[go: up one dir, main page]

JP2015149879A - Rotor and motor - Google Patents

Rotor and motor Download PDF

Info

Publication number
JP2015149879A
JP2015149879A JP2014023177A JP2014023177A JP2015149879A JP 2015149879 A JP2015149879 A JP 2015149879A JP 2014023177 A JP2014023177 A JP 2014023177A JP 2014023177 A JP2014023177 A JP 2014023177A JP 2015149879 A JP2015149879 A JP 2015149879A
Authority
JP
Japan
Prior art keywords
magnet
rotor
shaped magnetic
claw
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014023177A
Other languages
Japanese (ja)
Inventor
貴宏 土屋
Takahiro Tsuchiya
貴宏 土屋
智恵 森田
Chie Morita
智恵 森田
洋次 山田
Hirotsugu Yamada
洋次 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asmo Co Ltd
Original Assignee
Asmo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asmo Co Ltd filed Critical Asmo Co Ltd
Priority to JP2014023177A priority Critical patent/JP2015149879A/en
Priority to CN201410489795.7A priority patent/CN104518585B/en
Priority to DE201410113744 priority patent/DE102014113744A1/en
Priority to US14/495,492 priority patent/US9490670B2/en
Publication of JP2015149879A publication Critical patent/JP2015149879A/en
Pending legal-status Critical Current

Links

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rotor that can easily perform magnetization for suppressing flux leakage while reducing the number of parts.SOLUTION: A rotor 4 has a first rotor core 20 having a first pawl-shaped magnetic pole 22 formed at the outer peripheral portion of a first core base 21, a second rotor core 30 having a second pawl-shaped magnetic pole 32 formed at the outer peripheral portion of a second core base 31, a field magnet 40 which is disposed between the first and second core bases 21, 31 and magnetized in an axial direction to make the first pawl-shaped magnetic pole 22 function as a first magnetic pole and make the second pawl-shaped magnetic pole 32 as a second magnetic pole, a back surface magnet 50 which is disposed between the first and second pawl-shaped magnetic poles 22, 32 and the field magnetic 40 and suppresses flux leakage therebetween, and an inter-pole magnet 51 which is disposed between the first and second pawl-shaped magnetic poles 22, 32 adjacent in the peripheral direction and suppresses flux leakage therebetween. The back surface magnet 50 and the inter-pole magnet 51 is annularly and integrally formed and forms an auxiliary magnet G so that the end faces thereof in the axial direction form one flat plane H.

Description

本発明は、ロータ、及びモータに関するものである。   The present invention relates to a rotor and a motor.

モータのロータとしては、コアベースの外周部に複数の爪状磁極をそれぞれ有して組み合わされる2つのロータコアと、それらの軸方向の間に配置され軸方向に磁化された界磁磁石とを備え、各爪状磁極を交互に異なる磁極に機能させるいわゆる永久磁石界磁のランデル型構造のロータがある。そして、このようなロータとしては、爪状磁極と界磁磁石との間に配置され径方向に磁化されてその間の漏れ磁束を抑えるための背面磁石と、周方向に隣り合う爪状磁極の間に配置され周方向に磁化されてその間の漏れ磁束を抑えるための極間磁石とを備えたものがある(例えば、特許文献1参照)。   The rotor of the motor includes two rotor cores that are combined with a plurality of claw-shaped magnetic poles on the outer periphery of the core base, and a field magnet that is arranged between the axial directions and magnetized in the axial direction. There is a so-called permanent magnet field Landel-type rotor in which each claw-shaped magnetic pole functions alternately as a different magnetic pole. Such a rotor is arranged between the claw-shaped magnetic poles arranged between the claw-shaped magnetic poles and the field magnet and magnetized in the radial direction to suppress leakage magnetic flux therebetween, and the claw-shaped magnetic poles adjacent in the circumferential direction. And an inter-pole magnet that is magnetized in the circumferential direction and suppresses leakage magnetic flux therebetween (see, for example, Patent Document 1).

又、特許文献2では、上記のようなロータにおいて、前記背面磁石と極間磁石とを一体形成することで部品点数を少なくする技術が開示されている。   Patent Document 2 discloses a technique for reducing the number of parts by integrally forming the back magnet and the interpole magnet in the rotor as described above.

特開2012−115085号公報JP 2012-115085 A 特開2013−118801号公報JP 2013-118801 A

しかしながら、上記のようなロータでは、背面磁石と極間磁石とが軸方向に凹凸を繰り返す形状であったため、効果的に着磁することが困難であった。
本発明は、上記問題点を解決するためになされたものであって、その目的は、部品点数を少なくしながら、漏れ磁束を抑えるための着磁を容易に行うことができるロータ、及びモータを提供することにある。
However, in the rotor as described above, since the back magnet and the interpole magnet have a shape in which the projections and depressions are repeated in the axial direction, it is difficult to effectively magnetize the rotor.
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a rotor and a motor capable of easily performing magnetization for suppressing leakage magnetic flux while reducing the number of components. It is to provide.

上記課題を解決するロータは、それぞれコアベースの外周部に、等間隔に複数の爪状磁極が径方向外側に突出されるとともに軸方向に延出形成され、互いのコアベースが対向されつつ爪状磁極が周方向に交互に配置された第1及び第2ロータコアと、前記コアベース同士の軸方向の間に配置され、前記軸方向に磁化されることで、第1ロータコアの前記爪状磁極を第1の磁極として機能させ、前記第2ロータコアの前記爪状磁極を第2の磁極として機能させる界磁磁石と、前記爪状磁極と前記界磁磁石との間に配置され、その間の漏れ磁束を抑えるための背面磁石と、周方向に隣り合う前記爪状磁極の間に配置され、その間の漏れ磁束を抑えるための極間磁石とを備えたロータであって、前記背面磁石と前記極間磁石とが、その軸方向端面が一つの平坦面となるように環状に一体形成された補助磁石とされる。   In the rotor that solves the above-described problems, a plurality of claw-shaped magnetic poles are projected radially outward at equal intervals on the outer periphery of the core base, and are extended in the axial direction. The claw-shaped magnetic poles of the first rotor core are arranged between the first and second rotor cores in which the magnetic poles are alternately arranged in the circumferential direction, and are magnetized in the axial direction between the core bases. Is disposed between the claw-shaped magnetic pole and the field magnet, and the leakage between the field magnet and the field magnet that functions as the first magnetic pole and the claw-shaped magnetic pole of the second rotor core as the second magnetic pole. A rotor including a back magnet for suppressing magnetic flux and an interpole magnet disposed between the claw-shaped magnetic poles adjacent to each other in the circumferential direction for suppressing leakage magnetic flux therebetween, wherein the back magnet and the pole The axial end surface of the magnet It is integrally formed auxiliary magnets annularly so that One of the flat surfaces.

同構成によれば、背面磁石と極間磁石とが、その軸方向端面が一つの平坦面となるように環状に一体形成された補助磁石とされるため、部品点数を少なくしながら、漏れ磁束を抑えるための着磁を容易に行うことができる。   According to this configuration, the back magnet and the interpole magnet are formed as auxiliary magnets that are integrally formed in an annular shape so that the end surface in the axial direction is a flat surface. Can be easily magnetized.

上記課題を解決するモータは、上記ロータと、回転磁界を発生するステータとを備える。
同構成によれば、モータにおいて、上記した効果を得ることができる。
A motor that solves the above problem includes the rotor and a stator that generates a rotating magnetic field.
According to this configuration, the above-described effect can be obtained in the motor.

本発明のロータ、及びモータでは、部品点数を少なくしながら、漏れ磁束を抑えるための着磁を容易に行うことができる。   In the rotor and motor of the present invention, magnetization for suppressing leakage flux can be easily performed while reducing the number of parts.

一実施形態におけるブラシレスモータの一部断面図。The partial sectional view of the brushless motor in one embodiment. 一実施形態におけるロータの一部断面図。The partial sectional view of the rotor in one embodiment. 一実施形態におけるロータの斜視図。The perspective view of the rotor in one Embodiment. 一実施形態におけるロータの分解斜視図。The disassembled perspective view of the rotor in one Embodiment. 一実施形態における補助磁石を製造するための着磁装置の斜視図。The perspective view of the magnetizing apparatus for manufacturing the auxiliary magnet in one Embodiment.

以下、ブラシレスモータの一実施形態を図1〜図5に従って説明する。
図1に示すように、モータとしてのブラシレスモータMは、モータハウジング1の内周面にステータ2が固定され、そのステータ2の内側には、回転軸3に固定され同回転軸3とともに一体回転する所謂ランデル型構造のロータ4が配設されている。回転軸3は、被磁性体のステンレス製シャフトであって、モータハウジング1に設けた図示しない軸受にて、モータハウジング1に対して回転可能に支持されている。
Hereinafter, an embodiment of a brushless motor will be described with reference to FIGS.
As shown in FIG. 1, a brushless motor M as a motor has a stator 2 fixed to an inner peripheral surface of a motor housing 1, and is fixed to a rotating shaft 3 on the inner side of the stator 2 and rotates together with the rotating shaft 3. A so-called Landel-type rotor 4 is disposed. The rotating shaft 3 is a stainless steel shaft made of a magnetic material, and is supported by a bearing (not shown) provided on the motor housing 1 so as to be rotatable with respect to the motor housing 1.

ステータ2は、円筒状のステータコア10を有し、そのステータコア10の外周面がモータハウジング1の内側面に固定されている。ステータコア10の内側には、軸線方向に沿って形成され、かつ、周方向に等ピッチに配置される複数のティース11が、径方向内側に向かって延出形成されている。各ティース11は、T型のティースであって、その径方向内側の内周面11aは、回転軸3の中心軸線Oを中心とする同心円形状の円弧を軸線方向に延出した円弧面である。   The stator 2 has a cylindrical stator core 10, and the outer peripheral surface of the stator core 10 is fixed to the inner surface of the motor housing 1. Inside the stator core 10, a plurality of teeth 11 formed along the axial direction and arranged at equal pitches in the circumferential direction are formed extending inward in the radial direction. Each tooth 11 is a T-shaped tooth, and an inner circumferential surface 11a on the radially inner side is an arc surface obtained by extending a concentric circular arc centering on the central axis O of the rotating shaft 3 in the axial direction. .

ティース11同士の周方向の間には、スロット12が形成される。本実施形態では、ティース11の数は12個であって、スロット12の数は、ティース11の数と同じ12個である。12個のティース11には、周方向に3相巻線、即ち、U相巻線13u、V相巻線13v、W相巻線13wが順番に集中巻きにて巻回され、それらはスロット12内に配置されている。   Slots 12 are formed between the teeth 11 in the circumferential direction. In the present embodiment, the number of teeth 11 is twelve, and the number of slots 12 is twelve, which is the same as the number of teeth 11. Around the 12 teeth 11, three-phase windings in the circumferential direction, that is, a U-phase winding 13 u, a V-phase winding 13 v, and a W-phase winding 13 w are sequentially wound by concentrated winding. Is placed inside.

そして、これら各相巻線13u,13v,13wに3相電源電圧を印加してステータ2に回転磁界を発生させ、同ステータ2の内側に配置した回転軸3に固定されたロータ4を回転させるようになっている。   Then, a three-phase power supply voltage is applied to each of the phase windings 13u, 13v, 13w to generate a rotating magnetic field in the stator 2, and the rotor 4 fixed to the rotating shaft 3 disposed inside the stator 2 is rotated. It is like that.

図2〜図4に示すように、ロータ4は、第1及び第2ロータコア20,30、界磁磁石40、及び補助磁石Gを有している。
第1ロータコア20は、軟磁性材よりなり本実施形態では電磁鋼板にて形成され、回転軸3が圧入される中央孔21aが形成された略円板状の第1コアベース21を有している。第1コアベース21の外周部には、等間隔に複数(本実施形態では4つ)の第1爪状磁極22が径方向外側に突出されるとともに軸方向に延出形成されている。
As shown in FIGS. 2 to 4, the rotor 4 includes first and second rotor cores 20 and 30, a field magnet 40, and an auxiliary magnet G.
The first rotor core 20 is made of a soft magnetic material and is formed of an electromagnetic steel plate in the present embodiment, and has a substantially disk-shaped first core base 21 in which a central hole 21a into which the rotary shaft 3 is press-fitted is formed. Yes. A plurality of (four in the present embodiment) first claw-shaped magnetic poles 22 project outward in the radial direction and extend in the axial direction on the outer peripheral portion of the first core base 21 at equal intervals.

第2ロータコア30は、第1ロータコア20と同一材質及び同形状であって、回転軸3が圧入される中央孔31aが形成された略円板状の第2コアベース31を有している。第2コアベース31の外周部には、等間隔に複数(本実施形態では4つ)の第2爪状磁極32が径方向外側に突出されるとともに軸方向に延出形成されている。   The second rotor core 30 has the same material and the same shape as the first rotor core 20 and has a substantially disc-shaped second core base 31 in which a central hole 31a into which the rotary shaft 3 is press-fitted is formed. A plurality of (four in the present embodiment) second claw-shaped magnetic poles 32 project outward in the radial direction and extend in the axial direction on the outer peripheral portion of the second core base 31 at equal intervals.

そして、第1及び第2ロータコア20,30は、その中央孔21a,31aに回転軸3が圧入されることで回転軸3に対して固定される。この際、第2ロータコア30は、各第2爪状磁極32が周方向に隣り合う第1爪状磁極22間に配置されるようにして、且つ第1コアベース21と第2コアベース31との軸方向の間に界磁磁石40が配置(挟持)されるようにして第1ロータコア20に対して組み付けられる。   And the 1st and 2nd rotor cores 20 and 30 are fixed with respect to the rotating shaft 3 by press-fitting the rotating shaft 3 in the center holes 21a and 31a. At this time, the second rotor core 30 is arranged such that each second claw-shaped magnetic pole 32 is disposed between the first claw-shaped magnetic poles 22 adjacent in the circumferential direction, and the first core base 21 and the second core base 31 The field magnet 40 is assembled (attached) to the first rotor core 20 in such a manner that the field magnet 40 is disposed (sandwiched) between the first rotor core 20 and the second magnet 20.

図2に示すように、前記界磁磁石40は、中央孔を有した略円板状の永久磁石であって、前記第1爪状磁極22を第1の磁極(本実施形態ではN極)として機能させ、前記第2爪状磁極32を第2の磁極(本実施形態ではS極)として機能させるように、軸方向に磁化されている。即ち、本実施形態のロータ4は、所謂ランデル型構造のロータである。ロータ4は、N極となる4つの第1爪状磁極22と、S極となる4つの第2爪状磁極32とが周方向に交互に配置されており、極数が8極(極対数が4個)となる。すなわち、本実施形態では、ロータ4の磁極の数(極数)が「8」に設定され、ステータ2のティース11(スロット12)の数が「12」に設定されたブラシレスモータMとされている。   As shown in FIG. 2, the field magnet 40 is a substantially disk-shaped permanent magnet having a central hole, and the first claw-shaped magnetic pole 22 is replaced with a first magnetic pole (N pole in this embodiment). And the second claw-shaped magnetic pole 32 is magnetized in the axial direction so as to function as a second magnetic pole (S pole in this embodiment). That is, the rotor 4 of the present embodiment is a so-called Landel type rotor. In the rotor 4, four first claw-shaped magnetic poles 22 that are N poles and four second claw-shaped magnetic poles 32 that are S poles are alternately arranged in the circumferential direction, and the number of poles is eight (the number of pole pairs). Is 4). That is, in this embodiment, the number of magnetic poles (number of poles) of the rotor 4 is set to “8”, and the number of teeth 11 (slots 12) of the stator 2 is set to “12”. Yes.

補助磁石Gは、背面磁石50と極間磁石51とが一体形成されてなる。詳しくは、背面磁石50は、軸方向から見て第1及び第2爪状磁極22,32の径方向内側(背面)であって界磁磁石40との間に設けられ、その部分の漏れ(短絡)磁束を抑えるべく磁化されている。又、極間磁石51は、軸方向から見て第1及び第2爪状磁極22,32同士の周方向の各間に設けられ、その部分の漏れ磁束を抑えるべく磁化されている。言い換えると、この極間磁石51は、軸方向から見て周方向に隣り合う背面磁石50同士を繋ぐように形成されて補助磁石Gを環状とするとともに、第1及び第2爪状磁極22,32の軸方向に延びる(先端)部分同士の間にも配置されるように背面磁石50よりも径方向外側に突出した形状とされている。   The auxiliary magnet G is formed by integrally forming a back magnet 50 and an interpole magnet 51. Specifically, the back magnet 50 is provided between the first and second claw-shaped magnetic poles 22 and 32 in the radial direction (back surface) and the field magnet 40 when viewed from the axial direction, and leakage of the portion ( Shorted) Magnetized to reduce magnetic flux. The interpole magnet 51 is provided between the first and second claw-shaped magnetic poles 22 and 32 in the circumferential direction when viewed from the axial direction, and is magnetized so as to suppress the leakage magnetic flux at that portion. In other words, the interpole magnet 51 is formed so as to connect the back magnets 50 adjacent to each other in the circumferential direction when viewed from the axial direction, and the auxiliary magnet G has an annular shape, and the first and second claw-shaped magnetic poles 22, It is set as the shape which protruded in the radial direction outer side from the back magnet 50 so that it may also arrange | position between 32 axially extending (tip) parts.

そして、本実施形態の補助磁石Gは、その軸方向端面が一つの平坦面Hとなるように、背面磁石50と極間磁石51とが環状に一体形成されてなる。即ち、ロータ4が隙間無く略円柱状となるように、背面磁石50及び極間磁石51を配置しようとすると、補助磁石Gは軸方向に凹凸を有する形状となるが、その凸部分が形成されないように、軸方向端面が一つの平坦面Hとされている。言い換えると、第1コアベース21及び第2コアベース31が配置される軸方向の範囲を除いて補助磁石G(背面磁石50及び極間磁石51)が均一な厚さで形成されている。   The auxiliary magnet G of the present embodiment is formed by integrally forming the back magnet 50 and the interpole magnet 51 in an annular shape so that the end surface in the axial direction becomes one flat surface H. That is, when the back magnet 50 and the interpole magnet 51 are arranged so that the rotor 4 has a substantially cylindrical shape with no gap, the auxiliary magnet G has a shape having irregularities in the axial direction, but the convex portion is not formed. Thus, the end surface in the axial direction is a single flat surface H. In other words, the auxiliary magnet G (the back magnet 50 and the interpole magnet 51) is formed with a uniform thickness except for the axial range in which the first core base 21 and the second core base 31 are arranged.

この補助磁石Gは、極異方性磁石であって、図4及び図5中に模式的に矢印で示すように配向することで背面磁石50及び極間磁石51のそれぞれで漏れ磁束を抑えるように磁化されている。   The auxiliary magnet G is a polar anisotropic magnet, and is oriented as schematically shown by the arrows in FIGS. 4 and 5 so as to suppress the leakage flux by the back magnet 50 and the interpole magnet 51, respectively. Is magnetized.

例えば、図5に示すように、補助磁石Gを製造するための着磁装置60は、各背面磁石50となる部分の外周面に近接されるべく径方向内側に延びる複数の着磁コア部61と、各着磁コア部61に巻回されたコイル62とを有している。そして、周方向に隣り合うコイル62に逆方向の大電流を流すことで、補助磁石Gが製造されている。   For example, as shown in FIG. 5, the magnetizing device 60 for manufacturing the auxiliary magnet G has a plurality of magnetized core portions 61 extending radially inward so as to be close to the outer peripheral surface of the portion to be the back magnet 50. And a coil 62 wound around each magnetized core portion 61. The auxiliary magnet G is manufactured by flowing a large current in the reverse direction to the coils 62 adjacent in the circumferential direction.

次に、上記のように構成されたブラシレスモータMの作用について説明する。
ステータコア10の各相巻線13u,13v,13wに3相電源電圧が印加されてステータ2にて回転磁界が発生されると、同ステータ2の内側に配置した回転軸3に固着されたロータ4は、その回転磁界に基づいて回転駆動される。
Next, the operation of the brushless motor M configured as described above will be described.
When a three-phase power supply voltage is applied to each phase winding 13u, 13v, 13w of the stator core 10 and a rotating magnetic field is generated in the stator 2, the rotor 4 fixed to the rotating shaft 3 disposed inside the stator 2 is provided. Is driven to rotate based on the rotating magnetic field.

この際、ロータ4は、補助磁石Gにおける背面磁石50によってその部分の(径方向の)漏れ磁束が抑えられるとともに、補助磁石Gにおける極間磁石51によってその部分の(周方向の)漏れ磁束が抑えられるため、高効率でステータ2の回転磁界と作用して回転駆動される。   At this time, in the rotor 4, leakage magnetic flux in the portion (radial direction) is suppressed by the back magnet 50 in the auxiliary magnet G, and leakage magnetic flux in the portion (circumferential direction) is caused by the interpolar magnet 51 in the auxiliary magnet G. Therefore, it is rotationally driven by acting with the rotating magnetic field of the stator 2 with high efficiency.

次に、上記実施の形態の特徴的な効果を以下に記載する。
(1)背面磁石50と極間磁石51とが、その軸方向端面が一つの平坦面Hとなるように(即ち凹凸が無いように)環状に一体形成された補助磁石Gとされるため、部品点数を少なくしながら、漏れ磁束を抑えるための着磁を容易に行うことができる。言い換えると、着磁の際、軸方向を含む3次元的な着磁が不要であるため、例えば、図5に示すように、各背面磁石50となる部分の外周面に着磁コア部61を近接させるだけでよく、着磁が容易となる。又、軸方向に凹凸が無いため、その成形が容易となる。又、背面磁石50と極間磁石51とが別体で設けられる場合では、組み付け時等にそれらが欠ける虞があるが、これを回避することができる。又、背面磁石50と極間磁石51とが別体で設けられる場合では、固着力が弱いとそれらが回転時に遠心力により飛散(脱落)する虞があるが、これを抑えることができる。
Next, the characteristic effects of the above embodiment will be described below.
(1) Since the back magnet 50 and the interpole magnet 51 are the auxiliary magnets G that are integrally formed in an annular shape so that the end surfaces in the axial direction become one flat surface H (that is, there is no unevenness). Magnetization for suppressing leakage magnetic flux can be easily performed while reducing the number of parts. In other words, since the three-dimensional magnetization including the axial direction is unnecessary at the time of magnetization, for example, as shown in FIG. It is only necessary to make them close to each other, and magnetization becomes easy. Moreover, since there is no unevenness in the axial direction, the molding becomes easy. Further, when the back magnet 50 and the interpole magnet 51 are provided separately, they may be lost during assembly or the like, but this can be avoided. Further, in the case where the back magnet 50 and the interpole magnet 51 are provided separately, if the fixing force is weak, they may be scattered (dropped off) by centrifugal force during rotation, but this can be suppressed.

上記実施形態は、以下のように変更してもよい。
・上記実施形態では、特に言及していないが、界磁磁石40及び補助磁石Gの材質や製造方法による種類は特に限定されず、各種磁石を用いてもよい。例えば、フェライト磁石や、サマリウム鉄窒素系磁石や、サマリウムコバルト系磁石や、ネオジム磁石や、アルニコ磁石としてもよい。又、例えば、焼結磁石や、ボンド磁石としてもよい。又、ボンド磁石とする場合、圧縮成形としてもよいし、射出成形としてもよい。
The above embodiment may be modified as follows.
-Although it does not mention in particular in the said embodiment, the kind by the material and manufacturing method of the field magnet 40 and the auxiliary magnet G is not specifically limited, You may use various magnets. For example, a ferrite magnet, a samarium iron nitrogen-based magnet, a samarium cobalt-based magnet, a neodymium magnet, or an alnico magnet may be used. Further, for example, a sintered magnet or a bonded magnet may be used. Moreover, when it is set as a bonded magnet, it is good also as compression molding and good also as injection molding.

・上記実施形態では、ロータ4の極数が「8」に設定され、ステータ2のティース11の数が「12」に設定されたブラシレスモータMに具体化したが、ロータ4の極数やステータ2のティース11の数は変更してもよい。例えば、ロータ4の極数が「10」に設定され、ステータ2のティース11の数が「12」に設定されたブラシレスモータに具体化してもよい。   In the above embodiment, the brushless motor M is embodied in which the number of poles of the rotor 4 is set to “8” and the number of teeth 11 of the stator 2 is set to “12”, but the number of poles of the rotor 4 and the stator The number of the two teeth 11 may be changed. For example, the present invention may be embodied in a brushless motor in which the number of poles of the rotor 4 is set to “10” and the number of teeth 11 of the stator 2 is set to “12”.

2…ステータ、4…ロータ、20…第1ロータコア、21…第1コアベース(コアベース)、22…第1爪状磁極(爪状磁極)、30…第2ロータコア、31…第2コアベース(コアベース)、32…第2爪状磁極(爪状磁極)、40…界磁磁石、50…背面磁石、51…極間磁石、G…補助磁石、H…平坦面。   DESCRIPTION OF SYMBOLS 2 ... Stator, 4 ... Rotor, 20 ... 1st rotor core, 21 ... 1st core base (core base), 22 ... 1st claw-shaped magnetic pole (claw-shaped magnetic pole), 30 ... 2nd rotor core, 31 ... 2nd core base (Core base), 32 ... second claw-shaped magnetic pole (claw-shaped magnetic pole), 40 ... field magnet, 50 ... back magnet, 51 ... interpole magnet, G ... auxiliary magnet, H ... flat surface.

Claims (2)

それぞれコアベースの外周部に、等間隔に複数の爪状磁極が径方向外側に突出されるとともに軸方向に延出形成され、互いのコアベースが対向されつつ爪状磁極が周方向に交互に配置された第1及び第2ロータコアと、
前記コアベース同士の軸方向の間に配置され、前記軸方向に磁化されることで、第1ロータコアの前記爪状磁極を第1の磁極として機能させ、前記第2ロータコアの前記爪状磁極を第2の磁極として機能させる界磁磁石と、
前記爪状磁極と前記界磁磁石との間に配置され、その間の漏れ磁束を抑えるための背面磁石と、
周方向に隣り合う前記爪状磁極の間に配置され、その間の漏れ磁束を抑えるための極間磁石と
を備えたロータであって、
前記背面磁石と前記極間磁石とが、その軸方向端面が一つの平坦面となるように環状に一体形成された補助磁石とされたことを特徴とするロータ。
A plurality of claw-shaped magnetic poles projecting radially outward and extending in the axial direction at equal intervals on the outer periphery of the core base, and the claw-shaped magnetic poles alternately in the circumferential direction while facing each other's core base Disposed first and second rotor cores;
The claw-shaped magnetic poles of the first rotor core function as the first magnetic poles by being arranged between the axial directions of the core bases and magnetized in the axial direction, and the claw-shaped magnetic poles of the second rotor core are made to function as the first magnetic poles. A field magnet that functions as a second magnetic pole;
A back magnet disposed between the claw-shaped magnetic pole and the field magnet, for suppressing leakage magnetic flux therebetween,
A rotor provided between the claw-shaped magnetic poles adjacent to each other in the circumferential direction, and an interpole magnet for suppressing leakage magnetic flux between them,
The rotor, wherein the back magnet and the interpole magnet are auxiliary magnets that are integrally formed in an annular shape so that an end face in the axial direction is a flat surface.
請求項1に記載のロータと、
回転磁界を発生するステータと
を備えたことを特徴とするモータ。
A rotor according to claim 1;
A motor comprising a stator that generates a rotating magnetic field.
JP2014023177A 2013-09-26 2014-02-10 Rotor and motor Pending JP2015149879A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014023177A JP2015149879A (en) 2014-02-10 2014-02-10 Rotor and motor
CN201410489795.7A CN104518585B (en) 2013-09-26 2014-09-23 Rotor and motor
DE201410113744 DE102014113744A1 (en) 2013-09-26 2014-09-23 Rotor and motor
US14/495,492 US9490670B2 (en) 2013-09-26 2014-09-24 Rotor and motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014023177A JP2015149879A (en) 2014-02-10 2014-02-10 Rotor and motor

Publications (1)

Publication Number Publication Date
JP2015149879A true JP2015149879A (en) 2015-08-20

Family

ID=53892825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014023177A Pending JP2015149879A (en) 2013-09-26 2014-02-10 Rotor and motor

Country Status (1)

Country Link
JP (1) JP2015149879A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008236844A (en) * 2007-03-19 2008-10-02 Hitachi Ltd Rotating electrical machine, method for manufacturing the same, and automobile equipped with the rotating electrical machine
JP2013212036A (en) * 2012-03-01 2013-10-10 Asmo Co Ltd Rotor and motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008236844A (en) * 2007-03-19 2008-10-02 Hitachi Ltd Rotating electrical machine, method for manufacturing the same, and automobile equipped with the rotating electrical machine
JP2013212036A (en) * 2012-03-01 2013-10-10 Asmo Co Ltd Rotor and motor

Similar Documents

Publication Publication Date Title
JP6503950B2 (en) Rotor and brushless motor
JP6460159B2 (en) Rotor and motor
JP6589624B2 (en) motor
JP2015130724A (en) Motor core and motor
JP2018143096A (en) Rotor and motor
JP2018082600A (en) Double rotor type rotating electrical machine
JP6001379B2 (en) Rotor and motor
JP2018182118A (en) Magnetizing device and magnetizing method
JP6295161B2 (en) Rotor and motor
JP2013169071A (en) Rotor and motor
JP2017143663A (en) Embedded magnet type rotary machine
JP2009273231A (en) Hybrid exciting motor
JP2013169073A (en) Rotor and motor
JP2017046386A (en) Permanent magnet electric motor
JP2015149879A (en) Rotor and motor
JP6380112B2 (en) Rotor and motor
JP2015029381A (en) Rotor and motor
JP2014187858A (en) Rotor and motor
JP2015231253A (en) Magnet and dynamo-electric machine including the same
JP2019068649A (en) Rotor and motor
JP6330216B2 (en) Rotor and motor
JP6001380B2 (en) Rotor and motor
JP2016127652A (en) Rotor and motor
JP2017028844A (en) motor
JP5814159B2 (en) Rotor and motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180320

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180418