned. Moreover, the plating adhesion amount per side is not particularly limited, and for example, in the case of an electrogalvanized steel sheet, it may be about 10 to 100 g / m 2 .

[溶融亜鉛めっき鋼板の製造方法における再加熱]
上記500℃以下の温度域で冷却を停止した後、次いで250℃以上、500℃以下の温度域まで再加熱を行い、30秒間以上保持すると共に、該保持時間内で溶融亜鉛めっきを施してから室温まで冷却する。
[Reheating in hot-dip galvanized steel sheet manufacturing method]
After stopping cooling in the temperature range of 500 ° C. or lower, reheat to a temperature range of 250 ° C. or higher and 500 ° C. or lower, hold for 30 seconds or more, and apply hot dip galvanization within the holding time. Cool to room temperature.

冷却停止後、250℃以上、500℃以下の温度域まで再加熱を行い、30秒間以上保持することで、マルテンサイトなどの硬質相を焼戻しすると共に、未変態オーステナイトを変態させることができる。再加熱を行わない場合や保持温度が低すぎる場合は、硬質相の焼き戻しが進まず、高密度の転位が生じたり、MA組織が多量に残存し、曲げ性を悪化させることがある。したがって再加熱温度は、250℃以上、好ましくは300℃以上、より好ましくは350℃以上とする。一方、前記保持温度が高くなりすぎると強度が低下する。したがって再加熱温度は500℃以下、好ましくは470℃以下、より好ましくは450℃以下とする。なお、本発明において、この「再加熱」は文言通り、前記500℃以下までの冷却停止温度からの加熱、即ち、昇温を意味する。従って、再加熱温度は上記冷却停止温度よりも高い温度であり、上記250℃以上、500℃以下の温度域であっても、冷却停止温度と再加熱温度が同じである等温保持や、冷却停止温度から更に低い温度への冷却過程は、この再加熱に含まれない。   After the cooling is stopped, reheating is performed to a temperature range of 250 ° C. or more and 500 ° C. or less, and holding for 30 seconds or more can temper a hard phase such as martensite and transform untransformed austenite. When reheating is not performed or when the holding temperature is too low, tempering of the hard phase does not proceed, and high-density dislocations may be generated, or a large amount of MA structure may remain and bendability may be deteriorated. Therefore, the reheating temperature is 250 ° C. or higher, preferably 300 ° C. or higher, more preferably 350 ° C. or higher. On the other hand, if the holding temperature becomes too high, the strength decreases. Therefore, the reheating temperature is 500 ° C. or lower, preferably 470 ° C. or lower, more preferably 450 ° C. or lower. In the present invention, “reheating” means heating from the cooling stop temperature up to 500 ° C. or lower, that is, raising the temperature. Therefore, the reheating temperature is higher than the cooling stop temperature, and even in the temperature range of 250 ° C. or more and 500 ° C. or less, the isothermal holding or cooling stop where the cooling stop temperature and the reheating temperature are the same. The cooling process from temperature to lower temperature is not included in this reheating.

また上記再加熱温度域での保持時間が短すぎると、硬質相を十分に焼き戻すことができず、また未変態オーステナイトを変態させることができない。したがって保持時間は30秒以上、好ましくは50秒以上、より好ましくは100秒以上、更に好ましくは200秒以上とする。一方、保持時間の上限は特に限定されないが、長時間保持し過ぎると、生産性が低下する他、強度が低下するため、好ましくは1500秒以下、より好ましくは1000秒以下とする。   If the holding time in the reheating temperature range is too short, the hard phase cannot be tempered sufficiently, and the untransformed austenite cannot be transformed. Accordingly, the holding time is 30 seconds or more, preferably 50 seconds or more, more preferably 100 seconds or more, and further preferably 200 seconds or more. On the other hand, the upper limit of the holding time is not particularly limited. However, if the holding time is too long, the productivity is lowered and the strength is lowered. Therefore, the holding time is preferably 1500 seconds or less, more preferably 1000 seconds or less.

本発明では上記再加熱温度域での30秒間以上の保持時間内において溶融亜鉛めっき処理を行い、鋼板表面に溶融亜鉛めっき層を形成する。本発明では、溶融亜鉛めっきと上記再加熱温度域における保持とを兼ねて行う。すなわち、再加熱による金属組織や強度などの適切な管理を行うためには、再加熱温度域の上記保持時間において溶融亜鉛めっきを行う必要がある。溶融亜鉛めっき層の形成方法は特に限定されず、常法の溶融亜鉛めっき処理法を採用することができる。例えば上記再加熱温度域に温度調整されためっき浴に鋼板を浸漬させて溶融亜鉛めっき処理を行えばよい。めっき時間は上記保持時間を満足すればよく、所望のめっき量を確保できるように適宜調整すればよい。めっき時間は例えば1〜10秒とすることが好ましい。   In the present invention, the hot dip galvanizing process is performed within a holding time of 30 seconds or more in the above reheating temperature region, and a hot dip galvanized layer is formed on the steel sheet surface. In the present invention, both hot dip galvanization and holding in the reheating temperature range are performed. That is, in order to appropriately manage the metal structure and strength by reheating, it is necessary to perform hot dip galvanization during the above holding time in the reheating temperature range. The method for forming the hot dip galvanized layer is not particularly limited, and a conventional hot dip galvanizing method can be employed. For example, the hot dip galvanizing process may be performed by immersing the steel sheet in a plating bath whose temperature is adjusted to the above reheating temperature range. The plating time only needs to satisfy the above holding time, and may be appropriately adjusted so as to ensure a desired plating amount. The plating time is preferably 1 to 10 seconds, for example.

再加熱における、溶融亜鉛めっき処理と;加熱のみでめっき処理なし;との組み合わせとして、下記種々のパターンがある。
(i)加熱のみを行った後、溶融亜鉛めっき処理を行う。
(ii)溶融亜鉛めっき処理を行った後、加熱のみを行う。
(iii)加熱のみ、溶融亜鉛めっき、加熱のみの順に行う。
There are the following various patterns as a combination of hot dip galvanizing treatment and reheating without plating treatment.
(I) After only heating, a hot dip galvanizing process is performed.
(Ii) After the hot dip galvanizing treatment, only heating is performed.
(Iii) Only heating, hot dip galvanization, and heating only are performed in this order.

前記加熱のみの場合の再加熱温度と、溶融亜鉛めっき温度、即ちめっき浴の温度とが異なる場合、一方の温度から他方の温度へ加熱または冷却する場合を含みうる。前記加熱の方法として、炉加熱や誘導加熱等が挙げられる。   When the reheating temperature in the case of only heating is different from the hot dip galvanizing temperature, that is, the temperature of the plating bath, it may include the case of heating or cooling from one temperature to the other. Examples of the heating method include furnace heating and induction heating.

鋼板表面に合金化溶融亜鉛めっき層を形成する場合は、上記溶融亜鉛めっき後、合金化を行えばよい。合金化温度は特に限定されないが、合金化温度が低すぎると合金化が十分に進まないため、好ましくは450℃以上、より好ましくは460℃以上、更に好ましくは480℃以上である。一方、合金化温度が高すぎると合金化が進行し過ぎてめっき層中のFe濃度が高くなり、めっき密着性が悪化するため、好ましくは550℃以下、より好ましくは540℃以下、更に好ましくは530℃以下である。また合金化処理の時間は特に限定されず、所望の合金化が得られるように調整すればよい。合金化処理時間は好ましくは10秒以上60秒以下である。なお、合金化処理は上記再加熱温度域内で所定時間保持した後に行うため、合金化処理時間は上記再加熱温度域内での保持時間に含まない。   When an alloyed hot dip galvanized layer is formed on the steel sheet surface, alloying may be performed after the hot dip galvanizing. Although the alloying temperature is not particularly limited, it is preferably 450 ° C. or higher, more preferably 460 ° C. or higher, and further preferably 480 ° C. or higher because alloying does not proceed sufficiently if the alloying temperature is too low. On the other hand, if the alloying temperature is too high, alloying proceeds too much and the Fe concentration in the plating layer increases and the plating adhesion deteriorates. Therefore, it is preferably 550 ° C. or less, more preferably 540 ° C. or less, and still more preferably. It is 530 degrees C or less. The time for the alloying treatment is not particularly limited, and may be adjusted so as to obtain a desired alloying. The alloying treatment time is preferably 10 seconds or more and 60 seconds or less. In addition, since alloying treatment is performed after holding for a predetermined time within the reheating temperature range, the alloying treatment time is not included in the holding time within the reheating temperature range.

上記再加熱温度域で所定時間保持した後は、室温まで冷却する。この際の平均冷却速度は特に限定されず、好ましくは0.1℃/秒以上、より好ましくは0.4℃/秒以上、好ましくは200℃/秒以下、より好ましくは150℃/秒以下の平均冷却速度で冷却すればよい。   After holding for a predetermined time in the above reheating temperature range, it is cooled to room temperature. The average cooling rate at this time is not particularly limited, and is preferably 0.1 ° C./second or more, more preferably 0.4 ° C./second or more, preferably 200 ° C./second or less, more preferably 150 ° C./second or less. What is necessary is just to cool at an average cooling rate.

本発明の技術は、特に板厚が6mm以下の薄鋼板に好適に採用できる。   The technique of the present invention can be suitably employed particularly for a thin steel plate having a thickness of 6 mm or less.

本発明の高強度冷延鋼板および高強度溶融亜鉛めっき鋼板は、引張強度が980MPa以上、好ましくは1,000MPa以上、より好ましくは1,010MPa以上の鋼板を対象とする。延性は、強度と延性のバランス(引張強度(MPa)×延性(%))で表され、好ましくは15,000(MPa・%)以上、より好ましくは15,100(MPa・%)以上、更に好ましくは15,200(MPa・%)以上とする。曲げ性は強度とVDA曲げ角度のバランス(引張強度(MPa)×VDA曲げ角度(°))で表され、好ましくは100,000(MPa・°)以上、より好ましくは100,500(MPa・°)以上、更に好ましくは101,000(MPa・°)以上とする。   The high-strength cold-rolled steel sheet and high-strength hot-dip galvanized steel sheet according to the present invention are intended for steel sheets having a tensile strength of 980 MPa or more, preferably 1,000 MPa or more, more preferably 1,010 MPa or more. The ductility is represented by a balance between strength and ductility (tensile strength (MPa) × ductility (%)), preferably 15,000 (MPa ·%) or more, more preferably 15,100 (MPa ·%) or more, Preferably, it is set to 15,200 (MPa ·%) or more. The bendability is expressed as a balance between strength and VDA bending angle (tensile strength (MPa) × VDA bending angle (°)), preferably 100,000 (MPa · °) or more, more preferably 100,000 (MPa · °). ) Or more, more preferably 101,000 (MPa · °) or more.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

[実施例1]
下記表1に示す成分組成の鋼(残部は鉄および不可避的不純物、表1において空欄は元素を添加していないことを意味する)を溶製し、下記条件で熱間圧延→冷間圧延→連続焼鈍を行って、冷延鋼板を製造した。
[Example 1]
Steel having the composition shown in Table 1 below (the balance is iron and inevitable impurities, and the blank in Table 1 means that no element is added), and hot rolling → cold rolling → Continuous annealing was performed to produce a cold-rolled steel sheet.

[熱間圧延]
スラブを1250℃まで加熱し、圧下率90%、仕上げ圧延温度が920℃となるように板厚2.3mmまで熱間圧延した。その後、この温度から平均冷却速度30℃/秒で表2または表3に示す「巻取り温度(℃)」まで冷却して巻き取った後、表2に示す「保持温度1(℃)」、および「保持時間(時間)」で保持するか、表3に示す「保持開始温度(℃)」、「保持終了温度(℃)」、および「保持時間(時間)」の条件で保持した。次いで室温まで空冷して熱延鋼板を製造した。
[Hot rolling]
The slab was heated to 1250 ° C. and hot-rolled to a sheet thickness of 2.3 mm so that the reduction rate was 90% and the finish rolling temperature was 920 ° C. Then, after cooling from this temperature to the “winding temperature (° C.)” shown in Table 2 or Table 3 at an average cooling rate of 30 ° C./second, “holding temperature 1 (° C.)” shown in Table 2, And “holding time (hour)”, or held under the conditions of “holding start temperature (° C.)”, “holding end temperature (° C.)”, and “holding time (hour)” shown in Table 3. Subsequently, it air-cooled to room temperature and manufactured the hot-rolled steel plate.

[冷間圧延]
得られた熱延鋼板を酸洗して表面のスケールを除去した後、冷間圧延を行い、板厚1.2mmの冷延鋼板を製造した。
[Cold rolling]
The obtained hot-rolled steel sheet was pickled to remove the scale on the surface, and then cold-rolled to produce a cold-rolled steel sheet having a thickness of 1.2 mm.

[冷延鋼板(CR)の焼鈍]
得られた冷間圧延鋼板を、表2または表3に示す条件で、均熱保持→冷却→再加熱して、供試鋼を製造した。尚、表2のNo.32は、再加熱を行っていない比較例であり、再加熱の代わりに、冷却停止温度480℃から350℃に冷却後、該温度で300秒間保持したことを、再加熱の欄に示している。
[Annealing of cold rolled steel sheet (CR)]
The obtained cold-rolled steel sheet was subjected to soaking maintenance → cooling → reheating under the conditions shown in Table 2 or Table 3 to produce a test steel. In Table 2, No. No. 32 is a comparative example in which reheating is not performed, and instead of reheating, after cooling from a cooling stop temperature of 480 ° C. to 350 ° C., the temperature is maintained for 300 seconds in the reheating column. .

表中、均熱保持した温度は「均熱温度(℃)」、均熱後500℃までの平均冷却速度は「平均冷却速度1(℃/秒)」、500℃以下での冷却速度は「平均冷却速度2(℃/秒)、冷却停止温度は「冷却停止温度(℃)」、冷却停止後再加熱時の保持温度は「再加熱保持温度(℃)」、該保持温度での保持時間は「再加熱保持時間(秒)」と夫々表記した。なお、本実施例では、均熱保持温度での保持時間を100秒〜600秒とした。前記「再加熱保持温度(℃)」で「再加熱保持時間(秒)」後は、室温まで放冷して供試鋼を得た。なお、後記電気亜鉛めっきを行わなかった冷延鋼板については、表中の「品種」欄に「CR」と記入した。   In the table, the soaking temperature is “soaking temperature (° C.)”, the average cooling rate up to 500 ° C. after soaking is “average cooling rate 1 (° C./sec)”, and the cooling rate at 500 ° C. or less is “ Average cooling rate 2 (° C / sec), cooling stop temperature is “cooling stop temperature (° C)”, holding temperature when reheating after cooling is “reheat holding temperature (° C)”, holding time at this holding temperature Is indicated as “reheat holding time (seconds)”. In this example, the holding time at the soaking temperature was set to 100 seconds to 600 seconds. After the “reheating holding temperature (° C.)” and the “reheating holding time (seconds)”, the steel was allowed to cool to room temperature to obtain a test steel. For cold-rolled steel sheets that were not electrogalvanized later, “CR” was entered in the “Product Type” column of the table.

[電気亜鉛めっき鋼板(EG)の製造]
上記供試鋼の一部は、55℃の亜鉛めっき浴に浸漬し、電気めっき処理(電流密度30〜50A/dm2)を施した後、水洗、乾燥して電気亜鉛めっき鋼板を得た。なお、片面あたりの亜鉛めっき付着量:10〜100g/m2であった。また上記めっき処理では、適宜アルカリ水溶液浸漬脱脂、水洗、酸洗等の洗浄処理を行って、表面に電気亜鉛めっき層を有する供試鋼を得た。電気亜鉛めっきした鋼板は、表中の「品種」欄に「EG」と記入した。
[Manufacture of electrogalvanized steel sheet (EG)]
A part of the test steel was immersed in a galvanizing bath at 55 ° C., subjected to electroplating treatment (current density 30 to 50 A / dm 2 ), washed with water and dried to obtain an electrogalvanized steel sheet. In addition, the amount of galvanized coating per side: 10 to 100 g / m 2 . Further, in the above plating treatment, a test steel having an electrogalvanized layer on the surface was obtained by appropriately performing washing treatment such as alkaline aqueous solution degreasing, water washing and pickling. The electrogalvanized steel sheet was entered as “EG” in the “Type” column in the table.

各供試鋼について、下記に詳述する通り、金属組織、Mn濃度、各種機械的特性の評価を行い、表4または表5に示した。   Each test steel was evaluated for metal structure, Mn concentration, and various mechanical properties as shown in detail below, and are shown in Table 4 or Table 5.

[金属組織の測定]
フェライトの面積率、硬質相の面積率、MA組織の面積率、残留γの体積率、球状硬質相の割合は以下のように測定した。すなわち、供試鋼の断面を研磨し、下記に示す通り腐食させてから、光学顕微鏡または走査型電子顕微鏡(SEM)を用いて板厚の1/4位置を観察した。そして、光学顕微鏡またはSEMで撮影した金属組織写真を画像解析して各組織の割合を測定した。下記に詳細を示す。
[Measurement of metal structure]
The area ratio of ferrite, the area ratio of the hard phase, the area ratio of the MA structure, the volume ratio of residual γ, and the ratio of the spherical hard phase were measured as follows. That is, after the cross section of the test steel was polished and corroded as shown below, a 1/4 position of the plate thickness was observed using an optical microscope or a scanning electron microscope (SEM). And the metal structure photograph image | photographed with the optical microscope or SEM was image-analyzed, and the ratio of each structure | tissue was measured. Details are shown below.

(フェライトの面積率)
上記研磨後に、ナイタールで腐食し、SEMにて倍率1000倍で3視野(100μm×100μmサイズ/視野)観察し、格子間隔5μm、格子点数20×20の点算法にてフェライトの面積率を測定し、3視野の平均値を算出した。結果を表中の「フェライト(面積%)」に記載した。なお、フェライトの面積率には、フェライト相中の硬質相を除く。
(Ferrite area ratio)
After the above polishing, it corrodes with nital, observes 3 fields of view (100 μm × 100 μm size / field of view) at a magnification of 1000 times with an SEM, and measures the area ratio of ferrite by a point calculation method with a lattice spacing of 5 μm and the number of lattice points of 20 × 20. The average value of 3 fields of view was calculated. The results are shown in “Ferrite (area%)” in the table. The area ratio of ferrite excludes the hard phase in the ferrite phase.

(硬質相の面積率)
上記フェライト以外の組織を硬質相とし、上記観察視野100面積%からフェライト面積率を除いた値を硬質相の面積率とした。結果を表中の「硬質相(面積%)」に記載した。なお、硬質相の組織についても観察し、硬質相はベイニティックフェライト、ベイナイト、焼戻しマルテンサイト、残留γ、およびMA組織よりなる群から選択される少なくとも一種であることを確認した。
(Area ratio of hard phase)
The structure other than the ferrite was defined as a hard phase, and the value obtained by removing the ferrite area ratio from 100 area% of the observation visual field was defined as the area ratio of the hard phase. The results are shown in “Hard phase (area%)” in the table. The structure of the hard phase was also observed, and it was confirmed that the hard phase was at least one selected from the group consisting of bainitic ferrite, bainite, tempered martensite, residual γ, and MA structure.

(MA組織の面積率)
上記研磨後に、レペラーで腐食し、光学顕微鏡にて倍率1000倍で3視野(100μm×100μmサイズ/視野)観察し、格子間隔5μm、格子点数20×20の点算法にてMA組織の面積率を測定し、3視野の平均値を算出した。結果を表中の「MA(面積%)」に記載した。なお、上記レペラー腐食で白色化した箇所をMA組織として観察した。
(Area ratio of MA organization)
After the above polishing, it corrodes with a repeller, and is observed with an optical microscope at a magnification of 1000 at 3 fields of view (100 μm × 100 μm size / field of view), and the area ratio of the MA structure is determined by a point calculation method with a lattice spacing of 5 μm and a lattice number of 20 × 20. Measurements were made and the average value of 3 fields of view was calculated. The results are shown in “MA (area%)” in the table. In addition, the part whitened by the said repeller corrosion was observed as MA structure.

(残留γの体積率)
板厚1/4位置まで#1000〜#1500のサンドペーパーを使用して研磨した後、更に表面を深さ10〜20μmまで電解研磨してから、X線回折装置(リガク社製RINT1500)を用いて測定した。具体的には、Coターゲットを使用し、40kV−200mAを出力して2θで40°〜130°の範囲を測定し、得られたbcc(α)の回折ピーク(110)、(200)、(211)、及びfcc(γ)の回折ピーク(111)、(200)、(220)、(311)から残留γの定量測定を行った。結果を表中の「残留γ(体積%)」に記載した。
(Volume ratio of residual γ)
After polishing using # 1000 to # 1500 sandpaper to a thickness of 1/4, the surface is further electropolished to a depth of 10 to 20 μm, and then an X-ray diffractometer (RINT 1500 manufactured by Rigaku Corporation) is used. Measured. Specifically, a Co target is used, 40 kV-200 mA is output, a range of 40 ° to 130 ° is measured at 2θ, and the obtained diffraction peak (110), (200), (200) of ( 211) and fcc (γ) diffraction peaks (111), (200), (220), and (311), quantitative measurement of residual γ was performed. The results are shown in “Residual γ (volume%)” in the table.

(フェライト相中の球状硬質相)
上記研磨後に、ナイタールで腐食し、フェライト相に存在する円相当径で2μm以下のアスペクト比1〜3の球状の硬質相をSEMにて倍率1000倍で3視野(100μm×100μmサイズ/視野)観察し、画像解析して上記硬質相に占める球状硬質相の割合を求めた。結果を表中の「球状硬質相(面積%)」に記載した。
(Spherical hard phase in ferrite phase)
After the polishing, the spherical hard phase corroded with nital and has an equivalent circle diameter of 2 μm or less and an aspect ratio of 1 to 3 present in the ferrite phase is observed with a SEM at a magnification of 1000 times (100 μm × 100 μm size / field of view). Then, the ratio of the spherical hard phase in the hard phase was determined by image analysis. The results are shown in “Spherical hard phase (area%)” in the table.

[Mn濃度が鋼板中のMn濃度の1.2倍以上濃縮している領域の割合]
Mn濃度は、供試鋼を横断面で切断、樹脂に埋め込み、研磨後、20μm×20μmの範囲を、EPMAを用いビーム径1μm以下の条件で測定した。得られたMn濃度を、誘導結合プラズマ発光分光法で化学分析を行った鋼板のMn濃度で除して鋼板中のMn濃度に対するMn濃度1.2倍以上濃縮している領域の割合を求めた。その後、Mn濃度の1.2倍以上の領域と1.2倍未満の領域をそれぞれ色分けし、Mn濃度の1.2倍以上を有する領域の面積%を求めた。結果を表中の「Mn濃度1.2倍の面積率(%)」に記載した。
[Percentage of the region where the Mn concentration is concentrated 1.2 times or more of the Mn concentration in the steel sheet]
The Mn concentration was measured by cutting the test steel in a cross section, embedding it in a resin, polishing, and polishing the range of 20 μm × 20 μm using EPMA under a beam diameter of 1 μm or less. The obtained Mn concentration was divided by the Mn concentration of the steel plate subjected to chemical analysis by inductively coupled plasma emission spectroscopy to determine the ratio of the region where the Mn concentration was concentrated 1.2 times or more with respect to the Mn concentration in the steel plate. . Thereafter, a region having a Mn concentration of 1.2 times or more and a region having a value of less than 1.2 times were color-coded, and the area% of the region having a Mn concentration of 1.2 times or more was determined. The results are shown in “Mn concentration 1.2 times area ratio (%)” in the table.

[Mn濃度が鋼板中のMn濃度の1.2倍以上濃縮している領域の標準偏差]
上記鋼板中のMn濃度に応じて色分けした画像を、□2μm区画に100区画に区切り、各区画内においてMn濃度が1.2倍以上濃縮している領域の分率を計測し、100区画の標準偏差を求めた。結果を表中の「Mn濃度1.2倍領域の標準偏差(面積%)」に記載した。
[Standard deviation of the region where the Mn concentration is concentrated 1.2 times or more of the Mn concentration in the steel sheet]
The image color-coded according to the Mn concentration in the steel sheet is divided into 100 sections into 2 μm sections, and the fraction of the area where the Mn concentration is concentrated 1.2 times or more in each section is measured. Standard deviation was determined. The results are shown in “Standard deviation (area%) of Mn concentration 1.2 times region” in the table.

[フェライト相中のMn濃度が鋼板中のMn濃度に占める割合]
上記Mn濃度をEPMA分析にて測定した20μm×20μmと同視野をSEM観察した。EPMA分析結果とSEM画像を見比べて、各フェライト粒とそのMn濃度分布を同定した。フェライト粒の長軸、および短軸の交わる点をフェライト粒の中心位置とし、該中心位置のMn濃度をそのフェライト粒のMn濃度とした。20μm×20μm範囲におけるフェライト粒中心位置のMn濃度を上記手法にて同定し、各20μm×20μm範囲における一番Mn濃度の高いフェライト粒のMn濃度を、鋼板のMn濃度で割ることによって、フェライト相中のMn濃度が鋼板のMn濃度に占める割合を求めた。本発明では20μm×20μmを1視野とし、3視野の平均値をフェライト相中のMn濃度が鋼板のMn濃度に占める割合とした。結果を表中の「フェライト相中Mn濃度の割合」に記載した。
[Ratio of Mn concentration in ferrite phase to Mn concentration in steel sheet]
The same field of view as that of the above-mentioned Mn concentration measured by EPMA analysis of 20 μm × 20 μm was observed by SEM. Each ferrite grain and its Mn concentration distribution were identified by comparing the EPMA analysis result and the SEM image. The point where the major axis and the minor axis of the ferrite grain intersect was defined as the center position of the ferrite grain, and the Mn concentration at the center position was defined as the Mn concentration of the ferrite grain. By identifying the Mn concentration at the ferrite grain center position in the range of 20 μm × 20 μm by the above method and dividing the Mn concentration of the ferrite grain having the highest Mn concentration in each 20 μm × 20 μm range by the Mn concentration of the steel sheet, the ferrite phase The ratio of the Mn concentration in the Mn concentration of the steel sheet was determined. In the present invention, 20 μm × 20 μm is one field of view, and the average value of the three fields of view is the ratio of the Mn concentration in the ferrite phase to the Mn concentration of the steel sheet. The results are shown in the “Ratio of Mn concentration in ferrite phase” in the table.

[機械的特性の評価]
供試鋼の機械的特性は、JIS Z2201で規定される5号試験片を用いて引張試験を行い、引張強度、および延性を測定した。上記試験片は供試鋼から、圧延方向に対して垂直な方向が長手方向となるように切り出した。得られた引張強度と延性から強度−延性バランスを算出した。表中、引張強度は「TS(MPa)」、延性は「EL(%)」、強度−延性のバランスは「TS×EL(MPa・%)」とした。
[Evaluation of mechanical properties]
As for the mechanical properties of the test steel, a tensile test was performed using a No. 5 test piece defined by JIS Z2201, and the tensile strength and ductility were measured. The test piece was cut from the test steel so that the direction perpendicular to the rolling direction was the longitudinal direction. The strength-ductility balance was calculated from the obtained tensile strength and ductility. In the table, the tensile strength was “TS (MPa)”, the ductility was “EL (%)”, and the balance between strength and ductility was “TS × EL (MPa ·%)”.

本発明では、引張強度が980MPa以上の場合は、高強度であり合格とし、980MPa未満の場合は強度不足であり不合格と評価した。   In the present invention, when the tensile strength was 980 MPa or more, the strength was high and the product was acceptable, and when the tensile strength was less than 980 MPa, the strength was insufficient and the product was evaluated as rejected.

また延性は強度−延性バランスで評価し、TS×EL(MPa・%)が15,000(MPa・%)以上の場合は、延性に優れるとして合格とし、15,000未満の場合は、延性が悪いとして不合格と評価した。   The ductility is evaluated by a strength-ductility balance. When TS × EL (MPa ·%) is 15,000 (MPa ·%) or more, the ductility is regarded as excellent, and when it is less than 15,000, the ductility is evaluated. It was evaluated as rejected as bad.

[曲げ性の評価]
曲げ性はドイツ自動車工業会で規定されたVDA基準(VDA238−100)に基づいて以下の測定条件で評価を行った。本発明では曲げ試験で得られる最大荷重時の変位をVDA基準で角度に変換し、曲げ角度を求めた。結果を表中の「VDA曲げ角度(°)」に記載した。また引張強度と曲げ角度から曲げ性を評価した。結果を表中の「TS×VDA(MPa・°)」に記載した。TS×VDA(MPa・°)が、100,000(MPa・°)以上の場合は、曲げ性に優れるとして合格とし、100,000未満の場合は、曲げ性不足として不合格と評価した。
(測定条件)
試験方法:ロール支持、ポンチ押し込み
ロール径:φ30mm
ポンチ形状:先端R=0.4mm
ロール間距離:2.9mm
押し込み速度:20mm/min
試験片寸法:60mm×60mm
曲げ方向:圧延直角方向
試験機:SIMAZU AUTOGRAPH 20kN
[Evaluation of bendability]
The bendability was evaluated under the following measurement conditions based on the VDA standard (VDA238-100) defined by the German Automobile Manufacturers Association. In the present invention, the displacement at the maximum load obtained by a bending test was converted into an angle based on the VDA, and the bending angle was obtained. The results are shown in “VDA bending angle (°)” in the table. The bendability was evaluated from the tensile strength and the bending angle. The results are shown in “TS × VDA (MPa · °)” in the table. When TS × VDA (MPa · °) was 100,000 (MPa · °) or more, it was determined that the bendability was excellent, and when it was less than 100,000, it was evaluated as unacceptable as insufficient bendability.
(Measurement condition)
Test method: roll support, punch push-in roll diameter: φ30mm
Punch shape: Tip R = 0.4mm
Distance between rolls: 2.9 mm
Pushing speed: 20mm / min
Specimen size: 60mm x 60mm
Bending direction: Rolling perpendicular direction Testing machine: SIMAZU AUTOGRAPH 20kN

表1〜5より次のことがわかる。本発明の成分組成を満たす鋼種A〜TおよびW〜ACを用いて本発明で規定する焼鈍条件にて製造した実験No.1〜18、20、24〜26、28、29、および33〜43の鋼板は、引張強度980MPa以上の領域において、延性と曲げ性に優れていた。   The following can be seen from Tables 1-5. Experiment No. manufactured with the annealing conditions prescribed | regulated by this invention using the steel types AT and W-AC which satisfy | fill the component composition of this invention. The steel sheets 1-18, 20, 24-26, 28, 29, and 33-43 were excellent in ductility and bendability in a region having a tensile strength of 980 MPa or more.

これに対し、上記以外の鋼板は、下記に詳述する通り、本発明で規定する成分組成や製造条件を満たさず、所望の特性が得られなかった。   On the other hand, as described in detail below, the steel sheets other than those described above did not satisfy the component composition and manufacturing conditions defined in the present invention, and the desired characteristics were not obtained.

表1の鋼種UはC含有量、鋼種VはMn含有量が本発明の上限を超えており、冷間圧延時に破断を生じたため、供試鋼を製造できなかった。   Steel type U in Table 1 had a C content, and steel type V had a Mn content exceeding the upper limit of the present invention, and fracture occurred during cold rolling, so the test steel could not be produced.

実験No.19は、500℃以下まで冷却した後、再加熱しなかった例であり、MA組織が増加して曲げ性が劣化した。   Experiment No. No. 19 was an example in which the sample was cooled to 500 ° C. or lower and not reheated, and the MA structure increased and the bendability deteriorated.

実験No.21は巻き取り後、所定の温度で保持しなかった例であり、Mn濃度1.2倍領域の標準偏差が低く、曲げ性が悪かった。   Experiment No. No. 21 was an example in which it was not kept at a predetermined temperature after winding, and the standard deviation of the Mn concentration 1.2 times region was low and the bendability was poor.

実験No.22は巻取り温度、および保持温度が低かった例であり、Mn濃度1.2倍の面積率、およびMn濃度1.2倍領域の標準偏差が低く、曲げ性が悪かった。   Experiment No. No. 22 was an example in which the coiling temperature and the holding temperature were low. The area ratio with a Mn concentration of 1.2 times and the standard deviation of the region with a Mn concentration of 1.2 times were low, and the bendability was poor.

実験No.23は巻き取り後、所定の温度での保持時間が短かった例であり、Mn濃度1.2倍領域の標準偏差が低く、曲げ性が悪かった。   Experiment No. No. 23 is an example in which the holding time at a predetermined temperature was short after winding, and the standard deviation of the Mn concentration 1.2 times region was low and the bendability was poor.

実験No.27は均熱温度が高かった例であり、フェライトが生成せず、またMn濃度1.2倍の面積率、およびMn濃度1.2倍領域の標準偏差が低かったため、延性が悪かった。   Experiment No. No. 27 was an example in which the soaking temperature was high. Ferrite was not formed, and the area ratio with a Mn concentration of 1.2 times and the standard deviation of the region with a Mn concentration of 1.2 times were low, so the ductility was poor.

実験No.30は冷却停止温度が高かった例であり、フェライトとMA組織が多くなり、強度が低く、また延性、および曲げ性も悪かった。   Experiment No. No. 30 was an example in which the cooling stop temperature was high, and the ferrite and MA structures increased, the strength was low, and the ductility and bendability were also poor.

実験No.31は500℃までの冷却速度が遅い例であり、フェライト相中のMn濃度が高くなりすぎたため、曲げ性が悪化した。   Experiment No. No. 31 is an example in which the cooling rate to 500 ° C. is slow, and the bendability deteriorated because the Mn concentration in the ferrite phase became too high.

実験No.32は500℃以下まで冷却した後、再加熱を行っていない例であり、MA組織が増加して曲げ性が劣化した。   Experiment No. No. 32 is an example in which reheating was not performed after cooling to 500 ° C. or lower, and the MA structure increased and the bendability deteriorated.

[実施例2]
下記表6に示す成分組成の鋼(残部は鉄および不可避的不純物、表6において空欄は元素を添加していないことを意味する)を溶製し、下記条件で熱間圧延→冷間圧延→連続焼鈍を行って、冷延鋼板を製造した。
[Example 2]
Steel of the composition shown in Table 6 below (the balance is iron and inevitable impurities, and the blank in Table 6 means that no element is added), and hot rolling → cold rolling → Continuous annealing was performed to produce a cold-rolled steel sheet.

[熱間圧延]
スラブを1250℃まで加熱し、圧下率90%、仕上げ圧延温度が920℃となるように板厚2.3mmまで熱間圧延した。その後、この温度から平均冷却速度30℃/秒で表7または表8に示す「巻取り温度(℃)」まで冷却して巻き取った後、表7に示す「保持温度1(℃)」、および「保持時間(時間)」で保持するか、表8に示す「保持開始温度(℃)」、「保持終了温度(℃)」、および「保持時間(時間)」の条件で保持した。次いで室温まで空冷して熱延鋼板を製造した。
[Hot rolling]
The slab was heated to 1250 ° C. and hot-rolled to a sheet thickness of 2.3 mm so that the reduction rate was 90% and the finish rolling temperature was 920 ° C. Then, after cooling from this temperature to the “winding temperature (° C.)” shown in Table 7 or 8 at an average cooling rate of 30 ° C./second, “holding temperature 1 (° C.)” shown in Table 7, And “holding time (hour)”, or held under the conditions of “holding start temperature (° C.)”, “holding end temperature (° C.)” and “holding time (hour)” shown in Table 8. Subsequently, it air-cooled to room temperature and manufactured the hot-rolled steel plate.

[冷間圧延]
得られた熱延鋼板を酸洗して表面のスケールを除去した後、冷間圧延を行い、板厚1.2mmの冷延鋼板を製造した。
[Cold rolling]
The obtained hot-rolled steel sheet was pickled to remove the scale on the surface, and then cold-rolled to produce a cold-rolled steel sheet having a thickness of 1.2 mm.

[冷延鋼板(CR)の焼鈍、溶融亜鉛めっき鋼板や合金化溶融亜鉛めっき鋼板の製造]
得られた冷間圧延鋼板を、表9または表10に示す条件で、均熱保持→冷却→再加熱→めっき処理して、供試鋼を製造した。尚、表7のNo.29は、再加熱を行っていない比較例であり、再加熱の代わりに、冷却停止温度470℃から400℃に冷却後、該温度で45秒間保持したことを、再加熱の欄に示している。
[Annealing of cold-rolled steel sheet (CR), manufacture of hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet]
The obtained cold-rolled steel sheet was subjected to soaking maintenance → cooling → reheating → plating treatment under the conditions shown in Table 9 or Table 10 to produce a test steel. In Table 7, No. 29 is a comparative example in which reheating is not performed. In the reheating column, instead of reheating, after cooling from a cooling stop temperature of 470 ° C. to 400 ° C., the temperature was maintained for 45 seconds. .

表中、均熱保持した温度は「均熱温度(℃)」、均熱後500℃までの平均冷却速度は「平均冷却速度1(℃/秒)」、500℃以下での冷却速度は「平均冷却速度2(℃/秒)、冷却停止温度は「冷却停止温度(℃)」、冷却停止後再加熱時の保持温度は「再加熱保持温度(℃)」、該保持温度での保持時間は「再加熱保持時間(秒)」、めっき浴の温度を「めっき浴温度(℃)」、めっき処理時間を「溶融亜鉛めっき処理時間(秒)」と夫々表記した。なお、「再加熱保持時間(秒)」は「溶融亜鉛めっき処理時間(秒)」を含む合計時間である。   In the table, the soaking temperature is “soaking temperature (° C.)”, the average cooling rate up to 500 ° C. after soaking is “average cooling rate 1 (° C./sec)”, and the cooling rate at 500 ° C. or less is “ Average cooling rate 2 (° C / sec), cooling stop temperature is “cooling stop temperature (° C)”, holding temperature when reheating after cooling is “reheat holding temperature (° C)”, holding time at this holding temperature “Reheat holding time (seconds)”, plating bath temperature “plating bath temperature (° C.)”, and plating treatment time “hot galvanizing treatment time (seconds)”, respectively. The “reheating holding time (seconds)” is the total time including the “hot dip galvanizing time (seconds)”.

前記「再加熱保持温度(℃)」で、ほぼ(「再加熱保持時間(秒)」−「溶融亜鉛めっき処理時間(秒)」)保持した後、亜鉛めっき浴に鋼板を浸漬させ、「溶融亜鉛めっき処理時間(秒)」で溶融亜鉛めっき層を形成した。実験No.31、33では、亜鉛めっき浴へ浸漬直前に、表8の「再加熱保持温度(℃)」から「めっき浴温度(℃)」まで加熱を行ってから亜鉛めっき浴に浸漬させた。尚、一部鋼板には溶融亜鉛めっき処理を施した後、合金化処理を行った。表中、このときの合金化温度を「合金化温度(℃)」、合金化温度での保持時間を「合金化処理時間(秒)」と表記した。所定時間保持した後、室温まで放冷して供試鋼を得た。なお、表中の「品種」欄に溶融亜鉛めっき処理のみを行った鋼板は「GI」、合金化処理も行った鋼板は「GA」と記入した。   At the above-mentioned “reheating holding temperature (° C.)”, the steel sheet is immersed in a galvanizing bath after being held substantially (“reheating holding time (seconds)” — “hot dip galvanizing treatment time (seconds)”). The hot dip galvanized layer was formed with the “galvanizing treatment time (seconds)”. Experiment No. In Nos. 31 and 33, heating was performed from the “reheat holding temperature (° C.)” to “plating bath temperature (° C.)” in Table 8 immediately before dipping in the zinc plating bath, and then immersed in the zinc plating bath. Incidentally, some steel plates were subjected to galvanizing treatment and then alloying treatment. In the table, the alloying temperature at this time was expressed as “alloying temperature (° C.)”, and the holding time at the alloying temperature was expressed as “alloying time (seconds)”. After holding for a predetermined time, it was allowed to cool to room temperature to obtain a test steel. In the “product type” column of the table, “GI” was entered for the steel plate that was only subjected to the hot dip galvanizing treatment, and “GA” was entered for the steel plate that was also subjected to the alloying treatment.

各供試鋼について、下記に詳述する通り、金属組織、Mn濃度、各種機械的特性の評価を実施例1と同様にして行い、表9または表10に示した。   As described in detail below, each test steel was evaluated in the same manner as in Example 1 for the metal structure, Mn concentration, and various mechanical properties, and the results are shown in Table 9 or Table 10.

表6〜10より次のことがわかる。本発明の成分組成を満たす鋼種A〜NおよびQ〜Uを用いて本発明で規定する焼鈍条件にて製造した実験No.1、2、4、5、10、11、13〜16、18〜23、25〜28、および30〜35の鋼板は、引張強度980MPa以上の領域において、延性と曲げ性に優れていた。   The following can be seen from Tables 6-10. Experiment No. manufactured on the annealing conditions prescribed | regulated by this invention using the steel types AN and QU which satisfy | fill the component composition of this invention. The steel plates of 1, 2, 4, 5, 10, 11, 13-16, 18-23, 25-28, and 30-35 were excellent in ductility and bendability in a region having a tensile strength of 980 MPa or more.

これに対し、上記以外の鋼板は、下記に詳述する通り、本発明で規定する成分組成や製造条件を満たさず、所望の特性が得られなかった。   On the other hand, as described in detail below, the steel sheets other than those described above did not satisfy the component composition and manufacturing conditions defined in the present invention, and the desired characteristics were not obtained.

表6の鋼種OはC含有量、鋼種PはMn含有量が本発明の上限を超えており、冷間圧延時に破断を生じたため、供試鋼を製造できなかった。   Steel type O in Table 6 had a C content, and steel type P had a Mn content exceeding the upper limit of the present invention, and fracture occurred during cold rolling, so that the test steel could not be produced.

実験No.3は500℃以下まで冷却した後の再加熱保持温度での保持時間が短かった例であり、MA組織が増加して曲げ性が劣化した。   Experiment No. No. 3 is an example in which the holding time at the reheating holding temperature after cooling to 500 ° C. or less was short. The MA structure increased and the bendability deteriorated.

実験No.6は巻き取り後、所定の温度で保持しなかった例であり、Mn濃度1.2倍領域の標準偏差が低く、曲げ性が悪かった。   Experiment No. No. 6 was an example in which the coil was not held at a predetermined temperature after winding, and the standard deviation of the Mn concentration 1.2 times region was low and the bendability was poor.

実験No.7は巻取り温度、および保持温度が低かった例であり、Mn濃度1.2倍の面積率、およびMn濃度1.2倍領域の標準偏差が低く、曲げ性が悪かった。   Experiment No. No. 7 was an example in which the coiling temperature and the holding temperature were low. The area ratio with a Mn concentration of 1.2 times and the standard deviation of the region with a Mn concentration of 1.2 times were low, and the bendability was poor.

実験No.8は巻き取り後、所定の温度での保持時間が短かった例であり、Mn濃度1.2倍領域の標準偏差が低く、曲げ性が悪かった。   Experiment No. No. 8 was an example in which the holding time at a predetermined temperature was short after winding, the standard deviation of the Mn concentration 1.2 times region was low, and the bendability was poor.

実験No.9は、500℃以下まで冷却した後の再加熱が低かった例であり、MA組織が増加して曲げ性が劣化した。   Experiment No. No. 9 is an example in which the reheating after cooling to 500 ° C. or lower was low. The MA structure increased and the bendability deteriorated.

実験No.12は均熱温度が高かった例であり、フェライトが十分生成せず、またフェライト相中のMn濃度が高くなりすぎたため、延性が悪かった。   Experiment No. No. 12 was an example in which the soaking temperature was high, and ferrite was not sufficiently formed, and the Mn concentration in the ferrite phase was too high, so the ductility was poor.

実験No.17は冷却停止温度が高かった例であり、フェライトとMA組織が多くなり、強度が低く、また曲げ性も悪かった。   Experiment No. No. 17 was an example in which the cooling stop temperature was high, and the ferrite and MA structures increased, the strength was low, and the bendability was also poor.

実験No.24は500℃までの冷却速度が遅い例であり、フェライト相中のMn濃度が高くなりすぎたため、曲げ性が悪化した。   Experiment No. No. 24 is an example in which the cooling rate to 500 ° C. is slow, and the bendability deteriorated because the Mn concentration in the ferrite phase became too high.

実験No.29は、500℃以下まで冷却した後、再加熱しなかった例であり、MA組織が増加して曲げ性が劣化した。   Experiment No. No. 29 was an example in which the sample was cooled to 500 ° C. or lower and not reheated, and the MA structure increased and the bendability deteriorated.

Claims (15)

鋼板の成分組成が、質量%で、
C:0.10%以上0.30%以下、
Si:1.2%以上3%以下、
Mn:0.5%以上3.0%以下、
P:0%超0.1%以下、
S:0%超0.05%以下、
Al:0.005%以上0.2%以下、
N:0%超0.01%以下、および
O:0%超0.01%以下
を満たし、残部が鉄および不可避的不純物からなり、かつ、
鋼板の板厚1/4位置の組織が、下記(1)〜(5)の全てを満たすことを特徴とする延性及び曲げ性に優れた引張強度が980MPa以上の高強度冷延鋼板。
(1)走査型電子顕微鏡で観察したときに、全組織に対するフェライトの面積率が5%以上50%未満であり、残部は硬質相である。
(2)レペラー腐食を行い、光学顕微鏡で観察したときに、全組織に対するフレッシュマルテンサイトと残留オーステナイトの混合組織の面積率が0%超30%以下である。
(3)電子線マイクロプローブ分析計で分析したときに、Mn濃度が前記鋼板中のMn濃度の1.2倍以上濃縮している領域が5面積%以上存在し、且つ
(4)□2μm区画でMn濃度が前記鋼板中のMn濃度の1.2倍以上濃縮している領域の分率を計測し、100区画測定したときの標準偏差が4.0%以上である。
(5)電子線マイクロプローブ分析計で分析したときに、フェライト相中のMn濃度が前記鋼板中のMn濃度の0.90倍以下である。
The component composition of the steel sheet is mass%,
C: 0.10% or more and 0.30% or less,
Si: 1.2% or more and 3% or less,
Mn: 0.5% to 3.0%,
P: more than 0% and 0.1% or less,
S: more than 0% and 0.05% or less,
Al: 0.005% or more and 0.2% or less,
N: more than 0% and 0.01% or less, and O: more than 0% and 0.01% or less, the balance consisting of iron and inevitable impurities, and
A high-strength cold-rolled steel sheet having a tensile strength of 980 MPa or more excellent in ductility and bendability, wherein the structure of the steel sheet at a thickness of 1/4 position satisfies all of the following (1) to (5).
(1) When observed with a scanning electron microscope, the area ratio of ferrite to the entire structure is 5% or more and less than 50%, and the remainder is a hard phase.
(2) When the repeller corrosion is performed and observed with an optical microscope, the area ratio of the mixed structure of fresh martensite and retained austenite with respect to the entire structure is more than 0% and 30% or less.
(3) When analyzed with an electron beam microprobe analyzer, there are 5 area% or more of regions where the Mn concentration is 1.2 times or more the Mn concentration in the steel sheet, and (4) 2 μm sections The fraction of the region where the Mn concentration is concentrated 1.2 times or more of the Mn concentration in the steel sheet is measured, and the standard deviation when measuring 100 sections is 4.0% or more.
(5) When analyzed with an electron microprobe analyzer, the Mn concentration in the ferrite phase is 0.90 times or less of the Mn concentration in the steel sheet.
X線回折法で測定したときに、全組織に対する残留オーステナイトの体積率が5%以上である請求項1に記載の高強度冷延鋼板。   The high-strength cold-rolled steel sheet according to claim 1, wherein the volume ratio of retained austenite with respect to the entire structure is 5% or more when measured by an X-ray diffraction method. 前記硬質相が、前記フレッシュマルテンサイトと残留オーステナイトの混合組織と;ベイニティックフェライト、ベイナイト、および焼戻しマルテンサイよりなる群から選択される少なくとも一種の組織と;からなる請求項1または2に記載の高強度冷延鋼板。   The hard phase is composed of a mixed structure of the fresh martensite and retained austenite; and at least one structure selected from the group consisting of bainitic ferrite, bainite, and tempered martensite. High strength cold rolled steel sheet. 前記成分組成は、更に他の元素として、質量%で、
Cr:0%超1%以下、およびMo:0%超1%以下よりなる群から選択される少なくとも一種を含有する請求項1〜3のいずれかに記載の高強度冷延鋼板。
The component composition is, as another element, in mass%,
The high-strength cold-rolled steel sheet according to any one of claims 1 to 3, comprising at least one selected from the group consisting of Cr: more than 0% and not more than 1% and Mo: more than 0% and not more than 1%.
前記成分組成は、更に他の元素として、質量%で、
Ti:0%超0.15%以下、
Nb:0%超0.15%以下、および
V:0%超0.15%以下よりなる群から選択される少なくとも一種を含有する請求項1〜4のいずれかに記載の高強度冷延鋼板。
The component composition is, as another element, in mass%,
Ti: more than 0% and 0.15% or less,
The high-strength cold-rolled steel sheet according to any one of claims 1 to 4, containing at least one selected from the group consisting of Nb: more than 0% and 0.15% or less and V: more than 0% and 0.15% or less. .
前記成分組成は、更に他の元素として、質量%で、
Cu:0%超1%以下、およびNi:0%超1%以下よりなる群から選択される少なくとも一種を含有する請求項1〜5のいずれかに記載の高強度冷延鋼板。
The component composition is, as another element, in mass%,
The high-strength cold-rolled steel sheet according to any one of claims 1 to 5, comprising at least one selected from the group consisting of Cu: more than 0% and 1% or less and Ni: more than 0% and 1% or less.
前記成分組成は、更に他の元素として、質量%で、
B:0%超0.005%以下を含有する請求項1〜6のいずれかに記載の高強度冷延鋼板。
The component composition is, as another element, in mass%,
The high-strength cold-rolled steel sheet according to any one of claims 1 to 6, containing B: more than 0% and 0.005% or less.
前記成分組成は、更に他の元素として、質量%で、
Ca:0%超0.01%以下、
Mg:0%超0.01%以下、および
REM:0%超0.01%以下よりなる群から選択される少なくとも一種を含有する請求項1〜7のいずれかに記載の高強度冷延鋼板。
The component composition is, as another element, in mass%,
Ca: more than 0% and 0.01% or less,
The high-strength cold-rolled steel sheet according to any one of claims 1 to 7, comprising at least one selected from the group consisting of Mg: more than 0% and not more than 0.01%, and REM: more than 0% and not more than 0.01%. .
請求項1〜8のいずれかに記載の高強度冷延鋼板の表面に、電気亜鉛めっき層が形成されていることを特徴とする高強度電気亜鉛めっき鋼板。   A high-strength electrogalvanized steel sheet, wherein an electrogalvanized layer is formed on the surface of the high-strength cold-rolled steel sheet according to any one of claims 1 to 8. 請求項1〜8のいずれかに記載の高強度冷延鋼板の表面に、溶融亜鉛めっき層が形成されていることを特徴とする高強度溶融亜鉛めっき鋼板。   A high-strength hot-dip galvanized steel sheet, wherein a hot-dip galvanized layer is formed on the surface of the high-strength cold-rolled steel sheet according to any one of claims 1 to 8. 請求項1〜8のいずれかに記載の高強度冷延鋼板の表面に、合金化溶融亜鉛めっき層が形成されていることを特徴とする高強度合金化溶融亜鉛めっき鋼板。   A high-strength galvannealed steel sheet, characterized in that an alloyed galvanized layer is formed on the surface of the high-strength cold-rolled steel sheet according to any one of claims 1 to 8. 請求項1〜8のいずれかに記載の高強度冷延鋼板を製造するための方法であって、
前記成分組成からなる鋼板の熱延工程で、
巻取り温度500℃以上800℃以下で巻取り、その後500℃以上800℃以下で3時間以上保持した後室温まで冷却し、冷延後、
(Ac1点+20℃)以上Ac3点未満の温度域で均熱保持し、その後、500℃までを平均冷却速度10℃/秒以上、500℃以下を平均冷却速度10℃/秒以上で、500℃以下の温度域まで冷却し、
次いで250℃以上500℃以下の温度域まで再加熱を行い、30秒間以上保持してから室温まで冷却する、延性及び曲げ性に優れた引張強度が980MPa以上の高強度冷延鋼板の製造方法。
A method for producing the high-strength cold-rolled steel sheet according to any one of claims 1 to 8,
In the hot rolling process of the steel sheet comprising the above component composition,
Winding is performed at a coiling temperature of 500 ° C. or more and 800 ° C. or less, then held at 500 ° C. or more and 800 ° C. or less for 3 hours or more, then cooled to room temperature, after cold rolling,
(Ac 1 point + 20 ° C.) or higher and maintained at a temperature range of less than Ac 3 point, then up to 500 ° C. with an average cooling rate of 10 ° C./second or more, 500 ° C. or less with an average cooling rate of 10 ° C./second or more, Cool to a temperature range below 500 ° C,
Next, a method for producing a high-strength cold-rolled steel sheet having a tensile strength of 980 MPa or more excellent in ductility and bendability, which is reheated to a temperature range of 250 ° C. or more and 500 ° C. or less, held for 30 seconds or more, and then cooled to room temperature.
請求項12に記載の製造方法で得られた高強度冷延鋼板に、更に電気亜鉛めっきを施すことを特徴とする高強度電気亜鉛めっき鋼板の製造方法。   A method for producing a high-strength electrogalvanized steel sheet, further comprising electrogalvanizing the high-strength cold-rolled steel sheet obtained by the production method according to claim 12. 請求項10に記載の高強度溶融亜鉛めっき鋼板を製造するための方法であって、
前記成分組成からなる鋼板の熱延工程で、
巻取り温度500℃以上800℃以下で巻取り、その後500℃以上800℃以下で3時間以上保持した後室温まで冷却し、冷延後、
(Ac1点+20℃)以上Ac3点未満の温度域で均熱保持し、その後、500℃までを平均冷却速度10℃/秒以上、500℃以下を平均冷却速度10℃/秒以上で、500℃以下の温度域まで冷却し、
次いで250℃以上500℃以下の温度域まで再加熱を行い、30秒間以上保持すると共に、該保持時間内で溶融亜鉛めっきを施してから室温まで冷却する、延性及び曲げ性に優れた引張強度が980MPa以上の高強度溶融亜鉛めっき鋼板の製造方法。
A method for producing the high-strength hot-dip galvanized steel sheet according to claim 10,
In the hot rolling process of the steel sheet comprising the above component composition,
Winding is performed at a coiling temperature of 500 ° C. or more and 800 ° C. or less, then held at 500 ° C. or more and 800 ° C. or less for 3 hours or more, then cooled to room temperature, after cold rolling,
(Ac 1 point + 20 ° C.) or higher and maintained at a temperature range of less than Ac 3 point, then up to 500 ° C. with an average cooling rate of 10 ° C./second or more, 500 ° C. or less with an average cooling rate of 10 ° C./second or more, Cool to a temperature range below 500 ° C,
Next, it is reheated to a temperature range of 250 ° C. or more and 500 ° C. or less, held for 30 seconds or more, and after being hot dip galvanized within the holding time, cooled to room temperature, has excellent tensile strength with excellent ductility and bendability. A method for producing a high-strength hot-dip galvanized steel sheet of 980 MPa or more.
前記溶融亜鉛めっきを施した後、450℃以上550℃以下の温度域で合金化を行うものである請求項14に記載の高強度溶融亜鉛めっき鋼板の製造方法。   The method for producing a high-strength hot-dip galvanized steel sheet according to claim 14, wherein alloying is performed in a temperature range of 450 ° C or higher and 550 ° C or lower after the hot-dip galvanizing.
JP2014192757A 2014-03-17 2014-09-22 High-strength cold-rolled steel sheet and high-strength hot-dip galvanized steel sheet excellent in ductility and bendability, and methods for producing them Active JP6306481B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2014192757A JP6306481B2 (en) 2014-03-17 2014-09-22 High-strength cold-rolled steel sheet and high-strength hot-dip galvanized steel sheet excellent in ductility and bendability, and methods for producing them
KR1020167028034A KR20160132926A (en) 2014-03-17 2014-12-25 High strength cold rolled steel sheet and high strength galvanized steel sheet having excellent ductility and bendability, and methods for producing same
MX2016011756A MX2016011756A (en) 2014-03-17 2014-12-25 High strength cold rolled steel sheet and high strength galvanized steel sheet having excellent ductility and bendability, and methods for producing same.
CN201480077035.3A CN106103768B (en) 2014-03-17 2014-12-25 Ductility and the excellent high strength cold rolled steel plate of bendability and high-strength hot-dip galvanized steel sheet and their manufacture method
PCT/JP2014/084315 WO2015141097A1 (en) 2014-03-17 2014-12-25 High strength cold rolled steel sheet and high strength galvanized steel sheet having excellent ductility and bendability, and methods for producing same
KR1020187014630A KR102165992B1 (en) 2014-03-17 2014-12-25 High strength cold rolled steel sheet and high strength galvanized steel sheet having excellent ductility and bendability, and methods for producing same
US15/126,936 US20170096723A1 (en) 2014-03-17 2014-12-25 High strength cold rolled steel sheet and high strength galvanized steel sheet having excellent ductility and bendability, and methods for producing same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2014053399 2014-03-17
JP2014053399 2014-03-17
JP2014053400 2014-03-17
JP2014053400 2014-03-17
JP2014192757A JP6306481B2 (en) 2014-03-17 2014-09-22 High-strength cold-rolled steel sheet and high-strength hot-dip galvanized steel sheet excellent in ductility and bendability, and methods for producing them

Publications (2)

Publication Number Publication Date
JP2015193897A true JP2015193897A (en) 2015-11-05
JP6306481B2 JP6306481B2 (en) 2018-04-04

Family

ID=54144092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014192757A Active JP6306481B2 (en) 2014-03-17 2014-09-22 High-strength cold-rolled steel sheet and high-strength hot-dip galvanized steel sheet excellent in ductility and bendability, and methods for producing them

Country Status (6)

Country Link
US (1) US20170096723A1 (en)
JP (1) JP6306481B2 (en)
KR (2) KR20160132926A (en)
CN (1) CN106103768B (en)
MX (1) MX2016011756A (en)
WO (1) WO2015141097A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017214646A (en) * 2016-05-30 2017-12-07 株式会社神戸製鋼所 High strength steel plate and manufacturing method thereof
WO2017208763A1 (en) * 2016-05-30 2017-12-07 株式会社神戸製鋼所 High-strength steel sheet and method for producing same
KR20180120712A (en) * 2016-02-29 2018-11-06 가부시키가이샤 고베 세이코쇼 High Strength Steel Sheet and Manufacturing Method Thereof
JP2019505691A (en) * 2015-12-21 2019-02-28 アルセロールミタル Method for producing a high strength steel sheet having improved ductility and formability and the resulting steel sheet
JP2019505693A (en) * 2015-12-21 2019-02-28 アルセロールミタル Method for producing a coated high strength steel sheet with improved ductility and formability and the resulting coated steel sheet
JP2020509204A (en) * 2016-12-23 2020-03-26 ポスコPosco High-strength hot-rolled steel sheet and cold-rolled steel sheet excellent in continuous productivity, high-strength hot-dip galvanized steel sheet excellent in surface quality and plating adhesion, and methods for producing them
WO2021125595A1 (en) * 2019-12-18 2021-06-24 주식회사 포스코 High-strength steel sheet having superior workability, and manufacturing method therefor
WO2021125605A1 (en) * 2019-12-18 2021-06-24 주식회사 포스코 High-strength steel sheet having superior workability, and manufacturing method therefor
KR20210116563A (en) 2019-03-29 2021-09-27 닛폰세이테츠 가부시키가이샤 Steel plate and its manufacturing method
JP2021527167A (en) * 2018-06-12 2021-10-11 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG Flat steel products and their manufacturing methods
WO2022079987A1 (en) 2020-10-13 2022-04-21 Jfeスチール株式会社 High-strength cold-rolled steel plate, high-strength plated steel plate, method for manufacturing high-strength cold-rolled steel plate, method for manufacturing high-strength plated steel plate, and automobile part
WO2022079988A1 (en) 2020-10-13 2022-04-21 Jfeスチール株式会社 High-strength cold rolled steel sheet, high-strength plated steel sheet, method for manufacturing high-strength cold rolled steel sheet, and method for manufacturing high-strength plated steel sheet
WO2022181761A1 (en) * 2021-02-26 2022-09-01 日本製鉄株式会社 Steel sheet
JP2023507635A (en) * 2019-12-18 2023-02-24 ポスコホールディングス インコーポレーティッド High-strength steel sheet with excellent workability and its manufacturing method
WO2023182279A1 (en) 2022-03-25 2023-09-28 日本製鉄株式会社 Cold-rolled steel sheet and method for producing cold-rolled steel sheet
JP7442645B2 (en) 2019-12-18 2024-03-04 ポスコホールディングス インコーポレーティッド High-strength steel plate with excellent workability and its manufacturing method
WO2025127556A1 (en) * 2023-12-15 2025-06-19 주식회사 포스코 Steel plate and manufacturing method thereof

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017109538A1 (en) 2015-12-21 2017-06-29 Arcelormittal Method for producing a steel sheet having improved strength, ductility and formability
JP2017155329A (en) * 2016-02-29 2017-09-07 株式会社神戸製鋼所 Steel sheet for hardening and manufacturing method therefor
KR101858852B1 (en) * 2016-12-16 2018-06-28 주식회사 포스코 Cold-rolled steel sheet and galvanized steel sheet having excelent elonggation, hole expansion ration and yield strength and method for manufacturing thereof
WO2018115933A1 (en) 2016-12-21 2018-06-28 Arcelormittal High-strength cold rolled steel sheet having high formability and a method of manufacturing thereof
JP6414246B2 (en) 2017-02-15 2018-10-31 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
WO2019161345A1 (en) 2018-02-19 2019-08-22 Memorial Sloan-Kettering Cancer Center Agents and methods for treating dysproliferative diseases
CN112313352B (en) * 2018-06-29 2023-06-27 东洋钢钣株式会社 Hot-rolled steel sheet, high-strength cold-rolled steel sheet, and method for producing same
CN114080463B (en) * 2019-07-29 2022-10-25 Posco公司 High-strength steel sheet and method for producing same
US12305256B2 (en) 2019-07-29 2025-05-20 Posco Co., Ltd High-strength steel sheet and manufacturing method thereof
KR102321285B1 (en) * 2019-12-18 2021-11-03 주식회사 포스코 High strength steel sheet having excellent workability and method for manufacturing the same
KR102348527B1 (en) * 2019-12-18 2022-01-07 주식회사 포스코 High strength steel sheet having excellent workability and method for manufacturing the same
KR102321297B1 (en) * 2019-12-18 2021-11-03 주식회사 포스코 High strength steel sheet having excellent workability and method for manufacturing the same
KR102353611B1 (en) * 2019-12-18 2022-01-20 주식회사 포스코 High strength steel sheet having excellent workability and method for manufacturing the same
KR102321295B1 (en) * 2019-12-18 2021-11-03 주식회사 포스코 High strength steel sheet having excellent workability and method for manufacturing the same
EP4217517A1 (en) * 2020-09-23 2023-08-02 ArcelorMittal Cold rolled and coated steel sheet and a method of manufacturing thereof
KR20230085287A (en) * 2021-12-06 2023-06-14 주식회사 포스코 Cold rolled steel sheet having excellent weldability, strength and formability and method of manufacturing the same
EP4389925A4 (en) * 2021-12-13 2025-01-15 JFE Steel Corporation STEEL SHEET, ELEMENT, METHOD FOR PRODUCING SAID STEEL SHEET AND METHOD FOR PRODUCING SAID ELEMENT
MX2024011399A (en) * 2022-03-31 2024-09-23 Jfe Steel Corp Galvanized steel sheet, member, and methods for producing these.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012036269A1 (en) * 2010-09-16 2012-03-22 新日本製鐵株式会社 High-strength steel sheet with excellent ductility and stretch flangeability, high-strength galvanized steel sheet, and method for producing both
WO2013047739A1 (en) * 2011-09-30 2013-04-04 新日鐵住金株式会社 High-strength hot-dip galvanized steel sheet with excellent mechanical cutting characteristics, high-strength alloyed hot-dip galvanized steel sheet, and method for producing said sheets
JP2014034716A (en) * 2012-08-09 2014-02-24 Nippon Steel & Sumitomo Metal Steel sheet and method of producing the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5223360B2 (en) * 2007-03-22 2013-06-26 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same
JP4977879B2 (en) 2010-02-26 2012-07-18 Jfeスチール株式会社 Super high strength cold-rolled steel sheet with excellent bendability
JP5671391B2 (en) 2010-03-31 2015-02-18 株式会社神戸製鋼所 Super high strength steel plate with excellent workability and delayed fracture resistance
KR101604963B1 (en) * 2011-03-31 2016-03-18 가부시키가이샤 고베 세이코쇼 High-strength steel sheet with excellent workability and manufacturing method therefor
UA112771C2 (en) * 2011-05-10 2016-10-25 Арселормітталь Інвестігасьон І Десароло Сл STEEL SHEET WITH HIGH MECHANICAL STRENGTH, PLASTICITY AND FORMATION, METHOD OF MANUFACTURING AND APPLICATION OF SUCH SHEETS
US9745639B2 (en) * 2011-06-13 2017-08-29 Kobe Steel, Ltd. High-strength steel sheet excellent in workability and cold brittleness resistance, and manufacturing method thereof
MX360333B (en) * 2011-07-29 2018-10-29 Nippon Steel & Sumitomo Metal Corp High-strength steel sheet having superior impact resistance, method for producing same, high-strength galvanized steel sheet, and method for producing same.
KR101598309B1 (en) 2011-07-29 2016-02-26 신닛테츠스미킨 카부시키카이샤 High-strength steel sheet having excellent shape-retaining properties, high-strength zinc-plated steel sheet, and method for manufacturing same
ES2651149T5 (en) * 2012-03-30 2021-02-15 Voestalpine Stahl Gmbh Cold Rolled High Strength Steel Sheet And Manufacturing Process Of Such Sheet Steel
JP5632947B2 (en) * 2012-12-12 2014-11-26 株式会社神戸製鋼所 High-strength steel sheet excellent in workability and low-temperature toughness and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012036269A1 (en) * 2010-09-16 2012-03-22 新日本製鐵株式会社 High-strength steel sheet with excellent ductility and stretch flangeability, high-strength galvanized steel sheet, and method for producing both
WO2013047739A1 (en) * 2011-09-30 2013-04-04 新日鐵住金株式会社 High-strength hot-dip galvanized steel sheet with excellent mechanical cutting characteristics, high-strength alloyed hot-dip galvanized steel sheet, and method for producing said sheets
JP2014034716A (en) * 2012-08-09 2014-02-24 Nippon Steel & Sumitomo Metal Steel sheet and method of producing the same

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019505691A (en) * 2015-12-21 2019-02-28 アルセロールミタル Method for producing a high strength steel sheet having improved ductility and formability and the resulting steel sheet
JP2019505693A (en) * 2015-12-21 2019-02-28 アルセロールミタル Method for producing a coated high strength steel sheet with improved ductility and formability and the resulting coated steel sheet
KR20180120712A (en) * 2016-02-29 2018-11-06 가부시키가이샤 고베 세이코쇼 High Strength Steel Sheet and Manufacturing Method Thereof
KR102174562B1 (en) * 2016-02-29 2020-11-05 가부시키가이샤 고베 세이코쇼 High-strength steel sheet and its manufacturing method
JP2017214646A (en) * 2016-05-30 2017-12-07 株式会社神戸製鋼所 High strength steel plate and manufacturing method thereof
WO2017208763A1 (en) * 2016-05-30 2017-12-07 株式会社神戸製鋼所 High-strength steel sheet and method for producing same
JP2020509204A (en) * 2016-12-23 2020-03-26 ポスコPosco High-strength hot-rolled steel sheet and cold-rolled steel sheet excellent in continuous productivity, high-strength hot-dip galvanized steel sheet excellent in surface quality and plating adhesion, and methods for producing them
JP7492460B2 (en) 2018-06-12 2024-05-29 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフト Flat steel products and their manufacturing method
JP2021527167A (en) * 2018-06-12 2021-10-11 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG Flat steel products and their manufacturing methods
US11732321B2 (en) 2019-03-29 2023-08-22 Nippon Steel Corporation Steel sheet and method of producing same
KR20210116563A (en) 2019-03-29 2021-09-27 닛폰세이테츠 가부시키가이샤 Steel plate and its manufacturing method
CN114846167A (en) * 2019-12-18 2022-08-02 Posco公司 High-strength steel sheet having excellent workability and method for producing same
JP7403658B2 (en) 2019-12-18 2023-12-22 ポスコホールディングス インコーポレーティッド High-strength steel plate with excellent workability and its manufacturing method
CN114829660A (en) * 2019-12-18 2022-07-29 Posco公司 High-strength steel sheet having excellent workability and method for producing same
WO2021125595A1 (en) * 2019-12-18 2021-06-24 주식회사 포스코 High-strength steel sheet having superior workability, and manufacturing method therefor
JP2023507635A (en) * 2019-12-18 2023-02-24 ポスコホールディングス インコーポレーティッド High-strength steel sheet with excellent workability and its manufacturing method
WO2021125605A1 (en) * 2019-12-18 2021-06-24 주식회사 포스코 High-strength steel sheet having superior workability, and manufacturing method therefor
JP7442645B2 (en) 2019-12-18 2024-03-04 ポスコホールディングス インコーポレーティッド High-strength steel plate with excellent workability and its manufacturing method
WO2022079987A1 (en) 2020-10-13 2022-04-21 Jfeスチール株式会社 High-strength cold-rolled steel plate, high-strength plated steel plate, method for manufacturing high-strength cold-rolled steel plate, method for manufacturing high-strength plated steel plate, and automobile part
KR20230070481A (en) 2020-10-13 2023-05-23 제이에프이 스틸 가부시키가이샤 High-strength cold-rolled steel sheet, high-strength galvanized steel sheet, manufacturing method of high-strength cold-rolled steel sheet, manufacturing method of high-strength galvanized steel sheet, and automobile parts
KR20230070482A (en) 2020-10-13 2023-05-23 제이에프이 스틸 가부시키가이샤 High-strength cold-rolled steel sheet, high-strength galvanized steel sheet, manufacturing method of high-strength cold-rolled steel sheet, manufacturing method of high-strength galvanized steel sheet, and automobile parts
WO2022079988A1 (en) 2020-10-13 2022-04-21 Jfeスチール株式会社 High-strength cold rolled steel sheet, high-strength plated steel sheet, method for manufacturing high-strength cold rolled steel sheet, and method for manufacturing high-strength plated steel sheet
JP7486010B2 (en) 2021-02-26 2024-05-17 日本製鉄株式会社 Steel Plate
CN116888294A (en) * 2021-02-26 2023-10-13 日本制铁株式会社 steel plate
WO2022181761A1 (en) * 2021-02-26 2022-09-01 日本製鉄株式会社 Steel sheet
WO2023182279A1 (en) 2022-03-25 2023-09-28 日本製鉄株式会社 Cold-rolled steel sheet and method for producing cold-rolled steel sheet
KR20240154583A (en) 2022-03-25 2024-10-25 닛폰세이테츠 가부시키가이샤 Cold rolled steel sheet and method for manufacturing cold rolled steel sheet
WO2025127556A1 (en) * 2023-12-15 2025-06-19 주식회사 포스코 Steel plate and manufacturing method thereof

Also Published As

Publication number Publication date
MX2016011756A (en) 2016-12-16
KR20160132926A (en) 2016-11-21
US20170096723A1 (en) 2017-04-06
WO2015141097A1 (en) 2015-09-24
JP6306481B2 (en) 2018-04-04
KR102165992B1 (en) 2020-10-15
CN106103768A (en) 2016-11-09
KR20180061395A (en) 2018-06-07
CN106103768B (en) 2018-04-06

Similar Documents

Publication Publication Date Title
JP6306481B2 (en) High-strength cold-rolled steel sheet and high-strength hot-dip galvanized steel sheet excellent in ductility and bendability, and methods for producing them
JP6554396B2 (en) High strength cold rolled steel sheet having a tensile strength of 980 MPa or more excellent in workability and impact property, and a method of manufacturing the same
JP6554397B2 (en) High strength cold rolled steel sheet having a tensile strength of 980 MPa or more excellent in workability and impact property, and a method of manufacturing the same
JP5536831B2 (en) High-strength steel sheet excellent in workability and low-temperature brittleness, and manufacturing method thereof
JP5867883B2 (en) High-strength steel sheet excellent in workability and low-temperature toughness and method for producing the same
JP5943156B1 (en) High strength steel plate and method for producing the same, and method for producing high strength galvanized steel plate
KR101598309B1 (en) High-strength steel sheet having excellent shape-retaining properties, high-strength zinc-plated steel sheet, and method for manufacturing same
JP5943157B1 (en) High strength steel plate and method for producing the same, and method for producing high strength galvanized steel plate
JP6304455B2 (en) Thin steel plate and plated steel plate, hot rolled steel plate manufacturing method, cold rolled full hard steel plate manufacturing method, heat treatment plate manufacturing method, thin steel plate manufacturing method and plated steel plate manufacturing method
US10934600B2 (en) High-strength steel sheet and production method therefor
JP6372633B1 (en) High strength steel plate and manufacturing method thereof
JP6458834B2 (en) Manufacturing method of hot-rolled steel sheet, manufacturing method of cold-rolled full hard steel sheet, and manufacturing method of heat-treated plate
US20220220577A1 (en) High strength member, method for manufacturing high strength member, and method for manufacturing steel sheet for high strength member
US11035019B2 (en) High-strength steel sheet and production method therefor
KR102518159B1 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JPWO2018043474A1 (en) High strength steel plate and manufacturing method thereof
WO2016158160A1 (en) HIGH-STRENGTH COLD-ROLLED STEEL SHEET HAVING EXCELLENT WORKABILITY AND COLLISION CHARACTERISTICS AND HAVING TENSILE STRENGTH OF 980 MPa OR MORE, AND METHOD FOR PRODUCING SAME
WO2016158159A1 (en) HIGH-STRENGTH COLD-ROLLED STEEL SHEET HAVING EXCELLENT WORKABILITY AND COLLISION CHARACTERISTICS AND HAVING TENSILE STRENGTH OF 980 MPa OR MORE, AND METHOD FOR PRODUCING SAME
US20250146094A1 (en) Cold-rolled steel sheet and method for manufacturing same
JP2022024998A (en) High strength steel sheet and its manufacturing method
US20250215545A1 (en) Cold-rolled steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160901

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170725

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180308

R150 Certificate of patent or registration of utility model

Ref document number: 6306481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150