JP2015163410A - Welding method, welding inspection method, and sealed battery - Google Patents
Welding method, welding inspection method, and sealed battery Download PDFInfo
- Publication number
- JP2015163410A JP2015163410A JP2014089941A JP2014089941A JP2015163410A JP 2015163410 A JP2015163410 A JP 2015163410A JP 2014089941 A JP2014089941 A JP 2014089941A JP 2014089941 A JP2014089941 A JP 2014089941A JP 2015163410 A JP2015163410 A JP 2015163410A
- Authority
- JP
- Japan
- Prior art keywords
- welding
- metal plate
- voltage
- keyhole
- average value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003466 welding Methods 0.000 title claims abstract description 215
- 238000000034 method Methods 0.000 title claims abstract description 83
- 238000007689 inspection Methods 0.000 title claims description 8
- 229910052751 metal Inorganic materials 0.000 claims abstract description 35
- 239000002184 metal Substances 0.000 claims abstract description 35
- 238000002844 melting Methods 0.000 claims description 27
- 230000008018 melting Effects 0.000 claims description 27
- 239000000463 material Substances 0.000 claims description 11
- 230000003287 optical effect Effects 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 230000001678 irradiating effect Effects 0.000 claims description 3
- 238000005304 joining Methods 0.000 claims description 3
- 230000002349 favourable effect Effects 0.000 abstract 1
- 238000004544 sputter deposition Methods 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 27
- 230000035515 penetration Effects 0.000 description 18
- 238000005259 measurement Methods 0.000 description 12
- 238000002474 experimental method Methods 0.000 description 9
- 229910000838 Al alloy Inorganic materials 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 230000010365 information processing Effects 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 4
- 239000007769 metal material Substances 0.000 description 4
- 230000007547 defect Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000002591 computed tomography Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Welding Or Cutting Using Electron Beams (AREA)
- Laser Beam Processing (AREA)
- Sealing Battery Cases Or Jackets (AREA)
Abstract
Description
本発明は溶接方法、溶接検査方法及び密閉型電池に関し、特にエネルギー線により溶接して接合させる溶接方法、溶接検査方法及び密閉型電池に関する。 The present invention relates to a welding method, a welding inspection method, and a sealed battery, and more particularly, to a welding method, a welding inspection method, and a sealed battery that are welded and joined by energy rays.
エネルギー線を被溶接材に照射して、被溶接材同士を溶接する溶接方法が利用されている。 2. Description of the Related Art A welding method is used in which energy beams are irradiated to materials to be welded to weld the materials to be welded together.
例えば、図15に示すように、エネルギー線としてのレーザーを電池収容部80と蓋81とに照射して溶接するレーザー溶接がある。電池収容部80と蓋81とは、アルミニウム又はアルミニウム合金からなる。図15の部分拡大断面図に示すように、蓋81の端面83は電池収容部80の内壁面側の端部84に突き合わされている。レーザーを端面83と内壁面側の端部84との境界又はその近傍に照射すると、溶融部82が形成される。レーザーの照射を停止して、溶融部82が凝固すると、溶接部が形成される。溶融部82(溶接部)の深さが蓋81の厚みよりも浅く、所定の範囲にあると、電池収容部80と蓋81とが高い接合強度で接合し得て好ましい。 For example, as shown in FIG. 15, there is laser welding in which laser as an energy ray is irradiated to the battery housing portion 80 and the lid 81 for welding. The battery housing part 80 and the lid 81 are made of aluminum or an aluminum alloy. As shown in the partially enlarged sectional view of FIG. 15, the end surface 83 of the lid 81 is abutted against the end portion 84 on the inner wall surface side of the battery housing portion 80. When the laser is applied to the boundary between the end surface 83 and the end portion 84 on the inner wall surface side or in the vicinity thereof, the melted portion 82 is formed. When the laser irradiation is stopped and the melted portion 82 is solidified, a welded portion is formed. It is preferable that the depth of the melted portion 82 (welded portion) is shallower than the thickness of the lid 81 and is in a predetermined range because the battery housing portion 80 and the lid 81 can be joined with high joint strength.
上記したレーザー溶接の一例として、図15の部分拡大断面図に示すように、溶融部82が沸騰しないレベルのエネルギー密度を有するレーザーを用いて、電池収容部80と蓋81とを溶接する熱伝導溶接がある。溶融部82の上面は平面又はわずかに凹んだ凹曲面である。レーザーを引き続き溶融部82に照射すると、レーザーの殆どが溶融部82の上面で反射し、その残りが溶融部82に吸収される。熱伝導溶接では、溶融部82の深さが浅くなりすぎて、好ましい深さが得られないことがある。 As an example of the laser welding described above, as shown in the partially enlarged sectional view of FIG. 15, heat conduction for welding the battery housing portion 80 and the lid 81 using a laser having an energy density at which the melting portion 82 does not boil. There is welding. The upper surface of the melting part 82 is a flat surface or a slightly concave concave surface. When the laser is continuously irradiated to the melting portion 82, most of the laser is reflected by the upper surface of the melting portion 82, and the remainder is absorbed by the melting portion 82. In heat conduction welding, the depth of the melted part 82 becomes too shallow, and a preferable depth may not be obtained.
また、上記したレーザー溶接の他の一例として、図16に示すように、上記した熱伝導溶接で用いたレーザーよりも、高いエネルギー密度で溶融部82が沸騰するレベルのレーザーを用いて、電池収容部80と蓋81とを溶接するキーホール溶接がある。このようなキーホール溶接では、まず、溶融部82がレーザーの照射により形成され、続いて、溶融部82の内部にキーホール85が形成される。さらにレーザーをキーホール85に照射すると、レーザーがキーホール85において、複数回反射を繰り返し、レーザーの殆どが溶融部82に吸収されて、その残りが溶融部82の外方へ出射する。キーホール溶接では、熱伝導溶接と比較して、深い溶融部82が形成されるものの、溶融部82の深さのバラツキが大きい。例えば、溶融部のうち部位によっては、溶け込み深さが浅くなりすぎて、電池収容部80と蓋81との接合強度が不足することがある。一方、溶け込み深さが深すぎて、形成した溶融部82が溶け落ちて、貫通してしまうことがある。 Further, as another example of the laser welding described above, as shown in FIG. 16, the battery is accommodated by using a laser at a level where the melting portion 82 boils at a higher energy density than the laser used in the above-described heat conduction welding. There is keyhole welding for welding the portion 80 and the lid 81. In such keyhole welding, first, the melted portion 82 is formed by laser irradiation, and then the keyhole 85 is formed inside the melted portion 82. When the laser is further irradiated to the keyhole 85, the laser repeatedly reflects a plurality of times in the keyhole 85, most of the laser is absorbed by the melting portion 82, and the remainder is emitted to the outside of the melting portion 82. In keyhole welding, a deep melting portion 82 is formed as compared with heat conduction welding, but the variation in depth of the melting portion 82 is large. For example, depending on the portion of the melted portion, the depth of penetration may be too shallow, and the bonding strength between the battery housing portion 80 and the lid 81 may be insufficient. On the other hand, the penetration depth may be too deep and the formed melted part 82 may melt and penetrate.
そこで、特許文献1に開示される溶接方法では、連続発振型レーザー溶接装置を用いて、上記した熱伝導溶接とキーホール溶接とを交互に行い、電池収容部とその蓋を溶接する。これによれば、好ましい溶け込み深さの溶融部を形成しつつ、溶接を行うことができる。 Therefore, in the welding method disclosed in Patent Document 1, the above-described heat conduction welding and keyhole welding are alternately performed using a continuous wave laser welding apparatus, and the battery housing portion and its lid are welded. According to this, welding can be performed while forming a melted portion having a preferable penetration depth.
ところで、熱伝導溶接とキーホール溶接とでは、被溶接材への入熱量が大きく異なる。従って、特許文献1に開示される溶接方法では、被溶接材への入熱量が急激に変化し、熱衝撃が生じ、スパッタが飛散することがあった。また、このスパッタの飛散により、溶接不良が発生するおそれがあった。 By the way, the heat input to the material to be welded differs greatly between heat conduction welding and keyhole welding. Therefore, in the welding method disclosed in Patent Document 1, the amount of heat input to the material to be welded changes abruptly, causing a thermal shock, and spatter may be scattered. Further, the spatter scattering may cause welding defects.
したがって、本発明は上記した事情を背景としてなされたものであり、スパッタの発生を抑制しつつ、好ましい溶け込み深さを有する溶融部を形成させることのできる溶接方法を提供することを目的とする。 Therefore, the present invention has been made against the background described above, and it is an object of the present invention to provide a welding method capable of forming a melted portion having a preferable penetration depth while suppressing the occurrence of spatter.
本発明にかかる溶接方法は、
第1の金属板の端面と第2の金属板の表面(例えば、内壁面)側における端部とを突き合わせてなる断面L字状のコーナー部分における前記第1の金属板と前記第2の金属板との境界面を、エネルギー線により溶接して接合させる溶接方法において、
キーホールを形成し得る強度を有する前記エネルギー線を、前記第2の金属板における前記境界面近傍に向けて、前記第1の金属板側から照射し、前記第2の金属板に前記キーホールを形成する工程と、
前記エネルギー線を継続して照射することにより、前記第1の金属板の厚みより浅い溶融部を形成するように、前記境界面と、前記コーナー部分における前記第2の金属板の角部と、を溶融する工程とを、備える。
The welding method according to the present invention includes:
The first metal plate and the second metal at the corner portion having an L-shaped cross section formed by abutting the end surface of the first metal plate and the end portion on the surface (for example, inner wall surface) side of the second metal plate. In the welding method in which the boundary surface with the plate is welded and joined with energy rays,
The energy beam having an intensity capable of forming a keyhole is irradiated from the first metal plate side toward the vicinity of the boundary surface of the second metal plate, and the keyhole is applied to the second metal plate. Forming a step;
By continuously irradiating the energy beam, the boundary surface, and the corner of the second metal plate at the corner portion, so as to form a melted portion shallower than the thickness of the first metal plate, Melting the step.
このような構成によれば、スパッタの発生を抑制しつつ、好ましい溶け込み深さを有する溶接部を形成させて、溶接を行うことができる。 According to such a configuration, welding can be performed by forming a weld portion having a preferable penetration depth while suppressing generation of spatter.
また、前記エネルギー線の光軸と、前記境界面とのなす傾斜角度は、0.5°以上15°以下であることを特徴としてもよい。また、前記溶融部の深さは、前記第1の金属板の厚みに対して25〜75%であることを特徴としてもよい。また、前記第1の金属板の厚みは、前記第2の金属板の厚みに対して120%以上であることを特徴としてもよい。 The inclination angle formed by the optical axis of the energy beam and the boundary surface may be not less than 0.5 ° and not more than 15 °. Further, the depth of the melting part may be 25 to 75% with respect to the thickness of the first metal plate. The thickness of the first metal plate may be 120% or more with respect to the thickness of the second metal plate.
このような構成によれば、より確実に、好ましい溶け込み深さを有する溶接部を形成させて、溶接を行うことができる。 According to such a structure, the welding part which has a preferable penetration depth can be formed more reliably and welding can be performed.
前記溶融部又は前記溶融部の近傍から発する溶接光を検出し、前記溶接光を電圧信号に変換し、前記電圧信号から溶接区間ごとの電圧の平均値を算出し、前記電圧の平均値が、予め検出した熱伝導溶接時における溶接光から算出した電圧の平均値と、キーホール溶接時における溶接光から算出した電圧の平均値との間に収まるように溶接することを特徴としてもよい。 Detecting welding light emitted from the molten part or the vicinity of the molten part, converting the welding light into a voltage signal, calculating an average value of the voltage for each welding section from the voltage signal, the average value of the voltage, Welding may be performed so that the average value of the voltage calculated from the welding light at the time of heat conduction welding detected in advance and the average value of the voltage calculated from the welding light at the time of keyhole welding are included.
このような構成によれば、溶接を行ないつつ、溶接の良否についてインライン判定を行うことができる。 According to such a configuration, it is possible to perform in-line determination as to the quality of welding while performing welding.
また、上記した溶接方法は、前記第2の金属板は、電池収容部における壁であり、前記第1の金属板は蓋であり、上記した溶接方法により、前記電池収容部と前記蓋とを溶接し、密閉した電池容器を製造することを特徴としてもよい。このような構成によれば、電池収容部と蓋とを高い接合強度で接合した電池容器を製造することができる。 Further, in the above welding method, the second metal plate is a wall in the battery housing portion, the first metal plate is a lid, and the battery housing portion and the lid are connected by the above welding method. A battery container that is welded and sealed may be manufactured. According to such a structure, the battery container which joined the battery accommodating part and the lid | cover with high joining strength can be manufactured.
他方、本発明にかかる密閉型電池は、上記した溶接方法により製造される前記電池容器を有することを特徴としてもよい。このような構成によれば、高い密閉性を有する電池容器が得られる。 On the other hand, the sealed battery according to the present invention may include the battery container manufactured by the above-described welding method. According to such a configuration, a battery container having high hermeticity can be obtained.
他方、本発明にかかる溶接検査方法は、上記した溶接方法において、前記溶融部又は前記溶融部の近傍から発する溶接光を検出し、前記溶接光を電圧信号に変換し、前記電圧信号から溶接区間ごとの電圧の平均値を算出し、
前記電圧の平均値が、予め検出した熱伝導溶接時における溶接光から算出した電圧の平均値と、キーホール溶接時における溶接光から算出した電圧の平均値とに基づいて、溶接の良否を判定する。
On the other hand, the welding inspection method according to the present invention is the above-described welding method, wherein welding light emitted from the melted part or the vicinity of the melted part is detected, the welding light is converted into a voltage signal, and the welding section is converted from the voltage signal. Calculate the average value of each voltage,
The average value of the voltage is determined based on the average value of the voltage calculated from the welding light detected at the time of heat conduction welding detected in advance and the average value of the voltage calculated from the welding light at the time of keyhole welding. To do.
このような構成によれば、短時間で溶接の良否を判定することができる。 According to such a structure, the quality of welding can be determined in a short time.
本発明によれば、スパッタの発生を抑制しつつ、好ましい溶け込み深さを有する溶融部を形成させることのできる溶接方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the welding method which can form the fusion | melting part which has preferable penetration depth, suppressing generation | occurrence | production of a sputter | spatter can be provided.
(実施の形態1)
図1〜図3を参照して実施の形態1にかかる溶接方法を用いて得られる溶接加工品の一例について説明する。この溶接加工品の一例は、電池である。
(Embodiment 1)
An example of a welded product obtained using the welding method according to the first embodiment will be described with reference to FIGS. An example of the welded product is a battery.
図1に示すように、電池10は、電池収容部1と、蓋2と、電池本体3と、を含む。電池収容部1は、長方形状の開口部11を上部に有する。開口部11の縁は、板の肉厚により形成される端部16である。電池収容部1は、少なくとも電池本体3を収納できる程度の容積を有する。蓋2は、開口部11を塞ぐことのできる形状を有する板状体である。電池収容部1及び蓋2は、金属材料からなる。この金属材料としては、例えば、アルミニウム又はアルミニウム合金が挙げられる。電池収容部1と蓋2とで、電池本体3を密閉する電池容器を構成する。電池10は、電池本体3に所定の端子等に接続して、電流を供給する。 As shown in FIG. 1, the battery 10 includes a battery housing portion 1, a lid 2, and a battery body 3. The battery housing part 1 has a rectangular opening 11 at the top. The edge of the opening 11 is an end 16 formed by the thickness of the plate. The battery housing part 1 has a volume that can accommodate at least the battery body 3. The lid 2 is a plate-like body having a shape that can close the opening 11. The battery housing part 1 and the lid 2 are made of a metal material. Examples of the metal material include aluminum or an aluminum alloy. The battery housing portion 1 and the lid 2 constitute a battery container that seals the battery body 3. The battery 10 is connected to a predetermined terminal or the like to the battery body 3 and supplies a current.
図2に示すように、電池本体3を電池収容部1に収納し、開口部11を蓋2で塞ぐように配置した状態で、電池収容部1と蓋2とが、後述する溶接方法により溶接される。図3に示すように、溶接部4が電池収容部1と蓋2との間に形成される。溶接部4は、後述する溶接方法により、溶融した溶融部40(後述)が凝固して、形成される。電池収容部1と蓋2とは、溶接部4により接合される。ここで、電池収容部1と蓋2とで、断面L字状のコーナー部分5が形成される。開口部11は蓋2により密閉される。電池10は、高い密閉性を有する密閉型電池である。ここで、溶接部4の深さD4が、蓋2の厚みT2の25〜75%であると好ましく、さらに好ましくは、40〜60%である。溶接部4の深さD4が、このような範囲であると、電池収容部1と蓋2とを高い接合強度で接合することができる。また、蓋2の厚みT2は、電池収容部1の厚みT1の120%以上であると、電池収容部1と蓋2とを高い接合強度で接合することができて、好ましい。電池収容部1と蓋2とは高い接合強度で接合すると、高い密閉性を有する電池容器として機能する。 As shown in FIG. 2, the battery housing 1 and the lid 2 are welded by a welding method described later in a state where the battery main body 3 is housed in the battery housing 1 and the opening 11 is closed with the lid 2. Is done. As shown in FIG. 3, the welded portion 4 is formed between the battery housing portion 1 and the lid 2. The welded portion 4 is formed by solidifying a molten portion 40 (described later) by a welding method described later. The battery housing part 1 and the lid 2 are joined by a welded part 4. Here, the battery housing portion 1 and the lid 2 form a corner portion 5 having an L-shaped cross section. The opening 11 is sealed with the lid 2. The battery 10 is a sealed battery having high hermeticity. Here, the depth D4 of the welded portion 4 is preferably 25 to 75% of the thickness T2 of the lid 2, and more preferably 40 to 60%. When the depth D4 of the welded part 4 is within such a range, the battery housing part 1 and the lid 2 can be joined with high joining strength. Moreover, it is preferable that the thickness T2 of the lid 2 is 120% or more of the thickness T1 of the battery housing portion 1 because the battery housing portion 1 and the lid 2 can be joined with high joint strength. When the battery housing part 1 and the lid 2 are joined with high joint strength, they function as a battery container having high sealing properties.
ところで、電気自動車、ハイブリッドカーなどに搭載される電池では、高い密閉性を有することが要求される。一方、電池10は、高い接合強度で互いに接合する電池収容部1と蓋2とを有しており、高い密閉性を有する。したがって、電池10は電気自動車、ハイブリッドカーなどに搭載される電池として非常に適している。 By the way, a battery mounted in an electric vehicle, a hybrid car, or the like is required to have high hermeticity. On the other hand, the battery 10 includes a battery housing portion 1 and a lid 2 that are bonded to each other with high bonding strength, and has high sealing performance. Therefore, the battery 10 is very suitable as a battery mounted on an electric vehicle, a hybrid car, or the like.
(溶接方法)
次に、図4〜図7を用いて実施の形態1にかかる溶接方法について説明する。
(Welding method)
Next, the welding method according to the first embodiment will be described with reference to FIGS.
図4に示すように、まず、溶接に先立って、電池収容部1の開口部11を塞ぐように、蓋2を配置する。ここで、電池収容部1の端部16は、内壁面12と、外壁面13と、上端面14と、外壁面13と上端面14とが交差して形成される角部15とを含む。そして、蓋2の端面22を、電池収容部1の内壁面12側の端部16に突き合わせて、断面L字状のコーナー部分5を形成する。ここで、電池収容部1と蓋2との境界面は、蓋2の端面22と、電池収容部1の内壁面12との合せ面である。 As shown in FIG. 4, first, prior to welding, the lid 2 is disposed so as to close the opening 11 of the battery housing portion 1. Here, the end portion 16 of the battery housing portion 1 includes an inner wall surface 12, an outer wall surface 13, an upper end surface 14, and a corner portion 15 formed by intersecting the outer wall surface 13 and the upper end surface 14. And the end surface 22 of the lid | cover 2 is faced | matched with the edge part 16 by the side of the inner wall surface 12 of the battery accommodating part 1, and the cross-sectional L-shaped corner part 5 is formed. Here, the boundary surface between the battery housing portion 1 and the lid 2 is a mating surface between the end surface 22 of the lid 2 and the inner wall surface 12 of the battery housing portion 1.
蓋2側から、電池収容部1に向けて、レーザーを照射する(キーホール形成工程S1)。レーザーの照射される箇所は、例えば、電池収容部1の上端面14における内壁面12側である。具体的には、レーザーの照射される箇所は、上端面14において外壁面13よりも内壁面12に近い箇所である。また、レーザーは所定の幅を有するため、レーザーの光軸A1が上端面14において外壁面13よりも内壁面12に近い箇所に位置していれば、レーザーは蓋2の上面における端面22側にもかかってもよい。また、レーザーの光軸A1が、蓋2の上面において、外壁面13から蓋2側に電池収容部1の厚みT1よりもわずかに大きな距離を空けた箇所に位置するように、レーザーを照射してもよい。例えば、電池収容部1の厚みT1(図3参照。)が0.40mmである場合、レーザーの光軸A1が蓋2の上面において電池収容部1の外壁面13から蓋2側に0.45mm離れた箇所に位置するように、レーザーを照射してもよい。照射したレーザーは、被溶接部材である蓋2と電池収容部1とに、キーホールを形成するエネルギー密度を有する。つまり、レーザーのエネルギー密度は、キーホール領域にある。具体的には、キーホール領域は、蓋2と電池収容部1の材料に応じて、変化する。蓋2と電池収容部1とがアルミニウム又はアルミニウム合金からなる場合、キーホール領域の一例は、約18〜24kW/mm2である。また、内壁面12、端面22に平行な仮想直線L1とレーザーの光軸A1とのなす角度を傾斜角度θとする。傾斜角度θは、0.5°以上15°以下であると好ましく、さらに好ましくは0.5°以上10°以下である。 Laser irradiation is performed from the lid 2 side toward the battery housing portion 1 (keyhole forming step S1). The location where the laser is irradiated is, for example, the inner wall surface 12 side of the upper end surface 14 of the battery housing portion 1. Specifically, the laser beam is irradiated on the upper end surface 14 closer to the inner wall surface 12 than the outer wall surface 13. In addition, since the laser has a predetermined width, if the optical axis A1 of the laser is positioned at a position closer to the inner wall surface 12 than the outer wall surface 13 on the upper end surface 14, the laser is directed to the end surface 22 side on the upper surface of the lid 2. It may also take. Further, the laser is irradiated so that the optical axis A1 of the laser is located on the upper surface of the lid 2 at a position slightly larger than the thickness T1 of the battery housing portion 1 from the outer wall surface 13 to the lid 2 side. May be. For example, when the thickness T1 (see FIG. 3) of the battery housing portion 1 is 0.40 mm, the optical axis A1 of the laser is 0.45 mm from the outer wall surface 13 of the battery housing portion 1 to the lid 2 side on the top surface of the lid 2. You may irradiate a laser so that it may be located in a distant place. The irradiated laser has an energy density that forms a keyhole in the lid 2 and the battery housing part 1 which are members to be welded. That is, the energy density of the laser is in the keyhole region. Specifically, the keyhole region changes depending on the material of the lid 2 and the battery housing part 1. When the lid 2 and the battery housing part 1 are made of aluminum or an aluminum alloy, an example of the keyhole region is about 18 to 24 kW / mm 2 . Further, an angle formed between a virtual straight line L1 parallel to the inner wall surface 12 and the end surface 22 and the optical axis A1 of the laser is defined as an inclination angle θ. The inclination angle θ is preferably 0.5 ° or more and 15 ° or less, and more preferably 0.5 ° or more and 10 ° or less.
図5に示すように、レーザーの照射を継続する(連続照射工程S2)と、溶融部40が形成する。なお、図5〜図7では溶融部40は液体を表すハッチングを用いて描かれているが、溶融部40は溶融した部分である。引き続き、レーザーの照射を継続すると、図6に示すように、キーホール41の開口が拡大し続け、電池収容部1の角部15が溶融する。詳細には、蓋2の端面22、電池収容部1の内壁面12、電池収容部1の上端面14、及び、電池収容部1の外壁面13が、いずれも少なくとも一部溶融する。ここで、レーザーは、溶融部40の凹曲面で多重反射することなく1回だけ反射して、溶融部40から離れる。つまり、レーザーの殆ど、例えば、80〜95%は溶融部40で反射し、電池収容部1の外方へ出射する。一方、その残りは溶融部40に吸収される。 As shown in FIG. 5, when the laser irradiation is continued (continuous irradiation step S2), the melting part 40 is formed. 5 to 7, the melting part 40 is drawn using hatching representing a liquid, but the melting part 40 is a melted part. If laser irradiation is continued, as shown in FIG. 6, the opening of the keyhole 41 continues to expand, and the corner 15 of the battery housing part 1 melts. Specifically, at least a part of the end surface 22 of the lid 2, the inner wall surface 12 of the battery housing portion 1, the upper end surface 14 of the battery housing portion 1, and the outer wall surface 13 of the battery housing portion 1 is melted. Here, the laser beam is reflected only once on the concave curved surface of the melting part 40 without being subjected to multiple reflections, and leaves the melting part 40. That is, most of the laser, for example, 80 to 95% is reflected by the melting portion 40 and emitted to the outside of the battery housing portion 1. On the other hand, the remainder is absorbed by the melting part 40.
最後に、図7に示すように、溶融部40が深さD4まで達した後、電池収容部1の開口部11(図1及び2参照。)に沿って、レーザーを照射する。ここで、深さD4は、例えば、蓋2の厚みT2の25〜75%である。ここで、レーザーの照射を停止する。所定の時間が経過すると、溶融部40が凝固して、溶接部4(図3参照。)が形成される。 Finally, as shown in FIG. 7, after the melting part 40 reaches the depth D <b> 4, laser irradiation is performed along the opening 11 (see FIGS. 1 and 2) of the battery housing part 1. Here, the depth D4 is, for example, 25 to 75% of the thickness T2 of the lid 2. Here, the laser irradiation is stopped. When a predetermined time elapses, the melted portion 40 is solidified to form the welded portion 4 (see FIG. 3).
以上、実施の形態1にかかる溶接方法によれば、所定範囲のエネルギー密度を有するレーザーを継続して照射するので、スパッタ発生を抑制することができる。 As mentioned above, according to the welding method concerning Embodiment 1, since the laser which has the energy density of a predetermined range is continuously irradiated, generation | occurrence | production of a sputter | spatter can be suppressed.
また、実施の形態1にかかる溶接方法によれば、レーザーを所定の傾斜角度θで傾斜させて照射するので、好ましい深さを有する溶融部を形成させて、好ましい深さを有する溶接部を形成させることができる。 In addition, according to the welding method according to the first embodiment, the laser is irradiated at a predetermined inclination angle θ, so that a melted portion having a preferred depth is formed and a welded portion having a preferred depth is formed. Can be made.
また、実施の形態1にかかる溶接方法では、傾斜角度θを所定の範囲に設定することにより、連続照射工程S2において、キーホール41の開口をより確実に電池収容部1の外壁面13まで拡大させることができる。つまり、より確実に、好ましい深さを有する溶融部を形成させて、好ましい深さを有する溶接部を形成させることができる。 In the welding method according to the first embodiment, the opening of the keyhole 41 is more reliably expanded to the outer wall surface 13 of the battery housing part 1 in the continuous irradiation step S2 by setting the inclination angle θ within a predetermined range. Can be made. That is, it is possible to more reliably form a melted portion having a preferred depth and form a welded portion having a preferred depth.
(試作実験)
次に、図8及び図9を参照しつつ、上記した実施の形態1にかかる溶接方法を用いて行った試作実験について説明する。
(Prototype experiment)
Next, with reference to FIG. 8 and FIG. 9, a prototype experiment conducted using the welding method according to the first embodiment will be described.
本試作実験の実験方法について説明する。所定サイズの電池収容部と蓋とを溶接する試作実験を行った。溶接した電池収容部の厚みT1(図3参照。)は0.4mm、蓋の厚みT2(図3参照。)は1.4mmであった。電池収容部は、アルミニウム又はアルミニウム合金からなる。蓋は、電池収容部と同じ種類の材料からなる。 The experimental method of this prototype experiment will be described. A prototype experiment was performed in which a battery housing portion and a lid of a predetermined size were welded. The welded battery housing part had a thickness T1 (see FIG. 3) of 0.4 mm and a lid thickness T2 (see FIG. 3) of 1.4 mm. The battery housing portion is made of aluminum or an aluminum alloy. The lid is made of the same type of material as the battery housing.
ここで、被溶接材としてアルミニウム又はアルミニウム合金にレーザーを照射する場合、熱伝導領域は約14〜16kW/mm2、キーホール領域は約18〜24kW/mm2であることが分かっている。実施例では、レーザーのエネルギー密度は、キーホール領域の範囲内にある。実施例では、レーザーの傾斜角度θは、5°に設定した。なお、比較例では、レーザーのエネルギー密度は、熱伝導領域からキーホール領域までの範囲内にある。比較例では、レーザーの傾斜角度θは、0°に設定した。 Here, when irradiating laser to aluminum or aluminum alloy as a material to be welded, it is known that the heat conduction region is about 14 to 16 kW / mm 2 , and the keyhole region is about 18 to 24 kW / mm 2 . In an embodiment, the energy density of the laser is within the keyhole region. In the example, the laser tilt angle θ was set to 5 °. In the comparative example, the energy density of the laser is in the range from the heat conduction region to the keyhole region. In the comparative example, the laser inclination angle θ was set to 0 °.
試作してできた溶接部の断面を観察した。溶接部の深さ、つまり、溶け込み深さを計測した。その結果を図8に示す。 The cross section of the welded part made as a prototype was observed. The depth of the weld, that is, the penetration depth was measured. The result is shown in FIG.
図8に示すように、実施例の溶け込み深さの平均値は、約0.4〜0.8mmと、蓋の厚みT2(1.4mm)の約29〜57%と、好ましい溶け込み深さを有する溶接部を形成することができた。 As shown in FIG. 8, the average penetration depth of the examples is about 0.4 to 0.8 mm, about 29 to 57% of the lid thickness T2 (1.4 mm), and a preferable penetration depth. It was possible to form a weld having the same.
ここで、実施例の一つの断面組織を観察した。図9に示すように、電池収容部201と蓋202とを溶接すると、溶接部204が得られた。この実施例では、溶接部204の深さD24は、蓋202の厚みT22の約43%である。したがって、電池収容部201と蓋202とは、高い接合強度を有する。つまり、電池収容部201と蓋202とは、高い密閉性を有する容器として機能する。なお、この実施例では、溶接部204が上方に張り出した形状を有するものの、この形状は、電池収容部と蓋との接合強度に大きな影響を与えない。 Here, one cross-sectional structure of the example was observed. As shown in FIG. 9, when the battery accommodating part 201 and the lid | cover 202 were welded, the welding part 204 was obtained. In this embodiment, the depth D24 of the welded portion 204 is about 43% of the thickness T22 of the lid 202. Therefore, the battery housing part 201 and the lid 202 have high bonding strength. That is, the battery housing part 201 and the lid 202 function as a highly airtight container. In this embodiment, the welded portion 204 has a shape protruding upward, but this shape does not significantly affect the bonding strength between the battery housing portion and the lid.
再び図8を参照すると、熱伝導領域(約14〜16kW/mm2)では、比較例の溶け込み深さの平均値は、約0.2〜0.3mmと、蓋の厚みT2の約14〜21%と浅かった。また、キーホール領域(約18〜24kW/mm2)では、比較例の溶け込み深さの平均値は、約1.0〜1.4mmと深かった。比較例の溶け込み深さは、蓋の厚みT2の約86〜100%であった。なお、溶け込み深さが1.4mmである場合、蓋が溶け落ちてしまい、貫通した状態である。つまり、この状態では、電池収容部と蓋とは接合されておらず、離れている。 Referring to FIG. 8 again, in the heat conduction region (about 14 to 16 kW / mm 2 ), the average penetration depth of the comparative example is about 0.2 to 0.3 mm, which is about 14 to about the lid thickness T2. It was as shallow as 21%. In the keyhole region (about 18 to 24 kW / mm 2 ), the average penetration depth of the comparative example was as deep as about 1.0 to 1.4 mm. The penetration depth of the comparative example was about 86 to 100% of the lid thickness T2. In addition, when the penetration depth is 1.4 mm, the lid is melted down and penetrated. That is, in this state, the battery housing portion and the lid are not joined and are separated.
なお、実施の形態1にかかる溶接方法では、アルミニウム又はアルミニウム合金からなる被溶接材を用いたが、鉄鋼やマグネシウム合金などの他の金属材料からなる被溶接材を用いてもよい。また、実施の形態1にかかる溶接方法の被溶接材としては、アルミニウム又はアルミニウム合金のように、大きな熱伝導率を有する金属材料が特に適していると考えられる。 In the welding method according to the first embodiment, a welded material made of aluminum or an aluminum alloy is used, but a welded material made of another metal material such as steel or magnesium alloy may be used. Moreover, it is thought that the metal material which has a big heat conductivity like aluminum or aluminum alloy is especially suitable as a to-be-welded material of the welding method concerning Embodiment 1. FIG.
また、実施の形態1にかかる溶接方法では、エネルギー線としてレーザーを用いたが、電子ビームを用いても構わない。 In the welding method according to the first embodiment, the laser is used as the energy beam, but an electron beam may be used.
(実施の形態2)
次に、図10を用いて、実施の形態2にかかる溶接方法について説明する。
(Embodiment 2)
Next, the welding method according to the second embodiment will be described with reference to FIG.
実施の形態2にかかる溶接方法では、例えば、図10に示す溶接装置50を用いた。図10に示すように、溶接装置50は、レーザー発振器51と、ハーフミラー52と、反射ミラー53と、透過板54と、反射ミラー55と、受光センサ56と、通信ケーブル57と、情報処理端末58とを含む。 In the welding method according to the second embodiment, for example, a welding apparatus 50 shown in FIG. 10 is used. As shown in FIG. 10, the welding apparatus 50 includes a laser oscillator 51, a half mirror 52, a reflection mirror 53, a transmission plate 54, a reflection mirror 55, a light receiving sensor 56, a communication cable 57, and an information processing terminal. 58.
レーザー発振器51は、図示しない電源から電力を供給されて、レーザーLBを発振する。レーザー発振器51と、ハーフミラー52と、反射ミラー53と、透過板54と、反射ミラー55と、受光センサ56とは、例えば、トーチ59等の内部の所定の位置に固定されている。受光センサ56は、例えば、フォトダイオードセンサである。通信ケーブル57は、受光センサ56から情報処理端末58に所定の信号を導く。 The laser oscillator 51 is supplied with electric power from a power source (not shown) and oscillates the laser LB. The laser oscillator 51, the half mirror 52, the reflection mirror 53, the transmission plate 54, the reflection mirror 55, and the light receiving sensor 56 are fixed at predetermined positions inside the torch 59, for example. The light receiving sensor 56 is, for example, a photodiode sensor. The communication cable 57 guides a predetermined signal from the light receiving sensor 56 to the information processing terminal 58.
情報処理端末58は、フィルタ581と、溶接良否判定部582と、溶接制御部583とを含む。情報処理端末58は、例えば、PC(パーソナルコンピュータ)やタブレット端末である。情報処理端末58は、例えば、熱伝導溶接時の溶接区間ごとの電圧(後述)やキーホール溶接時の溶接区間ごとの電圧(後述)などを記憶する。フィルタ581は電圧信号からノイズ成分を除去する。フィルタ581は、例えば、バイパスフィルタやローパスフィルタである。溶接良否判定部582は電圧信号に基づいて溶接の良否を判定する。溶接制御部583は溶接の良否に基づいて溶接装置50の各構成をフィードバック制御する。溶接装置50の各構成の制御として、例えば、レーザー発振器51の出力や反射ミラー53等の位置や姿勢角度などを変更する制御が挙げられる。 Information processing terminal 58 includes a filter 581, a welding pass / fail determination unit 582, and a welding control unit 583. The information processing terminal 58 is, for example, a PC (personal computer) or a tablet terminal. The information processing terminal 58 stores, for example, a voltage for each welding section during heat conduction welding (described later), a voltage for each welding section during keyhole welding (described later), and the like. The filter 581 removes noise components from the voltage signal. The filter 581 is, for example, a bypass filter or a low-pass filter. The welding quality determination unit 582 determines quality of welding based on the voltage signal. The welding control unit 583 feedback-controls each component of the welding apparatus 50 based on the quality of welding. Control of each component of the welding apparatus 50 includes, for example, control for changing the output of the laser oscillator 51, the position and posture angle of the reflection mirror 53, and the like.
ここで、レーザーLB、及び、溶融部40(図7参照。)又はその近傍から発する光WBの経路について説明する。
まず、レーザー発振器51はレーザーLBをハーフミラー52に照射する。ハーフミラー52はレーザーLBの少なくとも一部を反射して、反射ミラー53に入射させる。反射ミラー53がレーザーLBを反射し、透過板54を通過させて、蓋2側から、電池収容部1に入射させる。電池収容部1はレーザーLBを受けて、プラズマ光WBが溶融部40又はその近傍から発する。
Here, the path of the laser beam LB and the light WB emitted from the melting part 40 (see FIG. 7) or the vicinity thereof will be described.
First, the laser oscillator 51 irradiates the half mirror 52 with the laser LB. The half mirror 52 reflects at least a part of the laser LB so as to enter the reflection mirror 53. The reflection mirror 53 reflects the laser LB, passes through the transmission plate 54, and enters the battery housing 1 from the lid 2 side. The battery housing part 1 receives the laser LB, and the plasma light WB is emitted from the melting part 40 or the vicinity thereof.
プラズマ光WBの少なくとも一部は、透過板54を通過して、反射ミラー53に入射する。反射ミラー53はプラズマ光WBを反射して、ハーフミラー52を通過させて、さらに、反射ミラー55に入射させる。反射ミラー55はプラズマ光WBを反射して、受光センサ56に入射させる。受光センサ56はプラズマ光WBを受光し、プラズマ光WBの強度を電圧信号に変換する。 At least a part of the plasma light WB passes through the transmission plate 54 and enters the reflection mirror 53. The reflection mirror 53 reflects the plasma light WB, passes through the half mirror 52, and further enters the reflection mirror 55. The reflection mirror 55 reflects the plasma light WB and makes it incident on the light receiving sensor 56. The light receiving sensor 56 receives the plasma light WB and converts the intensity of the plasma light WB into a voltage signal.
次に、図11〜13を参照しつつ、実施の形態2にかかる溶接方法について説明する。なお、図12での、溶接時間に対する電圧のグラフの横軸及び縦軸の目盛は、いずれも同じ大きさに統一されている。 Next, a welding method according to the second embodiment will be described with reference to FIGS. Note that the scales of the horizontal axis and the vertical axis of the graph of the voltage with respect to the welding time in FIG. 12 are unified to the same size.
実施の形態2にかかる溶接方法に先立って、予め、上記した溶接装置50を用いて、熱伝導溶接とキーホール溶接とをそれぞれ実施し、溶接区間ごとの電圧を計測し、その平均値を算出しておいてもよい。なお、キーホール溶接では、レーザーのエネルギー密度は、キーホール領域の範囲内にある。熱伝導溶接では、レーザーのエネルギー密度は、熱伝導領域からキーホール領域までの範囲内にある。キーホール溶接及び熱伝導溶接では、レーザーの傾斜角度θは、0°に設定した。図13に示すように、熱伝導溶接時の溶接区間ごとの電圧の平均値(比較例2)は、キーホール溶接時の溶接区間ごとの電圧の平均値(比較例1)と比較して低い。ここで、キーホール溶接時の溶接区間ごとの電圧の平均値をしきい値Aとする。また、熱伝導溶接時の溶接区間ごとの電圧の平均値をしきい値Bとする。しきい値A及びしきい値Bは、情報処理端末58に記憶される。 Prior to the welding method according to the second embodiment, heat conduction welding and keyhole welding are performed in advance using the above-described welding apparatus 50, the voltage for each welding section is measured, and the average value is calculated. You may keep it. In keyhole welding, the energy density of the laser is within the keyhole region. In heat conduction welding, the energy density of the laser is in the range from the heat conduction region to the keyhole region. In keyhole welding and heat conduction welding, the tilt angle θ of the laser was set to 0 °. As shown in FIG. 13, the average value of the voltage for each welding section at the time of heat conduction welding (Comparative Example 2) is lower than the average value of the voltage for each welding section at the time of keyhole welding (Comparative Example 1). . Here, the average value of the voltage for each welding section during keyhole welding is defined as a threshold value A. Further, an average value of the voltage for each welding section at the time of heat conduction welding is defined as a threshold value B. The threshold value A and the threshold value B are stored in the information processing terminal 58.
まず、実施の形態1にかかる溶接方法と同様に、キーホール形成工程S1(図4参照。)を実施し、続いて、連続照射工程S2(図5〜図7参照。)を実施する。遅くとも連続照射工程S2で溶融部40が形成して後で、溶接によるプラズマ光WBが溶融部40又はその近傍から発生する(発光ステップS21)。 First, the keyhole formation process S1 (refer FIG. 4) is implemented similarly to the welding method concerning Embodiment 1, and the continuous irradiation process S2 (refer FIGS. 5-7) is implemented subsequently. After the melting part 40 is formed in the continuous irradiation step S2 at the latest, plasma light WB by welding is generated from the melting part 40 or the vicinity thereof (light emission step S21).
次いで、プラズマ光WBを受光し、電圧信号に変換する(電圧変換ステップS22)。次いで、変換した電圧信号を処理し、データに変換する(データ処理ステップS23)。変換したデータとして、例えば、図12に示すように、ノイズ除去前における溶接時間に対する波形信号が得られる。なお、図12における溶接時間は、溶接した距離とほぼ正比例する。 Next, the plasma light WB is received and converted into a voltage signal (voltage conversion step S22). Next, the converted voltage signal is processed and converted into data (data processing step S23). As the converted data, for example, as shown in FIG. 12, a waveform signal with respect to the welding time before noise removal is obtained. Note that the welding time in FIG. 12 is almost directly proportional to the welded distance.
次いで、フィルタ581を用いて、電圧信号からノイズ成分を除去する(ノイズ除去ステップS24)。ノイズ成分を除去された電圧信号として、例えば、図12に示すように、ノイズ除去後における溶接時間に対する波形信号が得られる。 Next, a noise component is removed from the voltage signal using the filter 581 (noise removal step S24). As the voltage signal from which the noise component has been removed, for example, as shown in FIG. 12, a waveform signal with respect to the welding time after noise removal is obtained.
次いで、ノイズ成分を除去された電圧信号についてのデータを、複数の溶接区間ごとに分割する(溶接区間分割ステップS25)。次いで、分割した溶接区間ごとに電圧の平均値を算出する。(平均電圧算出ステップS26)。 Next, the data about the voltage signal from which the noise component has been removed is divided into a plurality of welding sections (welding section dividing step S25). Next, an average value of the voltage is calculated for each divided welding section. (Average voltage calculation step S26).
図13に示すように、算出した電圧の平均値がしきい値A以下(キーホール溶接判定ステップS27:YES)であり、算出した電圧の平均値がしきい値B以上である(熱伝導溶接判定ステップS28:YES)と、実施の形態1にかかる溶接方法と同じ形態の溶接方法による溶接が行われており、溶接の良否は「良好」と判定する(良好判定ステップS29)。 As shown in FIG. 13, the average value of the calculated voltage is equal to or less than a threshold value A (keyhole welding determination step S27: YES), and the calculated average value of the voltage is equal to or more than a threshold value B (heat conduction welding). Determination step S28: YES), welding is performed by the same welding method as the welding method according to the first embodiment, and the quality of the welding is determined as “good” (good determination step S29).
なお、算出した平均電圧がしきい値Aを超える(キーホール溶接判定ステップS27:NO)と、キーホール溶接が行われており、溶接の良否は「不良」と判定する(不良判定ステップS30)。 When the calculated average voltage exceeds the threshold value A (keyhole welding determination step S27: NO), keyhole welding is performed and the quality of the welding is determined as “bad” (defect determination step S30). .
また、算出した平均電圧がしきい値Bを下回る(熱伝導溶接判定ステップS28:NO)と、熱伝導溶接が行われており、溶接の良否は「不良」と判定する(不良判定ステップS31)。溶接の良否は「不良」と判定(不良判定ステップS30、S31)した場合、溶接の良否の判定が「良好」に変化するように、溶接装置50の各構成の動作をフィードバック制御してもよい。 Further, when the calculated average voltage is lower than the threshold value B (heat conduction welding determination step S28: NO), heat conduction welding is performed, and the quality of the welding is determined as “bad” (failure determination step S31). . When it is determined that the quality of welding is “bad” (defect determination steps S30 and S31), the operation of each component of the welding apparatus 50 may be feedback controlled so that the determination of quality of welding changes to “good”. .
以上、実施の形態2にかかる溶接方法によれば、溶接を行ないつつ、キーホール溶接及び熱伝導溶接ではなく、実施の形態1にかかる溶接方法と同じ形態の溶接方法を行なっているかどうかを短時間で判定することができる。つまり、溶接の良否についてインライン判定を行うことができる。さらに、判定の結果に基づいて、溶接装置50の各構成の動作についてフィードバック制御し、実施の形態1にかかる溶接方法と同じ形態の溶接方法を良好な溶接をより確実に行うことができる。 As described above, according to the welding method according to the second embodiment, it is determined whether the welding method of the same form as the welding method according to the first embodiment is performed instead of keyhole welding and heat conduction welding while performing welding. Can be determined by time. That is, it is possible to make an inline determination as to whether the welding is good or bad. Furthermore, feedback control is performed on the operation of each component of the welding apparatus 50 based on the determination result, and good welding can be performed more reliably with the same welding method as the welding method according to the first embodiment.
なお、上記した実施の形態2にかかる溶接方法では、溶接時に発生するプラズマ光を受光したが、プラズマ光以外の溶接時に発生する光を受光してもよい。プラズマ光以外の溶接時に発生する光として、例えば、反射光や赤外光が挙げられる。また、必要に応じて、光学フィルタを光の経路の途中に設置してもよい。このように光学フィルタを設置すると、適宜、プラズマ光、反射光、赤外光などの波長の異なる光を分離し得るため、ノイズ成分が減じて好ましい。また、キーホール溶接判定ステップS27と熱伝導溶接判定ステップS28との順番を入れ替えても構わない。 In the above-described welding method according to the second embodiment, plasma light generated during welding is received, but light generated during welding other than plasma light may be received. Examples of light generated during welding other than plasma light include reflected light and infrared light. Moreover, you may install an optical filter in the middle of the optical path as needed. It is preferable to install an optical filter in this manner because light components having different wavelengths, such as plasma light, reflected light, and infrared light, can be appropriately separated. Further, the order of the keyhole welding determination step S27 and the heat conduction welding determination step S28 may be switched.
(溶接実験)
次に、実施の形態2にかかる溶接方法を用いて、溶接実験を行った。実施例1では実施の形態2にかかる溶接方法を用いた。一方、比較例1ではキーホール溶接を行ない、比較例2では熱伝導溶接を行なった。比較例1及び比較例2においても、それぞれ実施の形態2にかかる溶接方法における発光ステップS21〜ノイズ除去ステップS24と同じステップを実施した。溶接時の波形信号を計測した。また、それぞれの溶接部の断面を観察した。その結果を図12に示した。
(Welding experiment)
Next, a welding experiment was performed using the welding method according to the second embodiment. In Example 1, the welding method according to the second embodiment was used. On the other hand, keyhole welding was performed in Comparative Example 1, and heat conduction welding was performed in Comparative Example 2. Also in the comparative example 1 and the comparative example 2, the same step as the light emission step S21-noise removal step S24 in the welding method concerning Embodiment 2 was implemented, respectively. The waveform signal during welding was measured. Moreover, the cross section of each welding part was observed. The results are shown in FIG.
図12に示すように、実施例1の溶接部は、好ましい溶け込み深さを有し、高い接合強度を有する。また、実施例1では、溶接中におけるスパッタの発生が抑制されている。したがって、実施例1の溶接部は、ボイドが発生しにくく、溶接品質の安定性が優れる。また、実施例1で得られた波形信号は、高い平均値を有し、ノイズを有する。 As shown in FIG. 12, the welded portion of Example 1 has a preferable penetration depth and high joint strength. Moreover, in Example 1, generation | occurrence | production of the sputter | spatter during welding is suppressed. Therefore, the welded portion of Example 1 is less likely to generate voids and has excellent welding quality stability. In addition, the waveform signal obtained in Example 1 has a high average value and noise.
一方、比較例1の溶接部では、実施例1の溶接部と比較して、溶け込み深さが同じ程度であり、接合強度が十分に高い。しかし、比較例1では、実施例1と比較して、スパッタが飛散しやすい。そのため、比較例1の溶接部では、実施例1の溶接部と比較して、ボイドが発生しやすく、溶接品質の安定性が劣る。また、比較例1で得られた波形信号は、実施例1と波形信号と比較して、高い平均値及び大きなノイズ成分を有する。 On the other hand, compared with the welded part of Example 1, the welded part of Comparative Example 1 has the same penetration depth and sufficiently high joint strength. However, in Comparative Example 1, compared to Example 1, spatter is easily scattered. Therefore, compared with the welded part of Example 1, the welded part of Comparative Example 1 is more likely to generate voids and is less stable in welding quality. In addition, the waveform signal obtained in Comparative Example 1 has a higher average value and a larger noise component compared to Example 1 and the waveform signal.
一方、比較例2の溶接部では、実施1の溶接部と比較して、溶接品質の安定性が同じ程度である。しかしながら、比較例2の溶接部では、実施1の溶接部と比較して、溶け込み深さが不足し、接合強度が低い。また、比較例2で得られた波形信号は、実施例1と波形信号と比較して、低い平均値及び小さなノイズ成分を有する。 On the other hand, the welded part of Comparative Example 2 has the same degree of stability in welding quality as compared with the welded part of Example 1. However, in the welded part of Comparative Example 2, the penetration depth is insufficient and the joint strength is low as compared with the welded part of Example 1. In addition, the waveform signal obtained in Comparative Example 2 has a lower average value and a smaller noise component compared to Example 1 and the waveform signal.
(検査方法の評価実験)
次に、図14を用いて、溶接部の検査方法の評価実験について説明する。
(Evaluation experiment of inspection method)
Next, with reference to FIG. 14, an evaluation experiment of the welding portion inspection method will be described.
実施例1では、溶接光判定方法を用いて溶接部を検査した。溶接光判定方法は、上記した実施の形態2にかかる溶接方法のうち、発光ステップS21〜不良判定ステップS31である。なお、比較例3では、実施の形態1及び2にかかる溶接方法による溶接加工品の溶接部の断面を観察して検査した。比較例4では、実施の形態1及び2にかかる溶接方法による溶接加工品の溶接部を、X線CT(Computed Tomography)を用いて検査した。 In Example 1, the welded portion was inspected using the welding light determination method. The welding light determination method is light emission step S21-defect determination step S31 among the welding methods according to the second embodiment described above. In Comparative Example 3, the cross section of the welded portion of the welded product by the welding method according to the first and second embodiments was observed and inspected. In Comparative Example 4, the welded part of the welded product by the welding method according to the first and second embodiments was inspected using X-ray CT (Computed Tomography).
実施例1、比較例3及び比較例4について測定時間、測定精度、インライン判定を評価し、その結果を図14に示した。図14では、測定精度が良好であると、測定精度欄に「○」と記載し、測定精度が平均であると、測定精度欄に「△」と記載した。また、インライン判定に好適であると、「○」と記載し、インライン判定に不適であると、「×」と記載した。 The measurement time, measurement accuracy, and in-line determination were evaluated for Example 1, Comparative Example 3, and Comparative Example 4, and the results are shown in FIG. In FIG. 14, “◯” is described in the measurement accuracy column when the measurement accuracy is good, and “Δ” is described in the measurement accuracy column when the measurement accuracy is average. In addition, “◯” was described as being suitable for inline determination, and “X” was described as being inappropriate for inline determination.
図14に示すように、上記した実施例では、測定時間が1sec以下であり、測定精度が良好(○)であった。従って、実施例は、インライン判定に好適(○)である。 As shown in FIG. 14, in the above example, the measurement time was 1 sec or less, and the measurement accuracy was good (◯). Therefore, the embodiment is suitable for inline determination (◯).
一方、比較例3では、測定精度が良好(○)であるものの、測定時間が3h(3時間)と実施例に比べて非常に長かった。従って、比較例3は、インライン判定に不適(×)である。 On the other hand, in Comparative Example 3, although the measurement accuracy was good (◯), the measurement time was 3 h (3 hours), which was very long compared to the example. Therefore, Comparative Example 3 is unsuitable for inline determination (x).
また、比較例4では、測定精度が良好(○)であるものの、測定時間が1h(1時間)以下と実施例に比べて非常に長かった。従って、比較例4は、インライン判定に不適(×)である。 In Comparative Example 4, although the measurement accuracy was good (◯), the measurement time was 1 h (1 hour) or less, which was much longer than that of the example. Therefore, Comparative Example 4 is not suitable for inline determination (x).
また、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。例えば、実施の形態1にかかる溶接方法では、溶接加工品の一例として電池を得たが、電池本体以外のものを収容することのできる容器を得ても構わない。また、実施の形態1及び2にかかる溶接方法では、電池収容部と蓋とを溶接したが、金属板同士を溶接してもよい。また、実施の形態1及び2にかかる溶接方法では、溶接部を形成したが、この溶接部には溶接熱影響部が含まれていてもよい。 Further, the present invention is not limited to the above-described embodiment, and can be changed as appropriate without departing from the spirit of the present invention. For example, in the welding method according to the first embodiment, a battery is obtained as an example of a welded product. However, a container that can accommodate things other than the battery main body may be obtained. Moreover, in the welding method concerning Embodiment 1 and 2, although the battery accommodating part and the lid | cover were welded, you may weld metal plates. Moreover, in the welding method concerning Embodiment 1 and 2, although the weld part was formed, the weld heat affected part may be contained in this weld part.
10 電池
1、201 電池収容部
11 開口部 12 内壁面
13 外壁面 14 上端面
15 角部 16 端部
2、202 蓋 22 端面
3 電池本体 4、204 溶接部
40 溶融部 41 キーホール
5 コーナー部分
L1 仮想直線 A1 光軸
θ 傾斜角度
S1 キーホール形成工程 S2 連続照射工程
10 Battery 1,201 Battery compartment
DESCRIPTION OF SYMBOLS 11 Opening part 12 Inner wall surface 13 Outer wall surface 14 Upper end surface 15 Corner | angular part 16 End part 2,202 Lid 22 End surface 3 Battery body 4,204 Welding part 40 Melting part 41 Keyhole 5 Corner part L1 Virtual straight line A1 Optical axis (theta) Inclination angle S1 Keyhole formation process S2 Continuous irradiation process
Claims (8)
キーホールを形成し得る強度を有する前記エネルギー線を、前記第2の金属板における前記境界面近傍に向けて、前記第1の金属板側から照射し、前記第2の金属板に前記キーホールを形成する工程と、
前記エネルギー線を継続して照射することにより、前記第1の金属板の厚みより浅い溶融部を形成するように、前記境界面と、前記コーナー部分における前記第2の金属板の角部と、を溶融する工程とを、備えた
溶接方法。 A boundary surface between the first metal plate and the second metal plate at a corner portion having an L-shaped cross section formed by abutting the end surface of the first metal plate and the end portion on the surface side of the second metal plate. In the welding method of welding and joining with energy rays,
The energy beam having an intensity capable of forming a keyhole is irradiated from the first metal plate side toward the vicinity of the boundary surface of the second metal plate, and the keyhole is applied to the second metal plate. Forming a step;
By continuously irradiating the energy beam, the boundary surface, and the corner of the second metal plate at the corner portion, so as to form a melted portion shallower than the thickness of the first metal plate, And a step of melting the material.
前記溶融部又は前記溶融部の近傍から発する溶接光を検出し、前記溶接光を電圧信号に変換し、前記電圧信号から溶接区間ごとの電圧の平均値を算出し、
前記電圧の平均値が、予め検出した熱伝導溶接時における溶接光から算出した電圧の平均値と、キーホール溶接時における溶接光から算出した電圧の平均値との間に収まるように溶接することを特徴とする溶接方法。 In the welding method as described in any one of Claims 1-4,
Detecting welding light emitted from the molten part or the vicinity of the molten part, converting the welding light into a voltage signal, calculating an average value of the voltage for each welding section from the voltage signal,
Welding so that the average value of the voltage falls between the average value of the voltage calculated from the welding light at the time of heat conduction welding detected in advance and the average value of the voltage calculated from the welding light at the time of keyhole welding. A welding method characterized by the above.
前記第1の金属板は蓋であり、
請求項1〜5のいずれか1つに記載される溶接方法により、前記電池収容部と前記蓋とを溶接し、密閉した電池容器を製造することを特徴とする溶接方法。 The second metal plate is a wall in the battery housing;
The first metal plate is a lid;
A welding method for manufacturing a sealed battery container by welding the battery housing part and the lid by the welding method according to claim 1.
前記溶融部又は前記溶融部の近傍から発する溶接光を検出し、前記溶接光を電圧信号に変換し、前記電圧信号から溶接区間ごとの電圧の平均値を算出し、
前記電圧の平均値が、予め検出した熱伝導溶接時における溶接光から算出した電圧の平均値と、キーホール溶接時における溶接光から算出した電圧の平均値とに基づいて、溶接の良否を判定する溶接検査方法。 A welding inspection method for inspecting a welded portion in the welding method according to any one of claims 1 to 4,
Detecting welding light emitted from the molten part or the vicinity of the molten part, converting the welding light into a voltage signal, calculating an average value of the voltage for each welding section from the voltage signal,
The average value of the voltage is determined based on the average value of the voltage calculated from the welding light detected at the time of heat conduction welding detected in advance and the average value of the voltage calculated from the welding light at the time of keyhole welding. Welding inspection method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014089941A JP6137036B2 (en) | 2014-01-28 | 2014-04-24 | Welding method, welding inspection method, and sealed battery manufacturing method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014013363 | 2014-01-28 | ||
JP2014013363 | 2014-01-28 | ||
JP2014089941A JP6137036B2 (en) | 2014-01-28 | 2014-04-24 | Welding method, welding inspection method, and sealed battery manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015163410A true JP2015163410A (en) | 2015-09-10 |
JP6137036B2 JP6137036B2 (en) | 2017-05-31 |
Family
ID=54186590
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014089941A Active JP6137036B2 (en) | 2014-01-28 | 2014-04-24 | Welding method, welding inspection method, and sealed battery manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6137036B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020099924A (en) * | 2018-12-21 | 2020-07-02 | パナソニックIpマネジメント株式会社 | Laser welding apparatus and laser welding method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08315788A (en) * | 1995-03-15 | 1996-11-29 | Nippondenso Co Ltd | Manufacture of square battery |
JP2003181666A (en) * | 2001-12-11 | 2003-07-02 | Mitsubishi Heavy Ind Ltd | Method of welding container for rectangular battery and method of manufacturing rectangular battery |
WO2013171848A1 (en) * | 2012-05-15 | 2013-11-21 | トヨタ自動車株式会社 | Welding method, welding device, and battery manufacturing method |
-
2014
- 2014-04-24 JP JP2014089941A patent/JP6137036B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08315788A (en) * | 1995-03-15 | 1996-11-29 | Nippondenso Co Ltd | Manufacture of square battery |
JP2003181666A (en) * | 2001-12-11 | 2003-07-02 | Mitsubishi Heavy Ind Ltd | Method of welding container for rectangular battery and method of manufacturing rectangular battery |
WO2013171848A1 (en) * | 2012-05-15 | 2013-11-21 | トヨタ自動車株式会社 | Welding method, welding device, and battery manufacturing method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020099924A (en) * | 2018-12-21 | 2020-07-02 | パナソニックIpマネジメント株式会社 | Laser welding apparatus and laser welding method |
JP7113276B2 (en) | 2018-12-21 | 2022-08-05 | パナソニックIpマネジメント株式会社 | LASER WELDING APPARATUS AND LASER WELDING METHOD |
Also Published As
Publication number | Publication date |
---|---|
JP6137036B2 (en) | 2017-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104302435B (en) | Welding method, welding device, and battery manufacturing method | |
JP6071010B2 (en) | Welding method | |
CN102049614B (en) | Fusion welding method and fusion welding apparatus | |
JP4924771B2 (en) | Laser welding method and battery manufacturing method including the same | |
US11065718B2 (en) | Laser welding method and laser welding apparatus | |
WO2013186862A1 (en) | Welding device, welding method, and method for producing cell | |
JP6777023B2 (en) | Welding method of laminated metal foil | |
US20230101343A1 (en) | Welding method, welding device, metal stacked body, electrical component, and electrical product | |
JP2020093272A (en) | Laser welding method | |
JP4352143B2 (en) | Method and apparatus for preventing or repairing hole defects in laser spot welding | |
CN113814564A (en) | Laser welding method and apparatus | |
JP6137036B2 (en) | Welding method, welding inspection method, and sealed battery manufacturing method | |
JP2021030275A (en) | Welding system and welding method | |
Kawahito et al. | In-process monitoring and adaptive control for stable production of sound welds in laser microspot lap welding of aluminum alloy | |
JP2016209925A (en) | Welding method and welding apparatus | |
JP2019129126A (en) | Method for manufacturing battery | |
Garavaglia et al. | Process development and coaxial sensing in fiber laser welding of 5754 Al-alloy | |
Heider et al. | High-quality laser welding of copper using appropriate power modulation | |
JP6420994B2 (en) | Laser welding method | |
Ortolani et al. | Conduction mode welding of Cu hairpins with a 3 kW blue laser with external features correlated to quality attributes | |
Kawahito et al. | In-process monitoring and adaptive control during pulsed YAG laser spot welding of aluminum alloy thin sheets | |
Miyagi et al. | Development of spatter suppression technology for copper by high speed laser scanner welding | |
RO137959A2 (en) | Laser welding method for welding contacts between the cells of electric batteries made of heterogeneous materials cu-ai, using a rigid contact-keeping device and thermal imaging surveillance | |
KR20230120818A (en) | Method and apparatus for generating welding quality inspection model of heterogeneous material and heterogeneous material welding quality inspecting apparatus using the same | |
Vasa | Laser Microwelding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160516 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170223 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170228 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170310 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170404 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170417 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6137036 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |