[go: up one dir, main page]

JP2015150534A - Coagulation treatment agent and sludge dewatering method using the same - Google Patents

Coagulation treatment agent and sludge dewatering method using the same Download PDF

Info

Publication number
JP2015150534A
JP2015150534A JP2014028311A JP2014028311A JP2015150534A JP 2015150534 A JP2015150534 A JP 2015150534A JP 2014028311 A JP2014028311 A JP 2014028311A JP 2014028311 A JP2014028311 A JP 2014028311A JP 2015150534 A JP2015150534 A JP 2015150534A
Authority
JP
Japan
Prior art keywords
water
sludge
general formula
group
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014028311A
Other languages
Japanese (ja)
Other versions
JP6257079B2 (en
Inventor
幸治 坂野
Koji Sakano
幸治 坂野
山白 高嗣
Takatsugu Yamashiro
高嗣 山白
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hymo Corp
Sanyo Chemical Industries Ltd
Original Assignee
Hymo Corp
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hymo Corp, Sanyo Chemical Industries Ltd filed Critical Hymo Corp
Priority to JP2014028311A priority Critical patent/JP6257079B2/en
Publication of JP2015150534A publication Critical patent/JP2015150534A/en
Application granted granted Critical
Publication of JP6257079B2 publication Critical patent/JP6257079B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Sludge (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

【課題】下水、し尿、産業排水の処理で生じる汚泥に対して、凝集処理剤を添加し、効率が良い脱水処理を可能とする凝集処理剤及びそれを用いた汚泥の脱水方法を開発すること。【解決手段】架橋型カチオン性あるいは架橋型両性水溶性重合体と一級アミノ基含有重合体からなる凝集処理剤を汚泥に添加することで、特に汚泥性状の変動が大きい場合や、汚泥有機分の上昇や汚泥の腐敗による汚泥性状が変化した難脱水汚泥に対して優れた脱水処理が達成できる。【選択図】 なし[PROBLEMS] To develop a coagulation treatment agent that enables efficient dehydration treatment by adding a coagulation treatment agent to sludge generated in the treatment of sewage, human waste, and industrial wastewater, and a method of dewatering sludge using the coagulation treatment agent. . [MEANS FOR SOLVING PROBLEMS] By adding an aggregating agent comprising a cross-linked cationic or cross-linked amphoteric water-soluble polymer and a primary amino group-containing polymer to sludge, particularly when sludge properties vary greatly, Excellent dewatering treatment can be achieved for hardly dewatered sludge whose sludge properties have changed due to rising or sludge decay. [Selection figure] None

Description

本発明は、凝集処理剤及びそれを使用した汚泥の脱水方法に関するものであり、詳しくは、架橋型カチオン性あるいは架橋型両性水溶性重合体と一級アミノ基含有重合体からなる凝集処理剤及びそれを使用した汚泥の脱水方法である。 The present invention relates to an aggregating agent and a method of dewatering sludge using the same, and more specifically, an aggregating agent comprising a crosslinked cationic or crosslinked amphoteric water-soluble polymer and a primary amino group-containing polymer, and the same. This is a method for dewatering sludge.

都市下水などの処理場において、下水から沈降させた初沈生汚泥、活性汚泥槽からの流出水から沈降させた余剰汚泥あるいは混合生汚泥といった有機性の汚泥に高分子凝集剤を添加すると強固なフロックを形成する。このフロックをベルトプレス、スクリュープレス、フィルタープレスなどの圧搾脱水装置、または遠心分離機、真空濾過機などの脱水装置で処理すると顕著な効果で脱水を行なうことができ、その結果、低含水率の脱水ケーキが得られる。一般的には高分子凝集剤としてポリアクリルアミド(PAM)系ポリマーが汎用されており、特に四級アンモニウム塩基を含有しているポリマーが使用されている。これは、一級〜三級アミノ基は、pH7以上ではアミノ基の解離が抑えられるのに対して、四級アンモニウム塩基を含有しているポリマーではpH9以上でも解離することが可能なため、カチオンとしての機能を広範囲のpH域において維持することができるためである。これに対して汚泥の性状や添加条件により様々なポリマーが提案され適用されている。特許文献1では、架橋型イオン性水溶性高分子からなる凝集処理剤が開示されている。又、三、四級アミンに対して一級アミンは水素結合力が高く、含水率が低下しやすいと考えられるため、含水率低下を促進するために一級アミン塩基を含有するポリマーを用いる処方も種々提案されている。例えば、特許文献2では、一級アミン塩基を有するラジカル重合性(メタ)アクリル系モノマーを必須構成単位とするビニル系水溶性重合体及び三級アミン塩基を有するラジカル重合性(メタ)アクリル系モノマーを必須構成単位とするビニル系水溶性重合体からなる高分子凝集剤組成物について開示されている。特許文献3では、一級アミノ基含有重合体とジメチルジアリルアンモニウム塩系重合体とを併用する汚泥の脱水方法について開示されている。これら一級アミノ基含有重合体を用いるとある程度の効果は得られるものの近年の難脱水汚泥には十分には対応しきれていない状況である。特許文献4では、架橋型水溶性高分子とアミジン系水溶性高分子からなる凝集処理剤、特許文献5では、架橋型水溶性高分子とビニルアミン系水溶性高分子からなる凝集処理剤がそれぞれ開示されている。しかし、アミジン系水溶性高分子やビニルアミン系水溶性高分子は製法が非常に煩雑であり薬品コストが掛かる問題点がある。このため、比較的薬品コストが掛からずに難脱水汚泥に対して効率よく含水率が低下できる凝集処理剤を用いた汚泥の脱水方法が求められている。 In a treatment plant such as municipal sewage, adding a polymer flocculant to organic sludge such as primary settled sludge settled from sewage, surplus sludge settled from effluent from an activated sludge tank, or mixed raw sludge is strong. Form a flock. When this floc is processed by a pressure dehydrating device such as a belt press, screw press, filter press, or a dehydrating device such as a centrifugal separator or a vacuum filter, dehydration can be performed with a remarkable effect. A dehydrated cake is obtained. In general, a polyacrylamide (PAM) polymer is widely used as a polymer flocculant, and in particular, a polymer containing a quaternary ammonium base is used. This is because primary to tertiary amino groups can suppress dissociation of amino groups at pH 7 or higher, whereas polymers containing quaternary ammonium bases can be dissociated even at pH 9 or higher. This is because the function can be maintained in a wide pH range. On the other hand, various polymers have been proposed and applied depending on the properties of sludge and addition conditions. Patent Document 1 discloses an aggregating agent composed of a crosslinked ionic water-soluble polymer. In addition, since primary amines are considered to have a high hydrogen bonding strength and are likely to have a low water content relative to tertiary and quaternary amines, various formulations using polymers containing primary amine bases to promote a reduction in water content are also available. Proposed. For example, in Patent Document 2, a vinyl water-soluble polymer having a radical polymerizable (meth) acrylic monomer having a primary amine base as an essential constituent unit and a radical polymerizable (meth) acrylic monomer having a tertiary amine base are disclosed. A polymer flocculant composition comprising a vinyl-based water-soluble polymer as an essential constituent unit is disclosed. Patent Document 3 discloses a method for dewatering sludge using a primary amino group-containing polymer and a dimethyldiallylammonium salt-based polymer in combination. Although some effects can be obtained by using these primary amino group-containing polymers, they have not been able to sufficiently cope with recent difficult-to-dehydrate sludge. Patent Document 4 discloses an aggregating agent composed of a crosslinked water-soluble polymer and an amidine-based water-soluble polymer, and Patent Document 5 discloses an aggregating agent composed of a crosslinked-type water-soluble polymer and a vinylamine-based water-soluble polymer. Has been. However, the amidine-based water-soluble polymer and the vinylamine-based water-soluble polymer have a problem that the production method is very complicated and the chemical cost is high. For this reason, there is a need for a sludge dewatering method using a coagulation treatment agent that can reduce the water content efficiently with respect to hardly dewatered sludge without relatively high chemical costs.

特開2004−25094号公報JP 2004-25094 A 特開2003−275503号公報JP 2003-275503 A 特開2002−166299号公報JP 2002-166299 A 特開2004−25095号公報JP 2004-25095 A 特開2004−25097号公報JP 2004-25097 A

本発明の課題は、下水、し尿、産業排水の処理で生じる汚泥に対して凝集処理剤を添加し、効率が良い脱水処理を可能とする凝集処理剤及びそれを用いた汚泥の脱水方法を開発することである。 An object of the present invention is to develop a coagulation treatment agent that enables efficient dewatering treatment by adding a coagulation treatment agent to sludge generated in the treatment of sewage, human waste, and industrial wastewater, and a sludge dewatering method using the coagulation treatment agent. It is to be.

上記課題を解決するため本発明者は、鋭意検討した結果、以下に述べる発明に達した。即ち、架橋型カチオン性あるいは架橋型両性水溶性重合体と一級アミノ基を含有する重合体からなる凝集処理剤及びそれを使用した汚泥の脱水方法である。 In order to solve the above-mentioned problems, the present inventors have intensively studied and as a result, have reached the invention described below. That is, a flocculating agent comprising a crosslinked cationic or crosslinked amphoteric water-soluble polymer and a polymer containing a primary amino group, and a sludge dewatering method using the same.

従来、高分子凝集剤を用いて汚泥の脱水を実施する場合、特に汚泥性状の変動が大きい場合や、汚泥有機分の上昇や汚泥の腐敗による汚泥性状が変化した難脱水汚泥に対して優れた脱水処理効果が達成できる。 Conventionally, when sludge is dehydrated using a polymer flocculant, especially when sludge properties fluctuate greatly, or when sludge properties change due to increased sludge organic content or sludge decay Dehydration effect can be achieved.

本発明における架橋型カチオン性あるいは架橋型両性水溶性重合体と一級アミノ基を含有する重合体からなる凝集処理剤について説明する。
本発明における架橋型カチオン性あるいは架橋型両性水溶性重合体及び一級アミノ基を含有する重合体の製品形態は、油中水型エマルジョン、油中水型分散液、粉末、塩水中分散液など特に限定はないが、特に好ましい形態は、油中水型エマルジョンあるいは粉末状タイプである。溶解液同士を混合しても良いので油中水型エマルジョンと粉末の混合でも良いが、製品同士を混合すると作業効率が高いので、油中水型エマルジョン同士あるいは粉末同士の混合が好ましく、粉末同士の混合は油中水型エマルジョン同士に比べて輸送コストが低いという利点がある。
本発明における架橋型カチオン性あるいは架橋型両性水溶性重合体は、下記一般式(1)及び/又は(2)で表される水溶性単量体10〜100モル%、下記一般式(3)で表される水溶性単量体0〜50モル%、非イオン性水溶性単量体0〜90モル%及び架橋性単量体からなる水溶性単量体混合物を重合して得られたものである。
一般式(1)
は水素又はメチル基、R、Rは炭素数1〜3のアルキルあるいはヒドロキシアルキル基、Rは水素、炭素数1〜3のアルキル基、炭素数7〜20のアルキル基あるいはアリール基、Aは酸素またはNH、Bは炭素数2〜4のアルキレン基を表わす、X は陰イオンをそれぞれ表わす。
一般式(2)
は水素又はメチル基、R、Rは炭素数1〜3のアルキル基あるいはヒドロキシアルキル基、X は陰イオンをそれぞれ表わす。

一般式(3)
は水素、メチル基またはカルボキシメチル基、AはSO、CSO、CONHC(CHCHSO、CCOOあるいはCOO、Rは水素またはCOOY、YあるいはYは水素または陽イオンをそれぞれ表わす。
The aggregating agent composed of a crosslinked cationic or crosslinked amphoteric water-soluble polymer and a polymer containing a primary amino group in the present invention will be described.
The product form of the crosslinked cationic or crosslinked amphoteric water-soluble polymer and the polymer containing a primary amino group in the present invention is a water-in-oil emulsion, a water-in-oil dispersion, a powder, a salt-water dispersion, etc. Although there is no limitation, a particularly preferable form is a water-in-oil emulsion or a powder type. Mixing solutions may be used, so water-in-oil emulsions and powders may be mixed. However, mixing products with each other increases work efficiency, so mixing water-in-oil emulsions or powders is preferable. Is advantageous in that the transportation cost is lower than that of water-in-oil emulsions.
The crosslinked cationic or crosslinked amphoteric water-soluble polymer in the present invention is composed of 10 to 100 mol% of a water-soluble monomer represented by the following general formula (1) and / or (2), and the following general formula (3). Obtained by polymerizing a water-soluble monomer mixture consisting of 0 to 50 mol% of a water-soluble monomer represented by the formula, 0 to 90 mol% of a nonionic water-soluble monomer and a crosslinkable monomer It is.
General formula (1)
R 1 is hydrogen or a methyl group, R 2 and R 3 are alkyl or hydroxyalkyl groups having 1 to 3 carbon atoms, R 4 is hydrogen, an alkyl group having 1 to 3 carbon atoms, an alkyl group having 7 to 20 carbon atoms or aryl group, a is oxygen or NH, B represents an alkylene group having 2 to 4 carbon atoms, X 1 - represents respectively an anion.
General formula (2)
R 5 represents hydrogen or a methyl group, R 6 and R 7 represent an alkyl group having 1 to 3 carbon atoms or a hydroxyalkyl group, and X 2 represents an anion.

General formula (3)
R 8 is hydrogen, methyl group or carboxymethyl group, A is SO 3 , C 6 H 4 SO 3 , CONHC (CH 3 ) 2 CH 2 SO 3 , C 6 H 4 COO or COO, R 9 is hydrogen or COOY 2 , Y 1 or Y 2 represents hydrogen or a cation, respectively.

本発明における架橋型カチオン性あるいは架橋型両性水溶性重合体を重合する際に使用する一般式(1)で表されるカチオン性単量体としてジメチルアミノエチル(メタ)アクリレート、ジアリルアルキルアミンの3級塩、塩化メチル等のハロゲン化アルキル、あるいは塩化ベンジルなどのハロゲン化アリール化合物による4級化物等が挙げられ、これらのカチオン性ビニル系単量体は1種を単独で用いることができ、2種以上を組み合わせて用いることもできる。一般式(1)で表されるカチオン性単量体は、(メタ)アクリロイルオキシエチルトリメチルアンモニウム塩化物、(メタ)アクリロイルオキシ−2−ヒドロキシプロピルトリメチルアンモニウム塩化物、(メタ)アクリロイルアミノプロピルトリメチルアンモニウム塩化物、(メタ)アクリロイルオキシエチルジメチルベンジルアンモニウム塩化物、(メタ)アクリロイルオキシ−2−ヒドロキシプロピルベンジルジメチルアンモニウム塩化物、(メタ)アクリロイルアミノプロピルベンジルジメチルアンモニウム塩化物等である。一般式(2)で表されるカチオン性単量体は、ジアリルメチルアンモニウム塩化物、ジアリルジメチルアンモニウム塩化物等がある。一般式(3)で表されるアニオン性単量体は、(メタ)アクリル酸あるいはそのナトリウム塩等のアルカリ金属塩またはアンモニウム塩、マレイン酸やイタコン酸あるいはそのアルカリ金属塩、アクリルアミド−2−メチルプロパンスルホン酸等のアクリルアミドアルカンスルホン酸あるいはそのアルカリ金属塩またはアンモニウム塩等が挙げられる。一般式(1)及び/又は(2)で表される水溶性単量体のモル数は10〜100モル%であるが、好ましくは20〜80モル%、更に好ましくは30〜80モル%である。これは、低モルよりも中高モルの方が汚泥中の懸濁粒子の有するアニオン電荷をできる限り低下させることにより汚泥の含水率低下に対して有効に作用するためである。汚泥の性状によっては、モル数が高くなりすぎると高い分子量が得られ難いため好ましくない場合がある。一般式(1)及び/又は(2)で表される水溶性単量体、一般式(3)で表される水溶性単量体を使用して重合して得られる両性水溶性高分子を製造する場合、一般式(3)で表される水溶性単量体は、最大50モル%であるが、15モル%が好ましく、10モル%が更に好ましい。これは、モル数が高くなる程、高分子量のものが得られ難くなるためである。 As the cationic monomer represented by the general formula (1) used when polymerizing the crosslinked cationic or crosslinked amphoteric water-soluble polymer in the present invention, dimethylaminoethyl (meth) acrylate and diallylalkylamine 3 Quaternary compounds such as quaternary salts, halogenated alkyls such as methyl chloride, or halogenated aryl compounds such as benzyl chloride. These cationic vinyl monomers can be used alone. A combination of more than one species can also be used. The cationic monomer represented by the general formula (1) is (meth) acryloyloxyethyltrimethylammonium chloride, (meth) acryloyloxy-2-hydroxypropyltrimethylammonium chloride, (meth) acryloylaminopropyltrimethylammonium chloride. Chloride, (meth) acryloyloxyethyldimethylbenzylammonium chloride, (meth) acryloyloxy-2-hydroxypropylbenzyldimethylammonium chloride, (meth) acryloylaminopropylbenzyldimethylammonium chloride, and the like. Examples of the cationic monomer represented by the general formula (2) include diallylmethylammonium chloride and diallyldimethylammonium chloride. The anionic monomer represented by the general formula (3) is alkali metal salt or ammonium salt such as (meth) acrylic acid or sodium salt thereof, maleic acid or itaconic acid or alkali metal salt thereof, acrylamide-2-methyl Examples include acrylamide alkane sulfonic acid such as propane sulfonic acid or alkali metal salt or ammonium salt thereof. The number of moles of the water-soluble monomer represented by the general formula (1) and / or (2) is 10 to 100 mol%, preferably 20 to 80 mol%, more preferably 30 to 80 mol%. is there. This is because the medium and high moles are more effective than the low moles in reducing the water content of the sludge by reducing the anionic charge of the suspended particles in the sludge as much as possible. Depending on the properties of the sludge, if the number of moles is too high, it is difficult to obtain a high molecular weight, which may be undesirable. A water-soluble monomer represented by the general formula (1) and / or (2) and an amphoteric water-soluble polymer obtained by polymerization using the water-soluble monomer represented by the general formula (3) In the production, the water-soluble monomer represented by the general formula (3) is at most 50 mol%, preferably 15 mol%, and more preferably 10 mol%. This is because as the number of moles increases, it becomes difficult to obtain a high molecular weight product.

非イオン性単量体の例としては、(メタ)アクリルアミド、N,N−ジメチルアクリルアミド、酢酸ビニル、アクリロニトリル、アクリル酸メチル、(メタ)アクリル酸2−ヒドロキシエチル、ジアセトンアクリルアミド、N−ビニルピロリドン、N−ビニルホルムアミド、N−ビニルアセトアミド、アクリロイルモルホリン、アクリロイルピペラジン等が挙げられる。 Examples of nonionic monomers include (meth) acrylamide, N, N-dimethylacrylamide, vinyl acetate, acrylonitrile, methyl acrylate, 2-hydroxyethyl (meth) acrylate, diacetone acrylamide, and N-vinyl pyrrolidone. N-vinylformamide, N-vinylacetamide, acryloylmorpholine, acryloylpiperazine, and the like.

本発明における架橋型カチオン性あるいは架橋型両性水溶性重合体を製造する際に架橋性単量体を共存する。架橋性単量体を共存させて重合した重合体、即ち架橋型水溶性高分子は、直鎖性高分子に比べて水中における分子の広がりが抑制される。そのためにより「密度の詰まった」分子形態として存在する。架橋型水溶性高分子が汚泥中に添加されると懸濁粒子に吸着し、粒子同士の接着剤として作用し結果として粒子の凝集が起こる。この時「密度の詰まった」分子形態であるため懸濁粒子表面と多点で結合し巨大フロック化せず、より締った強度の高いフロックが形成され、汚泥脱水性の改善が発現する。   In the production of the crosslinked cationic or crosslinked amphoteric water-soluble polymer in the present invention, a crosslinking monomer coexists. A polymer polymerized in the presence of a crosslinkable monomer, that is, a crosslinkable water-soluble polymer, suppresses the spread of molecules in water as compared with a linear polymer. Therefore, it exists as a more “dense” molecular form. When the cross-linked water-soluble polymer is added to the sludge, it adsorbs to the suspended particles and acts as an adhesive between the particles, resulting in particle aggregation. At this time, since the molecular form is “packed with density”, it binds to the surface of the suspended particles at many points and does not form a huge floc, and a floc with higher tightening strength is formed, and an improvement in sludge dewaterability is exhibited.

架橋性単量体としては、メチレンビスアクリルアミドやエチレングリコールジ(メタ)アクリレートなどの複数の重合性二重結合を有する単量体である。添加率としては単量体混合物全質量に対し0.0002〜0.01%であり、好ましくは0.0002〜0.005%であり、更に好ましくは0.001〜0.03%である。また、重合度を調節するためイソプロピルアルコール等の連鎖移動剤を対単量体0.1〜5質量%併用すると効果的である。   The crosslinkable monomer is a monomer having a plurality of polymerizable double bonds such as methylene bisacrylamide and ethylene glycol di (meth) acrylate. The addition rate is 0.0002 to 0.01%, preferably 0.0002 to 0.005%, and more preferably 0.001 to 0.03% with respect to the total mass of the monomer mixture. In order to control the degree of polymerization, it is effective to use a chain transfer agent such as isopropyl alcohol in combination with 0.1 to 5% by mass of the monomer.

架橋型水溶性高分子の架橋度合いについては、製造時の架橋性単量体の添加率だけによるのではなく重合条件や組成によっても変化するため、一概には言えないが、本発明における架橋型カチオン性あるいは架橋型両性重合体は、0.2質量%水溶液粘度をAQV、前記両性水溶性高分子の0.5質量%の4質量%食塩水溶液中粘度をSLVとした場合の、AQVとSLVの比を架橋度合いの指標とする。
この数値は架橋の度合いを表すのに使用することができる。架橋型のイオン性水溶性高分子は、分子内で架橋しているために、水中においても分子が広がり難い性質を有し、直鎖状高分子に較べれば水中での広がりは小さいはずであるが、架橋度が増加するに従い、B型粘度計(回転粘度計の一種)に測定した場合の粘度は大きくなる。この原因はB型粘度計のローター(測定時の回転子)と溶液との摩擦かあるいは絡み合いによるものと推定されるが正確には不明である。一方、架橋型のイオン性水溶性高分子の塩水中の粘度は、架橋度が増加するに従い低下していく。架橋によって分子が収縮しているので、塩水の多量のイオンによってその影響をより大きく受けるものと考えられる。従ってこれらの理由によって二つの粘度測定値の比、AQV/SLVは、架橋度が高くなるに従い大きくなる。架橋がさらに進み水不溶性になった場合は、この関係は成り立たない。
The degree of cross-linking of the cross-linkable water-soluble polymer varies depending not only on the addition rate of the cross-linkable monomer at the time of production but also on the polymerization conditions and composition. The cationic or cross-linked amphoteric polymer has an AQV and SLV of 0.2% by weight aqueous solution viscosity of AQV and 0.5% by weight of the amphoteric water-soluble polymer in 4% salt aqueous solution of SLV. Is the index of the degree of crosslinking.
This number can be used to represent the degree of crosslinking. Cross-linked ionic water-soluble polymers are cross-linked in the molecule, so the molecules do not easily spread in water, and should be less spread in water than linear polymers. However, as the degree of crosslinking increases, the viscosity when measured with a B-type viscometer (a type of rotational viscometer) increases. The cause is presumed to be due to friction or entanglement between the rotor of the B-type viscometer (rotor at the time of measurement) and the solution, but it is not exactly known. On the other hand, the viscosity of the crosslinked ionic water-soluble polymer in salt water decreases as the degree of crosslinking increases. Since the molecules are contracted by the cross-linking, it is considered that the influence is greatly influenced by a large amount of ions of the salt water. Therefore, for these reasons, the ratio of the two viscosity measurements, AQV / SLV, increases as the degree of crosslinking increases. This relationship does not hold when cross-linking proceeds further and becomes water-insoluble.

本発明における架橋型カチオン性あるいは架橋型両性重合体のAQV/SLVの比は、
10≦AQV/SLV≦60(25℃において)
の範囲であり、好ましくは12〜60の範囲であり、更に好ましくは12〜50の範囲である。この値が10以下であると直鎖状の水溶性高分子、あるいは弱く架橋した水溶性高分子であると考えられる。60を超えると架橋がかなり進行することを考慮すると本発明における架橋型カチオン性あるいは架橋型両性重合体は、低から中程度に架橋した水溶性高分子であると言える。10より低いと架橋度が低く本発明の効果を発揮しない、又、60を超えると架橋が高くなり過ぎ、効果を発揮するためには添加量を増やす必要があり好ましくはない。
尚、AQVは、B型粘度計において2号ローター、30rpm(25℃)、SLVは、1号ローター、60rpm(25℃)で測定した値である。B型粘度計としては東京計器製、B8M等が使用される。
The ratio of AQV / SLV of the crosslinked cationic or crosslinked amphoteric polymer in the present invention is:
10 ≦ AQV / SLV ≦ 60 (at 25 ° C.)
The range is preferably 12 to 60, and more preferably 12 to 50. When this value is 10 or less, it is considered to be a linear water-soluble polymer or a weakly crosslinked water-soluble polymer. In view of the fact that the crosslinking proceeds considerably when the molecular weight exceeds 60, it can be said that the crosslinked cationic or crosslinked amphoteric polymer in the present invention is a water-soluble polymer crosslinked from low to moderate. If it is lower than 10, the degree of cross-linking is low and the effect of the present invention is not exhibited, and if it exceeds 60, the cross-linking becomes too high.
AQV is a value measured with a No. 2 rotor and 30 rpm (25 ° C.) in a B-type viscometer, and SLV is a value measured with a No. 1 rotor and 60 rpm (25 ° C.). As a B-type viscometer, Tokyo Keiki make, B8M, etc. are used.

本発明における架橋型カチオン性あるいは架橋型両性重合体の粉末の製造方法としては、公知の方法が適用される。例えば、単量体混合物をラジカル重合開始剤あるいは光増感剤と紫外光あるいは可視光、電子線などの照射によって重合を開始し重合物を得る。重合物の形態は、シートなど薄膜状のものあるいは直方体など厚みのある形態に重合し、その後粗砕し、ミートチョッパーなどによって造粒し、乾燥、乾燥物の粉砕、篩い分けなどの工程を経て粉末状にすることが一般的である。又、前記油中水型エマルジョンを製造後、噴霧乾燥機中に油中水型エマルジョンを噴霧し、乾燥する方法がある。これは操作が簡便であり容易であるが、粒径が細かくなり、更に粒径調節の加工が必要である。また油中水型エマルジョンを直接乾燥機に入れ、一定時間乾燥し、塊状物を粉砕する方法もある。この方法は、乾燥温度や乾燥時間の管理に注意する必要がある。乾燥時間を長くしすぎる場合、あるいは乾燥温度が高すぎる場合などは、水溶性高分子に架橋反応が発生して水に溶解しなくなることがある。又、油中水型エマルジョンをエマルジョンブレイクすることにより塊状化させ、乾燥後細粒化した粉末状とすることもできる。 As a method for producing a powder of the crosslinked cationic or crosslinked amphoteric polymer in the present invention, a known method is applied. For example, the monomer mixture is polymerized by irradiation with a radical polymerization initiator or photosensitizer and ultraviolet light, visible light, electron beam or the like to obtain a polymer. The form of the polymer is polymerized into a thin form such as a sheet or a thick form such as a rectangular parallelepiped, then coarsely crushed, granulated with a meat chopper, etc., dried, pulverized dry matter, sieving, etc. Generally, it is powdered. There is also a method in which after the water-in-oil emulsion is produced, the water-in-oil emulsion is sprayed into a spray dryer and dried. This is simple and easy to operate, but the particle size becomes fine and further processing for adjusting the particle size is necessary. There is also a method in which a water-in-oil emulsion is directly put into a dryer and dried for a certain period of time to crush the lump. In this method, it is necessary to pay attention to the management of the drying temperature and the drying time. If the drying time is too long or the drying temperature is too high, a cross-linking reaction may occur in the water-soluble polymer and it may not be dissolved in water. Alternatively, the water-in-oil emulsion may be agglomerated by emulsion breaking, and dried to obtain a finely divided powder.

本発明における架橋型カチオン性あるいは架橋型両性水溶性重合体を油中水型エマルジョンにより製造する場合は、イオン性単量体、あるいはイオン性単量体と共重合可能な非イオン性単量体、及び架橋性単量体を含有する単量体混合物を水、少なくとも水と非混和性の炭化水素からなる油状物質、油中水型エマルジョンを形成するに有効な量とHLBを有する少なくとも一種類の界面活性剤を混合し、強攪拌し油中水型エマルジョンを形成させ重合することにより合成する。 In the case of producing the crosslinked cationic or crosslinked amphoteric water-soluble polymer in the present invention with a water-in-oil emulsion, an ionic monomer or a nonionic monomer copolymerizable with the ionic monomer , And a monomer mixture containing a crosslinkable monomer, water, an oily substance comprising at least a water-immiscible hydrocarbon, an amount effective to form a water-in-oil emulsion, and at least one HLB These surfactants are mixed and vigorously stirred to form a water-in-oil emulsion and polymerize.

又、分散媒として使用する炭化水素からなる油状物質の例としては、パラフィン類あるいは灯油、軽油、中油などの鉱油、あるいはこれらと実質的に同じ範囲の沸点や粘度などの特性を有する炭化水素系合成油、あるいはこれらの混合物が挙げられる。含有量としては、油中水型エマルジョン全量に対して20質量%〜50質量%の範囲であり、好ましくは20質量%〜35質量%の範囲である。   Examples of oily substances made of hydrocarbons used as dispersion media include paraffins, mineral oils such as kerosene, light oil, and middle oil, or hydrocarbons having characteristics such as boiling point and viscosity in substantially the same range as these. Synthetic oils or mixtures thereof may be mentioned. As content, it is the range of 20 mass%-50 mass% with respect to the water-in-oil type emulsion whole quantity, Preferably it is the range of 20 mass%-35 mass%.

単量体の重合濃度は20〜50質量%の範囲であり、単量体の組成、重合法、開始剤の選択によって適宜重合の濃度と温度を設定する。 The polymerization concentration of the monomer is in the range of 20 to 50% by mass, and the concentration and temperature of the polymerization are appropriately set depending on the monomer composition, the polymerization method, and the selection of the initiator.

油中水型エマルジョンを形成するに有効な量とHLBを有する少なくとも一種類の界面活性剤の例としては、HLB1〜8のノニオン性界面活性剤であり、その具体例としては、ソルビタンモノオレート、ソルビタンモノステアレート、ソルビタンモノパルミテートなどが挙げられる。これら低HLBの界面活性剤により乳化、重合した場合は重合後に転相剤と呼ばれる親水性界面活性剤を添加して油の膜で被われたエマルジョン粒子が水になじみ易くし、中の水溶性高分子が溶解しやすくする処理を行い、水で希釈しそれぞれの用途に用いる。親水性界面活性剤の例としては、カチオン性界面活性剤やHLB9〜15のノニオン性界面活性剤であり、ポリオキシエチレンポリオキシプロピレンアルキルエーテル系、ポリオキシエチレンアルコールエーテル系等である。
高HLB界面活性剤を使用すると乳化させ油中水型エマルジョンを形成させ重合したエマルジョンは、このままで水となじむので転相剤を添加する必要がない場合もある。高HLB界面活性剤としては、HLB11〜20の界面活性剤があり、その具体例としては、カチオン性界面活性剤や非イオン性界面活性剤であり、ポリオキシエチレンアルキルエーテル系、ポリオキシエチレンアルコールエーテル系、ポリオキシエチレンアルキルエステル系などである。具体的には、ポリオキシエチレン(20)ソルビタントリオレート、ポリオキシエチレン(4)ソルビタンモノステアレート、ポリオキシエチレン(5)ソルビタンモノオレート等である。高HLB界面活性剤を使用することによって重合後、希釈時、特に転相剤を添加しなくても水に溶解可能な油中水型エマルジョンを形成させることが可能である。これら界面活性剤の添加率としては、油中水型エマルジョン全量に対して0.5〜10質量%であり、好ましくは1〜5質量%である。これら界面活性剤の添加率としては、油中水型エマルジョン全量に対して0.5〜10質量%であり、好ましくは1〜5質量%の範囲である。
Examples of at least one surfactant having an amount effective to form a water-in-oil emulsion and HLB are HLB 1-8 nonionic surfactants, specific examples of which include sorbitan monooleate, Examples include sorbitan monostearate and sorbitan monopalmitate. When emulsified and polymerized with these low HLB surfactants, a hydrophilic surfactant called a phase inversion agent is added after the polymerization to make the emulsion particles covered with the oil film easy to become familiar with water, and the water-soluble The polymer is easily dissolved, diluted with water and used for each application. Examples of hydrophilic surfactants are cationic surfactants and HLB 9-15 nonionic surfactants, such as polyoxyethylene polyoxypropylene alkyl ethers and polyoxyethylene alcohol ethers.
When a high HLB surfactant is used, the emulsion emulsified to form a water-in-oil emulsion and polymerized may be compatible with water as it is, so that it may not be necessary to add a phase inversion agent. Examples of high HLB surfactants include HLB 11-20 surfactants, and specific examples thereof include cationic surfactants and nonionic surfactants, such as polyoxyethylene alkyl ethers and polyoxyethylene alcohols. Ether type, polyoxyethylene alkyl ester type and the like. Specifically, polyoxyethylene (20) sorbitan trioleate, polyoxyethylene (4) sorbitan monostearate, polyoxyethylene (5) sorbitan monooleate and the like. By using a high HLB surfactant, it is possible to form a water-in-oil emulsion that can be dissolved in water after polymerization and at the time of dilution, particularly without the addition of a phase inversion agent. The addition rate of these surfactants is 0.5 to 10% by mass, preferably 1 to 5% by mass, based on the total amount of the water-in-oil emulsion. The addition rate of these surfactants is 0.5 to 10% by mass, preferably 1 to 5% by mass, based on the total amount of the water-in-oil emulsion.

重合は窒素雰囲気下にて、重合開始剤、例えば2、2’−アゾビス(アミジ
ノプロパン)二塩化水素化物または2、2’−アゾビス〔2−(5−メチル−2−イミダゾリン−2−イル)プロパン〕二塩化水素化物のような水溶性アゾ系重合開始剤、あるいは過硫酸アンモニウムおよび亜硫酸水素ナトリウム併用のような水溶性レドックス系重合開始剤を添加し、撹拌下ラジカル重合を行う。
The polymerization is carried out in a nitrogen atmosphere under a polymerization initiator such as 2,2′-azobis (amidinopropane) dichloride or 2,2′-azobis [2- (5-methyl-2-imidazolin-2-yl). Propane] A water-soluble azo polymerization initiator such as dihydrochloride or a water-soluble redox polymerization initiator such as ammonium persulfate and sodium bisulfite in combination is added, and radical polymerization is carried out with stirring.

本発明における架橋型カチオン性あるいは架橋型両性水溶性重合体は、液粘性があまり高いと汚泥中に分散し難くなり好ましくない。そのため液粘性、0.2質量%水溶液粘度では、50〜1500mPa・sであるが、好ましくは50〜1200mPa・sである。又、架橋型カチオン性あるいは架橋型両性水溶性重合体の重量平均分子量としては、100万〜1000万であるが、更に好ましくは300万〜700万の範囲である。本発明における架橋型カチオン性あるいは架橋型両性水溶性重合体を4質量%食塩水中に高分子濃度が0.5質量%になるように完全溶解したときの25℃において回転粘度計にて測定した塩水溶液粘度は、5mPa・s以上、70mPa・s以下、好ましくは10mPa・s以上、60mPa・s以下、更に好ましくは20mPa・s以上、50mPa・s以下であればその効果を最大限に発揮することができる。   The crosslinked cationic or crosslinked amphoteric water-soluble polymer in the present invention is not preferable if the liquid viscosity is too high because it is difficult to disperse in the sludge. Therefore, in liquid viscosity and 0.2 mass% aqueous solution viscosity, it is 50-1500 mPa * s, Preferably it is 50-1200 mPa * s. The weight average molecular weight of the crosslinked cationic or crosslinked amphoteric water-soluble polymer is 1 million to 10 million, more preferably 3 million to 7 million. Measured with a rotational viscometer at 25 ° C. when the crosslinked cationic or crosslinked amphoteric water-soluble polymer in the present invention was completely dissolved in 4% by mass saline so that the polymer concentration was 0.5% by mass. If the salt aqueous solution viscosity is 5 mPa · s or more and 70 mPa · s or less, preferably 10 mPa · s or more and 60 mPa · s or less, more preferably 20 mPa · s or more and 50 mPa · s or less, the effect is maximized. be able to.

次に、本発明における一級アミノ基を含有する重合体について説明する。一級アミノ基を含有する重合体は、下記一般式(4)で表される水溶性単量体を必須として含有する水溶性単量体混合物を重合して得られたものである。一般式(4)で表わされるカチオン性単量体の例としては、2−アミノエチルアクリレート、2−アミノエチルメタアクリレート、3−アミノプロピルアクリレート、3−アミノプロピルメタアクリレートなどの有機酸や無機酸の塩が挙げられる。これらの単量体は、通常、無機あるいは有機の酸塩の形でのみ存在が可能であり、硫酸塩、塩酸塩、リン酸塩、シュウ酸塩、メタンスルホン酸塩、パラトルエンスルホン酸塩、ナフタレンスルホン酸塩、メチルホスホン酸、フェニルホスホン酸塩等が挙げられる。これらのうち、硫酸塩、塩酸塩、メタンスルホン酸塩、パラトルエンスルホン酸塩が好ましい。好ましいのは、2−アミノエチルアクリレート塩酸塩、2−アミノエチルメタクリレート塩酸塩、2−アミノエチルアクリレート硫酸塩、2−アミノエチルメタクリレート硫酸塩、2−アミノエチルアクリレートメタンスルホン酸塩、2−アミノエチルメタクリレートメタンスルホン酸塩、2−アミノエチルアクリレートパラトルエンスルホン酸塩、2−アミノエチルメタクリレートパラトルエンスルホン酸塩である。

一般式(4)
10は水素またはメチル基、Aは酸素原子またはNH、Bは炭素数2〜3のアルキレン基またはアルコキシレン基、X は陰イオンをそれぞれ表わす。
Next, the polymer containing a primary amino group in the present invention will be described. The polymer containing a primary amino group is obtained by polymerizing a water-soluble monomer mixture containing essentially a water-soluble monomer represented by the following general formula (4). Examples of the cationic monomer represented by the general formula (4) include organic acids and inorganic acids such as 2-aminoethyl acrylate, 2-aminoethyl methacrylate, 3-aminopropyl acrylate, and 3-aminopropyl methacrylate. Of the salt. These monomers can usually only exist in the form of inorganic or organic acid salts, such as sulfates, hydrochlorides, phosphates, oxalates, methanesulfonates, paratoluenesulfonates, Naphthalene sulfonate, methylphosphonic acid, phenylphosphonate and the like can be mentioned. Of these, sulfate, hydrochloride, methanesulfonate, and paratoluenesulfonate are preferable. Preferred are 2-aminoethyl acrylate hydrochloride, 2-aminoethyl methacrylate hydrochloride, 2-aminoethyl acrylate sulfate, 2-aminoethyl methacrylate sulfate, 2-aminoethyl acrylate methanesulfonate, 2-aminoethyl Methacrylate methane sulfonate, 2-aminoethyl acrylate p-toluene sulfonate, 2-aminoethyl methacrylate p-toluene sulfonate.

General formula (4)
R 10 represents hydrogen or a methyl group, A represents an oxygen atom or NH, B represents an alkylene group or alkoxylene group having 2 to 3 carbon atoms, and X 3 represents an anion.

一般式(4)で表される水溶性単量体は、単独で重合しても良く、他の単量体と共重合しても良い。一般式(4)で表される水溶性単量体は、(メタ)アクリル型の単量体であるため種々の単量体と良好な共重合反応が可能である。例えば、非イオン性単量体の(メタ)アクリルアミド、N,N−ジメチルアクリルアミド、酢酸ビニル、アクリロニトリル、アクリル酸メチル、(メタ)アクリル酸2−ヒドロキシエチル、ジアセトンアクリルアミド、N−ビニルピロリドン、N−ビニルホルムアミド、N−ビニルアセトアミドなどが挙げられ、非イオン性の単量体のうちから一種または二種以上と組み合わせ共重合することも可能である。最も好ましい非イオン性単量体の例としては、アクリルアミドである。又、アニオン性単量体のビニルスルフォン酸、スチレンスルホン酸、アクリルアミド2−メチルプロパンスルホン酸、アクリル酸、メタアクリル酸、イタコン酸あるいはマレイン酸などとも共重合可能であり、この場合は両性となる。更に三級アミノ基や四級アンモニウム基含有単量体とも共重合可能である。三級アミノ基含有単量体の例としては、(メタ)アクリル酸ジメチルアミノエチルやジメチルアミノプロピル(メタ)アクリルアミドなどである。また、四級アンモニウム基単量体の例としては、前記三級アミノ基含有単量体の塩化メチルや塩化ベンジルによる四級化物である(メタ)アクリロイルオキシエチルトリメチルアンモニウム塩化物、(メタ)アクリロイルオキシ2−ヒドロキシプロピルトリメチルアンモニウム塩化物、(メタ)アクリロイルアミノプロピルトリメチルアンモニウム塩化物、(メタ)アクリロイルオキシエチルジメチルベンジルアンモニウム塩化物、(メタ)アクリロイルオキシ2−ヒドロキシプロピルジメチルベンジルアンモニウム塩化物、(メタ)アクリロイルアミノプロピルジメチルベンジルアンモニウム塩化物等が挙げられる。更にジメチルジアリルアンモニウム塩化物等とも共重合可能である。これら四級アンモニウム基含有単量体と非イオン性単量体と本発明で使用するカチオン性重合体中で必須成分となる一級アミノ基含有アクリル型単量体からなる三元共重合体も本発明の汚泥の脱水方法において使用可能である。 The water-soluble monomer represented by the general formula (4) may be polymerized alone or may be copolymerized with other monomers. Since the water-soluble monomer represented by the general formula (4) is a (meth) acrylic monomer, it can be favorably copolymerized with various monomers. For example, the nonionic monomers (meth) acrylamide, N, N-dimethylacrylamide, vinyl acetate, acrylonitrile, methyl acrylate, 2-hydroxyethyl (meth) acrylate, diacetone acrylamide, N-vinyl pyrrolidone, N -Vinylformamide, N-vinylacetamide, etc. are mentioned, and it is also possible to carry out copolymerization in combination with one or more of nonionic monomers. An example of the most preferred nonionic monomer is acrylamide. It can also be copolymerized with anionic monomers such as vinyl sulfonic acid, styrene sulfonic acid, acrylamide 2-methylpropane sulfonic acid, acrylic acid, methacrylic acid, itaconic acid or maleic acid. . Furthermore, it can be copolymerized with a tertiary amino group or quaternary ammonium group-containing monomer. Examples of the tertiary amino group-containing monomer include dimethylaminoethyl (meth) acrylate and dimethylaminopropyl (meth) acrylamide. Examples of quaternary ammonium group monomers include (meth) acryloyloxyethyltrimethylammonium chloride and (meth) acryloyl which are quaternized products of the above-mentioned tertiary amino group-containing monomers with methyl chloride or benzyl chloride. Oxy-2-hydroxypropyltrimethylammonium chloride, (meth) acryloylaminopropyltrimethylammonium chloride, (meth) acryloyloxyethyldimethylbenzylammonium chloride, (meth) acryloyloxy 2-hydroxypropyldimethylbenzylammonium chloride, (meta ) Acryloylaminopropyldimethylbenzylammonium chloride and the like. Further, it can be copolymerized with dimethyldiallylammonium chloride and the like. A terpolymer comprising these quaternary ammonium group-containing monomers, nonionic monomers, and primary amino group-containing acrylic monomers which are essential components in the cationic polymer used in the present invention is also present. It can be used in the sludge dewatering method of the invention.

これら一級アミノ基含有重合体中の一般式(4)で表わされる一級アミノ基含有単量体のモル%としては、好ましくは70〜100モル%であり、更に好ましくは80〜100モル%である。70モル%以下であると、イオン強度が低く、汚泥性状によっては効果が得られない場合がある。両性の場合、アニオン性単量体のモル%としては、1〜20モル%であり、好ましくは1〜15モル%である。 The mol% of the primary amino group-containing monomer represented by the general formula (4) in these primary amino group-containing polymers is preferably 70 to 100 mol%, more preferably 80 to 100 mol%. . If it is 70 mol% or less, the ionic strength is low, and the effect may not be obtained depending on the sludge properties. In the case of amphoteric, the anionic monomer mol% is 1 to 20 mol%, preferably 1 to 15 mol%.

次いで、本発明における一級アミノ基を含有する重合体の重合方法を述べる。本発明で使用する一級アミノ基含有重合体を製造するには公知の方法が適用される。例えば、先ず、一般式(4)で表わされるカチオン性単量体、あるいは共重合する場合は、共重合する単量体を共存させた水溶液を調製し、pHを2.0〜6.0に調節した後、窒素置換により反応系の酸素を除去しラジカル重合性開始剤を添加することによって重合を開始させ、重合体を製造することができる。重合方法は、既知の重合法である水溶液重合法、油中水型エマルジョン重合法、油中水型分散重合法、塩水溶液中分散重合法などにより合成することが可能であり、そのため重合濃度としては、5〜60質量%の範囲での実施が可能であり、好ましくは20〜50質量%で行うのが適当である。また、反応の温度としては、10〜100℃の範囲で行うことができる。 Next, a method for polymerizing a polymer containing a primary amino group in the present invention will be described. Known methods are applied to produce the primary amino group-containing polymer used in the present invention. For example, first, when the cationic monomer represented by the general formula (4) or copolymerized, an aqueous solution in which the monomer to be copolymerized coexists is prepared, and the pH is adjusted to 2.0 to 6.0. After the adjustment, the oxygen can be removed from the reaction system by nitrogen substitution and the polymerization can be initiated by adding a radical polymerizable initiator to produce a polymer. The polymerization method can be synthesized by a known polymerization method such as aqueous solution polymerization method, water-in-oil emulsion polymerization method, water-in-oil dispersion polymerization method, or dispersion polymerization method in salt aqueous solution. Can be carried out in the range of 5 to 60% by mass, preferably 20 to 50% by mass. Moreover, as reaction temperature, it can carry out in the range of 10-100 degreeC.

重合の機構としては、ラジカル重合開始剤を使用した一般的なラジカル重合によって重合体を生成することができる。即ち開始剤としては、アゾ系、過酸化物系、レドックス系いずれでも重合することが可能である。油溶性アゾ系開始剤の例としては、2、2’−アゾビスイソブチロニトリル、1、1’−アゾビス(シクロヘキサンカルボニトリル)、2、2’−アゾビス(2−メチルブチロニトリル)、2、2’−アゾビス(2−メチルプロピオネ−ト)などが挙げられ、水混溶性溶剤に溶解し添加する。水溶性アゾ系開始剤の例としては、2、2’−アゾビス(アミジノプロパン)二塩化水素化物、2、2’−アゾビス〔2−(5−メチル−2−イミダゾリン−2−イル)プロパン〕二塩化水素化物、4、4’−アゾビス(4−シアノ吉草酸)などがあげられる。またレドックス系の例としては、ペルオキシ二硫酸アンモニウムあるいはカリウムと亜硫酸ナトリウム、亜硫酸水素ナトリウム、トリメチルアミン、テトラメチルエチレンジアミンなどとの組み合わせが挙げられる。更に過酸化物の例としては、ペルオクソ二硫酸アンモニウム、過酸化水素、ベンゾイルペルオキサイド、ラウロイルペルオキサイド、オクタノイルペルオキサイド、サクシニックペルオキサイド、t−ブチルペルオキシ2−エチルヘキサノエートなどをあげることができる。こらのなかで特に好ましい開始剤としては、水溶性のアゾ系開始剤である2、2’−アゾビス(アミジノプロパン)二塩化水素化物、2、2’−アゾビス〔2−(5−メチル−2−イミダゾリン−2−イル)プロパン〕二塩化水素化物などである。又、光増感剤を加えた後、紫外線等を照射してもよい。粉末化を行なうには、これら重合物を適宜に細断化する。熱風乾燥、溶剤沈澱・乾燥、油中水型エマルジョンの場合は、エマルジョンブレイカー添加、機械シェア、加熱によるエマルジョンブレイク等の工程を経た後、任意に粉砕すればよい。 As a polymerization mechanism, a polymer can be generated by general radical polymerization using a radical polymerization initiator. That is, as the initiator, any azo, peroxide, or redox polymer can be polymerized. Examples of oil-soluble azo initiators are 2,2′-azobisisobutyronitrile, 1,1′-azobis (cyclohexanecarbonitrile), 2,2′-azobis (2-methylbutyronitrile), 2,2′-azobis (2-methylpropionate) and the like are mentioned, which are dissolved in a water-miscible solvent and added. Examples of water-soluble azo initiators include 2,2′-azobis (amidinopropane) dichloride, 2,2′-azobis [2- (5-methyl-2-imidazolin-2-yl) propane] And dihydrochloride, 4,4′-azobis (4-cyanovaleric acid), and the like. Examples of the redox system include a combination of ammonium or potassium peroxydisulfate and sodium sulfite, sodium hydrogen sulfite, trimethylamine, tetramethylethylenediamine and the like. Examples of peroxides include ammonium peroxodisulfate, hydrogen peroxide, benzoyl peroxide, lauroyl peroxide, octanoyl peroxide, succinic peroxide, and t-butylperoxy 2-ethylhexanoate. it can. Among these, particularly preferred initiators include 2,2′-azobis (amidinopropane) dihydrochloride, 2,2′-azobis [2- (5-methyl-2), which is a water-soluble azo initiator. -Imidazolin-2-yl) propane] dihydrochloride. Further, after adding a photosensitizer, ultraviolet rays or the like may be irradiated. In order to perform pulverization, these polymers are appropriately shredded. In the case of hot-air drying, solvent precipitation / drying, and water-in-oil emulsion, it may be optionally pulverized after passing through steps such as addition of an emulsion breaker, machine share, and emulsion breaking by heating.

本発明における一級アミノ基含有重合体の液粘性については、0.2質量%水溶液粘度では、50〜800mPa・sの範囲であり、4質量%食塩水中に高分子濃度が0.5質量%になるように完全溶解したときの25℃において回転粘度計にて測定した塩水溶液粘度は、5mPa・s以上、70mPa・s以下の範囲である。一級アミノ基含有重合体の重量平均分子量は、100万〜600万であり、100万以下では凝集性能が不足し、600万より高くなると溶液粘度が高くなり過ぎ分散性が低下するので好ましくはない。   The liquid viscosity of the primary amino group-containing polymer in the present invention is in the range of 50 to 800 mPa · s at a 0.2% by mass aqueous solution viscosity, and the polymer concentration is 0.5% by mass in 4% by mass saline. The salt solution viscosity measured with a rotational viscometer at 25 ° C. when completely dissolved is in the range of 5 mPa · s to 70 mPa · s. The weight average molecular weight of the primary amino group-containing polymer is 1,000,000 to 6,000,000. If it is less than 1,000,000, the aggregation performance is insufficient, and if it exceeds 6,000,000, the solution viscosity becomes too high and the dispersibility is lowered, which is not preferable. .

一級アミノ基含有重合体のイオン当量値は、pH3でのコロイド当量値が2.0meq/g以上が好ましく、2.5meq/g以上が更に好ましい。コロイド当量値については、一般的なコロイド滴定法で測定する。例えば、pH3でのコロイド当量値は、ビーカーに蒸留水100mLとポリマーの0.2質量%溶解液5mLを加え、トルイジンブルーを指示薬として2〜3滴滴下、5N酢酸を加えpH3とする。その後、1/400Nポリビニル硫酸カリウム(PVSK)を2mL/分の滴下速度で滴定、液の色が青から赤紫色に変色するまでの滴定量により算出する。
コロイド当量値=1/400NPVSK滴定量×1/400NPVSK滴定液のファクター×1/2
As for the ion equivalent value of the primary amino group-containing polymer, the colloid equivalent value at pH 3 is preferably 2.0 meq / g or more, and more preferably 2.5 meq / g or more. The colloid equivalent value is measured by a general colloid titration method. For example, the colloidal equivalent value at pH 3 is adjusted to pH 3 by adding 100 mL of distilled water and 5 mL of a 0.2% by weight polymer solution in a beaker, dropping 2 to 3 drops of toluidine blue as an indicator, and adding 5N acetic acid. Thereafter, 1 / 400N potassium polyvinyl sulfate (PVSK) is titrated at a dropping rate of 2 mL / min, and calculated by titration until the color of the liquid changes from blue to reddish purple.
Colloid equivalent value = 1/400 NPVSK titration x 1/400 NPVSK titrant factor x 1/2

本発明における架橋型カチオン性あるいは架橋型両性水溶性重合体と一級アミノ基含有重合体からなる凝集処理剤を汚泥中に添加すると、凝集処理剤中の架橋型カチオン性あるいは架橋型両性水溶性重合体が汚泥中の懸濁粒子に吸着し、粒子同士の接着剤として作用し結果として粒子の凝集が起こる。この時に「密度の詰まった」分子形態であるため懸濁粒子表面と多点で結合し巨大フロック化せず、より締まった強度の高いフロックを形成する。更に凝集処理剤中の一級アミノ基含有重合体の一級アミンは水素結合力が高く親水性微粒子への吸着性が高いため、更に締まった強度の高いフロックが形成される結果、含水率低減効果が促進されると推定される。本発明の架橋型カチオン性あるいは架橋型両性水溶性重合体と一級アミノ基含有重合体からなる凝集処理剤中の架橋型カチオン性あるいは架橋型両性水溶性重合体と一級アミノ基含有重合体の混合比率は、9:1〜1:9の範囲が好ましく、8:2〜2:8の範囲が更に好ましい。汚泥の性状変化に広範囲に対応するには、7:3〜3:7の範囲がより一層好ましい。 When a coagulation treatment agent comprising a crosslinkable cationic or crosslinkable amphoteric water-soluble polymer and a primary amino group-containing polymer in the present invention is added to sludge, the crosslinkable cationic or crosslinkable amphoteric water-soluble polymer in the coagulation treatment agent is added. The coalescence is adsorbed on the suspended particles in the sludge and acts as an adhesive between the particles, resulting in particle aggregation. At this time, since the molecular form is “packed with density”, it binds to the surface of the suspended particles at many points and does not form a huge floc, but forms a floc with a tighter and higher strength. Furthermore, the primary amine of the primary amino group-containing polymer in the flocculating agent has a high hydrogen bonding force and a high adsorptivity to hydrophilic fine particles. As a result, flocs with higher tightening strength are formed, resulting in an effect of reducing moisture content. Presumed to be promoted. Mixing of a crosslinkable cationic or crosslinkable water-soluble polymer and a primary amino group-containing polymer in an aggregating agent comprising the crosslinkable cationic or crosslinkable water-soluble polymer of the present invention and a primary amino group-containing polymer The ratio is preferably in the range of 9: 1 to 1: 9, more preferably in the range of 8: 2 to 2: 8. The range of 7: 3 to 3: 7 is even more preferable to deal with a wide range of sludge properties.

本発明における架橋型カチオン性あるいは架橋型両性水溶性重合体と一級アミノ基含有重合体からなる凝集処理剤の適用可能な汚泥は、製紙排水、化学工業排水、食品工業排水などの生物処理したときに発生する余剰汚泥、あるいは都市下水、し尿、産業排水の処理で生じる有機性汚泥(いわゆる生汚泥、余剰汚泥、混合生汚泥、消化汚泥、凝沈・浮上汚泥およびこれらの混合物)に添加される。汚泥に対する添加率は、汚泥種、脱水機種によっても異なるが、通常汚泥固形分に対し0.005〜2.0質量%、好ましくは0.01〜2.0質量%である。対象とする汚泥に特に限定されないが、繊維分の少ない汚泥、有機分含有量(VSS/SS)が70%以上の高い汚泥、腐敗度の高い汚泥に対し特に有効であり好ましい。又、塩化第二鉄、硫酸第二鉄、ポリ硫酸第二鉄、PAC、硫酸バンドなどの無機系凝集剤と併用しても良い。 In the present invention, sludge applicable to a coagulation treatment agent comprising a crosslinked cationic or crosslinked amphoteric water-soluble polymer and a primary amino group-containing polymer is subjected to biological treatment such as papermaking wastewater, chemical industry wastewater, food industry wastewater, etc. Added to wastewater sludge, or organic sludge (so-called raw sludge, surplus sludge, mixed raw sludge, digested sludge, sedimentation / floating sludge, and mixtures thereof) generated in the treatment of municipal sewage, human waste, and industrial wastewater . Although the addition rate with respect to sludge changes also with sludge seed | species and a dehydration model, it is 0.005-2.0 mass% normally with respect to sludge solid content, Preferably it is 0.01-2.0 mass%. Although not particularly limited to the target sludge, it is particularly effective and preferable for sludge having a low fiber content, sludge having a high organic content (VSS / SS) of 70% or more, and sludge having a high degree of spoilage. Moreover, you may use together with inorganic type coagulants, such as ferric chloride, ferric sulfate, poly ferric sulfate, PAC, and a sulfuric acid band.

使用する脱水機の種類は、ベルトプレス、遠心脱水機、スクリュープレス、多重円板型脱水機、ロータリープレス、フィルタープレス等に対応できる。特に高い圧搾力が与えられるスクリュープレスや多重円板型脱水機で有効である。 The type of dehydrator to be used can correspond to a belt press, a centrifugal dehydrator, a screw press, a multi-disc dehydrator, a rotary press, a filter press and the like. It is particularly effective in screw presses and multiple disk type dehydrators that can be applied with a high pressing force.

以下に実施例を挙げて本発明を詳細に説明するが、本発明はこれら実施例により限定されるものではない。先ず、架橋型カチオン性あるいは架橋型両性重合体として、表1に示すAQV/SLVの値を示す試料A〜E[アクリルアミド/アクリロイルオキシエチルトリメチルアンモニウム塩化物(40/60モル%)共重合体]を用意した。これらは何れも製造時に架橋性単量体を共存して製造したものである。次いで、本発明における一級アミノ基含有重合体として、2−アミノエチルメタアクリレート硫酸塩重合体(以下、2EMA試料1と略記、AQV;166mPa・s、SLV;14mPa・s、コロイド当量値(pH3); 3.96meq/g、(pH7);2.06meq/g、粉末)、及び2−アミノエチルメタアクリレート硫酸塩重合体(以下、2EMA試料2と略記、AQV;130mPa・s、SLV;11mPa・s、コロイド当量値(pH3);2.82meq/g、(pH7);1.45meq/g、油中水型エマルジョン、濃度40%)を用意した。 EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples. First, as a crosslinked cationic or crosslinked amphoteric polymer, samples A to E showing the values of AQV / SLV shown in Table 1 [acrylamide / acryloyloxyethyltrimethylammonium chloride (40/60 mol%) copolymer] Prepared. These are all produced in the presence of a crosslinkable monomer during production. Next, as a primary amino group-containing polymer in the present invention, a 2-aminoethyl methacrylate sulfate polymer (hereinafter abbreviated as 2EMA sample 1, AQV: 166 mPa · s, SLV; 14 mPa · s, colloid equivalent value (pH 3) 3.96 meq / g, (pH 7); 2.06 meq / g, powder), and 2-aminoethyl methacrylate sulfate polymer (hereinafter abbreviated as 2EMA sample 2, AQV; 130 mPa · s, SLV; 11 mPa · s, colloid equivalent value (pH 3); 2.82 meq / g, (pH 7); 1.45 meq / g, water-in-oil emulsion, concentration 40%).

(表1)
WA;アクリルアミド、DMQ;アクリロイルオキシエチルトリメチルアンモニウム塩化物、
AQV;0.2質量%水溶液粘度(mPa・s)、SLV;0.5質量%の4質量%食塩水溶液中粘度(mPa・s)、分子量;重量平均分子量、EM;油中水型エマルジョン(濃度40%)
(Table 1)
WA; acrylamide, DMQ; acryloyloxyethyltrimethylammonium chloride,
AQV: 0.2% by weight aqueous solution viscosity (mPa · s), SLV; 0.5% by weight 4% salt aqueous solution viscosity (mPa · s), molecular weight; weight average molecular weight, EM; water-in-oil emulsion ( Density 40%)

その他、試験用の試料として、アミジン系水溶性高分子(重量平均分子量300万、粉末)、試料X(メタクリロイルオキシエチルトリメチルアンモニウム塩化物重合体、重量平均分子量400万、粉末)、試料Y[アクリルアミド/アクリロイルオキシエチルトリメチルアンモニウム塩化物(10/90モル%)共重合体、重量平均分子量400万、粉末]、試料Z[アクリルアミド/アクリロイルオキシエチルトリメチルアンモニウム塩化物(40/60モル%)共重合体、AQV 282、SLV 34、AQV/SLV 8.3、重量平均分子量400万、粉末]を用意した。これらは何れも一般的に汎用されている高分子凝集剤である。 In addition, as test samples, amidine-based water-soluble polymers (weight average molecular weight 3 million, powder), sample X (methacryloyloxyethyltrimethylammonium chloride polymer, weight average molecular weight 4 million, powder), sample Y [acrylamide] / Acryloyloxyethyltrimethylammonium chloride (10/90 mol%) copolymer, weight average molecular weight 4 million, powder], sample Z [acrylamide / acryloyloxyethyltrimethylammonium chloride (40/60 mol%) copolymer AQV 282, SLV 34, AQV / SLV 8.3, weight average molecular weight 4 million, powder]. All of these are generally used polymer flocculants.

(実施例1)
下水余剰汚泥(pH6.16、SS分14750mg/L、有機分含有量83.1%)を用い、ベルトプレス型脱水機を想定した汚泥脱水試験を実施した。汚泥200mLをポリビーカーに採取し、表1の試料Aと2EMA試料1(2−アミノエチルメタクリレート硫酸塩重合体)、試料Bと2EMA試料1、試料Cと2EMA試料1をそれぞれ1:1の質量比で混合したものの0.2質量%溶解液を対汚泥SS分に対して、120〜210ppm加え、ビーカー移し替え20回撹拌後、T−1197Lの濾布(ナイロン製)により濾過し、60秒後の濾液量の測定、及びフロック径を測定した。測定後、60秒間濾過した汚泥をプレス圧3Kg/cm2で60秒間脱水し、脱水ケーキ径、含水率(105℃で20hr乾燥)を測定した。結果を表2に示す。
Example 1
A sludge dewatering test was conducted assuming a belt press dehydrator using sewage surplus sludge (pH 6.16, SS content 14750 mg / L, organic content 83.1%). 200 mL of sludge was collected in a poly beaker, and each sample A and 2EMA sample 1 (2-aminoethyl methacrylate sulfate polymer), sample B and 2EMA sample 1, and sample C and 2EMA sample 1 in Table 1 had a mass of 1: 1. The mixture was mixed at a ratio of 0.2% by mass with respect to the sludge SS content, 120 to 210 ppm was added, the beaker was transferred and stirred 20 times, and then filtered through a T-1197L filter cloth (made of nylon) for 60 seconds. The subsequent measurement of the filtrate amount and the floc diameter were measured. After the measurement, the sludge filtered for 60 seconds was dehydrated at a press pressure of 3 kg / cm 2 for 60 seconds, and the dehydrated cake diameter and water content (dried at 105 ° C. for 20 hours) were measured. The results are shown in Table 2.

(比較例1)
実施例1と同様の汚泥を用い同様な汚泥脱水試験を実施した。汚泥200mLをポリビーカーに採取し、表1の試料A単独の0.2質量%溶解液を対汚泥SS分に対して、120〜210ppm加え、ビーカー移し替え20回撹拌後、T−1197Lの濾布(ナイロン製)により濾過し、60秒後の濾液量の測定、及びフロック径を測定した。測定後、60秒間濾過した汚泥をプレス圧3Kg/cm2で30秒間脱水し、脱水ケーキ径、含水率(105℃で20hr乾燥)を測定した。又、その他の試料単独、あるいは、試料Zと2EMA試料1、試料Xと2EMA試料1をそれぞれ質量比1:1で混合したものについても同様に汚泥脱水試験を実施した。その結果を表2に示す。
(Comparative Example 1)
A similar sludge dewatering test was performed using the same sludge as in Example 1. Collect 200 mL of sludge in a poly beaker, add 120-210 ppm of 0.2 mass% dissolved solution of sample A alone in Table 1 to the sludge SS, transfer to the beaker and stir 20 times, then filter T-1197L Filtration was carried out with a cloth (made of nylon), and the amount of filtrate after 60 seconds and the floc diameter were measured. After the measurement, the sludge filtered for 60 seconds was dehydrated at a press pressure of 3 kg / cm 2 for 30 seconds, and the dehydrated cake diameter and water content (dried at 105 ° C. for 20 hours) were measured. The sludge dehydration test was also conducted on other samples alone or samples Z and 2EMA sample 1, and samples X and 2EMA sample 1 mixed at a mass ratio of 1: 1. The results are shown in Table 2.

(表2)
(Table 2)

試料A〜Cと2EMA試料1を混合した実施例では、添加率を上げるとケーキ含水率は低下を示した。又、濾水量も向上を示し、濾水性、ケーキ搾水性共に良好な傾向が認められた。一方、比較例の試料単独添加あるいは試料Zと2EMA試料1を混合したもの、試料Xと2EMA試料1を混合したものを添加した場合には、添加率を上げてもケーキ含水率の大きな低下は認められず、濾水性、ケーキ含水率共に良好な結果を示すものは得られなかった。アミジン系水溶性高分子は、ケーキ含水率については一定の効果を示すものの濾水量については添加率を上げても大きな効果は得られなかった。又、薬品コストが掛かるため実用するには困難であることが考えられる。本発明の凝集処理剤が良好な結果を示したことは、本発明における架橋型カチオン性あるいは架橋型両性重合体と一級アミノ基含有重合体からなる凝集処理剤中の四級アンモニウム塩含有架橋型高分子の凝集性能とより締まった強度の高いフロックの形成、更に一級アミノ基含有高分子の水素結合力による親水性微粒子への吸着性により含水率低減効果が促進され、優れた濾水性、搾水性が得られたものと考えられる。 In Examples where Samples A to C and 2EMA Sample 1 were mixed, the moisture content of the cake decreased as the addition rate increased. Moreover, the amount of drainage also improved and a good tendency was observed in both drainage and cake squeezing. On the other hand, when the sample of Comparative Example is added alone or the sample Z and 2EMA sample 1 are mixed, or the sample X and 2EMA sample 1 are mixed, even if the addition rate is increased, the cake moisture content is greatly reduced. It was not recognized, and those showing good results for both freeness and moisture content of the cake were not obtained. The amidine-based water-soluble polymer showed a certain effect on the moisture content of the cake, but no significant effect was obtained even if the addition rate was increased with respect to the amount of drainage. In addition, it may be difficult to put into practical use because of the cost of chemicals. The flocculating agent of the present invention showed good results because the quaternary ammonium salt-containing crosslinked type in the flocculating agent comprising the crosslinked cationic or crosslinked amphoteric polymer and the primary amino group-containing polymer in the present invention. The water content reduction effect is promoted by the polymer agglomeration performance and the formation of tighter and higher strength flocs, and the adsorptivity to the hydrophilic fine particles by the hydrogen bonding force of the primary amino group-containing polymer. It is considered that water was obtained.

(実施例2)
下水余剰汚泥(pH6.4、SS分16500mg/L、有機分含有量83.3%)を用い、ベルトプレス型脱水機を想定した汚泥脱水試験を実施した。汚泥200mLをポリビーカーに採取し、表1の試料Dと2EMA試料2(2−アミノエチルメタクリレート硫酸塩重合体)を1:1の質量比で混合したものの0.2質量%溶解液を対汚泥SS分に対して、150〜180ppm加え、ビーカー移し替え20回撹拌後、T−1197Lの濾布(ナイロン製)により濾過し、60秒後の濾液量の測定、及びフロック径を測定した。測定後、60秒間濾過した汚泥をプレス圧3Kg/cm2で60秒間脱水し、脱水ケーキ径、含水率(105℃で20hr乾燥)を測定した。結果を表3に示す。
(Example 2)
A sludge dewatering test assuming a belt press type dehydrator was performed using sewage surplus sludge (pH 6.4, SS content 16500 mg / L, organic content 83.3%). 200 mL of sludge was collected in a poly beaker, and 0.2 mass% solution of the mixture of sample D in Table 1 and 2EMA sample 2 (2-aminoethyl methacrylate sulfate polymer) at a mass ratio of 1: 1 was used for sludge. 150 to 180 ppm was added to the SS component, the beaker was transferred, stirred 20 times, filtered through a T-1197L filter cloth (made of nylon), and the filtrate amount after 60 seconds and the floc diameter were measured. After the measurement, the sludge filtered for 60 seconds was dehydrated at a press pressure of 3 kg / cm 2 for 60 seconds, and the dehydrated cake diameter and water content (dried at 105 ° C. for 20 hours) were measured. The results are shown in Table 3.

(比較例2)
実施例2と同様の汚泥を用い同様な汚泥脱水試験を実施した。汚泥200mLをポリビーカーに採取し、表1の試料D単独の0.2質量%溶解液を対汚泥SS分に対して、150〜180ppm加え、ビーカー移し替え20回撹拌後、T−1197Lの濾布(ナイロン製)により濾過し、60秒後の濾液量の測定、及びフロック径を測定した。測定後、60秒間濾過した汚泥をプレス圧3Kg/cm2で30秒間脱水し、脱水ケーキ径、含水率(105℃で20hr乾燥)を測定した。結果を表3に示す。
(Comparative Example 2)
A similar sludge dewatering test was performed using the same sludge as in Example 2. Collect 200 mL of sludge in a poly beaker, add 150-180 ppm of 0.2% by mass dissolved solution of sample D alone in Table 1 to the sludge SS, transfer to the beaker and stir 20 times, then filter T-1197L. Filtration was carried out with a cloth (made of nylon), and the amount of filtrate after 60 seconds and the floc diameter were measured. After the measurement, the sludge filtered for 60 seconds was dehydrated at a press pressure of 3 kg / cm 2 for 30 seconds, and the dehydrated cake diameter and water content (dried at 105 ° C. for 20 hours) were measured. The results are shown in Table 3.

(表3)
(Table 3)

試料Dと2EMA試料2を混合した実施例2では、汎用されている代表的な油中水型エマルジョンタイプの架橋型高分子凝集剤である試料D単独添加よりも濾水性、搾水性が優れ、本発明における架橋型カチオン性あるいは架橋型両性重合体と一級アミノ基含有重合体からなる凝集処理剤の効果が確認できた。又、試料Eと2EMA試料2を1:1の質量比で混合したものの0.2質量%溶解液を対汚泥SS分に対して180ppm添加すると、実施例2の試料Dと2EMA試料2を1:1の質量比で混合したものを150ppm添加時と同程度のケーキ含水率を示すことを確認した。
In Example 2 in which sample D and 2EMA sample 2 were mixed, drainage and water squeezing were superior to sample D alone, which is a typical water-in-oil emulsion type cross-linked polymer flocculant that is widely used, The effect of the aggregating agent comprising the crosslinked cationic or crosslinked amphoteric polymer and the primary amino group-containing polymer in the present invention was confirmed. Further, when 180 ppm of a 0.2 mass% solution obtained by mixing sample E and 2EMA sample 2 at a mass ratio of 1: 1 is added to the sludge SS content, sample D and 2EMA sample 2 of Example 2 are 1 It was confirmed that what was mixed at a mass ratio of: 1 showed a cake moisture content similar to that when 150 ppm was added.

Claims (4)

下記一般式(1)及び/又は(2)で表される水溶性単量体10〜100モル%、下記一般式(3)で表される水溶性単量体0〜50モル%、非イオン性水溶性単量体0〜90モル%及び架橋性単量体からなる水溶性単量体混合物を重合して得た架橋型カチオン性あるいは架橋型両性重合体と、下記一般式(4)で表される水溶性単量体を必須として含有する水溶性単量体混合物を重合して得た一級アミノ基含有重合体からなる凝集処理剤。

一般式(1)
は水素又はメチル基、R、Rは炭素数1〜3のアルキルあるいはヒドロキシアルキル基、Rは水素、炭素数1〜3のアルキル基、炭素数7〜20のアルキル基あるいはアリール基、Aは酸素またはNH、Bは炭素数2〜4のアルキレン基を表わす、X は陰イオンをそれぞれ表わす。

一般式(2)
は水素又はメチル基、R、Rは炭素数1〜3のアルキル基あるいはヒドロキシアルキル基、X は陰イオンをそれぞれ表わす。

一般式(3)
は水素、メチル基またはカルボキシメチル基、AはSO、CSO、CONHC(CHCHSO、CCOOあるいはCOO、Rは水素またはCOOY、YあるいはYは水素または陽イオンをそれぞれ表わす。

一般式(4)
10は水素またはメチル基、Aは酸素原子またはNH、Bは炭素数2〜3のアルキレン基またはアルコキシレン基、X は陰イオンをそれぞれ表わす。
10 to 100 mol% of a water-soluble monomer represented by the following general formula (1) and / or (2), 0 to 50 mol% of a water-soluble monomer represented by the following general formula (3), nonionic A crosslinkable cationic or crosslinkable amphoteric polymer obtained by polymerizing a water soluble monomer mixture comprising 0 to 90 mol% of a water soluble monomer and a crosslinkable monomer, and the following general formula (4): An aggregating agent comprising a primary amino group-containing polymer obtained by polymerizing a water-soluble monomer mixture containing the water-soluble monomer as an essential component.

General formula (1)
R 1 is hydrogen or a methyl group, R 2 and R 3 are alkyl or hydroxyalkyl groups having 1 to 3 carbon atoms, R 4 is hydrogen, an alkyl group having 1 to 3 carbon atoms, an alkyl group having 7 to 20 carbon atoms or aryl group, a is oxygen or NH, B represents an alkylene group having 2 to 4 carbon atoms, X 1 - represents respectively an anion.

General formula (2)
R 5 represents hydrogen or a methyl group, R 6 and R 7 represent an alkyl group having 1 to 3 carbon atoms or a hydroxyalkyl group, and X 2 represents an anion.

General formula (3)
R 8 is hydrogen, methyl group or carboxymethyl group, A is SO 3 , C 6 H 4 SO 3 , CONHC (CH 3 ) 2 CH 2 SO 3 , C 6 H 4 COO or COO, R 9 is hydrogen or COOY 2 , Y 1 or Y 2 represents hydrogen or a cation, respectively.

General formula (4)
R 10 represents hydrogen or a methyl group, A represents an oxygen atom or NH, B represents an alkylene group or alkoxylene group having 2 to 3 carbon atoms, and X 3 represents an anion.
前記一般式(4)で表わされる水溶性単量体が、2−アミノエチルメタクリレートの有機酸あるいは無機酸の塩であることを特徴とする請求項1に記載の凝集処理剤。 The aggregating agent according to claim 1, wherein the water-soluble monomer represented by the general formula (4) is a salt of an organic acid or an inorganic acid of 2-aminoethyl methacrylate. 前記架橋型カチオン性あるいは架橋型両性重合体の25℃における、0.2質量%水溶液粘度をAQV、0.5質量%の4質量%食塩水溶液中粘度をSLVとすると、AQVとSLVの比が、
10≦AQV/SLV≦60
であることを特徴とする請求項1または2に記載の凝集処理剤。
Assuming that the viscosity of the 0.2 wt% aqueous solution of the crosslinked cationic or crosslinked amphoteric polymer at 25 ° C. is AQV and the viscosity in a 4 wt% saline solution of 0.5 wt% is SLV, the ratio of AQV to SLV is ,
10 ≦ AQV / SLV ≦ 60
The aggregating treatment agent according to claim 1 or 2, wherein
請求項1〜3のいずれかに記載の凝集処理剤を汚泥に添加し脱水機により脱水することを特徴とする汚泥の脱水方法。























A method for dewatering sludge, comprising adding the aggregating agent according to any one of claims 1 to 3 to sludge and dehydrating with a dehydrator.























JP2014028311A 2014-02-18 2014-02-18 Coagulation treatment agent and sludge dewatering method using the same Active JP6257079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014028311A JP6257079B2 (en) 2014-02-18 2014-02-18 Coagulation treatment agent and sludge dewatering method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014028311A JP6257079B2 (en) 2014-02-18 2014-02-18 Coagulation treatment agent and sludge dewatering method using the same

Publications (2)

Publication Number Publication Date
JP2015150534A true JP2015150534A (en) 2015-08-24
JP6257079B2 JP6257079B2 (en) 2018-01-10

Family

ID=53893353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014028311A Active JP6257079B2 (en) 2014-02-18 2014-02-18 Coagulation treatment agent and sludge dewatering method using the same

Country Status (1)

Country Link
JP (1) JP6257079B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018070831A (en) * 2016-11-02 2018-05-10 株式会社片山化学工業研究所 Cake peelability improver from filter cloth of squeeze type dehydrator using filter cloth, and cake peel method using the same
JP2019209287A (en) * 2018-06-06 2019-12-12 栗田工業株式会社 Sludge dehydrating agent, and sludge dewatering method
CN117447034A (en) * 2023-11-14 2024-01-26 中聚达新材料(廊坊)有限公司 Sludge wrapping agent for recycling papermaking sludge and preparation method thereof
JP7489062B2 (en) 2020-07-22 2024-05-23 ハイモ株式会社 Dewatering method for high salt concentration sludge
JP7519054B2 (en) 2020-07-22 2024-07-19 ハイモ株式会社 How to dewater paper sludge

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1053617A (en) * 1996-04-22 1998-02-24 Sanyo Chem Ind Ltd Polymer coagulant
JPH11347600A (en) * 1999-05-21 1999-12-21 Sanyo Chem Ind Ltd Dehydration of sludge
US6262168B1 (en) * 1998-03-11 2001-07-17 Cytec Technology Corp. Aqueous dispersions
JP2002045899A (en) * 2000-05-26 2002-02-12 Hymo Corp Method for dewatering sludge
JP2002166104A (en) * 2000-09-25 2002-06-11 Hymo Corp Primary amino group-containing polymer emulsion type flocculant
JP2002166299A (en) * 2000-09-25 2002-06-11 Hymo Corp Method for dehydrating sludge
JP2003275503A (en) * 2002-03-22 2003-09-30 Sanyo Chem Ind Ltd Polymeric flocculating agent composition
WO2008015769A1 (en) * 2006-08-03 2008-02-07 Hymo Corporation Flocculant composition and process for producing the same
JP2012170943A (en) * 2011-02-24 2012-09-10 Hymo Corp Sludge dewatering agent, and method of dewatering sludge
JP2012206023A (en) * 2011-03-30 2012-10-25 Hymo Corp Coagulation treatment agent and sludge dehydration method using the same
JP2012206024A (en) * 2011-03-30 2012-10-25 Hymo Corp Coagulation treatment agent, and sludge dehydration method using the same
JP2013154287A (en) * 2012-01-30 2013-08-15 Mitsubishi Gas Chemical Co Inc Organic coagulant
JP2013255863A (en) * 2012-06-11 2013-12-26 Hymo Corp Flocculant and sludge dehydration method using the same

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1053617A (en) * 1996-04-22 1998-02-24 Sanyo Chem Ind Ltd Polymer coagulant
US6262168B1 (en) * 1998-03-11 2001-07-17 Cytec Technology Corp. Aqueous dispersions
JPH11347600A (en) * 1999-05-21 1999-12-21 Sanyo Chem Ind Ltd Dehydration of sludge
JP2002045899A (en) * 2000-05-26 2002-02-12 Hymo Corp Method for dewatering sludge
JP2002166104A (en) * 2000-09-25 2002-06-11 Hymo Corp Primary amino group-containing polymer emulsion type flocculant
JP2002166299A (en) * 2000-09-25 2002-06-11 Hymo Corp Method for dehydrating sludge
JP2003275503A (en) * 2002-03-22 2003-09-30 Sanyo Chem Ind Ltd Polymeric flocculating agent composition
WO2008015769A1 (en) * 2006-08-03 2008-02-07 Hymo Corporation Flocculant composition and process for producing the same
JP2012170943A (en) * 2011-02-24 2012-09-10 Hymo Corp Sludge dewatering agent, and method of dewatering sludge
JP2012206023A (en) * 2011-03-30 2012-10-25 Hymo Corp Coagulation treatment agent and sludge dehydration method using the same
JP2012206024A (en) * 2011-03-30 2012-10-25 Hymo Corp Coagulation treatment agent, and sludge dehydration method using the same
JP2013154287A (en) * 2012-01-30 2013-08-15 Mitsubishi Gas Chemical Co Inc Organic coagulant
JP2013255863A (en) * 2012-06-11 2013-12-26 Hymo Corp Flocculant and sludge dehydration method using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018070831A (en) * 2016-11-02 2018-05-10 株式会社片山化学工業研究所 Cake peelability improver from filter cloth of squeeze type dehydrator using filter cloth, and cake peel method using the same
JP2019209287A (en) * 2018-06-06 2019-12-12 栗田工業株式会社 Sludge dehydrating agent, and sludge dewatering method
JP7489062B2 (en) 2020-07-22 2024-05-23 ハイモ株式会社 Dewatering method for high salt concentration sludge
JP7519054B2 (en) 2020-07-22 2024-07-19 ハイモ株式会社 How to dewater paper sludge
CN117447034A (en) * 2023-11-14 2024-01-26 中聚达新材料(廊坊)有限公司 Sludge wrapping agent for recycling papermaking sludge and preparation method thereof
CN117447034B (en) * 2023-11-14 2024-04-05 中聚达新材料(廊坊)有限公司 Sludge wrapping agent for recycling papermaking sludge and preparation method thereof

Also Published As

Publication number Publication date
JP6257079B2 (en) 2018-01-10

Similar Documents

Publication Publication Date Title
JP2012254430A (en) Flocculant, and sludge dehydration method using the same
JP6257079B2 (en) Coagulation treatment agent and sludge dewatering method using the same
JP5622263B2 (en) Sludge dewatering method
JP2013215708A (en) Amphoteric water-soluble polymer flocculant and method for dehydrating sludge by using the same
JP5780632B2 (en) Coagulation treatment agent and sludge dewatering method using the same
JP5279024B2 (en) Sludge dewatering method
JP2014233647A (en) Flocculation treatment agent and dewatering method of sludge
JP5967705B2 (en) Coagulation treatment agent and sludge dewatering method using the same
JP5283253B2 (en) Method for dewatering paper sludge
JP5692911B2 (en) Coagulation treatment agent and sludge dewatering method using the same
JP5692910B2 (en) Sludge dewatering agent and sludge dewatering treatment method
JP5305443B2 (en) Water-soluble polymer composition
JP4167972B2 (en) Organic sludge dewatering method
JP5995534B2 (en) Aggregation treatment agent and waste water treatment method
JP5765768B2 (en) Coagulation treatment agent and sludge dewatering method using the same
JP5601704B2 (en) Sludge dewatering agent and sludge dewatering method
JP2007023146A (en) Ionic fine particle and application of the same
JP2011062634A (en) Flocculant for service water and method for treating raw water for service water
JP5258647B2 (en) Sludge dewatering method
JP3651669B2 (en) Amphoteric water-soluble polymer dispersion
JP5709257B2 (en) Sludge treatment agent and sludge dewatering method
JP7489062B2 (en) Dewatering method for high salt concentration sludge
JP5946166B2 (en) Sludge dewatering method
JP4433434B2 (en) Organic sludge dewatering method
JP7519054B2 (en) How to dewater paper sludge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171204

R150 Certificate of patent or registration of utility model

Ref document number: 6257079

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250