JP2015168691A - Resin composition, pre-feed type semiconductor sealing agent, film for semiconductor sealing, and semiconductor device - Google Patents
Resin composition, pre-feed type semiconductor sealing agent, film for semiconductor sealing, and semiconductor device Download PDFInfo
- Publication number
- JP2015168691A JP2015168691A JP2014041988A JP2014041988A JP2015168691A JP 2015168691 A JP2015168691 A JP 2015168691A JP 2014041988 A JP2014041988 A JP 2014041988A JP 2014041988 A JP2014041988 A JP 2014041988A JP 2015168691 A JP2015168691 A JP 2015168691A
- Authority
- JP
- Japan
- Prior art keywords
- resin composition
- formula
- substrate
- semiconductor
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 52
- 239000011342 resin composition Substances 0.000 title claims abstract description 45
- 238000007789 sealing Methods 0.000 title claims description 16
- 150000001875 compounds Chemical class 0.000 claims abstract description 41
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 15
- 239000006087 Silane Coupling Agent Substances 0.000 claims abstract description 10
- 150000001451 organic peroxides Chemical class 0.000 claims abstract description 9
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims abstract description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000000945 filler Substances 0.000 claims abstract description 5
- 239000005062 Polybutadiene Substances 0.000 claims abstract description 4
- 230000001588 bifunctional effect Effects 0.000 claims abstract description 4
- 229920002857 polybutadiene Polymers 0.000 claims abstract description 4
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 3
- 239000008393 encapsulating agent Substances 0.000 claims 1
- 239000000758 substrate Substances 0.000 abstract description 38
- 238000000034 method Methods 0.000 abstract description 19
- 230000004907 flux Effects 0.000 abstract 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 16
- 230000002950 deficient Effects 0.000 description 14
- 238000005259 measurement Methods 0.000 description 10
- 239000010949 copper Substances 0.000 description 8
- 229910000679 solder Inorganic materials 0.000 description 7
- 230000007547 defect Effects 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 4
- 229920001187 thermosetting polymer Polymers 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- -1 amino, vinyl Chemical group 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 230000032798 delamination Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- GQHTUMJGOHRCHB-UHFFFAOYSA-N 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepine Chemical compound C1CCCCN2CCCN=C21 GQHTUMJGOHRCHB-UHFFFAOYSA-N 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000002518 antifoaming agent Substances 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000000806 elastomer Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- ZWLPBLYKEWSWPD-UHFFFAOYSA-N o-toluic acid Chemical compound CC1=CC=CC=C1C(O)=O ZWLPBLYKEWSWPD-UHFFFAOYSA-N 0.000 description 2
- 239000006254 rheological additive Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- XQUPVDVFXZDTLT-UHFFFAOYSA-N 1-[4-[[4-(2,5-dioxopyrrol-1-yl)phenyl]methyl]phenyl]pyrrole-2,5-dione Chemical class O=C1C=CC(=O)N1C(C=C1)=CC=C1CC1=CC=C(N2C(C=CC2=O)=O)C=C1 XQUPVDVFXZDTLT-UHFFFAOYSA-N 0.000 description 1
- VIYWVRIBDZTTMH-UHFFFAOYSA-N 2-[4-[2-[4-[2-(2-methylprop-2-enoyloxy)ethoxy]phenyl]propan-2-yl]phenoxy]ethyl 2-methylprop-2-enoate Chemical compound C1=CC(OCCOC(=O)C(=C)C)=CC=C1C(C)(C)C1=CC=C(OCCOC(=O)C(C)=C)C=C1 VIYWVRIBDZTTMH-UHFFFAOYSA-N 0.000 description 1
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical group C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000003254 anti-foaming effect Effects 0.000 description 1
- QUZSUMLPWDHKCJ-UHFFFAOYSA-N bisphenol A dimethacrylate Chemical class C1=CC(OC(=O)C(=C)C)=CC=C1C(C)(C)C1=CC=C(OC(=O)C(C)=C)C=C1 QUZSUMLPWDHKCJ-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000004643 cyanate ester Chemical class 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- OTRIMLCPYJAPPD-UHFFFAOYSA-N methanol prop-2-enoic acid Chemical compound OC.OC.OC(=O)C=C.OC(=O)C=C OTRIMLCPYJAPPD-UHFFFAOYSA-N 0.000 description 1
- 229920006287 phenoxy resin Polymers 0.000 description 1
- 239000013034 phenoxy resin Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 238000011417 postcuring Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- PXQLVRUNWNTZOS-UHFFFAOYSA-N sulfanyl Chemical class [SH] PXQLVRUNWNTZOS-UHFFFAOYSA-N 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32225—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73201—Location after the connecting process on the same surface
- H01L2224/73203—Bump and layer connectors
- H01L2224/73204—Bump and layer connectors the bump connector being embedded into the layer connector
Landscapes
- Polymerisation Methods In General (AREA)
- Polymerization Catalysts (AREA)
- Graft Or Block Polymers (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
- Wire Bonding (AREA)
Abstract
【課題】半導体チップを基板に実装する方法において、先供給型プロセスで用いることができ、接続安定性を改善した樹脂組成物の提供。【解決手段】(A)2官能以上の(メタ)アクリレート(B)無水マレイン酸変性ポリブタジエン(C)有機過酸化物(D)シリカフィラー(E)シランカップリング剤(F)フラックス剤として式1,2の化合物を前記A〜Fの合計に対し0.2〜2.2質量%含み、式1,2の化合物のモル比が1:0.3〜1:3.1である樹脂組成物。【選択図】なしIn a method of mounting a semiconductor chip on a substrate, a resin composition that can be used in a pre-feed type process and has improved connection stability is provided. (A) Bifunctional or higher functional (meth) acrylate (B) Maleic anhydride modified polybutadiene (C) Organic peroxide (D) Silica filler (E) Silane coupling agent (F) Formula 1 as a flux agent , 2 compound containing 0.2 to 2.2% by mass with respect to the total of A to F, and the molar ratio of the compounds of formulas 1 and 2 is 1: 0.3 to 1: 3.1. . [Selection figure] None
Description
本発明は、樹脂組成物、先供給型半導体封止剤、半導体封止用フィルムおよび半導体装置に関する。 The present invention relates to a resin composition, a pre-feed type semiconductor sealing agent, a semiconductor sealing film, and a semiconductor device.
半導体チップ(半導体素子)を基板(またはパッケージ)に実装する手法の一つにフリップチップ実装がある。フリップチップ実装は、半導体チップと基板とをバンプを用いて電気的に接続する技術である。バンプの周辺を補強するため、半導体チップと基板の間には樹脂組成物(いわゆるアンダーフィル剤)が充填される。フリップチップ実装においては、従来、半導体チップと基板とを接続した後、半導体チップと基板との間隙(ギャップ)に樹脂組成物を充填させるプロセス(以下「後供給型」プロセスという)が広く用いられている。 One technique for mounting a semiconductor chip (semiconductor element) on a substrate (or package) is flip chip mounting. Flip chip mounting is a technique for electrically connecting a semiconductor chip and a substrate using bumps. In order to reinforce the periphery of the bump, a resin composition (so-called underfill agent) is filled between the semiconductor chip and the substrate. In flip chip mounting, conventionally, a process of connecting a semiconductor chip and a substrate and then filling a resin composition into a gap between the semiconductor chip and the substrate (hereinafter referred to as a “post-feed type” process) has been widely used. ing.
製品の小型化や高信頼性化の要求から、ギャップをより狭くすることが求められている。狭ギャップ化を実現するため、銅ピラーを用いたフリップチップ実装が開発されている。しかし、後供給型プロセスでは狭ギャップ化への対応に問題があった。これに対し、近年、基板上に樹脂組成物を塗布し、その上から半導体チップを載せ、その後、樹脂組成物の硬化および半導体チップと基板との接続を行うプロセス(以下「先供給型」プロセスという)が開発されている。先供給型プロセス用の樹脂組成物には、狭いギャップへの対応から低粘性であること等、後供給型プロセス用の樹脂組成物とは異なる特性が求められる。例えば特許文献1は、先供給型プロセスで用いられる熱硬化性液状封止樹脂組成物を開示している。 In order to reduce the size and reliability of products, it is required to narrow the gap. In order to realize a narrow gap, flip chip mounting using a copper pillar has been developed. However, the post-feed type process has a problem in dealing with the narrowing of the gap. On the other hand, in recent years, a process of applying a resin composition on a substrate, placing a semiconductor chip thereon, and then curing the resin composition and connecting the semiconductor chip and the substrate (hereinafter referred to as “first supply type” process). Has been developed. The resin composition for the pre-feed type process is required to have characteristics different from those of the resin composition for the post-feed type process, such as low viscosity due to the narrow gap. For example, Patent Document 1 discloses a thermosetting liquid sealing resin composition used in a pre-feed process.
先供給型プロセスで用いられる樹脂組成物に要求される特性は厳しくなっている。要求される特性の一つに、接続安定性がある。 The properties required for the resin composition used in the pre-feed type process are becoming strict. One of the required characteristics is connection stability.
本発明は、先供給型プロセスで用いることができ、接続安定性を改善した樹脂組成物を提供する。 The present invention provides a resin composition that can be used in a pre-feed process and has improved connection stability.
本発明は、(A)2官能以上の(メタ)アクリレートと、(B)無水マレイン酸変性したポリブタジエンと、(C)有機過酸化物と、(D)シリカフィラーと、(E)シランカップリング剤と、(F)フラックス剤として式(1)の化合物f1および式(2)の化合物f2(o−フタル酸)とを含み、前記(A)〜(F)の合計に対し前記(F)が0.2〜2.2質量%含まれ、前記f1と前記f2とのモル比が、1:0.3〜1:3.1であることを特徴とする樹脂組成物を提供する。
前記(E)が、式(3)および式(4)の化合物の少なくとも1つを含んでもよい。
前記(A)が、式(5)および式(6)の化合物の少なくとも1つを含んでもよい(ただしR1およびR2は、それぞれ水素原子またはメチル基である)。
また、本発明は、上記の樹脂組成物を含む先供給型半導体封止剤を提供する。 Moreover, this invention provides the pre-feed type semiconductor sealing agent containing said resin composition.
さらに、本発明は、上記の樹脂組成物を含む半導体封止用フィルムを提供する。 Furthermore, this invention provides the film for semiconductor sealing containing said resin composition.
さらに、本発明は、上記の先供給型半導体封止剤または上記の半導体封止用フィルムを用いて封止された半導体素子を有する半導体装置を提供する。 Furthermore, this invention provides the semiconductor device which has a semiconductor element sealed using said pre-feed type semiconductor sealing agent or said film for semiconductor sealing.
本発明によれば、先供給型プロセスで用いることができ、接続安定性を改善した樹脂組成物を得ることができる。 ADVANTAGE OF THE INVENTION According to this invention, the resin composition which can be used with a pre-feed type process and improved connection stability can be obtained.
本発明の樹脂組成物は、(A)2官能以上の(メタ)アクリレートと、(B)無水マレイン酸変性したポリブタジエンと、(C)有機過酸化物と、(D)シリカフィラーと、(E)シランカップリング剤と、(F)フラックス剤として式(1)の化合物f1(1,8−ジアザビシクロ(5.4.0)ウンデセン−7)と、式(2)の化合物f2とを含む。樹脂組成物は、室温で液状であることが好ましい。
(A)成分は、2つ以上の官能基を有するアクリレートまたはメタクリレートである。(A)成分としては、例えば、EO変性ビスフェノールAジメタクリレート(2.2 Bis〔4-(Methacryloxy Ethoxy)Phenyl〕Propane、式(5))およびトリシクロデカンジメタノールジアクリレート(Tricylodecane dimethanol Diacrylate、式(6))が用いられる。
なお、「EO変性」とはエチレンオキシドユニット(−CH2−CH2−O−)のブロック構造を有することを意味する。ここで、R1およびR2は、それぞれ水素原子(H)またはメチル基(CH3)である。また、m+n=2.3〜4.0であることが好ましい。ここで例示した化合物は単独で用いられてもよいし、2つ以上のものが混合して用いられてもよい。(A)成分は、(A)〜(F)成分の合計に対し25〜40質量%含まれることが好ましく、29〜36質量%含まれることがより好ましい。(A)成分として式(5)の化合物および式(6)の化合物を用いた場合、式(5)の化合物は10〜15質量%含まれることが好ましく、式(6)の化合物は15〜25質量%含まれることが好ましい。 “EO-modified” means having an ethylene oxide unit (—CH 2 —CH 2 —O—) block structure. Here, R 1 and R 2 are each a hydrogen atom (H) or a methyl group (CH 3 ). Moreover, it is preferable that it is m + n = 2.3-4.0. The compounds exemplified here may be used alone or in combination of two or more. (A) It is preferable that 25-40 mass% is contained with respect to the sum total of (A)-(F) component, and it is more preferable that 29-36 mass% is contained. When the compound of formula (5) and the compound of formula (6) are used as the component (A), the compound of formula (5) is preferably contained in an amount of 10 to 15% by mass, and the compound of formula (6) is 15 to It is preferable that 25 mass% is contained.
(B)成分は、(A)〜(F)成分の合計に対し1〜10質量%含まれることが好ましく、3〜5質量%含まれることがより好ましい。 (B) It is preferable that 1-10 mass% is contained with respect to the sum total of (A)-(F) component, and it is more preferable that 3-5 mass% is contained.
(C)成分としては、例えば式(7)または式(8)の化合物が用いられる。(C)成分は、(A)〜(F)成分の合計に対し0.1〜0.6質量%含まれることが好ましい。樹脂組成物において、ここで例示した化合物は単独で用いられてもよいし、2つ以上のものが混合して用いられてもよい。
(D)成分は、(A)〜(F)成分の合計に対し50〜70質量%含まれることが好ましい。 (D) It is preferable that 50-70 mass% of component is contained with respect to the sum total of (A)-(F) component.
(E)成分としては、エポキシ系、アミノ系、ビニル系、メタクリル系、アクリル系、メルカプト系、グリシドキシ系等の各種シランカップリング剤が挙げられる。この中でも、式(3)および式(4)の化合物が好ましい。樹脂組成物において、ここで例示した化合物は単独で用いられてもよいし、2つ以上のものが混合して用いられてもよい。(E)成分は、(A)〜(F)成分の合計に対し0.1〜0.5質量%含まれることが好ましい。
(F)成分は、(A)〜(F)成分の合計に対し0.2〜2.2質量%含まれることが好ましい。また、化合物f1および化合物f2はモル比で1:0.3〜1:5の範囲にあることが好ましく、1:0.3〜1:3.1の範囲にあることがより好ましい。 (F) It is preferable that 0.2-2.2 mass% of component is contained with respect to the sum total of (A)-(F) component. Moreover, it is preferable that the compound f1 and the compound f2 are in the range of 1: 0.3-1: 5 by molar ratio, and it is more preferable that it exists in the range of 1: 0.3-1: 3.1.
樹脂組成物は、上記の(A)〜(F)成分に加えて、(G)添加剤を含んでいてもよい。添加剤としては、例えば、その他(メタ)アクリレート化合物、エポキシ化合物、ビスマレイミド化合物、シアネートエステル化合物などの熱硬化性成分、熱硬化性成分の硬化剤や硬化促進剤、レオロジー調整剤、分散剤、沈降防止剤、消泡剤、着色剤、表面調整剤、エラストマー類、フェノキシ樹脂、ポリエステル樹脂、溶剤可溶性ポリイミド樹脂などの熱可塑性樹脂が挙げられる。硬化剤および硬化促進剤は、熱硬化成分の硬化および促進に用いられる。レオロジー調整剤は、塗布適性および流動適性の調整に用いられる。分散剤および沈降防止剤は、充填剤および着色剤の分散性向上および沈降防止のために用いられる。消泡剤は、消泡性の調整に用いられる。着色剤は、着色に用いられる。表面調整剤は、表面状態および濡れ性の調整に用いられる。エラストマー類は、弾性率および応力の調整に用いられる。固形樹脂は、粘度および靭性等の調整のために用いる。これらの添加剤は単独で用いられてもよいし、2つ以上のものが混合して用いられてもよい。 The resin composition may contain an additive (G) in addition to the components (A) to (F). Examples of additives include other (meth) acrylate compounds, epoxy compounds, bismaleimide compounds, cyanate ester compounds, and other thermosetting components, thermosetting component curing agents and curing accelerators, rheology modifiers, dispersants, Examples thereof include thermoplastic resins such as antisettling agents, antifoaming agents, colorants, surface conditioners, elastomers, phenoxy resins, polyester resins, and solvent-soluble polyimide resins. Curing agents and curing accelerators are used to cure and accelerate the thermosetting component. The rheology modifier is used to adjust coating suitability and flow suitability. The dispersant and the anti-settling agent are used for improving the dispersibility of the filler and the colorant and preventing the settling. An antifoaming agent is used for adjustment of antifoaming property. The colorant is used for coloring. The surface conditioner is used for adjusting the surface condition and wettability. Elastomers are used for adjustment of elastic modulus and stress. The solid resin is used for adjusting viscosity and toughness. These additives may be used alone or in combination of two or more.
この樹脂組成物は、例えば、原料を、所定の配合で、ライカイ機、ポットミル、三本ロールミル、回転式混合機、二軸ミキサー等の混合機に投入し、混合することにより製造される。なお、樹脂組成物は、これ以外の方法により製造されてもよい。 This resin composition is produced, for example, by putting raw materials in a predetermined blend into a mixer such as a likai machine, a pot mill, a three-roll mill, a rotary mixer, a twin screw mixer, and the like. In addition, the resin composition may be manufactured by other methods.
この樹脂組成物は、例えば、半導体素子等の電子デバイスの封止、特に、いわゆる先供給型(pre-applied)プロセスにおける電子デバイスの封止に用いられる。先供給型プロセスとは、まず、基板に封止剤を塗布し、その上に半導体素子を載せた後、封止剤の硬化と、半導体素子と基板の接続とを行うプロセスをいう。 This resin composition is used, for example, for sealing electronic devices such as semiconductor elements, in particular for sealing electronic devices in so-called pre-applied processes. The pre-feed process refers to a process in which a sealing agent is first applied to a substrate, a semiconductor element is placed thereon, and then the sealing agent is cured and the semiconductor element and the substrate are connected.
図1は、本実施形態に係る樹脂組成物を用いて封止された半導体素子を有する半導体装置10を例示する図である。半導体装置10は、半導体チップ1と、基板2とを有する。半導体チップ1および基板2には、それぞれ、銅ピラー3が設けられている。半導体チップ1と基板2とを接続するため、はんだ4が用いられる。まず基板2上に、樹脂組成物5が例えばディスペンサーを用いて塗布される。例えばフリップチップボンダーを用いて、半導体チップ1と基板2とが位置合わせさせる。その後、はんだ4の融点以上の温度に加熱しつつ、所定の荷重で半導体チップ1を基板2に押し付ける。こうして、半導体チップ1と基板2とを接続するとともに、軟化した樹脂組成物によりギャップが充填される。なお、図1の構成はあくまで一例であり、本実施形態に係る半導体装置の構成はこれに限定されるものではない。 FIG. 1 is a diagram illustrating a semiconductor device 10 having a semiconductor element sealed with a resin composition according to this embodiment. The semiconductor device 10 includes a semiconductor chip 1 and a substrate 2. Each of the semiconductor chip 1 and the substrate 2 is provided with a copper pillar 3. Solder 4 is used to connect the semiconductor chip 1 and the substrate 2. First, the resin composition 5 is applied onto the substrate 2 using, for example, a dispenser. For example, the semiconductor chip 1 and the substrate 2 are aligned using a flip chip bonder. Thereafter, the semiconductor chip 1 is pressed against the substrate 2 with a predetermined load while being heated to a temperature equal to or higher than the melting point of the solder 4. In this way, the semiconductor chip 1 and the substrate 2 are connected, and the gap is filled with the softened resin composition. 1 is merely an example, and the configuration of the semiconductor device according to the present embodiment is not limited to this.
別の例で、この樹脂組成物は、フィルム状に成形されてもよい。この場合、半導体チップの実装においては、液状の樹脂組成物の代わりにこのフィルムが用いられる。すなわち、まず、基板上に樹脂組成物を含むフィルムを貼り付ける。次に、フリップチップボンダーを用いてはんだの融点以上の温度に加熱しつつ、所定の荷重で半導体チップを基板に押し付ける。 In another example, the resin composition may be formed into a film. In this case, this film is used in place of the liquid resin composition in mounting the semiconductor chip. That is, first, a film containing a resin composition is attached on a substrate. Next, the semiconductor chip is pressed against the substrate with a predetermined load while heating to a temperature equal to or higher than the melting point of the solder using a flip chip bonder.
(1)樹脂組成物の調整
表1および2は、実施例1〜8および比較例1〜7の樹脂組成物の組成、および後述する評価の結果を示す。表1および2において、樹脂組成物の組成は質量部で表されている。
(1) Adjustment of resin composition Tables 1 and 2 show the compositions of the resin compositions of Examples 1 to 8 and Comparative Examples 1 to 7, and the results of evaluation described later. In Tables 1 and 2, the composition of the resin composition is expressed in parts by mass.
(A)成分としては、(メタ)アクリレートa1(式(6)の化合物)およびa2(式(5)の化合物)が用いられた。(メタ)アクリレートa1としては、共栄社化学株式会社製のDCP−Aが用いられた。(メタ)アクリレートa2としては、共栄社化学株式会社製のBP−2EMKが用いられた。(B)成分としては、Cray Valley社製のRicon130MA13が用いられた。(C)成分としては、有機過酸化物c1(式(7)の化合物)およびc2(式(8)の化合物)が用いられた。有機過酸化物c1としては、日油株式会社製のパークミル(登録商標)Dが用いられた。有機過酸化物c2としては、日油株式会社製のパーブチル(登録商標)Pが用いられた。(D)成分としては、アドマテックス株式会社製のSOE2が用いられた。(E)成分としてはシランカップリング剤e1(式(3)の化合物)およびe2(式(4)の化合物)が用いられた。シランカップリング剤e1としては、信越化学工業株式会社製のKBM403が用いられた。シランカップリング剤e2としては、信越化学工業株式会社製のKBM503が用いられた。(F)成分の化合物f1としては、サンアプロ株式会社製のDBUが用いられた。化合物f2としては、東京化成工業株式会社製のo−フタル酸が用いられた。一部の比較例においては、化合物f2に代わり東京化成工業株式会社製のo−トルイル酸が用いられた。 As the component (A), (meth) acrylate a1 (compound of formula (6)) and a2 (compound of formula (5)) were used. As (meth) acrylate a1, DCP-A manufactured by Kyoeisha Chemical Co., Ltd. was used. As (meth) acrylate a2, BP-2EMK manufactured by Kyoeisha Chemical Co., Ltd. was used. As the component (B), Ricon130MA13 manufactured by Cray Valley was used. As the component (C), organic peroxides c1 (compound of formula (7)) and c2 (compound of formula (8)) were used. As the organic peroxide c1, Park Mill (registered trademark) D manufactured by NOF Corporation was used. As the organic peroxide c2, Perbutyl (registered trademark) P manufactured by NOF Corporation was used. As component (D), SOE2 manufactured by Admatechs Co., Ltd. was used. As component (E), silane coupling agents e1 (compound of formula (3)) and e2 (compound of formula (4)) were used. As the silane coupling agent e1, KBM403 manufactured by Shin-Etsu Chemical Co., Ltd. was used. As the silane coupling agent e2, KBM503 manufactured by Shin-Etsu Chemical Co., Ltd. was used. (F) As the compound f1 of the component, DBU manufactured by San Apro Co., Ltd. was used. As the compound f2, o-phthalic acid manufactured by Tokyo Chemical Industry Co., Ltd. was used. In some comparative examples, o-toluic acid manufactured by Tokyo Chemical Industry Co., Ltd. was used instead of compound f2.
(2)実装試験
実施例1〜8および比較例1〜7に対し、実装試験を行った。試験に用いた試料は、所定の形状の半導体チップを所定の形状の基板に実装することにより作製した。基板としては、電極材料としてCu用い、Cu電極をNiでめっきし、さらにAuでめっきしたもの(以下Ni/Au基板という)、およびCuを用い表面をOSP(Organic Solderability Preservative)処理したもの(以下Cu/OSP基板という)の2種類を採用した。図2は、試料の作成に用いた基板および半導体チップの概形を示している。実装には、パナソニックファクトリーソリューションズ株式会社製のフリップチップボンダーFCB3を用いた。実装の条件は以下のとおりである。まず、基板を125℃で30分、ベークした。ベーク後、基板をステージ上に載せ、ディスペンサーで基板上に樹脂組成物を塗布した。樹脂組成物の塗布後、基板を温度70℃のステージに移し、半導体チップを基板に載せると同時に図3の温度プロファイルに従って樹脂組成物の硬化および半導体チップと基板の接合を行った。荷重は15Nであった。接合後、後硬化として、165℃で60分熱処理した。
(2) Mounting test A mounting test was performed on Examples 1 to 8 and Comparative Examples 1 to 7. The sample used for the test was prepared by mounting a semiconductor chip having a predetermined shape on a substrate having a predetermined shape. As a substrate, Cu is used as an electrode material, a Cu electrode is plated with Ni, and further plated with Au (hereinafter referred to as a Ni / Au substrate), and a surface is treated with OSP (Organic Solderability Preservative) using Cu (hereinafter referred to as “Ni”). Two types of Cu / OSP substrates) were adopted. FIG. 2 shows an outline of the substrate and the semiconductor chip used for preparing the sample. Flip chip bonder FCB3 manufactured by Panasonic Factory Solutions Co., Ltd. was used for mounting. The implementation conditions are as follows. First, the substrate was baked at 125 ° C. for 30 minutes. After baking, the substrate was placed on the stage, and the resin composition was applied onto the substrate with a dispenser. After the application of the resin composition, the substrate was moved to a stage at a temperature of 70 ° C., and the semiconductor chip was placed on the substrate. At the same time, the resin composition was cured and the semiconductor chip and the substrate were bonded according to the temperature profile of FIG. The load was 15N. After bonding, heat treatment was performed at 165 ° C. for 60 minutes as post-curing.
上記のように作製した試料について、超音波画像観察、顕微鏡観察、および抵抗値測定により評価した。超音波画像観察は、超音波映像装置(Scanning Acoustic Tomography、SAT)により得られた画像を用いて行った。7つの試料を観察し、半導体チップの下に樹脂組成物が全面に充填されているか、およびボイドが発生しているか、という点を確認した。樹脂組成物が全面に充填されていないもの、およびボイドが確認されたものを不良品と判断した。顕微鏡観察については、試料の半導体チップ部分を研磨により除去した後で、開口部を顕微鏡で観察した。開口部にボイドが確認されたものを不良品と判断した。抵抗値測定については、試料の抵抗値測定パッドを用いて抵抗値を測定した。7つの試料を測定し、28〜32Ωの抵抗値を示したものを良品と判断し、この範囲外の抵抗値を示したものを不良品と判断した。なお、28〜32Ωの抵抗値を示したものを良品と判断した理由は以下のとおりである。抵抗値が28〜32Ωの試料の断面を観察したところ、はんだと基板電極との間に合金層の成長が見られ良好な接合状態が確認された。27Ω以下では基板電極間ではんだの接触が見られる場合があった。また33Ω以上では、合金層の成長がみられない、またははんだの濡れ広がりが見られない試料が確認された。 The sample prepared as described above was evaluated by ultrasonic image observation, microscopic observation, and resistance value measurement. Ultrasonic image observation was performed using an image obtained by an ultrasonic imaging device (Scanning Acoustic Tomography, SAT). Seven samples were observed, and it was confirmed whether the resin composition was filled on the entire surface under the semiconductor chip and whether voids were generated. Those in which the resin composition was not filled over the entire surface and those in which voids were confirmed were judged as defective products. For microscopic observation, the semiconductor chip portion of the sample was removed by polishing, and then the opening was observed with a microscope. Those in which voids were confirmed in the opening were judged as defective. About resistance value measurement, resistance value was measured using the resistance value measurement pad of the sample. Seven samples were measured, and those showing resistance values of 28 to 32Ω were judged as good products, and those showing resistance values outside this range were judged as defective products. The reason why a resistance value of 28 to 32Ω was judged as a non-defective product is as follows. When a cross section of a sample having a resistance value of 28 to 32Ω was observed, growth of an alloy layer was observed between the solder and the substrate electrode, and a good bonding state was confirmed. If it is 27Ω or less, contact of solder may be observed between the substrate electrodes. When the resistance was 33Ω or more, a sample in which no growth of the alloy layer was observed or no solder spread was observed was confirmed.
(3)吸湿リフロー試験
実施例1〜8および比較例1〜7に対し、吸湿リフロー試験を行った。実装性の評価に用いた試料のうち5つ(半導体チップを研磨していないもの)の試料を、温度30℃、相対湿度60%の恒温恒湿槽に入れ、192時間、吸湿させた。吸湿後、最高温度260℃のリフロー炉に、試料を3回繰り返して通過させた後で、超音波画像観察を行った。超音波画像観察においてデラミネーション(樹脂組成物の剥がれ)が起きていたものを不良品と判断した。また、超音波画像観察に加え、抵抗値測定を行った。抵抗値測定においては、実装性の評価における抵抗値測定と同様、28〜32Ωの抵抗値を示したものを良品と判断し、この範囲外の抵抗値を示したものを不良品と判断した。
(3) Hygroscopic reflow test A hygroscopic reflow test was performed on Examples 1-8 and Comparative Examples 1-7. Of the samples used for the evaluation of mountability, five samples (those without polishing the semiconductor chip) were placed in a constant temperature and humidity chamber with a temperature of 30 ° C. and a relative humidity of 60%, and were allowed to absorb moisture for 192 hours. After moisture absorption, the sample was repeatedly passed through a reflow furnace having a maximum temperature of 260 ° C. three times, and then ultrasonic image observation was performed. In the ultrasonic image observation, delamination (resin composition peeling) was judged as a defective product. In addition to ultrasonic image observation, resistance value measurement was performed. In the resistance value measurement, similarly to the resistance value measurement in the evaluation of mountability, those showing a resistance value of 28 to 32Ω were judged as non-defective products, and those showing resistance values outside this range were judged as defective products.
なお表1および2において、「SAT」、「平面研磨」、および「導通性」という項目は、それぞれ、超音波画像観察、顕微鏡観察、および抵抗値測定の結果を示している。評価結果は、(不良品数)/(測定数)で示されている。 In Tables 1 and 2, the items “SAT”, “planar polishing”, and “conductivity” indicate the results of ultrasonic image observation, microscopic observation, and resistance value measurement, respectively. The evaluation result is indicated by (number of defective products) / (number of measurements).
図4は、超音波画像観察の結果を例示する図である。図4(A)は良品の例を、図4(B)は不良品の例を、それぞれ示している。図4(B)の例では、チップの右上部および右下部にデラミネーションが発生している。 FIG. 4 is a diagram illustrating the result of ultrasonic image observation. 4A shows an example of a non-defective product, and FIG. 4B shows an example of a defective product. In the example of FIG. 4B, delamination occurs in the upper right part and lower right part of the chip.
図5は、開口部の顕微鏡観察の結果を示す模式図である。図5(A)は良品の例を、図5(B)は不良品の例を、それぞれ示している。図5(B)の例では、一部のバンプの近傍にボイドが発生している。 FIG. 5 is a schematic diagram showing the result of microscopic observation of the opening. FIG. 5A shows an example of a non-defective product, and FIG. 5B shows an example of a defective product. In the example of FIG. 5B, voids are generated near some of the bumps.
(4)ヒートサイクル試験
実施例1〜8および比較例1〜7に対し、ヒートサイクル試験を行った。吸湿リフロー試験に使用した試料を、気槽ヒートサイクル試験機において試験した。試験条件は、高温125℃、低温−55℃に各30分さらすものであった。500サイクル毎に試料を取り出し、超音波画像観察および抵抗値測定を行った。超音波画像観察においてデラミネーションが起きていたものを不良品と判断した。また、抵抗値測定においては、28〜32Ωの抵抗値を示したものを良品と判断し、この範囲外の抵抗値を示したものを不良品と判断した。
(4) Heat cycle test The heat cycle test was done with respect to Examples 1-8 and Comparative Examples 1-7. The sample used for the moisture absorption reflow test was tested in an air tank heat cycle tester. The test conditions were to expose to a high temperature of 125 ° C. and a low temperature of −55 ° C. for 30 minutes each. Samples were taken out every 500 cycles, and ultrasonic image observation and resistance measurement were performed. A product that had undergone delamination in ultrasonic image observation was judged as a defective product. Moreover, in resistance value measurement, what showed the resistance value of 28-32 (ohm) was judged to be a non-defective product, and what showed the resistance value out of this range was judged to be inferior goods.
(5)評価結果
実施例1〜3および比較例1〜2は、(C)成分として有機過酸化物c2を用い、(E)成分としてシランカップリング剤e1を用いた例を示している。これらの例において、(F)成分の含有量が異なっている。(F)成分の含有量が0.1質量%である例(比較例1)においては、Cu/OSP基板を用いた場合のヒートサイクル試験において、1500サイクル以上で抵抗値の不良が発生した。(F)成分の含有量が2.3質量%である例(比較例2)においては、実装試験の超音波画像観察および開口部の顕微鏡観察において不良が発生した。これに対し、実施例1〜3ではいずれの基板を用いても、ヒートサイクル試験において不良は発生しなかった。 Examples 1 to 3 and Comparative Examples 1 to 2 show examples in which an organic peroxide c2 is used as the component (C) and a silane coupling agent e1 is used as the component (E). In these examples, the content of the component (F) is different. In the example (Comparative Example 1) in which the content of the component (F) is 0.1% by mass, in a heat cycle test using a Cu / OSP substrate, a resistance value failure occurred in 1500 cycles or more. In the example (Comparative Example 2) in which the content of the component (F) is 2.3% by mass, defects occurred in the ultrasonic image observation of the mounting test and the microscopic observation of the opening. On the other hand, in Examples 1 to 3, no defect occurred in the heat cycle test using any substrate.
実施例4は、(C)成分として有機過酸化物c1を用いた例である。実施例5は、(E)成分としてシランカップリング剤e2を用いた例である。実施例6は、(E)成分としてシランカップリング剤e1およびe2を併用した例である。これらの試料においては、いずれの基板を用いても、ヒートサイクル試験において不良は発生しなかった。 Example 4 is an example using the organic peroxide c1 as the component (C). Example 5 is an example using a silane coupling agent e2 as the component (E). Example 6 is an example in which silane coupling agents e1 and e2 are used in combination as the component (E). In these samples, no defect occurred in the heat cycle test using any substrate.
実施例7〜8および比較例3〜4は、実施例1に対し、化合物f1と化合物f2のモル比を異ならせた例である。モル比が1.00:0.11である例(比較例3)および1.00:5.74である例(比較例4)においては、実装試験の超音波画像観察および開口部の顕微鏡観察において不良が発生した。これに対し、比較例1および7〜8ではいずれの基板を用いても、ヒートサイクル試験において不良は発生しなかった。 Examples 7 to 8 and Comparative Examples 3 to 4 are examples in which the molar ratio of compound f1 and compound f2 was different from that of Example 1. In the example where the molar ratio is 1.00: 0.11 (Comparative Example 3) and the example where the molar ratio is 1.00: 5.74 (Comparative Example 4), ultrasonic image observation of the mounting test and microscopic observation of the opening are performed. A defect occurred. On the other hand, in Comparative Examples 1 and 7 to 8, no defect occurred in the heat cycle test using any substrate.
比較例5は化合物f2を用いなかった例であり、比較例6は化合物f1を用いなかった例である。また、比較例7は、化合物f2に代わりo−トルイル酸を用いた例である。これらの例では、実装試験において不良が発生した。特に比較例6では樹脂組成物がゲル化してしまい評価をすることができなかった。 Comparative Example 5 is an example in which compound f2 was not used, and Comparative Example 6 was an example in which compound f1 was not used. Comparative Example 7 is an example in which o-toluic acid was used instead of compound f2. In these examples, defects occurred in the mounting test. In particular, in Comparative Example 6, the resin composition was gelled and could not be evaluated.
1…半導体チップ、2…基板、3…銅ピラー、4…はんだ、5…樹脂組成物 DESCRIPTION OF SYMBOLS 1 ... Semiconductor chip, 2 ... Board | substrate, 3 ... Copper pillar, 4 ... Solder, 5 ... Resin composition
Claims (6)
(B)無水マレイン酸変性したポリブタジエンと、
(C)有機過酸化物と、
(D)シリカフィラーと、
(E)シランカップリング剤と、
(F)フラックス剤として式(1)の化合物f1および式(2)の化合物f2と
前記(A)〜(F)の合計に対し前記(F)が0.2〜2.2質量%含まれ、
前記f1と前記f2とのモル比が、1:0.3〜1:3.1である
ことを特徴とする樹脂組成物。 (A) a bifunctional or higher functional (meth) acrylate;
(B) maleic anhydride-modified polybutadiene,
(C) an organic peroxide;
(D) a silica filler;
(E) a silane coupling agent;
(F) Compound f1 of formula (1) and compound f2 of formula (2) as fluxing agents
(F) is included in an amount of 0.2 to 2.2% by mass based on the total of (A) to (F),
The resin composition, wherein a molar ratio between the f1 and the f2 is 1: 0.3 to 1: 3.1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014041988A JP6340212B2 (en) | 2014-03-04 | 2014-03-04 | Resin composition, pre-feed type semiconductor sealing agent, film for semiconductor sealing, and semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014041988A JP6340212B2 (en) | 2014-03-04 | 2014-03-04 | Resin composition, pre-feed type semiconductor sealing agent, film for semiconductor sealing, and semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015168691A true JP2015168691A (en) | 2015-09-28 |
JP6340212B2 JP6340212B2 (en) | 2018-06-06 |
Family
ID=54201745
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014041988A Active JP6340212B2 (en) | 2014-03-04 | 2014-03-04 | Resin composition, pre-feed type semiconductor sealing agent, film for semiconductor sealing, and semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6340212B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016056619A1 (en) * | 2014-10-10 | 2016-04-14 | ナミックス株式会社 | Thermosetting resin composition and manufacturing method therefor |
JP2017179109A (en) * | 2016-03-30 | 2017-10-05 | ナミックス株式会社 | Film-like semiconductor encapsulation agent |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10176036A (en) * | 1996-12-19 | 1998-06-30 | Shin Etsu Chem Co Ltd | Epoxy resin composition and semiconductor device |
JP2002363218A (en) * | 2001-06-07 | 2002-12-18 | Hitachi Chem Co Ltd | Resin paste composition and semiconductor device using the same |
JP2009096886A (en) * | 2007-10-17 | 2009-05-07 | Hitachi Chem Co Ltd | Liquid encapsulating resin composition and method for manufacturing semiconductor device using the same |
JP2010202687A (en) * | 2009-02-27 | 2010-09-16 | Sumitomo Bakelite Co Ltd | Resin composition, and semiconductor device produced by using the same |
WO2012105550A1 (en) * | 2011-01-31 | 2012-08-09 | 住友ベークライト株式会社 | Resin composition and semiconductor device |
JP2012236873A (en) * | 2011-05-10 | 2012-12-06 | Hitachi Chemical Co Ltd | Resin paste composition and semiconductor device |
JP2014033197A (en) * | 2012-07-13 | 2014-02-20 | Panasonic Corp | Method for manufacturing semiconductor device and acrylic resin composition for semiconductor sealing used for the same |
-
2014
- 2014-03-04 JP JP2014041988A patent/JP6340212B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10176036A (en) * | 1996-12-19 | 1998-06-30 | Shin Etsu Chem Co Ltd | Epoxy resin composition and semiconductor device |
JP2002363218A (en) * | 2001-06-07 | 2002-12-18 | Hitachi Chem Co Ltd | Resin paste composition and semiconductor device using the same |
JP2009096886A (en) * | 2007-10-17 | 2009-05-07 | Hitachi Chem Co Ltd | Liquid encapsulating resin composition and method for manufacturing semiconductor device using the same |
JP2010202687A (en) * | 2009-02-27 | 2010-09-16 | Sumitomo Bakelite Co Ltd | Resin composition, and semiconductor device produced by using the same |
WO2012105550A1 (en) * | 2011-01-31 | 2012-08-09 | 住友ベークライト株式会社 | Resin composition and semiconductor device |
JP2012236873A (en) * | 2011-05-10 | 2012-12-06 | Hitachi Chemical Co Ltd | Resin paste composition and semiconductor device |
JP2014033197A (en) * | 2012-07-13 | 2014-02-20 | Panasonic Corp | Method for manufacturing semiconductor device and acrylic resin composition for semiconductor sealing used for the same |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016056619A1 (en) * | 2014-10-10 | 2016-04-14 | ナミックス株式会社 | Thermosetting resin composition and manufacturing method therefor |
JPWO2016056619A1 (en) * | 2014-10-10 | 2017-07-27 | ナミックス株式会社 | Thermosetting resin composition and method for producing the same |
US10388583B2 (en) | 2014-10-10 | 2019-08-20 | Namics Corporation | Thermosetting resin composition and method of producing same |
JP2017179109A (en) * | 2016-03-30 | 2017-10-05 | ナミックス株式会社 | Film-like semiconductor encapsulation agent |
Also Published As
Publication number | Publication date |
---|---|
JP6340212B2 (en) | 2018-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5598343B2 (en) | Liquid epoxy resin composition for semiconductor encapsulation and semiconductor device | |
TWI674633B (en) | Method for manufacturing flip chip mounted article, flip chip mounted article and resin composition for pre-applied underfill | |
JP6200732B2 (en) | Resin composition, pre-feed semiconductor encapsulant, and semiconductor device | |
JP5915727B2 (en) | Semiconductor device and manufacturing method thereof | |
CN105637031A (en) | Epoxy resin composition, semiconductor sealant and semiconductor device | |
WO2013125684A1 (en) | Semiconductor device and production method therefor | |
JP5449603B1 (en) | Pre-supplied semiconductor encapsulant and semiconductor device | |
CN117070169A (en) | Adhesive for semiconductor and method for producing the same, and semiconductor device and method for producing the same | |
JP6336788B2 (en) | Resin composition, pre-feed semiconductor encapsulant, semiconductor encapsulating film, and semiconductor device | |
JP6340212B2 (en) | Resin composition, pre-feed type semiconductor sealing agent, film for semiconductor sealing, and semiconductor device | |
TW202410369A (en) | Film-like adhesive for semiconductors, semiconductor device production method, and semiconductor device | |
JP2015078303A (en) | Resin composition, pre-supply-type semiconductor encapsulation agent and semiconductor device | |
TWI716541B (en) | Resin composition | |
JP6267980B2 (en) | Resin composition, pre-feed semiconductor encapsulant, and semiconductor device | |
JP7351437B2 (en) | Conductive resin compositions for die attach materials, high thermal conductivity materials, and semiconductor devices | |
TW202028391A (en) | Film-like adhesive agent for semiconductor, semiconductor device, and method for manufacturing same | |
JP5411774B2 (en) | Pre-feed type liquid semiconductor encapsulating resin composition | |
WO2017170873A1 (en) | Resin composition and semiconductor device | |
CN107793757A (en) | Semiconductor-sealing-purpose compositions of thermosetting resin | |
JP6207348B2 (en) | Resin composition, pre-feed semiconductor encapsulant, and semiconductor device | |
JP2016178104A (en) | Underfill material, method for manufacturing electronic component device, and electronic component device | |
JP6569225B2 (en) | Adhesive for semiconductor, method for manufacturing semiconductor device, and semiconductor device | |
JP2013253183A (en) | Prior supply type liquid semiconductor-encapsulating resin composition | |
JP5723665B2 (en) | Pre-feed type liquid semiconductor encapsulating resin composition | |
JP6482016B2 (en) | Encapsulant composition and semiconductor device using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170206 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20171127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171205 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180122 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180424 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180514 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6340212 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |