[go: up one dir, main page]

JP2015158085A - Building panel - Google Patents

Building panel Download PDF

Info

Publication number
JP2015158085A
JP2015158085A JP2014033117A JP2014033117A JP2015158085A JP 2015158085 A JP2015158085 A JP 2015158085A JP 2014033117 A JP2014033117 A JP 2014033117A JP 2014033117 A JP2014033117 A JP 2014033117A JP 2015158085 A JP2015158085 A JP 2015158085A
Authority
JP
Japan
Prior art keywords
heat storage
latent heat
storage member
core material
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014033117A
Other languages
Japanese (ja)
Other versions
JP6366129B2 (en
Inventor
光彦 矢崎
Mitsuhiko Yazaki
光彦 矢崎
隆之 生喜
Takayuki Seiki
隆之 生喜
巧 宮地
Takumi Miyaji
巧 宮地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Nippon Steel Coated Sheet Corp
Original Assignee
JSR Corp
Nippon Steel and Sumikin Coated Sheet Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp, Nippon Steel and Sumikin Coated Sheet Corp filed Critical JSR Corp
Priority to JP2014033117A priority Critical patent/JP6366129B2/en
Publication of JP2015158085A publication Critical patent/JP2015158085A/en
Application granted granted Critical
Publication of JP6366129B2 publication Critical patent/JP6366129B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Building Environments (AREA)

Abstract

【課題】潜熱蓄熱部材により温度調節機能を有しても外観の低下が生じにくい建築パネルを提供する。【解決手段】二枚の金属外皮2、3の間に芯材4が充填される。前記金属外皮2、3と前記芯材4との間に潜熱蓄熱部材5が設けられた建築パネル1に関する。前記金属外皮2、3と前記芯材4との間には、最も体積が増加した状態の前記潜熱蓄熱部材5が収容可能な収容空間10が形成される。前記潜熱蓄熱部材5は前記金属外皮2と前記芯材4との少なくとも一方に固定されずに前記収容空間10に収容されている。【選択図】図1Provided is a building panel that hardly deteriorates in appearance even if it has a temperature adjustment function by a latent heat storage member. A core material 4 is filled between two metal shells 2 and 3. The present invention relates to a building panel 1 in which a latent heat storage member 5 is provided between the metal shells 2 and 3 and the core material 4. Between the metal shells 2 and 3 and the core member 4, an accommodation space 10 is formed that can accommodate the latent heat storage member 5 in a state where the volume is most increased. The latent heat storage member 5 is housed in the housing space 10 without being fixed to at least one of the metal shell 2 and the core material 4. [Selection] Figure 1

Description

本発明は、建築パネルに関するものであって、例えば、壁材や床材などの建材として使用可能な建築パネルに関する。   The present invention relates to a building panel, for example, a building panel that can be used as a building material such as a wall material or a flooring material.

従来、建築パネルとして、二枚の金属外皮の間に断熱性を有する芯材を充填したサンドイッチパネルが提案されている。またサンドイッチパネルにパラフィンを内蔵した建築パネルも提案されている(特許文献1参照)。この建築パネルは、パラフィンが凝固状態と融解状態とで相変化するときの潜熱を利用して温度調節機能が付与されたものである。   Conventionally, as a construction panel, a sandwich panel in which a core material having a heat insulating property is filled between two metal shells has been proposed. An architectural panel in which paraffin is incorporated in a sandwich panel has also been proposed (see Patent Document 1). This building panel is provided with a temperature control function using latent heat when paraffin undergoes a phase change between a solidified state and a molten state.

特公平6−78655号公報Japanese Patent Publication No. 6-78655

しかし、パラフィンを内蔵した建築パネルでは、パラフィンの相変化に伴ってパラフィンの体積が大きく増減するものであり、この体積の増減により、金属外皮に応力がかかって金属外皮が変形することがあり、この結果、建築パネルの外観が低下する場合があった。   However, in a building panel with built-in paraffin, the volume of paraffin greatly increases and decreases with the phase change of the paraffin, and this increase and decrease of the volume may cause stress on the metal skin and deform the metal skin. As a result, the appearance of the building panel may be deteriorated.

本発明は上記の点に鑑みてなされたものであり、温度調節機能を有し、外観の低下が生じにくい建築パネルを提供することを目的とするものである。   This invention is made | formed in view of said point, and it aims at providing the building panel which has a temperature control function and does not produce the fall of an external appearance easily.

本発明に係る建築パネルは、二枚の金属外皮の間に芯材が充填され、前記金属外皮と前記芯材との間に潜熱蓄熱部材が設けられた建築パネルであって、前記金属外皮と前記芯材との間には、最も体積が増加した状態の前記潜熱蓄熱部材が収容可能な収容空間が形成され、前記潜熱蓄熱部材は前記金属外皮と前記芯材との少なくとも一方に固定されずに前記収容空間に収容されていることを特徴とするものである。   The building panel according to the present invention is a building panel in which a core material is filled between two metal skins, and a latent heat storage member is provided between the metal skin and the core material, and the metal skin and An accommodation space that can accommodate the latent heat storage member having the largest volume is formed between the core material, and the latent heat storage member is not fixed to at least one of the metal shell and the core material. It is housed in the housing space.

本発明にあっては、前記芯材にはその表面に凹部が形成され、この凹部と前記金属外皮との間に前記収容空間が形成されていることが好ましい。   In the present invention, it is preferable that a concave portion is formed on the surface of the core member, and the accommodating space is formed between the concave portion and the metal outer skin.

本発明にあっては、前記金属外皮にはその外面に突出する突出部が形成され、この突出部と前記芯材との間に前記収容空間が形成されていることが好ましい。   In the present invention, it is preferable that the metal skin is provided with a protruding portion that protrudes to the outer surface, and the housing space is formed between the protruding portion and the core member.

本発明にあっては、前記芯材と前記潜熱蓄熱部材との接着性を低減するための剥離剤が前記潜熱蓄熱部材の表面に設けられていることが好ましい。   In this invention, it is preferable that the release agent for reducing the adhesiveness of the said core material and the said latent heat storage member is provided in the surface of the said latent heat storage member.

本発明は、潜熱蓄熱部材の体積が最も増加した状態になっても収容空間に収めることができ、相変化により潜熱蓄熱部材の体積が増減しても金属外皮に応力がかかりにくくすることができるものであり、従って、本発明は、潜熱蓄熱部材により温度調節機能を有しても外観の低下が生じにくいものである。   The present invention can be accommodated in the accommodation space even when the volume of the latent heat storage member reaches the maximum state, and even if the volume of the latent heat storage member increases or decreases due to phase change, it is possible to make it difficult to apply stress to the metal skin. Therefore, in the present invention, even if the latent heat storage member has a temperature adjustment function, the appearance is hardly deteriorated.

(a)は本発明の実施の形態の一例を示す斜視図、(b)は一部の断面図である。(A) is a perspective view which shows an example of embodiment of this invention, (b) is one part sectional drawing. (a)は本発明の他の実施の形態の一例を示す斜視図、(b)は一部の断面図である。(A) is a perspective view which shows an example of other embodiment of this invention, (b) is a partial cross section figure. (a)(b)は潜熱蓄熱部材が収縮した状態を示す断面図である。(A) (b) is sectional drawing which shows the state which the latent-heat storage member contracted. (a)(b)は潜熱蓄熱部材が収縮した状態を示す断面図である。(A) (b) is sectional drawing which shows the state which the latent-heat storage member contracted. 潜熱蓄熱部材が収縮した状態を示す断面図である。It is sectional drawing which shows the state which the latent heat storage member contracted. 温度調節機能の測定で使用する測定システムを示し、(a)は概略の断面図、(b)は側面図、(c)は一部の断面図である。The measurement system used by the measurement of a temperature control function is shown, (a) is a schematic sectional drawing, (b) is a side view, (c) is a partial sectional drawing. 温度調節機能の測定結果を示すグラフである。It is a graph which shows the measurement result of a temperature control function. 温度調節機能の測定結果を示すグラフである。It is a graph which shows the measurement result of a temperature control function. 温度調節機能の測定結果を示すグラフである。It is a graph which shows the measurement result of a temperature control function.

以下、本発明を実施するための形態を説明する。   Hereinafter, modes for carrying out the present invention will be described.

本実施の形態の建築パネル1は、図1(a)及び図2(a)に示すように、二枚の金属外皮2,3の間に芯材4を充填したサンドイッチパネルとして形成され、さらに図1(b)及び図2(b)に示すように、潜熱蓄熱部材5を内蔵して形成されている。   As shown in FIGS. 1 (a) and 2 (a), the building panel 1 of the present embodiment is formed as a sandwich panel in which a core material 4 is filled between two metal shells 2 and 3, and As shown in FIG. 1B and FIG. 2B, the latent heat storage member 5 is built in.

金属外皮2,3は平板状の金属板にロール成形等などの加工を施して所定の形状に形成される。金属外皮2,3は従来から建材を形成する際に使用される金属板で形成することができ、例えば、鋼板、亜鉛めっき鋼板、ガルバリウム鋼板(登録商標)、エスジーエル(登録商標)鋼板、塩ビ鋼板、塗装鋼板などを挙げることができる。金属外皮2,3の板厚も特に限定は無く、例えば、0.3〜2.0mmとすることができる。   The metal shells 2 and 3 are formed in a predetermined shape by subjecting a flat metal plate to processing such as roll forming. The metal shells 2 and 3 can be formed of metal plates conventionally used when forming building materials, such as steel plates, galvanized steel plates, Galvalume steel plates (registered trademark), SGL (registered trademark) steel plates, PVC steel plates. And coated steel sheet. The plate thickness of the metal shells 2 and 3 is not particularly limited, and can be, for example, 0.3 to 2.0 mm.

芯材4としては断熱性を有するものであればよく、さらに防火性や耐火性を有するものであることが好ましい。具体的には、芯材4としてはロックウールやグラスウールなどの無機繊維材や、ウレタンフォームやフェノールフォームなどの樹脂発泡体等を用いることができる。芯材4はその断熱性やパネル強度等を考慮して、厚み20〜150mm、30〜200kg/mにするのが好ましいが、これに限定されるものではない。芯材4は金属サンドイッチパネル1の全体にわたって一枚物であっても良いし、複数個のブロック状物を並設して芯材4を形成しても良い。また樹脂発泡体の芯材4の場合、金属外皮2(又は3)の表面で液状の樹脂材料(ウレタンやフェノールなど)を発泡させて形成することができる。また、建築パネル1の周端部には、上記無機繊維材や樹脂発泡材よりも耐火性の高い材料で形成された耐火芯材を用いることができる。耐火芯材としては、例えば、石膏や珪酸カルシウムなどの無機材料からなるものを用いることができる。金属外皮2,3と芯材4とは接着剤等を用いて接着されて一体化することができる。また芯材4を金属外皮2(又は3)の表面で液状の樹脂材料を発泡させて形成する場合は、液状の樹脂材料の自己接着により、金属外皮2,3と芯材4とを接着して一体化することができる。 The core material 4 has only to have heat insulation properties, and preferably has fire resistance and fire resistance. Specifically, as the core material 4, an inorganic fiber material such as rock wool or glass wool, or a resin foam such as urethane foam or phenol foam can be used. The core material 4 is preferably 20 to 150 mm in thickness and 30 to 200 kg / m 3 in consideration of its heat insulating properties and panel strength, but is not limited thereto. The core material 4 may be a single piece over the entire metal sandwich panel 1, or the core material 4 may be formed by arranging a plurality of block-like objects in parallel. In the case of the resin foam core material 4, it can be formed by foaming a liquid resin material (such as urethane or phenol) on the surface of the metal shell 2 (or 3). Moreover, the fireproof core material formed with the fireproof material higher than the said inorganic fiber material and resin foam material can be used for the surrounding edge part of the building panel 1. FIG. As a fireproof core material, what consists of inorganic materials, such as gypsum and a calcium silicate, can be used, for example. The metal shells 2 and 3 and the core material 4 can be integrated by being bonded using an adhesive or the like. When the core material 4 is formed by foaming a liquid resin material on the surface of the metal shell 2 (or 3), the metal shells 2, 3 and the core material 4 are bonded by self-adhesion of the liquid resin material. Can be integrated.

建築パネル1にはその一端(例えば、上端)に嵌合凸部6が形成され、他端(例えば、下端)に嵌合凹部7が形成されていても良い。この場合、隣接して配設される建築パネル1、1を嵌合凸部6と嵌合凹部7との嵌合により接続することができ、接続強度を高めることができる。   The building panel 1 may have a fitting projection 6 formed at one end (for example, the upper end) and a fitting recess 7 at the other end (for example, the lower end). In this case, the adjacent construction panels 1 and 1 can be connected by fitting the fitting convex portion 6 and the fitting concave portion 7, and the connection strength can be increased.

潜熱蓄熱部材5は潜熱を利用して熱を蓄えるものである。潜熱蓄熱部材5は相変化により吸熱したり排熱したりするように形成されている。このような潜熱蓄熱部材5は、例えば、袋体8に蓄熱材9を封入して形成されている。袋体8は、例えば、アルミニウム箔などの熱伝導性の良い金属箔で形成されている。蓄熱材9は例えばパラフィンで形成されている。また蓄熱材9は例えばパラフィンを含んで形成されている。また蓄熱材9は例えばパラフィンを熱可塑性エラストマーなどの固定材料で固定化したもの(例えば、JSR株式会社製の「CALGRIP」)で形成することができる。パラフィンは、炭素数の異なる複数種の高級(炭素数14以上)な飽和炭化水素の混合物で形成されており、飽和炭化水素の種類や各飽和炭化水素の含有量などの組成によって所望の融点となるように設計することが容易である。パラフィンは、吸熱することにより融解状態となり、排熱することで凝固状態となる。蓄熱材9は袋体8に封入されているので、パラフィンが融解状態で液状となっても、蓄熱材9は袋体8から漏れ出しにくいものである。また蓄熱材9がパラフィンを固定材料で固定化したものである場合は、パラフィンが融解状態となっても、蓄熱材9がゲル状態となるだけで流動性が低いものであるため、蓄熱材9は袋体8からさらに漏れ出しにくいものである。蓄熱材9は例えば板状に形成される。また蓄熱材9は例えば粒状に形成され、多数の粒状の蓄熱材9が袋体8に封入されて潜熱蓄熱部材5が形成される。蓄熱材9としては、融点が4〜80℃で、潜熱量が170〜220kJ/kgのものを用いるのが好ましい。また、融点や潜熱量が異なる複数種の蓄熱材9を用いて潜熱蓄熱部材5を形成してもよい。   The latent heat storage member 5 stores heat using latent heat. The latent heat storage member 5 is formed so as to absorb heat or exhaust heat by phase change. Such a latent heat storage member 5 is formed, for example, by enclosing a heat storage material 9 in a bag body 8. The bag body 8 is formed of a metal foil having good thermal conductivity such as an aluminum foil, for example. The heat storage material 9 is made of, for example, paraffin. The heat storage material 9 is formed including paraffin, for example. The heat storage material 9 can be formed of, for example, paraffin fixed with a fixing material such as a thermoplastic elastomer (for example, “CALGRIP” manufactured by JSR Corporation). Paraffin is formed from a mixture of a plurality of higher-grade (more than 14 carbon atoms) saturated hydrocarbons having different carbon numbers, and has a desired melting point depending on the type of saturated hydrocarbon and the content of each saturated hydrocarbon. It is easy to design. Paraffin becomes a molten state by absorbing heat and becomes a solidified state by exhausting heat. Since the heat storage material 9 is sealed in the bag body 8, the heat storage material 9 is difficult to leak out of the bag body 8 even when paraffin is melted and becomes liquid. Further, when the heat storage material 9 is obtained by fixing paraffin with a fixing material, even if the paraffin is in a molten state, the heat storage material 9 is in a gel state and has low fluidity. Is more difficult to leak from the bag body 8. The heat storage material 9 is formed in a plate shape, for example. Further, the heat storage material 9 is formed in a granular form, for example, and a large number of granular heat storage materials 9 are enclosed in the bag body 8 to form the latent heat storage member 5. As the heat storage material 9, it is preferable to use a material having a melting point of 4 to 80 ° C. and a latent heat amount of 170 to 220 kJ / kg. The latent heat storage member 5 may be formed using a plurality of types of heat storage materials 9 having different melting points and latent heat amounts.

潜熱蓄熱部材5は、例えば、矩形状のシート状や板状に形成されている。潜熱蓄熱部材5の大きさは特に限定されないが、取扱いの容易性などから、例えば、一辺が50〜500mmで厚みが5〜30mmの矩形状とすることができる。尚、この大きさは、最も体積が増加した状態の潜熱蓄熱部材5のものである。一枚の建築パネル1は一個又は複数個の潜熱蓄熱部材5を有して形成されている。蓄熱材9が建築パネル1の面方向においてほぼ均等量に位置するように潜熱蓄熱材5が配列されていることが好ましい。また建築パネル1は温度調整機能を十分に発揮するために、一枚の建築パネル1に対して0.3〜2.0kg/mの蓄熱材9を保持していることが好ましいが、この保持量に限定されるものではない。 The latent heat storage member 5 is formed in, for example, a rectangular sheet shape or plate shape. Although the magnitude | size of the latent heat storage member 5 is not specifically limited, From the ease of handling etc., it can be set as the rectangular shape whose side is 50-500 mm and thickness is 5-30 mm, for example. In addition, this magnitude | size is the thing of the latent-heat storage member 5 in the state where the volume increased most. One building panel 1 is formed with one or a plurality of latent heat storage members 5. It is preferable that the latent heat storage material 5 is arranged so that the heat storage material 9 is located in an approximately equal amount in the surface direction of the building panel 1. The building panel 1 preferably holds 0.3 to 2.0 kg / m 2 of the heat storage material 9 for a single building panel 1 in order to sufficiently exhibit the temperature adjustment function. The amount is not limited.

そして、潜熱蓄熱部材5は、一方の金属外皮2と芯材4との間に設けられている。ここで、一方の金属外皮2とは、建築パネル1を施工した場合に、屋内側に向く方の金属外皮2である。建築パネル1を施工した場合に、屋外側に向く金属外皮3と芯材4との間に潜熱蓄熱部材5を設けても、潜熱蓄熱部材5の吸熱や排熱の作用が屋内側に伝わりにくくなり、屋内に対する建築パネル1の温度調節機能が十分に発揮できない場合がある。   The latent heat storage member 5 is provided between one metal skin 2 and the core material 4. Here, one metal skin 2 is the metal skin 2 that faces the indoor side when the building panel 1 is constructed. When the building panel 1 is constructed, even if the latent heat storage member 5 is provided between the metal shell 3 facing the outdoor side and the core material 4, the heat absorption and exhaust heat action of the latent heat storage member 5 is not easily transmitted to the indoor side. Therefore, the temperature control function of the building panel 1 for indoors may not be sufficiently exhibited.

潜熱蓄熱部材5は、一方の金属外皮2と芯材4との間に設けた収容空間10に収容されている。収容空間10は最も体積が増加した状態の潜熱蓄熱部材5が収容可能な大きさに形成されている。すなわち、上記のように潜熱蓄熱部材5がパラフィンを含んで形成されている場合、凝固状態と融解状態との相変化に伴って体積が増減するものである。例えば、パラフィンの場合、凝固状態(固相)から融解状態(液相)に変化する場合、体積が約20%大きくなる(膨張する)。逆に、パラフィンは、融解状態(液相)から凝固状態(固相)に変化する場合、体積が約20%小さくなる(収縮する)。従って、収容空間10は、最も体積が増加した状態(蓄熱材9のパラフィンが融解した状態)での潜熱蓄熱部材5の体積を基準にし、これが収容可能な大きさに形成されている。   The latent heat storage member 5 is accommodated in an accommodation space 10 provided between one metal skin 2 and the core material 4. The accommodation space 10 is formed in a size that can accommodate the latent heat storage member 5 with the largest volume. That is, when the latent heat storage member 5 is formed to contain paraffin as described above, the volume increases or decreases with the phase change between the solidified state and the molten state. For example, in the case of paraffin, when the state changes from a solidified state (solid phase) to a molten state (liquid phase), the volume increases (expands) by about 20%. Conversely, when paraffin changes from a molten state (liquid phase) to a solidified state (solid phase), the volume is reduced by about 20% (shrinks). Therefore, the storage space 10 is formed in a size that can be stored with reference to the volume of the latent heat storage member 5 in the state in which the volume is increased most (the state in which the paraffin of the heat storage material 9 is melted).

収容空間10は、例えば、図1(b)のように、芯材4の表面に形成された凹部11の開口が金属外皮2で閉塞されることにより形成される。この場合、凹部11の表面と金属外皮2とで囲まれて収容空間10が形成される。また金属外皮2の外面(芯材4と反対側の面)はほぼ全体にわたって平坦面に形成される。一方、収容空間10は、例えば、図2(b)のように、金属外皮2の外面に突出して形成された突出部12の開口が前記芯材4で閉塞されることにより形成されていても良い。この場合、突出部12と芯材4の表面とで囲まれて収容空間10が形成される。また芯材4の厚みは建築パネル1の全体にわたってほぼ一定に形成される。図1(b)の場合は、金属外皮2の外面が平坦面に形成されるため、図2(b)のような突出部12が形成されず、建築パネル1の外観の低下が生じにくい。一方、図2(b)の場合は、芯材4の厚みが略一定になるため、図1(b)のような芯材4に厚みが薄い部分が形成されにくく、建築パネル1の断熱性能の低下が生じにくい。突出部12は、例えば、建築パネル1の長手方向と平行な突条に形成されている。建築パネル1には一個又は複数個の突出部12が形成されている。   The accommodation space 10 is formed, for example, by closing the opening of the recess 11 formed on the surface of the core material 4 with the metal skin 2 as shown in FIG. In this case, the accommodation space 10 is formed by being surrounded by the surface of the recess 11 and the metal skin 2. Moreover, the outer surface (surface on the opposite side to the core material 4) of the metal outer skin 2 is formed on a flat surface almost entirely. On the other hand, the accommodating space 10 may be formed by closing the opening of the protruding portion 12 formed to protrude from the outer surface of the metal skin 2 with the core material 4 as shown in FIG. good. In this case, the accommodation space 10 is formed by being surrounded by the protruding portion 12 and the surface of the core material 4. Further, the thickness of the core material 4 is formed substantially constant over the entire building panel 1. In the case of FIG. 1B, since the outer surface of the metal skin 2 is formed as a flat surface, the projecting portion 12 as shown in FIG. 2B is not formed, and the appearance of the building panel 1 is hardly deteriorated. On the other hand, in the case of FIG. 2B, since the thickness of the core material 4 is substantially constant, a thin portion is hardly formed on the core material 4 as shown in FIG. Is less likely to occur. The protrusion 12 is formed, for example, on a protrusion parallel to the longitudinal direction of the building panel 1. One or a plurality of protrusions 12 are formed on the building panel 1.

収容空間10に収容された潜熱蓄熱部材5の外面は金属外皮2と芯材4との少なくとも一方と固定されていない。すなわち、潜熱蓄熱部材5は、図3(a)及び図4(a)のように、金属外皮2の収容空間10に臨む面に固定され、芯材4の収容空間10に臨む面に固定されない場合と、図3(b)及び図4(b)のように、金属外皮2の収容空間10に臨む面に固定されず、芯材4の収容空間10に臨む面に固定される場合とがある。さらに、金属外皮2の収容空間10に臨む面と芯材4の収容空間10に臨む面との両方に固定されない場合も考えられる。但し、潜熱蓄熱部材5が金属外皮2と芯材4の両方に固定されない場合は、収容空間10内で潜熱蓄熱部材5の蓄熱材9が偏ってしまうことがあるので、潜熱蓄熱部材5の外面は金属外皮2と芯材4との少なくとも一方と固定されるのが好ましい。   The outer surface of the latent heat storage member 5 housed in the housing space 10 is not fixed to at least one of the metal skin 2 and the core material 4. That is, the latent heat storage member 5 is fixed to the surface of the metal shell 2 facing the accommodation space 10 as shown in FIGS. 3A and 4A, and is not fixed to the surface of the core material 4 facing the accommodation space 10. In some cases, as shown in FIGS. 3B and 4B, the metal shell 2 is not fixed to the surface facing the accommodation space 10 but is fixed to the surface of the core member 4 facing the accommodation space 10. is there. Furthermore, the case where it does not fix to both the surface which faces the accommodation space 10 of the metal shell 2 and the surface which faces the accommodation space 10 of the core material 4 is also considered. However, when the latent heat storage member 5 is not fixed to both the metal shell 2 and the core material 4, the heat storage material 9 of the latent heat storage member 5 may be biased in the accommodation space 10, and thus the outer surface of the latent heat storage member 5. Is preferably fixed to at least one of the metal shell 2 and the core material 4.

図1(b)及び図2(b)のように、潜熱蓄熱部材5が最も体積が増加した状態では、収容空間10内において、潜熱蓄熱部材5の外面が金属外皮2と芯材4とに接触することになる。図3(a)及び図4(a)のように、潜熱蓄熱部材5が最も体積が増加した状態よりも収縮すると、収容空間10内において、潜熱蓄熱部材5は金属外皮2側の外面が金属外皮2と固定された状態で、芯材4側の外面が芯材4から離れる方向に収縮する。   As shown in FIG. 1B and FIG. 2B, in the state where the volume of the latent heat storage member 5 is the largest, the outer surface of the latent heat storage member 5 becomes the metal skin 2 and the core material 4 in the housing space 10. Will come into contact. As shown in FIGS. 3A and 4A, when the latent heat storage member 5 contracts more than the state in which the volume is increased, the latent heat storage member 5 has a metal outer surface on the metal skin 2 side in the housing space 10. In a state of being fixed to the outer skin 2, the outer surface on the core material 4 side contracts in a direction away from the core material 4.

また図1(b)及び図2(b)のように、潜熱蓄熱部材5が最も体積が増加した状態では、収容空間10内において、潜熱蓄熱部材5の外面が金属外皮2と芯材4とに接触することになる。図3(b)及び図4(b)のように、潜熱蓄熱部材5が最も体積が増加した状態よりも収縮すると、収容空間10内において、潜熱蓄熱部材5は芯材4側の外面が芯材4と固定された状態で、金属外皮2側の外面が金属外皮2から離れる方向に収縮する。   Further, as shown in FIGS. 1B and 2B, in the state where the volume of the latent heat storage member 5 is the largest, the outer surface of the latent heat storage member 5 is the metal skin 2, the core material 4, and the housing space 10. Will come into contact. As shown in FIGS. 3B and 4B, when the latent heat storage member 5 contracts more than the state in which the volume is maximized, the outer surface of the latent heat storage member 5 on the core material 4 side is the core in the housing space 10. In a state of being fixed to the material 4, the outer surface on the metal skin 2 side contracts in a direction away from the metal skin 2.

このように潜熱蓄熱部材5は金属外皮2と芯材4との少なくとも一方に固定されずに収容空間10に収容されているので、相変化により潜熱蓄熱部材5の体積が増減しても金属外皮2、3や芯材4に応力がかかりにくくすることができる。すなわち、潜熱蓄熱部材5は金属外皮2と芯材4との両方に固定されていると、図5のように、潜熱蓄熱部材5が収縮すると、金属外皮2に凹みが生じやすくなるものである。   Thus, since the latent heat storage member 5 is not fixed to at least one of the metal shell 2 and the core material 4 and is stored in the storage space 10, even if the volume of the latent heat storage member 5 increases or decreases due to phase change, the metal shell 2, 3 and the core material 4 can be made difficult to be stressed. That is, when the latent heat storage member 5 is fixed to both the metal shell 2 and the core material 4, when the latent heat storage member 5 contracts as shown in FIG. .

潜熱蓄熱部材5を固定するにあたっては、接着剤等を用いて接着するのが好ましい。金属外皮2と潜熱蓄熱部材5との接着剤及び芯材4と潜熱蓄熱部材5との接着剤は、金属外皮2、3と芯材4とを接着する接着剤と同様のものが用いられ、例えば、ウレタン系接着剤が用いられる。また、液状の樹脂材料を発泡させて芯材4を形成する場合は、液状の樹脂材料の自己接着により、芯材4と潜熱蓄熱部材5とが接着される。また、金属外皮2や芯材4と潜熱蓄熱部材5とが接着されない場合は接着剤を用いずに、潜熱蓄熱部材5の表面を金属外皮2や芯材4の表面と接触するように配置される。また、液状の樹脂材料を発泡させて芯材4を形成する場合において、芯材4と潜熱蓄熱部材5とが接着されないようにするためには、潜熱蓄熱部材5の芯材4と接触する側の表面に剥離剤を設けておくことができる。剥離剤としては、芯材4がウレタンやフェノールなどの樹脂発泡体で形成される場合は、例えば、石油ナフサなどを含有するものが用いられる。剥離剤は、例えば、塗布などの方法により、潜熱蓄熱部材5の表面に設けられる。このように剥離剤により、潜熱蓄熱部材5の表面と芯材4の表面との接着性を低減することにより、潜熱蓄熱部材5と芯材4が接着しにくくすることができる。   In fixing the latent heat storage member 5, it is preferable to bond using an adhesive or the like. The adhesive between the metal skin 2 and the latent heat storage member 5 and the adhesive between the core material 4 and the latent heat storage member 5 are the same as the adhesive that bonds the metal skins 2 and 3 and the core material 4. For example, a urethane adhesive is used. When the core material 4 is formed by foaming a liquid resin material, the core material 4 and the latent heat storage member 5 are bonded by self-adhesion of the liquid resin material. Further, when the metal skin 2 or the core material 4 and the latent heat storage member 5 are not bonded, the surface of the latent heat storage member 5 is arranged to contact the surface of the metal skin 2 or the core material 4 without using an adhesive. The Further, when the core material 4 is formed by foaming a liquid resin material, in order to prevent the core material 4 and the latent heat storage member 5 from being bonded, the side of the latent heat storage member 5 in contact with the core material 4 A release agent can be provided on the surface. As the release agent, when the core material 4 is formed of a resin foam such as urethane or phenol, for example, a material containing petroleum naphtha or the like is used. The release agent is provided on the surface of the latent heat storage member 5 by a method such as coating. Thus, by reducing the adhesiveness between the surface of the latent heat storage member 5 and the surface of the core material 4 with the release agent, the latent heat storage member 5 and the core material 4 can be made difficult to adhere.

上記のような建築パネル1は建物の屋根下地や壁や床などを形成する際に用いられる。この場合、複数枚の建築パネル1は並設されて施工されるが、隣り合う建築パネル1は嵌合凸部6と嵌合凹部7との嵌合により接続されたり、端面同士を突き合わせて接続される。また潜熱蓄熱部材5が接触する金属外皮2を屋内側に向けて施工される。本発明の建築パネル1は、通常の住宅や工場に適用することができるが、特に、温度調節が必要な建物に適用することが可能である。例えば、植物工場などで使用される閉鎖型苗生産システムユニットの壁材として建築パネル1を好適に用いることができる。また、倉庫などの保冷設備の建物を形成する際にも建築パネル1を好適に用いることができる。   The building panel 1 as described above is used when forming a roof base, wall, floor or the like of a building. In this case, although the plurality of building panels 1 are installed side by side, the adjacent building panels 1 are connected by fitting the fitting convex portion 6 and the fitting concave portion 7 or are connected by abutting the end faces. Is done. Moreover, it is constructed with the metal outer skin 2 with which the latent heat storage member 5 comes in contact facing the indoor side. The building panel 1 of the present invention can be applied to ordinary houses and factories, but can be applied particularly to buildings that require temperature control. For example, the building panel 1 can be suitably used as a wall material for a closed seedling production system unit used in a plant factory or the like. Moreover, the building panel 1 can be used suitably also when forming the building of cold storage facilities, such as a warehouse.

以下、本発明を実施例によって具体的に説明する。   Hereinafter, the present invention will be specifically described by way of examples.

(実施例1)
厚み35mm、幅910mm、長さ2700mmの建築パネルを形成する。この建築パネルは二枚の金属外皮がそれぞれ厚み0.5mmの亜鉛めっき鋼板で形成されている。芯材は厚み34mmのウレタンフォーム(1種)で形成されている。各金属外皮と芯材とはウレタンフォームを形成する樹脂材料の自己接着力により接着されている。建築パネルには複数の潜熱蓄熱部材が内蔵されている。
Example 1
A building panel having a thickness of 35 mm, a width of 910 mm, and a length of 2700 mm is formed. In this building panel, two metal shells are each formed of a galvanized steel sheet having a thickness of 0.5 mm. The core material is formed of urethane foam (1 type) having a thickness of 34 mm. Each metal shell and the core material are bonded by the self-adhesive force of the resin material forming the urethane foam. A plurality of latent heat storage members are built in the building panel.

潜熱蓄熱部材は袋体に多数の粒状の蓄熱材を封入して形成されている、袋体は厚み0.01mmのアルミニウム箔で形成されている。蓄熱材(JSR株式会社製の「CALGRIP」)は融点が25℃に設計されたパラフィンで形成されている。蓄熱材の形状は矩形状の板状である。一つの潜熱蓄熱部材には500gの蓄熱材が封入されている。潜熱蓄熱部材は蓄熱材が完全に融解した状態(ゲル状態)で厚み15mm、幅280mm、長さ180mmに形成される。蓄熱材が完全に凝固した状態では潜熱蓄熱部材は厚み12mm、幅280mm、長さ180mmに形成される。   The latent heat storage member is formed by enclosing a large number of granular heat storage materials in a bag, and the bag is formed of an aluminum foil having a thickness of 0.01 mm. The heat storage material (“CALGRIP” manufactured by JSR Corporation) is formed of paraffin designed to have a melting point of 25 ° C. The shape of the heat storage material is a rectangular plate. One latent heat storage member is filled with 500 g of a heat storage material. The latent heat storage member is formed to have a thickness of 15 mm, a width of 280 mm, and a length of 180 mm in a state where the heat storage material is completely melted (gel state). In a state where the heat storage material is completely solidified, the latent heat storage member is formed to have a thickness of 12 mm, a width of 280 mm, and a length of 180 mm.

潜熱蓄熱部材はその片面が一方の金属外皮の芯材側の面にウレタン系接着剤(二液タイプ)で接着されている。潜熱蓄熱部材の他の片面には石油ナフサを含有する剥離剤が2〜3g/mで塗布されている。潜熱蓄熱部材は金属外皮の長手方向に7個、金属外皮の短手方向に2個並べて設けている。金属外皮の長手方向で隣り合っている潜熱蓄熱部材の端部間の間隔は180mmとし、金属外皮の短手方向で隣り合っている潜熱蓄熱部材の端部間の間隔は150mmとしている。そして、潜熱蓄熱部材を設けた一方の金属外皮と潜熱蓄熱部材を設けていない他方の金属外皮とを対向配置し、二枚の金属外皮の間に液状の樹脂材料を供給し、この樹脂材料を発泡させることにより、芯材を形成する。芯材の形成時には、潜熱蓄熱部材が最も体積が増加した状態であることが必要であるため、蓄熱材が完全に融解した状態となる温度で樹脂材料を発泡させる。具体的には、樹脂材料の発泡効率等も考慮して、温度約35℃で樹脂材料を発泡させる。 One surface of the latent heat storage member is bonded to the surface of one metal skin on the core material side with a urethane-based adhesive (two-component type). A release agent containing petroleum naphtha is applied at 2 to 3 g / m 2 on the other surface of the latent heat storage member. Seven latent heat storage members are arranged side by side in the longitudinal direction of the metal skin and two in the short direction of the metal skin. The interval between the ends of the latent heat storage members adjacent in the longitudinal direction of the metal shell is 180 mm, and the interval between the ends of the latent heat storage members adjacent in the short direction of the metal shell is 150 mm. Then, one metal skin provided with the latent heat storage member and the other metal skin not provided with the latent heat storage member are arranged to face each other, and a liquid resin material is supplied between the two metal skins. A core material is formed by foaming. At the time of forming the core material, the latent heat storage member needs to be in a state in which the volume is increased most, and thus the resin material is foamed at a temperature at which the heat storage material is completely melted. Specifically, the resin material is foamed at a temperature of about 35 ° C. in consideration of the foaming efficiency of the resin material.

このようにして14個の潜熱蓄熱部材を内蔵した建築パネルが形成される。この建築パネルでは、芯材の潜熱蓄熱部材が設けられている部分が凹所となり、金属外皮と凹部とで囲まれる空間が収容空間として形成される。そして、潜熱蓄熱部材が最も体積が増加した状態で芯材が形成されるため、収容空間は最も体積が増加した状態の潜熱蓄熱部材が収容可能な大きさに形成されている。また、潜熱蓄熱部材が最も体積が増加した状態から収縮する場合、潜熱蓄熱部材が金属外皮に接着され、芯材とは剥離剤により接着されていないので、潜熱蓄熱部材は厚み方向に収縮しながら芯材と離れるようになっている。   In this way, a building panel incorporating 14 latent heat storage members is formed. In this building panel, a portion where the latent heat storage member of the core material is provided becomes a recess, and a space surrounded by the metal outer skin and the recess is formed as an accommodation space. Since the core material is formed with the latent heat storage member having the largest volume, the accommodation space is formed in a size that can accommodate the latent heat storage member with the largest volume. Further, when the latent heat storage member contracts from the state in which the volume is increased most, the latent heat storage member is bonded to the metal shell and is not bonded to the core by the release agent, so the latent heat storage member is contracted in the thickness direction. It is designed to be separated from the core material.

(実施例2)
実施例1と同様の金属外皮と芯材と潜熱蓄熱部材とを用いて建築パネルを形成する。潜熱蓄熱部材はその片面が一方の金属外皮の芯材側の面に接触して配置されているが、接着されていない。潜熱蓄熱部材の他の片面には剥離剤が塗布されていない。潜熱蓄熱部材は実施例1と同様の個数と間隔で金属外皮に設けられている。そして、潜熱蓄熱部材を設けた一方の金属外皮と潜熱蓄熱部材を設けていない他方の金属外皮とを対向配置し、二枚の金属外皮の間に液状の樹脂材料を供給し、この樹脂材料を実施例1と同様の条件で発泡させることにより、芯材を形成する。
(Example 2)
A building panel is formed using the same metal skin, core material, and latent heat storage member as in Example 1. The latent heat storage member is arranged so that one surface thereof is in contact with the surface of the core of the one metal shell, but is not bonded. A release agent is not applied to the other surface of the latent heat storage member. The latent heat storage members are provided on the metal shell at the same number and interval as in the first embodiment. Then, one metal skin provided with the latent heat storage member and the other metal skin not provided with the latent heat storage member are arranged to face each other, and a liquid resin material is supplied between the two metal skins. A core material is formed by foaming under the same conditions as in Example 1.

このようにして14個の潜熱蓄熱部材を内蔵した建築パネルが形成される。この建築パネルでは、芯材の潜熱蓄熱部材が設けられている部分が凹所となり、金属外皮と凹部とで囲まれる空間が収容空間として形成される。そして、潜熱蓄熱部材が最も体積が増加した状態で芯材が形成されるため、収容空間は最も体積が増加した状態の潜熱蓄熱部材が収容可能な大きさに形成されている。また、潜熱蓄熱部材が最も体積が増加した状態から収縮する場合、潜熱蓄熱部材が金属外皮に接着されず、芯材とは樹脂材料の自己接着力により接着されるので、潜熱蓄熱部材は厚み方向に収縮しながら金属外皮と離れるようになっている。   In this way, a building panel incorporating 14 latent heat storage members is formed. In this building panel, a portion where the latent heat storage member of the core material is provided becomes a recess, and a space surrounded by the metal outer skin and the recess is formed as an accommodation space. Since the core material is formed with the latent heat storage member having the largest volume, the accommodation space is formed in a size that can accommodate the latent heat storage member with the largest volume. Also, when the latent heat storage member contracts from the state in which the volume is maximized, the latent heat storage member is not bonded to the metal shell, and is bonded to the core by the self-adhesive force of the resin material. It is designed to move away from the metal skin while shrinking.

(実施例3)
厚み35mm、幅910mm、長さ2700mmの建築パネルを形成する。この建築パネルは二枚の金属外皮がそれぞれ厚み0.5mmの亜鉛めっき鋼板で形成されている。金属外皮には幅280mmで建築パネルの長手方向の全長にわたって突出部が形成されている。突出部の幅(280mm)は、蓄熱材が完全に融解した状態(ゲル状態)の潜熱蓄熱部材が収容可能に形成されており、厚み(深さ)15mm、幅280mm、長さ2700mmに形成される。芯材は厚み34mmのウレタンフォーム(1種)で形成されている。各金属外皮と芯材とはウレタンフォームを形成する樹脂材料の自己接着力により接着されている。建築パネルには複数の潜熱蓄熱部材が突出部に配置されて内蔵されている。
(Example 3)
A building panel having a thickness of 35 mm, a width of 910 mm, and a length of 2700 mm is formed. In this building panel, two metal shells are each formed of a galvanized steel sheet having a thickness of 0.5 mm. The metal skin has a width of 280 mm, and a protrusion is formed over the entire length in the longitudinal direction of the building panel. The width (280 mm) of the protruding portion is formed so as to accommodate a latent heat storage member in a state where the heat storage material is completely melted (gel state), and is formed to have a thickness (depth) of 15 mm, a width of 280 mm, and a length of 2700 mm. The The core material is formed of urethane foam (1 type) having a thickness of 34 mm. Each metal shell and the core material are bonded by the self-adhesive force of the resin material forming the urethane foam. In the building panel, a plurality of latent heat storage members are arranged and built in the protruding portions.

潜熱蓄熱部材は実施例1と同様のものを用いる。   The latent heat storage member is the same as that in the first embodiment.

潜熱蓄熱部材はその片面が一方の金属外皮に形成した突出部の芯材側の面にウレタン系接着剤(二液タイプ)で接着されている。潜熱蓄熱部材の他の片面には実施例1と同様に剥離剤が塗布されている。潜熱蓄熱部材は実施例1と同様の個数と間隔で金属外皮に設けられている。そして、潜熱蓄熱部材を設けた一方の金属外皮と潜熱蓄熱部材を設けていない他方の金属外皮とを対向配置し、二枚の金属外皮の間に液状の樹脂材料を供給し、この樹脂材料を実施例1と同様の条件で発泡させることにより、芯材を形成する。   One surface of the latent heat storage member is bonded to the surface on the core material side of the protruding portion formed on one metal shell with a urethane-based adhesive (two-component type). A release agent is applied to the other surface of the latent heat storage member in the same manner as in the first embodiment. The latent heat storage members are provided on the metal shell at the same number and interval as in the first embodiment. Then, one metal skin provided with the latent heat storage member and the other metal skin not provided with the latent heat storage member are arranged to face each other, and a liquid resin material is supplied between the two metal skins. A core material is formed by foaming under the same conditions as in Example 1.

このようにして14個の潜熱蓄熱部材を内蔵した建築パネルが形成される。この建築パネルでは、芯材と突出部とで囲まれる空間が収容空間として形成される。そして、潜熱蓄熱部材が最も体積が増加した状態で芯材が形成されるため、収容空間は最も体積が増加した状態の潜熱蓄熱部材が収容可能な大きさに形成されている。また、潜熱蓄熱部材が最も体積が増加した状態から収縮する場合、潜熱蓄熱部材が金属外皮に接着され、芯材とは剥離剤により接着されていないので、潜熱蓄熱部材は厚み方向に収縮しながら芯材と離れるようになっている。   In this way, a building panel incorporating 14 latent heat storage members is formed. In this building panel, a space surrounded by the core material and the protruding portion is formed as a housing space. Since the core material is formed with the latent heat storage member having the largest volume, the accommodation space is formed in a size that can accommodate the latent heat storage member with the largest volume. Further, when the latent heat storage member contracts from the state in which the volume is increased most, the latent heat storage member is bonded to the metal shell and is not bonded to the core by the release agent, so the latent heat storage member is contracted in the thickness direction. It is designed to be separated from the core material.

(実施例4)
実施例3と同様の金属外皮と芯材と潜熱蓄熱部材とを用いて建築パネルを形成する。潜熱蓄熱部材はその片面が一方の金属外皮に形成した突出部の芯材側の面に接触して配置されているが、接着されていない。潜熱蓄熱部材の他の片面には剥離剤が塗布されていない。潜熱蓄熱部材は建築パネルの内部において突出部の内側に収容されている。潜熱蓄熱部材は実施例1と同様の個数と間隔で金属外皮に設けられている。そして、潜熱蓄熱部材を設けた一方の金属外皮と潜熱蓄熱部材を設けていない他方の金属外皮とを対向配置し、二枚の金属外皮の間に液状の樹脂材料を供給し、この樹脂材料を実施例1と同様の条件で発泡させることにより、芯材を形成する。
Example 4
A building panel is formed using the same metal skin, core material, and latent heat storage member as in Example 3. The latent heat storage member is disposed so that one surface thereof is in contact with the surface on the core material side of the protruding portion formed on one metal skin, but is not bonded. A release agent is not applied to the other surface of the latent heat storage member. The latent heat storage member is accommodated inside the projecting portion inside the building panel. The latent heat storage members are provided on the metal shell at the same number and interval as in the first embodiment. Then, one metal skin provided with the latent heat storage member and the other metal skin not provided with the latent heat storage member are arranged to face each other, and a liquid resin material is supplied between the two metal skins. A core material is formed by foaming under the same conditions as in Example 1.

このようにして14個の潜熱蓄熱部材を内蔵した建築パネルが形成される。この建築パネルでは、芯材と突出部とで囲まれる空間が収容空間として形成される。そして、潜熱蓄熱部材が最も体積が増加した状態で芯材が形成されるため、収容空間は最も体積が増加した状態の潜熱蓄熱部材が収容可能な大きさに形成されている。また、潜熱蓄熱部材が最も体積が増加した状態から収縮する場合、潜熱蓄熱部材が金属外皮に接着されず、芯材とは樹脂材料の自己接着力により接着されるので、潜熱蓄熱部材は厚み方向に収縮しながら金属外皮と離れるようになっている。   In this way, a building panel incorporating 14 latent heat storage members is formed. In this building panel, a space surrounded by the core material and the protruding portion is formed as a housing space. Since the core material is formed with the latent heat storage member having the largest volume, the accommodation space is formed in a size that can accommodate the latent heat storage member with the largest volume. Also, when the latent heat storage member contracts from the state in which the volume is maximized, the latent heat storage member is not bonded to the metal shell, and is bonded to the core by the self-adhesive force of the resin material. It is designed to move away from the metal skin while shrinking.

(比較例1)
実施例1と同様の金属外皮と芯材とを用い、潜熱蓄熱部材を用いずに建築パネルを形成する。すなわち、潜熱蓄熱部材を設けていない二枚の金属外皮を対向配置し、二枚の金属外皮の間に液状の樹脂材料を供給し、この樹脂材料を実施例1と同様の条件で発泡させることにより、芯材を形成する。このようにして形成される建築パネルでは、芯材には凹所が形成されず、金属外皮と芯材とが略全面にわたって接着される。
(Comparative Example 1)
Using the same metal shell and core as in Example 1, a building panel is formed without using a latent heat storage member. That is, two metal shells not provided with a latent heat storage member are arranged to face each other, a liquid resin material is supplied between the two metal shells, and the resin material is foamed under the same conditions as in the first embodiment. Thus, the core material is formed. In the building panel formed in this way, no recess is formed in the core material, and the metal shell and the core material are bonded over substantially the entire surface.

(比較例2)
実施例1と同様の金属外皮と芯材と潜熱蓄熱部材を用いて建築パネルを形成する。潜熱蓄熱部材はその片面が一方の金属外皮の芯材側の面にウレタン系接着剤(二液タイプ)で接着されている。潜熱蓄熱部材の他の片面には剥離剤が塗布されていない。潜熱蓄熱部材は実施例1と同様の個数と間隔で金属外皮に設けられている。そして、潜熱蓄熱部材を設けた一方の金属外皮と潜熱蓄熱部材を設けていない他方の金属外皮とを対向配置し、二枚の金属外皮の間に液状の樹脂材料を供給し、この樹脂材料を実施例1と同様の条件で発泡させることにより、芯材を形成する。
(Comparative Example 2)
A building panel is formed using the same metal skin, core material, and latent heat storage member as in Example 1. One surface of the latent heat storage member is bonded to the surface of one metal skin on the core material side with a urethane-based adhesive (two-component type). A release agent is not applied to the other surface of the latent heat storage member. The latent heat storage members are provided on the metal shell at the same number and interval as in the first embodiment. Then, one metal skin provided with the latent heat storage member and the other metal skin not provided with the latent heat storage member are arranged to face each other, and a liquid resin material is supplied between the two metal skins. A core material is formed by foaming under the same conditions as in Example 1.

このようにして14個の潜熱蓄熱部材を内蔵した建築パネルが形成される。この建築パネルでは、芯材の潜熱蓄熱部材が設けられている部分が凹所となり、金属外皮と凹部とで囲まれる空間が収容空間として形成される。そして、潜熱蓄熱部材が最も体積が増加した状態で芯材が形成されるため、収容空間は最も体積が増加した状態の潜熱蓄熱部材が収容可能な大きさに形成されている。また、潜熱蓄熱部材が最も体積が増加した状態から収縮する場合、潜熱蓄熱部材が金属外皮と芯材の両方に接着されているので、潜熱蓄熱部材は金属外皮と芯材から離れずに厚み方向に収縮しようとする。   In this way, a building panel incorporating 14 latent heat storage members is formed. In this building panel, a portion where the latent heat storage member of the core material is provided becomes a recess, and a space surrounded by the metal outer skin and the recess is formed as an accommodation space. Since the core material is formed with the latent heat storage member having the largest volume, the accommodation space is formed in a size that can accommodate the latent heat storage member with the largest volume. Further, when the latent heat storage member contracts from the state in which the volume has increased most, the latent heat storage member is bonded to both the metal shell and the core material, so that the latent heat storage member is not separated from the metal shell and the core material in the thickness direction. Try to shrink.

(比較例3)
実施例3と同様の金属外皮と芯材と潜熱蓄熱部材を用いて建築パネルを形成する。潜熱蓄熱部材はその片面が一方の金属外皮の芯材側の面にウレタン系接着剤(二液タイプ)で接着されている。潜熱蓄熱部材の他の片面には剥離剤が塗布されていない。潜熱蓄熱部材は建築パネルの内部において突出部の内側に収容されている。潜熱蓄熱部材は実施例1と同様の個数と間隔で金属外皮に設けられている。そして、潜熱蓄熱部材を設けた一方の金属外皮と潜熱蓄熱部材を設けていない他方の金属外皮とを対向配置し、二枚の金属外皮の間に液状の樹脂材料を供給し、この樹脂材料を実施例1と同様の条件で発泡させることにより、芯材を形成する。
(Comparative Example 3)
A building panel is formed using the same metal skin, core material, and latent heat storage member as in Example 3. One surface of the latent heat storage member is bonded to the surface of one metal skin on the core material side with a urethane-based adhesive (two-component type). A release agent is not applied to the other surface of the latent heat storage member. The latent heat storage member is accommodated inside the projecting portion inside the building panel. The latent heat storage members are provided on the metal shell at the same number and interval as in the first embodiment. Then, one metal skin provided with the latent heat storage member and the other metal skin not provided with the latent heat storage member are arranged to face each other, and a liquid resin material is supplied between the two metal skins. A core material is formed by foaming under the same conditions as in Example 1.

このようにして14個の潜熱蓄熱部材を内蔵した建築パネルが形成される。この建築パネルでは、芯材と突出部とで囲まれる空間が収容空間として形成される。そして、潜熱蓄熱部材が最も体積が増加した状態で芯材が形成されるため、収容空間は最も体積が増加した状態の潜熱蓄熱部材が収容可能な大きさに形成されている。また、潜熱蓄熱部材が最も体積が増加した状態から収縮する場合、潜熱蓄熱部材が金属外皮と芯材の両方に接着されているので、潜熱蓄熱部材は金属外皮と芯材から離れずに厚み方向に収縮しようとする。   In this way, a building panel incorporating 14 latent heat storage members is formed. In this building panel, a space surrounded by the core material and the protruding portion is formed as a housing space. Since the core material is formed with the latent heat storage member having the largest volume, the accommodation space is formed in a size that can accommodate the latent heat storage member with the largest volume. Further, when the latent heat storage member contracts from the state in which the volume has increased most, the latent heat storage member is bonded to both the metal shell and the core material, so that the latent heat storage member is not separated from the metal shell and the core material in the thickness direction. Try to shrink.

[許容曲げ応力度]
3等分2線集中荷重載荷試験を行った。この場合、建築パネルを長手方向の両端部で水平に支持し(支持スパンは2500mm)、建築パネルの各支持位置から833mmの位置に上から均等な荷重を付加し、建築パネルの中央部の変位を測定した。そして、この試験による破壊荷重を測定し、断面係数及び断面二次モーメントを用いて最大曲げ応力度を計算し、さらに安全率を2として許容曲げ応力度を計算した。
[Allowable bending stress]
A three-part two-line concentrated load loading test was performed. In this case, the building panel is supported horizontally at both ends in the longitudinal direction (support span is 2500 mm), and an equal load is applied from the top to the position of 833 mm from each support position of the building panel. Was measured. Then, the breaking load by this test was measured, the maximum bending stress degree was calculated using the section modulus and the second moment of section, and the allowable bending stress degree was calculated with a safety factor of 2.

実施例1及び2の建築パネルは、許容曲げ応力度が370〜380kg/cmであり、比較例1の建築パネルの許容曲げ応力度560kg/cmよりもやや低下する傾向にある。しかしながら、人が全力で建築パネルに寄りかかった時の曲げ応力度は約650kg/cmであるため、実施例1及び2の建築パネルであっても、実用上、問題とならない曲げ強度を有するものである。実施例3及び4は許容曲げ応力度が800〜830kg/cmであり、比較例1の建築パネル及び比較例2の建築パネル(許容曲げ応力度が375kg/cm)よりも曲げ強度が高くなり、比較例3の建築パネル(許容曲げ応力度が835kg/cm)に比べても、遜色のない曲げ強度を有する。 Building panels of Examples 1 and 2, the allowable bending stress intensity is 370~380kg / cm 2, there is a tendency to slightly lower than the allowable bending stress of 560 kg / cm 2 of the building panel of Comparative Example 1. However, since the degree of bending stress when a person leans against the building panel with full power is about 650 kg / cm 2 , even the building panels of Examples 1 and 2 have bending strength that is not a problem in practice. Is. Examples 3 and 4 is the allowable bending stress intensity is 800~830kg / cm 2, a high flexural strength than the building panels and Comparative Example 2 Construction panel Comparative Example 1 (allowable bending stress of the 375 kg / cm 2) That is, even when compared with the building panel of Comparative Example 3 (allowable bending stress degree is 835 kg / cm 2 ), it has a bending strength comparable to that of the building panel.

[温度調節機能]
図6のような測定ユニット20を形成した。測定ユニット20は上板21と下板22と一対の短い側板23と一対の長い側板24とを組合せた箱で形成されている。上板21の下面には蛍光灯25が設けられている。下板22の上面には扇風機26が設けられている。上板21と下板22と一対の短い側板23は比較例1の建築パネルで形成されている。そして、一対の長い側板24を実施例1〜4及び比較例1〜3のそれぞれを用いて形成することにより、複数の測定ユニット20を形成した。尚、測定ユニット20の大きさは、高さ900mm、短手寸法570mm、長手寸法1350mmであった。また、長い側板24は実施例1〜4及び比較例1〜3の建築パネルを切断して形成され、10個の潜熱蓄熱部材5が内蔵されている。
[Temperature control function]
A measurement unit 20 as shown in FIG. 6 was formed. The measurement unit 20 is formed of a box in which an upper plate 21, a lower plate 22, a pair of short side plates 23, and a pair of long side plates 24 are combined. A fluorescent lamp 25 is provided on the lower surface of the upper plate 21. A fan 26 is provided on the upper surface of the lower plate 22. The upper plate 21, the lower plate 22, and the pair of short side plates 23 are formed by the building panel of Comparative Example 1. And the some measurement unit 20 was formed by forming a pair of long side plate 24 using each of Examples 1-4 and Comparative Examples 1-3. The measurement unit 20 had a height of 900 mm, a short dimension of 570 mm, and a long dimension of 1350 mm. Further, the long side plate 24 is formed by cutting the building panels of Examples 1 to 4 and Comparative Examples 1 to 3, and ten latent heat storage members 5 are incorporated therein.

そして、温度調節機能の測定は以下のようにして行った。まず、上板21の無い状態の測定ユニット20を入れた恒温恒湿試験機内を10℃で保管(約36時間)し、蓄熱材(パラフィン)を確実に固体化させた。次に、恒温恒湿試験機を10℃から14℃に昇温し、この温度が14℃で安定したら、上板21を取り付けて測定ユニット20内を密閉し、同時に蛍光灯25をONにして点灯させた。また、恒温恒湿試験機の温度(測定ユニット20の外部雰囲気温度)を14℃から27℃に昇温した。この後、ユニット内部の温度を継続的(1分間隔)に測定した。そして、約7.5時間後に蛍光灯25をOFFにして消灯した後、恒温恒湿試験機の温度は27℃で維持した状態で、30分間継続して測定ユニット20内の温度を測定した。尚、測定ユニット20内の温度の測定は、図6(a)のように、測定ユニット20の長手方向と短手方向の略中央部で、上板21の下面から450mmの位置(1)と、上板21の下面から255mmの位置(2)とで測定した。また、長い側板24の内側表面の温度も上の位置(3)、真ん中の位置(5)、下の位置(4)で測定した。さらに図6(b)及び図6(c)のように、潜熱蓄熱部材5の芯材側の表面の位置(6)と潜熱蓄熱部材5の内部の位置(7)の温度も測定した。結果を図7〜9に示す。   And the measurement of the temperature control function was performed as follows. First, the inside of the constant temperature and humidity tester containing the measurement unit 20 without the upper plate 21 was stored at 10 ° C. (about 36 hours), and the heat storage material (paraffin) was solidified surely. Next, the temperature and humidity tester is heated from 10 ° C. to 14 ° C., and when this temperature is stabilized at 14 ° C., the upper plate 21 is attached, the inside of the measurement unit 20 is sealed, and simultaneously the fluorescent lamp 25 is turned on. Lighted up. Further, the temperature of the constant temperature and humidity tester (outside atmosphere temperature of the measurement unit 20) was increased from 14 ° C to 27 ° C. Thereafter, the temperature inside the unit was continuously measured (at intervals of 1 minute). Then, after about 7.5 hours, the fluorescent lamp 25 was turned off and turned off, and then the temperature in the measurement unit 20 was measured continuously for 30 minutes while the temperature of the constant temperature and humidity tester was maintained at 27 ° C. The temperature in the measurement unit 20 is measured at a position (1) 450 mm from the lower surface of the upper plate 21 at a substantially central portion in the longitudinal direction and the short direction of the measurement unit 20 as shown in FIG. The measurement was performed at a position (2) of 255 mm from the lower surface of the upper plate 21. The temperature of the inner surface of the long side plate 24 was also measured at the upper position (3), the middle position (5), and the lower position (4). Further, as shown in FIG. 6B and FIG. 6C, the temperatures of the surface position (6) on the core material side of the latent heat storage member 5 and the position (7) inside the latent heat storage member 5 were also measured. The results are shown in FIGS.

図7のグラフから、蛍光灯25の発熱により測定ユニット20の内部の位置(1)及び(2)では徐々に温度上昇するが、実施例1を用いた測定ユニット20は温度上昇が緩やかであった。また実施例1を用いた測定ユニット20は最高到達温度が31.5℃で、比較例1を用いた測定ユニット20は最高到達温度が42.8℃であった。すなわち、最高到達温度の差が11.3℃あり、実施例1では潜熱蓄熱部材5の温度調節機能の効果が見られた。   From the graph of FIG. 7, the temperature rises gradually at the positions (1) and (2) inside the measurement unit 20 due to the heat generated by the fluorescent lamp 25, but the temperature rise of the measurement unit 20 using Example 1 is moderate. It was. The measurement unit 20 using Example 1 had a maximum temperature of 31.5 ° C., and the measurement unit 20 using Comparative Example 1 had a maximum temperature of 42.8 ° C. That is, the difference in the maximum temperature reached was 11.3 ° C., and in Example 1, the effect of the temperature adjustment function of the latent heat storage member 5 was observed.

また実施例2を用いた測定ユニット20は温度上昇も緩やかであった。実施例2を用いた測定ユニット20は最高到達温度が32.3℃で、比較例1を用いた測定ユニット20は最高到達温度が42.8℃であった。すなわち、最高到達温度の差が10.5℃あり、実施例2でも潜熱蓄熱部材5の温度調節機能の効果が見られた。また実施例3を用いた測定ユニット20は温度上昇も緩やかであった。また実施例3を用いた測定ユニット20は最高到達温度が30.3℃で、比較例3を用いた測定ユニット20は最高到達温度が41.5℃であった。すなわち、最高到達温度の差が11.2℃あり、実施例3でも潜熱蓄熱部材5の温度調節機能の効果が見られた。また実施例4を用いた測定ユニット20は温度上昇も緩やかであった。また実施例4を用いた測定ユニット20は最高到達温度が31.9℃で、比較例3を用いた測定ユニット20は最高到達温度が41.5℃であった。すなわち、最高到達温度の差が9.6℃あり、実施例4でも潜熱蓄熱部材5の温度調節機能の効果が見られた。   The measurement unit 20 using Example 2 also had a moderate temperature rise. The measurement unit 20 using Example 2 had a maximum temperature of 32.3 ° C., and the measurement unit 20 using Comparative Example 1 had a maximum temperature of 42.8 ° C. That is, the difference in maximum temperature reached was 10.5 ° C., and the effect of the temperature adjustment function of the latent heat storage member 5 was also observed in Example 2. The measurement unit 20 using Example 3 also had a moderate temperature rise. The measurement unit 20 using Example 3 had a maximum temperature of 30.3 ° C., and the measurement unit 20 using Comparative Example 3 had a maximum temperature of 41.5 ° C. That is, the difference in maximum temperature reached was 11.2 ° C., and the effect of the temperature adjustment function of the latent heat storage member 5 was also observed in Example 3. The measurement unit 20 using Example 4 also had a moderate temperature rise. In addition, the measurement unit 20 using Example 4 had a maximum temperature of 31.9 ° C., and the measurement unit 20 using Comparative Example 3 had a maximum temperature of 41.5 ° C. That is, the difference in maximum temperature reached was 9.6 ° C., and the effect of the temperature adjustment function of the latent heat storage member 5 was also observed in Example 4.

図8のグラフから、測定ユニット20の位置(3)〜(5)の温度変化も位置(1)及び(2)と同様の傾向を示しており、実施例1では潜熱蓄熱部材5の温度調節機能の効果が見られた。実施例1では潜熱蓄熱部材5がない箇所(位置(5))も温度上昇が抑制されている。蛍光灯25から遠い位置(4)は比較的温度が低くなった。また実施例2〜4、比較例2、3でも同様の結果であった。   From the graph of FIG. 8, the temperature change at the positions (3) to (5) of the measurement unit 20 also shows the same tendency as the positions (1) and (2), and in Example 1, the temperature adjustment of the latent heat storage member 5 The effect of the function was seen. In Example 1, the temperature rise is also suppressed at the location (position (5)) where the latent heat storage member 5 is not provided. The position (4) far from the fluorescent lamp 25 has a relatively low temperature. The same results were obtained in Examples 2 to 4 and Comparative Examples 2 and 3.

図9のグラフから、蛍光灯25の点灯から1.5時間程度で、位置(6)(7)の温度が蓄熱材の融点20℃を超え、蛍光灯25を消灯した後も25℃付近まで上昇した。   From the graph of FIG. 9, the temperature at the positions (6) and (7) exceeds the melting point of the heat storage material of 20 ° C. in about 1.5 hours from the lighting of the fluorescent lamp 25, and even after the fluorescent lamp 25 is turned off to about 25 ° C. Rose.

[金属外皮の凹み発生の有無]
上記の[温度調節機能]において、測定ユニット20の内部の温度変化を測定した後、恒温恒湿試験機の温度を10℃にし、36時間経過後に長い側板24の金属外皮に凹みが生じているか否かを目視で確認した。
[Presence or absence of dents in the metal shell]
In the above [Temperature Control Function], after measuring the temperature change inside the measurement unit 20, the temperature of the constant temperature and humidity tester is set to 10 ° C., and a dent is generated in the metal skin of the long side plate 24 after 36 hours It was confirmed visually.

実施例1〜4では、長い側板24の金属外皮に凹みが生じなかったが、比較例2,3では長い側板24の金属外皮に凹みが生じた。   In Examples 1 to 4, the metal skin of the long side plate 24 did not have a dent, but in Comparative Examples 2 and 3, the metal skin of the long side plate 24 had a dent.

1 建築パネル
2 金属外皮
3 金属外皮
4 芯材
5 潜熱蓄熱部材
10 収容空間
11 凹部
12 突出部
DESCRIPTION OF SYMBOLS 1 Architectural panel 2 Metal outer skin 3 Metal outer skin 4 Core material 5 Latent heat storage member 10 Housing space 11 Recessed portion 12 Protruding portion

Claims (4)

二枚の金属外皮の間に芯材が充填され、前記金属外皮と前記芯材との間に潜熱蓄熱部材が設けられた建築パネルであって、前記金属外皮と前記芯材との間には、最も体積が増加した状態の前記潜熱蓄熱部材が収容可能な収容空間が形成され、前記潜熱蓄熱部材は前記金属外皮と前記芯材との少なくとも一方に固定されずに前記収容空間に収容されていることを特徴とする建築パネル。   A building panel in which a core material is filled between two metal skins and a latent heat storage member is provided between the metal skin and the core material, between the metal skin and the core material An accommodation space that can accommodate the latent heat storage member with the largest volume is formed, and the latent heat storage member is accommodated in the accommodation space without being fixed to at least one of the metal shell and the core material. An architectural panel characterized by 前記芯材にはその表面に凹部が形成され、この凹部と前記金属外皮との間に前記収容空間が形成されていることを特徴とする請求項1に記載の建築パネル。   The architectural panel according to claim 1, wherein a concave portion is formed on a surface of the core material, and the accommodation space is formed between the concave portion and the metal skin. 前記金属外皮にはその外面に突出する突出部が形成され、この突出部と前記芯材との間に前記収容空間が形成されていることを特徴とする請求項1に記載の建築パネル。   The building panel according to claim 1, wherein a protruding portion that protrudes on an outer surface of the metal outer skin is formed, and the housing space is formed between the protruding portion and the core member. 前記芯材と前記潜熱蓄熱部材との接着性を低減するための剥離剤が前記潜熱蓄熱部材の表面に設けられていることを特徴とする請求項1乃至3のいずれか一項に記載の建築パネル。
The building according to any one of claims 1 to 3, wherein a release agent for reducing adhesion between the core material and the latent heat storage member is provided on a surface of the latent heat storage member. panel.
JP2014033117A 2014-02-24 2014-02-24 Architectural panel Active JP6366129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014033117A JP6366129B2 (en) 2014-02-24 2014-02-24 Architectural panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014033117A JP6366129B2 (en) 2014-02-24 2014-02-24 Architectural panel

Publications (2)

Publication Number Publication Date
JP2015158085A true JP2015158085A (en) 2015-09-03
JP6366129B2 JP6366129B2 (en) 2018-08-01

Family

ID=54182268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014033117A Active JP6366129B2 (en) 2014-02-24 2014-02-24 Architectural panel

Country Status (1)

Country Link
JP (1) JP6366129B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016104957A (en) * 2014-11-20 2016-06-09 永大産業株式会社 Heat storage wall panel
JP2018155076A (en) * 2017-03-21 2018-10-04 日鉄住金鋼板株式会社 Architectural panel
KR20190109845A (en) * 2018-03-19 2019-09-27 고려대학교 산학협력단 The structure of prefabricated composite floor system infilled with pcm

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5472830U (en) * 1977-11-02 1979-05-24
JPS5736587U (en) * 1980-08-08 1982-02-26
JPH01207546A (en) * 1988-02-15 1989-08-21 Matsushita Electric Works Ltd Heat accumulator board
JPH0688627A (en) * 1992-09-09 1994-03-29 Mitsubishi Cable Ind Ltd Heat srtorage board and floor heating structure using it
US20050281979A1 (en) * 2004-06-17 2005-12-22 Toas Murray S Loose fill insulation product having phase change material therein
WO2012169460A1 (en) * 2011-06-08 2012-12-13 シャープ株式会社 Heat storage member

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5472830U (en) * 1977-11-02 1979-05-24
JPS5736587U (en) * 1980-08-08 1982-02-26
JPH01207546A (en) * 1988-02-15 1989-08-21 Matsushita Electric Works Ltd Heat accumulator board
JPH0688627A (en) * 1992-09-09 1994-03-29 Mitsubishi Cable Ind Ltd Heat srtorage board and floor heating structure using it
US20050281979A1 (en) * 2004-06-17 2005-12-22 Toas Murray S Loose fill insulation product having phase change material therein
WO2012169460A1 (en) * 2011-06-08 2012-12-13 シャープ株式会社 Heat storage member

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016104957A (en) * 2014-11-20 2016-06-09 永大産業株式会社 Heat storage wall panel
JP2018155076A (en) * 2017-03-21 2018-10-04 日鉄住金鋼板株式会社 Architectural panel
JP7017859B2 (en) 2017-03-21 2022-02-09 日鉄鋼板株式会社 Architectural panel
JP2022031785A (en) * 2017-03-21 2022-02-22 日鉄鋼板株式会社 Building panel
JP7402212B2 (en) 2017-03-21 2023-12-20 日鉄鋼板株式会社 architectural panels
KR20190109845A (en) * 2018-03-19 2019-09-27 고려대학교 산학협력단 The structure of prefabricated composite floor system infilled with pcm
KR102128816B1 (en) * 2018-03-19 2020-07-01 고려대학교 산학협력단 The structure of prefabricated composite floor system infilled with pcm

Also Published As

Publication number Publication date
JP6366129B2 (en) 2018-08-01

Similar Documents

Publication Publication Date Title
JP7402212B2 (en) architectural panels
CN204983225U (en) Wall structure
US10603865B2 (en) Insulating member and its attaching method
AU2016343257B2 (en) Insulation material arrangement and method for forming an insulation material
JP6366129B2 (en) Architectural panel
JP5543698B2 (en) Thermal insulation repair method for existing walls and thermal insulation repair method for existing buildings
NO159313B (en) HEAT-INSULATED CONNECTIONS AND PROCEDURES IN THE PREPARATION OF THIS.
KR101164060B1 (en) Structure of fireproofing between floors in curtain wall and construct method thereof
JP2007113286A (en) Panel connection structure
JP5077058B2 (en) Insulation wall
JP5215531B2 (en) Fireproof flat roof
KR20140071401A (en) Exterior heat insulation cover panel
JP6262928B2 (en) Insulated fireproof panel
JP2012092555A (en) Heat-insulated structure
JP5217641B2 (en) Insulation wall
JP2021008712A (en) Fire-resistant coating structure for wall composed of heat insulating panel, and heat insulating panel fire-resistant coating body
JP2018155037A (en) building
KR101458667B1 (en) Honeycomb board using polyethylen glycol compound
JP3223459U (en) Heat shield and its arrangement structure
KR200418808Y1 (en) insulator
JP2011111753A (en) Structure for fixing heat insulating panel, and building
JP4540450B2 (en) Interior wall structure
JPS6144075Y2 (en)
CN104631632A (en) Movable hollow heat preservation method of building exterior wall
JP2003291252A (en) Composite panel

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20161111

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180629

R150 Certificate of patent or registration of utility model

Ref document number: 6366129

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250