[go: up one dir, main page]

JP2015148407A - Refrigeration device - Google Patents

Refrigeration device Download PDF

Info

Publication number
JP2015148407A
JP2015148407A JP2014022514A JP2014022514A JP2015148407A JP 2015148407 A JP2015148407 A JP 2015148407A JP 2014022514 A JP2014022514 A JP 2014022514A JP 2014022514 A JP2014022514 A JP 2014022514A JP 2015148407 A JP2015148407 A JP 2015148407A
Authority
JP
Japan
Prior art keywords
refrigerant
throttle means
pressure
heat exchanger
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014022514A
Other languages
Japanese (ja)
Inventor
隼次 岡村
Junji Okamura
隼次 岡村
轟 篤
Atsushi Todoroki
篤 轟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2014022514A priority Critical patent/JP2015148407A/en
Priority to CN201510060865.1A priority patent/CN104833122B/en
Publication of JP2015148407A publication Critical patent/JP2015148407A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/005Compression machines, plants or systems with non-reversible cycle of the single unit type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve a problem in supercooling a refrigerant flowed out of a gas cooler by a refrigerant flowed out of an evaporator in a refrigeration device in which a high pressure side becomes supercritical pressure.SOLUTION: A refrigeration device includes: a heat exchanger 29 provided on a downstream side of a gas cooler 28 and an upstream side of an electric expansion valve 33; a bypass circuit 60 connected in parallel with respect to a series circuit of an electric expansion valve 39 and an evaporator 41; an electric expansion valve 65 provided in the bypass circuit; and a control device 57. The refrigeration device flows a refrigerant flowing out of the evaporator and sucked into a compressor 11 into a first flow passage 29A of the heat exchanger 29, and flows a refrigerant flowing out of the gas cooler and flowing into the electric expansion valve 33 into a second flow passage 29B of the heat exchanger 29. Thereby, the refrigerant flowing in the second flow passage 29B of the heat exchanger 29 is supercooled by the refrigerant flowing in th first flow passage 29A of the heat exchanger 29.

Description

本発明は、圧縮手段、ガスクーラ、主絞り手段、及び、蒸発器から冷媒回路が構成され、高圧側が超臨界圧力となる冷凍装置に関するものである。   The present invention relates to a refrigeration apparatus in which a refrigerant circuit is configured by a compression unit, a gas cooler, a main throttle unit, and an evaporator, and a high pressure side is a supercritical pressure.

従来よりこの種冷凍装置は、圧縮手段、ガスクーラ、絞り手段等から冷凍サイクルが構成され、圧縮手段で圧縮された冷媒がガスクーラにて放熱し、絞り手段にて減圧された後、蒸発器にて冷媒を蒸発させて、このときの冷媒の蒸発により周囲の空気を冷却するものとされていた。近年、この種冷凍装置では、自然環境問題などからフロン系冷媒が使用できなくなってきている。このため、フロン冷媒の代替品として自然冷媒である二酸化炭素を使用するものが開発されている。当該二酸化炭素冷媒は、高低圧差の激しい冷媒で、臨界圧力が低く、圧縮により冷媒サイクルの高圧側が超臨界状態となることが知られている(例えば、特許文献1参照)。   Conventionally, this type of refrigeration apparatus has a refrigeration cycle composed of a compression means, a gas cooler, a throttle means, etc., and the refrigerant compressed by the compression means dissipates heat in the gas cooler and is depressurized by the throttle means, and then in an evaporator. The refrigerant was evaporated, and ambient air was cooled by evaporation of the refrigerant at this time. In recent years, chlorofluorocarbon refrigerants cannot be used in this type of refrigeration system due to natural environmental problems. For this reason, the thing using the carbon dioxide which is a natural refrigerant | coolant is developed as a substitute of a fluorocarbon refrigerant | coolant. The carbon dioxide refrigerant is a refrigerant having a high and low pressure difference, and has a low critical pressure. It is known that the high pressure side of the refrigerant cycle is brought into a supercritical state by compression (see, for example, Patent Document 1).

また、給湯機を構成するヒートポンプ装置では、ガスクーラにて優れた加熱作用が得られる二酸化炭素冷媒が使用されるようになってきており、その場合にガスクーラから出た冷媒を2段膨張させ、各膨張装置の間に気液分離器を介設して、圧縮機にガスインジェクションできるようにするものも開発されている(例えば、特許文献2参照)。   Moreover, in the heat pump device constituting the water heater, a carbon dioxide refrigerant capable of obtaining an excellent heating action in the gas cooler has been used. In that case, the refrigerant discharged from the gas cooler is expanded in two stages, There has also been developed an apparatus in which a gas-liquid separator is interposed between expansion devices to enable gas injection into a compressor (see, for example, Patent Document 2).

一方、例えばショーケース等に設置された蒸発器において吸熱作用を利用し、庫内を冷却する冷凍装置では、外気温度(ガスクーラ側の熱源温度)が高い等の原因により、ガスクーラ出口の冷媒温度が高くなる条件下においては、蒸発器入口の比エンタルピが大きくなるため、冷凍能力が著しく低下する問題がある。そのようなときに、冷凍能力を確保するため、圧縮手段の吐出圧力(高圧側圧力)を上昇させると、圧縮動力が増大して成績係数が低下してしまう。   On the other hand, for example, in an refrigeration system that uses an endothermic action in an evaporator installed in a showcase or the like to cool the interior, the refrigerant temperature at the outlet of the gas cooler is high due to factors such as high outside air temperature (heat source temperature on the gas cooler side). Under higher conditions, the specific enthalpy at the inlet of the evaporator increases, which causes a problem that the refrigerating capacity is remarkably reduced. In such a case, if the discharge pressure (high-pressure side pressure) of the compression means is increased in order to ensure the refrigeration capacity, the compression power increases and the coefficient of performance decreases.

そこで、ガスクーラで冷却された冷媒を二つの冷媒流に分流し、分流された一方の冷媒流を補助絞り手段で絞った後、スプリット熱交換器の一方の通路に流して圧縮機(圧縮手段)の中間圧部に戻し、他方の冷媒流をスプリット熱交換器の他方の流路に流して熱交換させた後、主絞り手段を介して蒸発器に流入させる所謂スプリットサイクルの冷凍装置が提案されている。係る冷凍装置によれば、減圧膨張された第1の冷媒流により第2の冷媒流を冷却でき、蒸発器入口の比エンタルピを小さくすることで、冷凍能力を改善することができるものであった(例えば、特許文献3参照)。   Therefore, the refrigerant cooled by the gas cooler is divided into two refrigerant streams, one of the divided refrigerant streams is throttled by the auxiliary throttle means, and then flows into one passage of the split heat exchanger to be compressed (compressor means) A so-called split-cycle refrigeration system is proposed in which the refrigerant flow is returned to the intermediate pressure portion of the other, and the other refrigerant flow is passed through the other flow path of the split heat exchanger to exchange heat, and then flows into the evaporator via the main throttle means. ing. According to such a refrigeration apparatus, the second refrigerant flow can be cooled by the first refrigerant flow expanded under reduced pressure, and the refrigeration capacity can be improved by reducing the specific enthalpy at the inlet of the evaporator. (For example, refer to Patent Document 3).

特公平7−18602号公報Japanese Patent Publication No. 7-18602 特開2007−178042号公報JP 2007-178042 A 特開2011−133207号公報JP 2011-133207 A

上記のように蒸発器入口の比エンタルピを小さくする他の方法として、ガスクーラ出口に熱交換器を設け、この熱交換器の二つの流路にガスクーラを出た高圧側の冷媒と蒸発器を出た低圧側の冷媒をそれぞれ流し、高圧側の冷媒を低圧側の冷媒で冷却することが考えられる。   As another method for reducing the specific enthalpy at the inlet of the evaporator as described above, a heat exchanger is provided at the outlet of the gas cooler, and the refrigerant and evaporator on the high-pressure side that has discharged the gas cooler to the two flow paths of the heat exchanger are discharged. It is conceivable to flow the low-pressure side refrigerant and cool the high-pressure side refrigerant with the low-pressure side refrigerant.

係る方法によっても主絞り手段に流入する冷媒を過冷却することができるが、熱交換器を出て圧縮機に吸い込まれる低圧側の冷媒の温度は上昇することになるため、吸込温度の上昇に伴って圧縮機内部の温度が上昇(中間圧部の冷媒の温度及び吐出冷媒の温度が上昇)してしまい、圧縮機の運転効率が低下すると共に、損傷を来す危険性も生じる問題がある。   Although the refrigerant flowing into the main throttle means can be supercooled also by such a method, the temperature of the low-pressure side refrigerant that comes out of the heat exchanger and is sucked into the compressor rises. Along with this, the temperature inside the compressor rises (the temperature of the refrigerant in the intermediate pressure section and the temperature of the discharged refrigerant rises), which lowers the operating efficiency of the compressor and causes the risk of causing damage. .

本発明は、係る従来の技術的課題を解決するために成されたものであり、高圧側が超臨界圧力となる冷凍装置において、ガスクーラを出た冷媒を、蒸発器を出た冷媒で過冷却する際の問題を解決することを目的とする。   The present invention has been made to solve the conventional technical problem, and in a refrigeration system having a supercritical pressure on the high pressure side, the refrigerant that has exited the gas cooler is supercooled with the refrigerant that has exited the evaporator. The purpose is to solve the problem.

本発明は、圧縮手段と、ガスクーラと、主絞り手段と、蒸発器とから冷媒回路が構成され、高圧側が超臨界圧力となる冷凍装置において、ガスクーラの下流側であって、主絞り手段の上流側の冷媒回路に接続された圧力調整用絞り手段と、この圧力調整用絞り手段の下流側であって、主絞り手段の上流側の冷媒回路に接続された受液器と、ガスクーラの下流側であって、圧力調整用絞り手段の上流側の冷媒回路に設けられた熱交換器と、ガスクーラから熱交換器及び圧力調整用絞り手段を経て受液器に至り、この受液器下部から冷媒を流出させて主絞り手段に流入させる主回路と、受液器内の冷媒を、補助絞り手段を介して圧縮手段の中間圧部に戻す補助回路と、主絞り手段及び蒸発器の直列回路に対して並列に接続されたバイパス回路と、このバイパス回路に設けられたバイパス用絞り手段と、圧力調整用絞り手段、補助絞り手段、及び、バイパス用絞り手段を制御する制御手段とを備え、蒸発器から出て圧縮手段に吸い込まれる冷媒を熱交換器の第1の流路に流し、ガスクーラから出て圧力調整用絞り手段に流入する冷媒を熱交換器の第2の流路に流すことにより、熱交換器の第1の流路を流れる冷媒により熱交換器の第2の流路を流れる冷媒を過冷却することを特徴とする。   The present invention relates to a refrigeration apparatus in which a refrigerant circuit is configured by a compression unit, a gas cooler, a main throttle unit, and an evaporator, and the high pressure side is at a supercritical pressure, and is downstream of the gas cooler and upstream of the main throttle unit. Pressure adjusting throttle means connected to the refrigerant circuit on the side, a receiver downstream of the pressure adjusting throttle means, connected to the refrigerant circuit upstream of the main throttle means, and downstream of the gas cooler A heat exchanger provided in the refrigerant circuit upstream of the pressure adjusting throttle means and a gas cooler to the liquid receiver through the heat exchanger and the pressure adjusting throttle means, and from the lower part of the liquid receiver to the refrigerant To the main throttle means, the auxiliary circuit for returning the refrigerant in the receiver to the intermediate pressure part of the compression means via the auxiliary throttle means, and the series circuit of the main throttle means and the evaporator A bypass circuit connected in parallel to the A bypass throttling means provided in the bypass circuit, a pressure regulating throttling means, an auxiliary throttling means, and a control means for controlling the bypass throttling means, and the refrigerant drawn from the evaporator and sucked into the compression means By flowing the refrigerant flowing out of the gas cooler and flowing into the pressure adjusting throttle means into the second flow path of the heat exchanger, the first flow path of the heat exchanger is made to flow through the first flow path of the heat exchanger. The refrigerant flowing through the second flow path of the heat exchanger is supercooled by the flowing refrigerant.

請求項2の発明の冷凍装置は、上記発明において制御手段は、バイパス用絞り手段により圧縮手段に吸い込まれる低圧側の冷媒の吸込温度を所定の目標値に制御することを特徴とする。   The refrigeration apparatus according to a second aspect of the invention is characterized in that in the above invention, the control means controls the suction temperature of the low-pressure side refrigerant sucked into the compression means by the bypass throttling means to a predetermined target value.

請求項3の発明の冷凍装置は、上記各発明において受液器の下流側であって、主絞り手段の上流側の冷媒回路に設けられた内部熱交換器を備え、蒸発器から出て熱交換器に向かう冷媒を内部熱交換器の第1の流路に流し、受液器下部から出て主絞り手段に向かう冷媒を内部熱交換器の第2の流路に流すことにより、内部熱交換器の第1の流路を流れる冷媒により内部熱交換器の第2の流路を流れる冷媒を過冷却することを特徴とする。   According to a third aspect of the present invention, there is provided a refrigeration apparatus comprising an internal heat exchanger provided in a refrigerant circuit downstream of the liquid receiver and upstream of the main throttling means in each of the above-mentioned inventions. By flowing the refrigerant going to the exchanger through the first flow path of the internal heat exchanger and flowing the refrigerant going out of the lower part of the receiver and going to the main throttle means into the second flow path of the internal heat exchanger, The refrigerant flowing through the second flow path of the internal heat exchanger is supercooled by the refrigerant flowing through the first flow path of the exchanger.

請求項4の発明の冷凍装置は、上記各発明において制御手段は、圧力調整用絞り手段により、当該圧力調整用絞り手段より上流側の冷媒回路の高圧側圧力を所定の目標値に制御することを特徴とする。   In the refrigeration apparatus according to a fourth aspect of the present invention, in each of the above inventions, the control means controls the high-pressure side pressure of the refrigerant circuit upstream of the pressure adjustment throttle means to a predetermined target value by the pressure adjustment throttle means. It is characterized by.

請求項5の発明の冷凍装置は、上記各発明において補助絞り手段は、第1の補助回路用絞り手段を有すると共に、補助回路は、受液器上部から冷媒を流出させ、第1の補助回路用絞り手段に流入させるガス配管を有し、制御手段は、第1の補助回路用絞り手段により、受液器内の冷媒の圧力を所定の目標値に制御することを特徴とする。   According to a fifth aspect of the present invention, in the refrigeration apparatus of the present invention, the auxiliary throttle means has a first auxiliary circuit throttle means in each of the above inventions, and the auxiliary circuit causes the refrigerant to flow out from the upper part of the liquid receiver. The control means controls the pressure of the refrigerant in the liquid receiver to a predetermined target value by the first auxiliary circuit throttle means.

請求項6の発明の冷凍装置は、上記各発明において補助絞り手段は、第2の補助回路用絞り手段を有すると共に、補助回路は、受液器下部から冷媒を流出させ、第2の補助回路用絞り手段に流入させる液配管を有し、制御手段は、第2の補助回路用絞り手段により、圧縮手段からガスクーラに吐出される冷媒の吐出温度を所定の目標値に制御することを特徴とする。   In the refrigeration apparatus according to a sixth aspect of the present invention, in each of the above inventions, the auxiliary throttle means has a second auxiliary circuit throttle means, and the auxiliary circuit causes the refrigerant to flow out from the lower part of the liquid receiver, and the second auxiliary circuit. The control means controls the discharge temperature of the refrigerant discharged from the compression means to the gas cooler to a predetermined target value by the second auxiliary circuit restriction means. To do.

請求項7の発明の冷凍装置は、上記各発明においてガスクーラを空冷する送風機を備え、制御手段は、ガスクーラを出た冷媒の温度が、外気温度に対して決定される所定の目標値となるように送風機の運転を制御することを特徴とする。   According to a seventh aspect of the present invention, there is provided a refrigeration apparatus comprising a blower for air-cooling the gas cooler in each of the above-mentioned inventions, and the control means is such that the temperature of the refrigerant exiting the gas cooler becomes a predetermined target value determined with respect to the outside air temperature. And controlling the operation of the blower.

請求項8の発明の冷凍装置は、上記各発明において冷媒として二酸化炭素を使用したことを特徴とする。   The refrigeration apparatus according to the invention of claim 8 is characterized in that carbon dioxide is used as a refrigerant in each of the above inventions.

本発明によれば、圧縮手段と、ガスクーラと、主絞り手段と、蒸発器とから冷媒回路が構成され、高圧側が超臨界圧力となる冷凍装置において、ガスクーラの下流側であって、主絞り手段の上流側の冷媒回路に接続された圧力調整用絞り手段と、この圧力調整用絞り手段の下流側であって、主絞り手段の上流側の冷媒回路に接続された受液器と、ガスクーラの下流側であって、圧力調整用絞り手段の上流側の冷媒回路に設けられた熱交換器と、ガスクーラから熱交換器及び圧力調整用絞り手段を経て受液器に至り、この受液器下部から冷媒を流出させて主絞り手段に流入させる主回路と、受液器内の冷媒を、補助絞り手段を介して圧縮手段の中間圧部に戻す補助回路と、主絞り手段及び蒸発器の直列回路に対して並列に接続されたバイパス回路と、このバイパス回路に設けられたバイパス用絞り手段と、圧力調整用絞り手段、補助絞り手段、及び、バイパス用絞り手段を制御する制御手段とを備え、蒸発器から出て圧縮手段に吸い込まれる冷媒を熱交換器の第1の流路に流し、ガスクーラから出て圧力調整用絞り手段に流入する冷媒を熱交換器の第2の流路に流すようにしたので、熱交換器の第1の流路を流れる低圧側の冷媒により熱交換器の第2の流路を流れる冷媒を過冷却し、圧力調整用絞り手段の出口の冷媒の乾き度を小さくすることができる。   According to the present invention, in the refrigerating apparatus in which the refrigerant circuit is configured by the compression means, the gas cooler, the main throttle means, and the evaporator, and the high pressure side becomes the supercritical pressure, the downstream side of the gas cooler, the main throttle means A pressure adjusting throttle means connected to the upstream refrigerant circuit, a receiver downstream of the pressure adjusting throttle means upstream of the main throttle means, and a gas cooler A heat exchanger provided in the refrigerant circuit downstream and upstream of the pressure adjusting throttle means, and from the gas cooler to the liquid receiver via the heat exchanger and the pressure adjusting throttle means, the lower part of the receiver A main circuit for causing the refrigerant to flow out from the main throttle means, an auxiliary circuit for returning the refrigerant in the receiver to the intermediate pressure portion of the compression means via the auxiliary throttle means, and a series of the main throttle means and the evaporator Bypass circuit connected in parallel to the circuit And a bypass throttling means provided in the bypass circuit, a pressure adjusting throttling means, an auxiliary throttling means, and a control means for controlling the bypass throttling means. The refrigerant flows through the first flow path of the heat exchanger, and the refrigerant flowing out of the gas cooler and flowing into the pressure adjusting throttle means flows through the second flow path of the heat exchanger. The refrigerant flowing in the second flow path of the heat exchanger is supercooled by the low-pressure side refrigerant flowing in the first flow path, and the dryness of the refrigerant at the outlet of the pressure adjusting throttle means can be reduced.

この熱交換器の第2の流路を流れた冷媒は、圧力調整用絞り手段を経て受液器に入り、受液器下部から流出し、主絞り手段により絞られた後、蒸発器に流入するので、熱交換器における過冷却によって蒸発器入口の比エンタルピを小さくし、冷凍能力を効果的に改善することができるようになる。   The refrigerant flowing through the second flow path of the heat exchanger enters the receiver through the pressure adjusting throttle means, flows out from the lower part of the receiver, is throttled by the main throttle means, and then flows into the evaporator. Therefore, the specific enthalpy at the inlet of the evaporator can be reduced by supercooling in the heat exchanger, and the refrigerating capacity can be effectively improved.

また、圧力調整用絞り手段で膨張されることで液化した冷媒の一部は受液器内で蒸発し、温度が低下したガス冷媒となり、残りは液冷媒となって受液器内下部に一旦貯留されるかたちとなる。そして、この受液器内下部の液冷媒が主絞り手段に流入することになるので、満液状態で主絞り手段に冷媒を流入させることが可能となり、特に蒸発器における蒸発温度が高い冷蔵条件における冷凍能力の向上を図ることができるようになる。   Also, a part of the refrigerant liquefied by expansion by the pressure adjusting throttle means evaporates in the receiver and becomes a gas refrigerant whose temperature is lowered, and the rest becomes a liquid refrigerant once in the lower part of the receiver. It will be stored. Then, since the liquid refrigerant in the lower part in the liquid receiver flows into the main throttle means, it is possible to allow the refrigerant to flow into the main throttle means in a full liquid state, particularly in refrigeration conditions where the evaporation temperature in the evaporator is high. The refrigeration capacity can be improved.

更に、受液器にて冷媒回路内の循環冷媒量の変動が吸収される効果もあるので、冷媒充填量の誤差も吸収される効果もある。   Furthermore, since the liquid receiver also has the effect of absorbing fluctuations in the amount of circulating refrigerant in the refrigerant circuit, it also has the effect of absorbing errors in the refrigerant charge amount.

特に、主絞り手段及び蒸発器の直列回路に対して並列に接続されたバイパス回路と、このバイパス回路に設けられたバイパス用絞り手段を備えているので、例えば、請求項2の発明の如く制御手段が、バイパス用絞り手段により主絞り手段及び蒸発器を迂回して熱交換器の第1の流路に冷媒を流し、そこで蒸発させて圧縮手段に吸い込まれる低圧側の冷媒の吸込温度を所定の目標値に制御することによって、圧縮手段の冷媒の吸込温度の上昇を防止し、圧縮手段の運転効率の低下や損傷の発生を未然に回避することが可能となる。   In particular, a bypass circuit connected in parallel to the series circuit of the main throttle means and the evaporator and a bypass throttle means provided in the bypass circuit are provided. Means bypasses the main throttle means and the evaporator by the bypass throttle means and causes the refrigerant to flow through the first flow path of the heat exchanger, where the refrigerant is evaporated and sucked into the compression means by the suction temperature of the low-pressure side refrigerant By controlling to this target value, it is possible to prevent an increase in the refrigerant suction temperature of the compression means, and to avoid a decrease in operating efficiency and damage of the compression means.

更に、請求項3の発明の如く受液器の下流側であって、主絞り手段の上流側の冷媒回路に設けられた内部熱交換器を設け、蒸発器から出て熱交換器に向かう冷媒を内部熱交換器の第1の流路に流し、受液器下部から出て主絞り手段に向かう冷媒を内部熱交換器の第2の流路に流すようにすれば、内部熱交換器の第1の流路を流れる低圧側の冷媒により、受液器から出て内部熱交換器の第2の流路を流れる冷媒を過冷却することができるようになり、受液器から出た液冷媒の再膨張を抑制して、更なる冷凍能力の向上を図ることが可能となる。   Further, as in the third aspect of the present invention, an internal heat exchanger provided in a refrigerant circuit downstream of the liquid receiver and upstream of the main throttle means is provided, and the refrigerant exits from the evaporator and travels toward the heat exchanger Is allowed to flow through the first flow path of the internal heat exchanger, and the refrigerant that exits from the lower part of the receiver and flows toward the main throttle means flows into the second flow path of the internal heat exchanger. With the low-pressure side refrigerant flowing in the first flow path, the refrigerant flowing out of the liquid receiver and flowing in the second flow path of the internal heat exchanger can be supercooled. It is possible to further improve the refrigerating capacity by suppressing re-expansion of the refrigerant.

また、請求項4の発明によれば、上記各発明に加えて制御手段が、圧力調整用絞り手段により、当該圧力調整用絞り手段より上流側の冷媒回路の高圧側圧力を所定の目標値に制御するので、圧縮手段から冷媒が吐出される高圧側圧力が高くなって圧縮手段の運転効率が低下し、或いは、圧縮手段に損傷を来す不都合を未然に回避することが可能となる。   According to the invention of claim 4, in addition to each of the above inventions, the control means causes the pressure adjustment throttle means to set the high-pressure side pressure of the refrigerant circuit upstream of the pressure adjustment throttle means to a predetermined target value. Since the control is performed, the high pressure side pressure at which the refrigerant is discharged from the compression means is increased, so that the operation efficiency of the compression means is reduced, or the inconvenience of damaging the compression means can be avoided.

また、請求項5の発明によれば、上記各発明に加えて補助絞り手段が、第1の補助回路用絞り手段を有すると共に、補助回路が、受液器上部から冷媒を流出させ、第1の補助回路用絞り手段に流入させるガス配管を有し、制御手段が、第1の補助回路用絞り手段により、受液器内の冷媒の圧力を所定の目標値に制御するので、この第1の補助回路用絞り手段によって、高圧側圧力の変動の影響を抑制して、受液器下部から主絞り手段に搬送される冷媒の圧力を制御することができるようになる。   According to the invention of claim 5, in addition to the above inventions, the auxiliary throttle means has a first auxiliary circuit throttle means, and the auxiliary circuit causes the refrigerant to flow out from the upper part of the receiver, The control circuit controls the pressure of the refrigerant in the liquid receiver to a predetermined target value by the first auxiliary circuit throttle means. With this auxiliary circuit throttling means, it is possible to control the pressure of the refrigerant conveyed from the lower part of the receiver to the main throttling means while suppressing the influence of fluctuations in the high pressure side pressure.

また、第1の補助回路用絞り手段によって主絞り手段に流入する冷媒の圧力を下げることにより、主絞り手段に至る配管として耐圧強度が低いものを使用することができるようになる。これにより、施工性や施工コストの改善を図ることが可能となる。   Further, by lowering the pressure of the refrigerant flowing into the main throttle means by the first auxiliary circuit throttle means, it is possible to use a pipe having a low pressure resistance as a pipe leading to the main throttle means. Thereby, it becomes possible to improve workability and construction cost.

特に、受液器上部から第1の補助回路用絞り手段を介して低温のガスを抜くことで、受液器内の圧力が低下する。これにより、受液器内では温度が低下するので、冷媒の凝縮作用が生じ、当該受液器内に液状態の冷媒を効果的に貯めることができるようになる。   In particular, when the low temperature gas is extracted from the upper part of the liquid receiver through the first auxiliary circuit throttle means, the pressure in the liquid receiver decreases. As a result, the temperature is lowered in the liquid receiver, so that the refrigerant condenses, and the liquid refrigerant can be effectively stored in the liquid receiver.

また、請求項6の発明によれば、上記各発明に加えて補助絞り手段が、第2の補助回路用絞り手段を有すると共に、補助回路が、受液器下部から冷媒を流出させ、第2の補助回路用絞り手段に流入させる液配管を有し、制御手段が、第2の補助回路用絞り手段により、圧縮手段からガスクーラに吐出される冷媒の吐出温度を所定の目標値に制御するので、圧縮手段の中間圧部に所謂インジェクションを行って圧縮手段を冷却し、圧縮手段からの冷媒の吐出温度が高くなり過ぎる不都合を未然に回避することが可能となる。   According to the invention of claim 6, in addition to the above inventions, the auxiliary throttle means has the second auxiliary circuit throttle means, and the auxiliary circuit causes the refrigerant to flow out from the lower part of the receiver, and the second And the control means controls the discharge temperature of the refrigerant discharged from the compression means to the gas cooler to a predetermined target value by the second auxiliary circuit throttle means. In addition, so-called injection is performed on the intermediate pressure portion of the compression means to cool the compression means, and it is possible to avoid the disadvantage that the discharge temperature of the refrigerant from the compression means becomes too high.

更に、請求項7の発明によれば、上記各発明に加えてガスクーラを空冷する送風機を備え、制御手段が、ガスクーラを出た冷媒の温度が、外気温度に対して決定される所定の目標値となるように送風機の運転を制御するので、ガスクーラを空冷する送風機の過剰な運転を抑制しながら、ガスクーラ出口の冷媒の温度を適正な値に維持することが可能となる。一方、高圧側圧力は請求項4の如く圧力調整用絞り手段で制御すれば良く、これらにより圧縮手段の保護を図って安定した運転を維持することができるようになる。   Further, according to the invention of claim 7, in addition to the above inventions, a blower for air-cooling the gas cooler is provided, and the control means has a predetermined target value at which the temperature of the refrigerant that has exited the gas cooler is determined with respect to the outside air temperature. Therefore, the temperature of the refrigerant at the outlet of the gas cooler can be maintained at an appropriate value while suppressing excessive operation of the blower that air-cools the gas cooler. On the other hand, the high-pressure side pressure may be controlled by the pressure adjusting throttle means as in the fourth aspect, and by these, the compression means can be protected and stable operation can be maintained.

特に、請求項8の発明の如く冷媒として二酸化炭素を使用した場合に、上記各発明により冷凍能力を効果的に改善し、性能の向上を図ることができるようになるものである。   In particular, when carbon dioxide is used as the refrigerant as in the invention of claim 8, the above-described inventions can effectively improve the refrigerating capacity and improve the performance.

本発明を適用した一実施例の冷凍装置の冷媒回路図である(実施例1)。It is a refrigerant circuit figure of the freezing apparatus of one Example to which this invention is applied (Example 1). 図1の冷凍装置の冷媒回路のP−h線図である。FIG. 2 is a Ph diagram of a refrigerant circuit of the refrigeration apparatus in FIG. 1. 本発明を適用した他の実施例の冷凍装置の冷媒回路図である(実施例2)。It is a refrigerant circuit figure of the freezing apparatus of the other Example to which this invention is applied (Example 2). 図3の冷凍装置の冷媒回路のP−h線図である。FIG. 4 is a Ph diagram of a refrigerant circuit of the refrigeration apparatus in FIG. 3.

以下、図面を参照しながら本発明の実施形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(1)冷凍装置Rの構成
図1は本発明を適用する一実施例にかかる冷凍装置Rの冷媒回路図である。この実施例における冷凍装置Rは、スーパーマーケット等の店舗の機械室等に設置された冷凍機ユニット3と、店舗の売り場内に設置された一台若しくは複数台(図面では一台のみ示す)のショーケース4とを備え、これら冷凍機ユニット3とショーケース4とが、ユニット出口6とユニット入口7を介して、冷媒配管(液管)8及び冷媒配管9により連結されて所定の冷媒回路1を構成している。
(1) Configuration of Refrigeration Apparatus R FIG. 1 is a refrigerant circuit diagram of a refrigeration apparatus R according to an embodiment to which the present invention is applied. The refrigeration apparatus R in this embodiment is a show of a refrigerator unit 3 installed in a machine room or the like of a store such as a supermarket, and one or a plurality of units (only one is shown in the drawing) installed in the store sales area. The refrigerator unit 3 and the showcase 4 are connected by a refrigerant pipe (liquid pipe) 8 and a refrigerant pipe 9 via a unit outlet 6 and a unit inlet 7 so that a predetermined refrigerant circuit 1 is provided. It is composed.

実施例の冷媒回路1は、高圧側の冷媒圧力がその臨界圧力以上(超臨界)となる二酸化炭素(R744)を冷媒として用いる。この二酸化炭素冷媒は、地球環境に優しく、可燃性及び毒性等を考慮した自然冷媒である。また、潤滑油としてのオイルは、例えば鉱物油(ミネラルオイル)、アルキルベンゼン油、エーテル油、エステル油、PAG(ポリアルキルグリコール)等、既存のオイルが使用される。   The refrigerant circuit 1 according to the embodiment uses carbon dioxide (R744) whose refrigerant pressure on the high pressure side is equal to or higher than the critical pressure (supercritical) as the refrigerant. This carbon dioxide refrigerant is a natural refrigerant that is friendly to the global environment and takes into consideration flammability and toxicity. As the lubricating oil, existing oils such as mineral oil (mineral oil), alkylbenzene oil, ether oil, ester oil, and PAG (polyalkyl glycol) are used.

冷凍機ユニット3は、圧縮手段としての圧縮機11を備える。本実施例において、圧縮機11は、内部中間圧型2段圧縮式ロータリコンプレッサであり、密閉容器12と、この密閉容器12の内部に配置収納された電動要素(駆動要素)13及びこの電動要素13の回転軸により駆動される第1の(低段側)回転圧縮要素(第1の圧縮要素)14及び第2の(高段側)回転圧縮要素(第2の圧縮要素)16から成る回転圧縮機構部にて構成されている。   The refrigerator unit 3 includes a compressor 11 as compression means. In the present embodiment, the compressor 11 is an internal intermediate pressure type two-stage compression rotary compressor, and includes a hermetic container 12, an electric element (drive element) 13 disposed and housed in the hermetic container 12, and the electric element 13. Rotational compression comprising a first (low-stage side) rotary compression element (first compression element) 14 and a second (high-stage side) rotary compression element (second compression element) 16 driven by the rotary shaft It consists of a mechanism part.

圧縮機11の第1の回転圧縮要素14は、冷媒配管9を介して冷媒回路1の低圧側から圧縮機11に吸い込まれる低圧冷媒を圧縮して中間圧まで昇圧して密閉容器12内に吐出し、第2の回転圧縮要素16は、第1の回転圧縮要素14で圧縮された中間圧の冷媒を更に吸い込み、圧縮して高圧まで昇圧し、冷媒回路1の高圧側に吐出する。圧縮機11は、周波数可変型の圧縮機であり、電動要素13の運転周波数を変更することで、第1の回転圧縮要素14及び第2の回転圧縮要素16の回転数を制御可能とする。   The first rotary compression element 14 of the compressor 11 compresses the low-pressure refrigerant sucked into the compressor 11 from the low-pressure side of the refrigerant circuit 1 through the refrigerant pipe 9, increases the pressure to an intermediate pressure, and discharges it into the sealed container 12. The second rotary compression element 16 further sucks in the intermediate pressure refrigerant compressed by the first rotary compression element 14, compresses it to a high pressure, and discharges it to the high pressure side of the refrigerant circuit 1. The compressor 11 is a variable frequency compressor, and the rotational frequency of the first rotary compression element 14 and the second rotary compression element 16 can be controlled by changing the operating frequency of the electric element 13.

圧縮機11の密閉容器12の側面には、第1の回転圧縮要素14に連通する低段側吸込口17と、密閉容器12内に連通する低段側吐出口18と、第2の回転圧縮要素16に連通する高段側吸込口19及び高段側吐出口21が形成されている。圧縮機11の低段側吸込口17には、冷媒導入配管22の一端が接続され、その他端はユニット入口7にて冷媒配管9に接続されている。この冷媒導入配管22が接続される低段側吸込口17が圧縮機11の低圧部である第1の回転圧縮要素14の吸込側に連通されている。   On the side surface of the sealed container 12 of the compressor 11, a low-stage suction port 17 communicating with the first rotary compression element 14, a low-stage discharge port 18 communicating with the inside of the sealed container 12, and a second rotational compression A high-stage suction port 19 and a high-stage discharge port 21 communicating with the element 16 are formed. One end of the refrigerant introduction pipe 22 is connected to the lower stage side suction port 17 of the compressor 11, and the other end is connected to the refrigerant pipe 9 at the unit inlet 7. A low-stage suction port 17 to which the refrigerant introduction pipe 22 is connected communicates with the suction side of the first rotary compression element 14 that is a low-pressure portion of the compressor 11.

この低段側吸込口17より第1の回転圧縮要素14の吸込側(圧縮機11の低圧部)に吸い込まれた低圧(LP:通常運転状態で2.6MPa程)の冷媒ガスは、当該第1の回転圧縮要素14により中間圧(MP:通常運転状態で5.5MPa程度)に昇圧されて密閉容器12内に吐出される。これにより、密閉容器12内は中間圧(MP)となり、ここが圧縮機11の中間圧部となる。   The refrigerant gas having a low pressure (LP: about 2.6 MPa in a normal operation state) sucked into the suction side (low pressure portion of the compressor 11) of the first rotary compression element 14 from the low stage side suction port 17 The pressure is increased to an intermediate pressure (MP: about 5.5 MPa in a normal operation state) by one rotary compression element 14 and discharged into the sealed container 12. As a result, the inside of the sealed container 12 becomes an intermediate pressure (MP), which becomes an intermediate pressure portion of the compressor 11.

そして、密閉容器12内の中間圧の冷媒ガスが吐出される圧縮機11の低段側吐出口18には、中間圧吐出配管23の一端が接続され、その他端はインタークーラ24の入口に接続されている。このインタークーラ24は、第1の回転圧縮要素14から吐出された中間圧の冷媒を空冷するものであり、当該インタークーラ24の出口には、中間圧吸入配管26の一端が接続され、この中間圧吸入配管26の他端は圧縮機11の高段側吸込口19に接続されている。   One end of the intermediate pressure discharge pipe 23 is connected to the low-stage discharge port 18 of the compressor 11 from which the intermediate pressure refrigerant gas in the sealed container 12 is discharged, and the other end is connected to the inlet of the intercooler 24. Has been. The intercooler 24 air-cools the intermediate pressure refrigerant discharged from the first rotary compression element 14, and one end of an intermediate pressure suction pipe 26 is connected to the outlet of the intercooler 24. The other end of the pressure suction pipe 26 is connected to the higher stage suction port 19 of the compressor 11.

高段側吸込口19より第2の回転圧縮要素16に吸い込まれた中間圧(MP)の冷媒ガスは、当該第2の回転圧縮要素16により2段目の圧縮が行われて高温高圧(HP:通常運転状態で9MPa程の超臨界圧力)の冷媒ガスとなる。   The intermediate pressure (MP) refrigerant gas sucked into the second rotary compression element 16 from the high-stage side suction port 19 is compressed in the second stage by the second rotary compression element 16 to generate a high temperature and high pressure (HP). : Supercritical pressure of about 9 MPa in a normal operation state).

そして、圧縮機11の第2の回転圧縮要素16の高圧室側に連通する高段側吐出口21には、高圧吐出配管27の一端が接続され、その他端はガスクーラ(放熱器)28の入口に接続されている。20はこの高圧吐出配管27内に介設されたオイルセパレータである。オイルセパレータ20は圧縮機11から吐出された冷媒中のオイルを分離し、オイル通路25Aと電動弁25Bを介して圧縮機11の密閉容器12内に戻す。また、55はこのオイルセパレータ20手前の高圧吐出配管27内に介設された逆止弁であり、オイルセパレータ20方向が順方向とされている。   One end of a high-pressure discharge pipe 27 is connected to the high-stage discharge port 21 communicating with the high-pressure chamber side of the second rotary compression element 16 of the compressor 11, and the other end is an inlet of a gas cooler (heat radiator) 28. It is connected to the. An oil separator 20 is provided in the high-pressure discharge pipe 27. The oil separator 20 separates the oil in the refrigerant discharged from the compressor 11 and returns it to the sealed container 12 of the compressor 11 through the oil passage 25A and the electric valve 25B. Reference numeral 55 denotes a check valve interposed in the high-pressure discharge pipe 27 before the oil separator 20, and the oil separator 20 direction is the forward direction.

ガスクーラ28は、圧縮機11から吐出された高圧の吐出冷媒を冷却するものであり、ガスクーラ28の近傍には当該ガスクーラ28を空冷するガスクーラ用送風機31が配設されている。本実施例では、ガスクーラ28は上述したインタークーラ24と並設されており、これらは同一の風路に配設されている。   The gas cooler 28 cools the high-pressure discharged refrigerant discharged from the compressor 11, and a gas cooler blower 31 for air-cooling the gas cooler 28 is disposed in the vicinity of the gas cooler 28. In the present embodiment, the gas cooler 28 is juxtaposed with the intercooler 24 described above, and these are disposed in the same air passage.

ガスクーラ28の出口にはガスクーラ出口配管32の一端が接続され、このガスクーラ出口配管32の他端は圧力調整用絞り手段としての電動膨張弁33の入口に接続されている。この電動膨張弁33はガスクーラ28から出た冷媒を絞って膨張させると共に、電動膨張弁33から上流側の冷媒回路1の高圧側圧力の調整を行うためのもので、その出口は受液器入口配管34を介して受液器36の上部に接続されている。   One end of a gas cooler outlet pipe 32 is connected to the outlet of the gas cooler 28, and the other end of the gas cooler outlet pipe 32 is connected to an inlet of an electric expansion valve 33 as a pressure adjusting throttle means. The electric expansion valve 33 squeezes and expands the refrigerant discharged from the gas cooler 28, and adjusts the high-pressure side pressure of the refrigerant circuit 1 upstream from the electric expansion valve 33. The outlet of the electric expansion valve 33 is the receiver inlet. It is connected to the upper part of the liquid receiver 36 through a pipe 34.

この受液器36は内部に所定容積の空間を有する容積体(タンク)であり、その下部には受液器出口配管37の一端が接続され、この受液器出口配管37の他端がユニット出口6にて冷媒配管8に接続されている。また、ガスクーラ出口配管32中には熱交換器29の第2の流路29Bが介設され、このガスクーラ出口配管32、熱交換器29の第2の流路29B、電動膨張弁33、受液器入口配管34、受液器36、受液器出口配管37が本発明における主回路38を構成する。   The liquid receiver 36 is a volume body (tank) having a space of a predetermined volume inside, and one end of a liquid receiver outlet pipe 37 is connected to the lower part thereof, and the other end of the liquid receiver outlet pipe 37 is a unit. The outlet 6 is connected to the refrigerant pipe 8. In addition, a second flow path 29B of the heat exchanger 29 is interposed in the gas cooler outlet pipe 32. The gas cooler outlet pipe 32, the second flow path 29B of the heat exchanger 29, the electric expansion valve 33, the liquid receiver The receiver inlet pipe 34, the receiver 36 and the receiver outlet pipe 37 constitute the main circuit 38 in the present invention.

一方、店舗内に設置されるショーケース4は、冷媒配管8及び9に接続される。ショーケース4には、主絞り手段としての電動膨張弁39と蒸発器41が設けられており、冷媒配管8と冷媒配管9との間に順次接続されて直列回路を構成している(電動膨張弁39が冷媒配管8側、蒸発器41が冷媒配管9側)。また、蒸発器41には、当該蒸発器41に送風する図示しない冷気循環用送風機が隣設されている。   On the other hand, the showcase 4 installed in the store is connected to the refrigerant pipes 8 and 9. The showcase 4 is provided with an electric expansion valve 39 and an evaporator 41 as main throttle means, which are sequentially connected between the refrigerant pipe 8 and the refrigerant pipe 9 to constitute a series circuit (electric expansion). The valve 39 is on the refrigerant pipe 8 side, and the evaporator 41 is on the refrigerant pipe 9 side). Further, the evaporator 41 is provided with a cool air circulation blower (not shown) that blows air to the evaporator 41.

そして、冷媒配管9は、上述したように冷媒導入配管22を介して圧縮機11の第1の回転圧縮要素14に連通する低段側吸込口17に接続されている。この冷媒導入配管22中に熱交換器29の第1の流路29Aが介設されている。更に、受液器出口配管37から熱交換器29の第1の流路29Aより上流側の冷媒導入配管22に渡ってバイパス回路60が接続されている。このバイパス回路60は電動膨張弁39と蒸発器41の直列回路に対して並列に接続されており、バイパス回路60中にはバイパス用絞り手段としての電動膨張弁65が設けられている。   The refrigerant pipe 9 is connected to the low-stage suction port 17 that communicates with the first rotary compression element 14 of the compressor 11 via the refrigerant introduction pipe 22 as described above. A first flow path 29 </ b> A of the heat exchanger 29 is interposed in the refrigerant introduction pipe 22. Furthermore, a bypass circuit 60 is connected from the receiver outlet pipe 37 to the refrigerant introduction pipe 22 upstream of the first flow path 29A of the heat exchanger 29. The bypass circuit 60 is connected in parallel to the series circuit of the electric expansion valve 39 and the evaporator 41, and an electric expansion valve 65 is provided in the bypass circuit 60 as bypass throttling means.

他方、受液器36の上部にはガス配管42の一端が接続されており、このガス配管42の他端は第1の補助回路用絞り手段としての電動膨張弁43の入口に接続されている。ガス配管42は受液器36上部からガス冷媒を流出させ、電動膨張弁43に流入させる。この電動膨張弁43の出口には、戻り配管44の一端が接続されている。   On the other hand, one end of a gas pipe 42 is connected to the upper portion of the liquid receiver 36, and the other end of the gas pipe 42 is connected to an inlet of an electric expansion valve 43 as a first auxiliary circuit throttle means. . The gas pipe 42 causes the gas refrigerant to flow out from the upper part of the liquid receiver 36 and flow into the electric expansion valve 43. One end of a return pipe 44 is connected to the outlet of the electric expansion valve 43.

また、受液器出口配管37には、当該受液器出口配管37を介して受液器36下部に連通する液配管46の一端が接続されており、この液配管46の他端は電動膨張弁43の下流側の戻り配管44に連通されている。また、この液配管46中には第2の補助回路用絞り手段としての電動膨張弁47が介設されている。これら電動膨張弁43(第1の補助回路用絞り手段)と電動膨張弁47(第2の補助回路用絞り手段)が本出願における補助絞り手段を構成する。また、液配管46は受液器36下部から液冷媒を流出させ、電動膨張弁47に流入させる。   In addition, one end of a liquid pipe 46 communicating with the lower part of the liquid receiver 36 is connected to the liquid receiver outlet pipe 37 via the liquid receiver outlet pipe 37, and the other end of the liquid pipe 46 is electrically expanded. It communicates with a return pipe 44 on the downstream side of the valve 43. Further, an electric expansion valve 47 as a second auxiliary circuit throttle means is interposed in the liquid pipe 46. The electric expansion valve 43 (first auxiliary circuit throttle means) and the electric expansion valve 47 (second auxiliary circuit throttle means) constitute auxiliary throttle means in the present application. Further, the liquid pipe 46 causes liquid refrigerant to flow out from the lower part of the liquid receiver 36 and flow into the electric expansion valve 47.

更に、戻り配管44の他端は圧縮機11の中間圧部に繋がる中間圧領域の一例として中間圧吸入配管26の途中に連通されている。そして、これら戻り配管44、電動膨張弁43、電動膨張弁47、ガス配管42、及び、液配管46が本発明における補助回路48を構成する。尚、70は中間圧吸入配管26と冷媒導入配管22とを連通する連通配管であり、75は圧縮機の始動時に開放されて起動負荷を軽減するための電磁弁である。   Further, the other end of the return pipe 44 communicates with the intermediate pressure suction pipe 26 as an example of an intermediate pressure region connected to the intermediate pressure portion of the compressor 11. And these return piping 44, the electric expansion valve 43, the electric expansion valve 47, the gas piping 42, and the liquid piping 46 comprise the auxiliary circuit 48 in this invention. Reference numeral 70 denotes a communication pipe that connects the intermediate pressure suction pipe 26 and the refrigerant introduction pipe 22. Reference numeral 75 denotes an electromagnetic valve that is opened when the compressor is started to reduce the starting load.

このような構成により、電動膨張弁33はガスクーラ28の下流側であって電動膨張弁39の上流側に位置する。また、受液器36は電動膨張弁33の下流側であって電動膨張弁39の上流側に位置する。更に、熱交換器29はガスクーラ28の下流側であって電動膨張弁33の上流側に位置することになり、以上により本実施例における冷凍装置Rの冷媒回路1が構成される。   With such a configuration, the electric expansion valve 33 is located downstream of the gas cooler 28 and upstream of the electric expansion valve 39. The liquid receiver 36 is located downstream of the electric expansion valve 33 and upstream of the electric expansion valve 39. Furthermore, the heat exchanger 29 is positioned downstream of the gas cooler 28 and upstream of the electric expansion valve 33, and the refrigerant circuit 1 of the refrigeration apparatus R in this embodiment is configured as described above.

この冷媒回路1の各所には種々のセンサが取り付けられている。即ち、熱交換器29の第2の流路29Bの下流側で電動膨張弁33の上流側のガスクーラ出口配管32には高圧センサ49が取り付けられて冷媒回路1の高圧側圧力HP(圧縮機11の高段側吐出口21と電動膨張弁33の入口の間の圧力)を検出する。また、冷媒導入配管22に連通する連通配管70(電磁弁75の冷媒導入配管22側)には低圧センサ51が取り付けられて冷媒回路1の低圧側圧力LP(電動膨張弁39の出口と低段側吸込口17の間の圧力)を検出する。また、中間圧吸入配管26に連通する連通配管70(電磁弁75の中間圧吸入配管26側)には中間圧センサ52が取り付けられて冷媒回路の1の中間圧領域の圧力である中間圧MP(密閉容器12内、インタークーラ24、中間圧吸入配管26、高段側吸込口19の圧力)を検出する。   Various sensors are attached to various portions of the refrigerant circuit 1. That is, a high-pressure sensor 49 is attached to the gas cooler outlet pipe 32 downstream of the second flow path 29B of the heat exchanger 29 and upstream of the electric expansion valve 33, and the high-pressure side pressure HP (compressor 11) of the refrigerant circuit 1 is attached. The pressure between the high-stage discharge port 21 and the inlet of the electric expansion valve 33 is detected. Further, a low pressure sensor 51 is attached to a communication pipe 70 (the refrigerant introduction pipe 22 side of the electromagnetic valve 75) communicating with the refrigerant introduction pipe 22 so that the low pressure side pressure LP of the refrigerant circuit 1 (the outlet of the electric expansion valve 39 and the low stage). The pressure between the side suction ports 17) is detected. Further, an intermediate pressure sensor 52 is attached to a communication pipe 70 (on the intermediate pressure suction pipe 26 side of the solenoid valve 75) communicating with the intermediate pressure suction pipe 26, and an intermediate pressure MP that is a pressure in an intermediate pressure region of the refrigerant circuit 1 is provided. (The pressure in the sealed container 12, the intercooler 24, the intermediate pressure suction pipe 26, and the high-stage suction port 19) is detected.

また、ガス配管42には受液器内圧力センサ53が取り付けられており、この受液器内圧力センサ53は受液器36内の圧力TPを検出する。この受液器36内の圧力は、即ち、冷凍機ユニット3を出て冷媒配管8を経由し、電動膨張弁39に流入する冷媒の圧力となる。また、ガスクーラ28の下流側で熱交換器29の第2の流路29Bの上流側のガスクーラ出口配管32にはガスクーラ出口温度センサ54が取り付けられ、ガスクーラ28を出て熱交換器29の第2の流路29Bに流入する冷媒の温度ITを検出する。   In addition, a receiver pressure sensor 53 is attached to the gas pipe 42, and the receiver pressure sensor 53 detects the pressure TP in the receiver 36. That is, the pressure in the liquid receiver 36 becomes the pressure of the refrigerant that leaves the refrigerator unit 3 and flows into the electric expansion valve 39 via the refrigerant pipe 8. A gas cooler outlet temperature sensor 54 is attached to the gas cooler outlet pipe 32 downstream of the gas cooler 28 and upstream of the second flow path 29B of the heat exchanger 29. The temperature IT of the refrigerant flowing into the flow path 29B is detected.

また、熱交換器29の第2の流路29Bの下流側で電動膨張弁33の上流側のガスクーラ出口配管32には電動膨張弁入口温度センサ56が取り付けられ、熱交換器29の第2の流路29Bを出た冷媒の温度OTを検出する。また、ガスクーラ28の空気入口側には、外気温度センサ61が取り付けられて外気温度ATを検出する。更に、熱交換器29の第1の流路29Aの下流側で、低段側吸込口17の手前の冷媒導入配管22には冷凍機入口温度センサ62が取り付けられ、圧縮機11の第1の回転圧縮要素14に吸い込まれる低圧側の冷媒の吸込温度STを検出する。更にまた、高圧吐出配管27には吐出温度センサ67が取り付けられ、圧縮機11からガスクーラ28に吐出される冷媒の吐出温度DTを検出する。   An electric expansion valve inlet temperature sensor 56 is attached to the gas cooler outlet pipe 32 downstream of the second flow path 29B of the heat exchanger 29 and upstream of the electric expansion valve 33, so that the second The temperature OT of the refrigerant exiting the flow path 29B is detected. An outside air temperature sensor 61 is attached to the air inlet side of the gas cooler 28 to detect the outside air temperature AT. In addition, a refrigerator inlet temperature sensor 62 is attached to the refrigerant introduction pipe 22 downstream of the first flow path 29A of the heat exchanger 29 and before the low-stage suction port 17, so that the first The suction temperature ST of the low-pressure side refrigerant sucked into the rotary compression element 14 is detected. Furthermore, a discharge temperature sensor 67 is attached to the high pressure discharge pipe 27 to detect the discharge temperature DT of the refrigerant discharged from the compressor 11 to the gas cooler 28.

尚、63は中間圧吸入配管26に取り付けられた中間圧吸込温度センサであり、高段側吸込口19に吸い込まれる中間圧の冷媒の温度を検出する。また、64は受液器出口配管37に接続された受液器出口温度センサであり、受液器36の下部から流出する液冷媒の温度を検出する。更に、66はユニット出口6手前の受液器出口配管37に取り付けられた冷凍機出口温度センサであり、冷凍機ユニット3から冷媒配管8に出る冷媒の温度を検出する。   Reference numeral 63 denotes an intermediate pressure suction temperature sensor attached to the intermediate pressure suction pipe 26, which detects the temperature of the intermediate pressure refrigerant sucked into the high-stage suction port 19. Reference numeral 64 denotes a receiver outlet temperature sensor connected to the receiver outlet pipe 37, which detects the temperature of the liquid refrigerant flowing out from the lower part of the receiver 36. Reference numeral 66 denotes a refrigerator outlet temperature sensor attached to the receiver outlet pipe 37 in front of the unit outlet 6, and detects the temperature of the refrigerant flowing from the refrigerator unit 3 to the refrigerant pipe 8.

そして、これらセンサ49、51、52、53、54、56、61、62、63、64、66、67はマイクロコンピュータから構成された冷凍機ユニット3の制御手段を構成する制御装置57の入力に接続されている。また、制御装置57の出力には圧縮機11の電動要素13、送風機31、電動膨張弁(圧力調整用絞り手段)33、電動膨張弁(第1の補助回路用絞り手段)43、電動膨張弁(第2の補助回路用絞り手段)47、電動膨張弁65(バイパス用絞り手段)、電動弁25B、電動膨張弁(主絞り手段)39が接続され、制御装置57は各センサの出力と設定データ等に基づいてこれらを制御する。   These sensors 49, 51, 52, 53, 54, 56, 61, 62, 63, 64, 66, and 67 are input to the control device 57 constituting the control means of the refrigerator unit 3 composed of a microcomputer. It is connected. The output of the control device 57 includes an electric element 13 of the compressor 11, a blower 31, an electric expansion valve (pressure adjusting throttle means) 33, an electric expansion valve (first auxiliary circuit throttle means) 43, and an electric expansion valve. (Second auxiliary circuit throttling means) 47, electric expansion valve 65 (bypass throttling means), electric valve 25B, electric expansion valve (main throttling means) 39 are connected, and the controller 57 sets and outputs each sensor. These are controlled based on data and the like.

尚、以後はショーケース4側の電動膨張弁(主絞り手段)39や前述した冷気循環用送風機も制御装置57が制御するものとして説明するが、それらは実際には店舗の主制御装置(図示せず)を介し、制御装置57と連携して動作するショーケース4側の制御装置(図示せず)により制御される。従って、本発明における制御手段は制御装置57やショーケース4側の制御装置、前述した主制御装置等を含めた概念とする。   In the following description, it is assumed that the control device 57 controls the electric expansion valve (main throttle means) 39 on the showcase 4 side and the above-mentioned cool air circulation blower. Through a control device (not shown) on the side of the showcase 4 that operates in cooperation with the control device 57. Therefore, the control means in the present invention has a concept including the control device 57, the control device on the showcase 4 side, the main control device described above, and the like.

(2)冷凍装置Rの動作
以上の構成で、次に冷凍装置Rの動作を説明する。制御装置57により圧縮機11の電動要素13が駆動されると、第1の回転圧縮要素14及び第2の回転圧縮要素16が回転し、低段側吸込口17より第1の回転圧縮要素14の吸込側(低圧部)に低圧(前述したLP:通常運転状態で2.6MPa程)の冷媒ガスが吸い込まれる。そして、第1の回転圧縮要素14により中間圧(前述したMP:通常運転状態で5.5MPa程度)に昇圧されて密閉容器12内に吐出される。これにより、密閉容器12内は中間圧(MP)となる(中間圧部)。
(2) Operation of Refrigeration Apparatus R Next, the operation of the refrigeration apparatus R with the above configuration will be described. When the electric element 13 of the compressor 11 is driven by the control device 57, the first rotary compression element 14 and the second rotary compression element 16 rotate and the first rotary compression element 14 is rotated from the low-stage suction port 17. The refrigerant gas at a low pressure (LP mentioned above: about 2.6 MPa in the normal operation state) is sucked into the suction side (low pressure portion). Then, the pressure is increased to an intermediate pressure (MP described above: about 5.5 MPa in the normal operation state) by the first rotary compression element 14 and discharged into the sealed container 12. Thereby, the inside of the airtight container 12 becomes an intermediate pressure (MP) (intermediate pressure part).

そして、密閉容器12内の中間圧の冷媒ガスは低段側吐出口18から中間圧吐出配管23を経てインタークーラ24に入り、そこで空冷された後、中間圧吸入配管26を経て高段側吸込口19に戻る。この高段側吸込口19に戻った中間圧(MP)の冷媒ガスは、第2の回転圧縮要素16に吸い込まれ、この第2の回転圧縮要素16により2段目の圧縮が行われて高温高圧(HP:前述した通常運転状態で9MPa程の超臨界圧力)の冷媒ガスとなり、高段側吐出口21から高圧吐出配管27に吐出される。   Then, the intermediate-pressure refrigerant gas in the sealed container 12 enters the intercooler 24 from the low-stage discharge port 18 through the intermediate-pressure discharge pipe 23, and is then air-cooled there, and then through the intermediate-pressure suction pipe 26 to the high-stage suction. Return to mouth 19. The intermediate pressure (MP) refrigerant gas that has returned to the high-stage suction port 19 is sucked into the second rotary compression element 16, and the second stage compression is performed by the second rotary compression element 16, resulting in a high temperature. The refrigerant gas becomes high-pressure (HP: supercritical pressure of about 9 MPa in the above-described normal operation state) and is discharged from the high-stage discharge port 21 to the high-pressure discharge pipe 27.

(2−1)電動膨張弁33の制御
高圧吐出配管27に吐出された冷媒ガスは逆止弁55、オイルセパレータ20を経てガスクーラ28に流入し、そこで空冷された後、ガスクーラ出口配管32から流出する。ガスクーラ出口配管32に入った冷媒ガスは熱交換器29の第2の流路29Bで後述する如く過冷却された後、電動膨張弁(圧力調整用絞り手段)33に至る。この電動膨張弁33は、当該電動膨張弁33より上流側の冷媒回路1の高圧側圧力HPを所定の目標値THP(例えば前述した9MPa等)に制御するために設けられており、高圧センサ49の出力に基づき、高圧側圧力HPが前記目標値THPとなるように制御装置57によりその弁開度が制御(PID制御)される。
(2-1) Control of the electric expansion valve 33 The refrigerant gas discharged to the high-pressure discharge pipe 27 flows into the gas cooler 28 through the check valve 55 and the oil separator 20, and after being cooled in the air, flows out from the gas cooler outlet pipe 32. To do. The refrigerant gas that has entered the gas cooler outlet pipe 32 is supercooled in the second flow path 29B of the heat exchanger 29 as will be described later, and then reaches the electric expansion valve (pressure adjusting throttle means) 33. The electric expansion valve 33 is provided to control the high pressure side pressure HP of the refrigerant circuit 1 upstream of the electric expansion valve 33 to a predetermined target value THP (for example, 9 MPa described above). Is controlled by the controller 57 so that the high pressure side pressure HP becomes the target value THP (PID control).

この目標値THPは、電動膨張弁入口温度センサ56が検出する電動膨張弁33に流入する冷媒の温度に基づいて決定される。目標値THPは、電動膨張弁33に流入する冷媒の温度に応じた高圧側圧力HPの適正値であり、冷媒の温度が高い程、目標値THPは高くなる。このように電動膨張弁33により、それより上流側の高圧側圧力HPを目標値THPに制御することにより、圧縮機11から冷媒が吐出される高圧側圧力HPが高くなって圧縮機11の運転効率が低下し、或いは、圧縮機11に損傷を来す不都合を未然に回避することが可能となる。   This target value THP is determined based on the temperature of the refrigerant flowing into the electric expansion valve 33 detected by the electric expansion valve inlet temperature sensor 56. The target value THP is an appropriate value of the high-pressure side pressure HP corresponding to the temperature of the refrigerant flowing into the electric expansion valve 33. The higher the refrigerant temperature, the higher the target value THP. Thus, by controlling the high-pressure side pressure HP upstream from the electric expansion valve 33 to the target value THP, the high-pressure side pressure HP at which the refrigerant is discharged from the compressor 11 is increased, and the operation of the compressor 11 is performed. It is possible to avoid inconvenience that the efficiency is reduced or the compressor 11 is damaged.

ガスクーラ28から出た超臨界状態の冷媒ガスは、熱交換器29の第2の流路29Bにて後述するように第1の流路29Aを流れる低圧側の冷媒により冷却(過冷却)された後、電動膨張弁33で絞られて膨張することによって液化していき、受液器入口配管34を経て上部から受液器36内に流入して一部が蒸発する。この受液器36は電動膨張弁33を出た液/ガスの冷媒を一旦貯留し、分離する役割と、電動膨張弁39の動作による圧力の変動や冷媒循環量の変動を吸収する役割を果たす。   The supercritical refrigerant gas emitted from the gas cooler 28 was cooled (supercooled) by the low-pressure side refrigerant flowing in the first flow path 29A in the second flow path 29B of the heat exchanger 29 as will be described later. Thereafter, the liquid is liquefied by being throttled and expanded by the electric expansion valve 33, flows into the liquid receiver 36 from the upper part via the liquid receiver inlet pipe 34, and partly evaporates. The liquid receiver 36 temporarily stores and separates the liquid / gas refrigerant exiting the electric expansion valve 33 and absorbs fluctuations in pressure and refrigerant circulation due to the operation of the electric expansion valve 39. .

この受液器36内下部に溜まった液冷媒は、受液器出口配管37から流出し(主回路38)、冷凍機ユニット3から出て冷媒配管8から電動膨張弁(主絞り手段)39に流入する。電動膨張弁39に流入した冷媒はそこで絞られて膨張することで更に液分が増え、蒸発器41に流入して蒸発する。これによる吸熱作用により冷却効果が発揮される。制御装置57は蒸発器41の入口側と出口側の温度を検出する図示しない温度センサの出力に基づき、電動膨張弁39の弁開度を制御して蒸発器41における冷媒の過熱度を適正値に調整する。   The liquid refrigerant accumulated in the lower part of the liquid receiver 36 flows out from the liquid receiver outlet pipe 37 (main circuit 38), exits the refrigerator unit 3, and passes from the refrigerant pipe 8 to the electric expansion valve (main throttle means) 39. Inflow. The refrigerant that has flowed into the electric expansion valve 39 is squeezed there and expanded to further increase the liquid content, and flow into the evaporator 41 to evaporate. The cooling effect is exhibited by the endothermic action. The control device 57 controls the valve opening degree of the electric expansion valve 39 based on the output of a temperature sensor (not shown) that detects the temperatures of the inlet side and the outlet side of the evaporator 41 and sets the superheat degree of the refrigerant in the evaporator 41 to an appropriate value. Adjust to.

蒸発器41から出た低温のガス冷媒は冷媒配管9から冷凍機ユニット3に戻り、冷媒導入配管22中の熱交換器29の第1の流路29Aに流入する。そこで第2の流路29Bを流れる高圧側の冷媒を冷却(過冷却)した後、更に冷媒導入配管22を通って圧縮機11の第1の回転圧縮要素14に連通する低段側吸込口17に吸い込まれる。以上が主回路38の流れである。   The low-temperature gas refrigerant discharged from the evaporator 41 returns from the refrigerant pipe 9 to the refrigerator unit 3 and flows into the first flow path 29A of the heat exchanger 29 in the refrigerant introduction pipe 22. Therefore, after cooling (supercooling) the high-pressure side refrigerant flowing through the second flow path 29B, the low-stage side suction port 17 that further communicates with the first rotary compression element 14 of the compressor 11 through the refrigerant introduction pipe 22. Sucked into. The above is the flow of the main circuit 38.

(2−2)電動膨張弁43の制御
次に補助回路48の流れを説明する。前述した如く受液器36の上部に接続されたガス配管42には電動膨張弁43(第1の補助回路用絞り手段)が接続されており、この電動膨張弁43を介して受液器36上部からガス冷媒が流出し、前述したように戻り配管44を経て圧縮機11の中間圧部に戻される。
(2-2) Control of Electric Expansion Valve 43 Next, the flow of the auxiliary circuit 48 will be described. As described above, an electric expansion valve 43 (first auxiliary circuit throttle means) is connected to the gas pipe 42 connected to the upper portion of the liquid receiver 36, and the liquid receiver 36 is connected via the electric expansion valve 43. The gas refrigerant flows out from the upper part and returns to the intermediate pressure part of the compressor 11 through the return pipe 44 as described above.

受液器36内上部に溜まるガス冷媒は、受液器36内での蒸発により温度が低下している。また、電動膨張弁43は受液器36の上部から流出する冷媒を絞る機能の他に、受液器36内の圧力(電動膨張弁39に流入する冷媒の圧力)を所定の目標値SPに調整する役割を果たす。そして、制御装置57は受液器内圧力センサ53の出力に基づき、電動膨張弁43の弁開度を制御する。電動膨張弁43の弁開度が増大すれば、受液器36内からのガス冷媒の流出量が増大し、受液器36内の圧力は低下するからである。   The temperature of the gas refrigerant accumulated in the upper part of the liquid receiver 36 is lowered due to evaporation in the liquid receiver 36. In addition to the function of restricting the refrigerant flowing out from the upper part of the liquid receiver 36, the electric expansion valve 43 has the pressure in the liquid receiver 36 (the pressure of the refrigerant flowing into the electric expansion valve 39) at a predetermined target value SP. Play a role to coordinate. The control device 57 controls the valve opening degree of the electric expansion valve 43 based on the output of the receiver pressure sensor 53. This is because if the valve opening degree of the electric expansion valve 43 increases, the amount of gas refrigerant flowing out from the liquid receiver 36 increases and the pressure in the liquid receiver 36 decreases.

実施例では、この目標値SPは高圧側圧力HPよりも低く、中間圧MPよりも高い、例えば6MPaに設定されている。そして、制御装置57は受液器内圧力センサ53が検出する受液器36内の圧力TIP(電動膨張弁39に流入する冷媒の圧力)と目標値SPの差から、例えば電動膨張弁39の弁開度の調整値(ステップ数)を算出し、始動時の弁開度に加算して受液器36内の圧力TIP(電動膨張弁39に流入する冷媒の圧力)を目標値SPに制御する。即ち、受液器36内の圧力TIPが目標値SPより上昇した場合には電動膨張弁43の弁開度を増大させて受液器36内からガス冷媒をガス配管42に流出させ、逆に目標値SPより降下した場合には弁開度を縮小させて閉じる方向に制御する。   In the embodiment, the target value SP is set to be lower than the high pressure side pressure HP and higher than the intermediate pressure MP, for example, 6 MPa. Then, the control device 57 determines, for example, that of the electric expansion valve 39 from the difference between the pressure TIP (pressure of the refrigerant flowing into the electric expansion valve 39) in the liquid receiver 36 detected by the liquid receiver internal pressure sensor 53 and the target value SP. An adjustment value (number of steps) of the valve opening is calculated and added to the valve opening at the time of starting to control the pressure TIP (pressure of the refrigerant flowing into the electric expansion valve 39) in the liquid receiver 36 to the target value SP. To do. That is, when the pressure TIP in the liquid receiver 36 rises above the target value SP, the valve opening degree of the electric expansion valve 43 is increased and the gas refrigerant flows out of the liquid receiver 36 into the gas pipe 42. When it falls below the target value SP, the valve opening is reduced and controlled to close.

この電動膨張弁43により、受液器36内の冷媒の圧力TIPを目標値SPに制御することで、高圧側圧力HPの変動の影響を抑制して、受液器36下部から電動膨張弁39に搬送される冷媒の圧力を制御することができる。また、電動膨張弁43によって電動膨張弁39に流入する冷媒の圧力を下げることにより、冷媒配管8として耐圧強度が低いものを使用することができるようになる。更に、受液器36上部から電動膨張弁43を介して低温のガスを抜くことで、受液器36内の圧力が低下し、温度が低下するので、冷媒の凝縮作用が生じ、受液器36内に液状態の冷媒を効果的に貯めることができる。   By controlling the pressure TIP of the refrigerant in the liquid receiver 36 to the target value SP by the electric expansion valve 43, the influence of fluctuations in the high pressure side pressure HP is suppressed, and the electric expansion valve 39 is provided from the lower part of the liquid receiver 36. It is possible to control the pressure of the refrigerant conveyed to the tank. Further, by reducing the pressure of the refrigerant flowing into the electric expansion valve 39 by the electric expansion valve 43, it is possible to use the refrigerant pipe 8 having a low pressure resistance. Further, by extracting the low-temperature gas from the upper part of the liquid receiver 36 via the electric expansion valve 43, the pressure in the liquid receiver 36 is lowered and the temperature is lowered, so that the refrigerant condenses and the liquid receiver is received. The liquid refrigerant can be effectively stored in 36.

(2−3)電動膨張弁47の制御
また、前述した如く受液器36の下部の受液器出口配管37に接続された液配管46には電動膨張弁47(第2の補助回路用絞り手段)が接続されており、この電動膨張弁47を介して受液器36下部から流出した液冷媒の一部が、戻り配管44でガス配管42からのガス冷媒に合流して前述したように戻り配管44を経て圧縮機11の中間圧部に戻される。
(2-3) Control of the electric expansion valve 47 Further, as described above, the electric expansion valve 47 (second auxiliary circuit throttle) is connected to the liquid pipe 46 connected to the liquid receiver outlet pipe 37 below the liquid receiver 36. And a part of the liquid refrigerant flowing out from the lower portion of the liquid receiver 36 through the electric expansion valve 47 is joined to the gas refrigerant from the gas pipe 42 through the return pipe 44 as described above. It returns to the intermediate pressure part of the compressor 11 via the return pipe 44.

即ち、受液器36内下部に溜まる液冷媒は、下部に接続された受液器出口配管37から分かれて補助回路48を構成する液配管46に流れ、電動膨張弁47を経て絞られた後、圧縮機11の第2の回転圧縮要素16に流入し、そこで蒸発する(インジェクション)。このときの吸熱作用により、圧縮機11の第2の回転圧縮要素16を冷却する。   That is, the liquid refrigerant accumulated in the lower part of the liquid receiver 36 is separated from the liquid receiver outlet pipe 37 connected to the lower part, flows into the liquid pipe 46 constituting the auxiliary circuit 48, and is throttled through the electric expansion valve 47. , Flows into the second rotary compression element 16 of the compressor 11 and evaporates there (injection). The second rotary compression element 16 of the compressor 11 is cooled by the endothermic action at this time.

このように、電動膨張弁47は受液器36の下部から流出する液冷媒を絞り、圧縮機11に戻して蒸発させ、圧縮機11を冷却するものであるが、制御装置57は電動膨張弁47の弁開度を制御することにより、圧縮機11へのインジェクション冷媒量を調整する。   Thus, the electric expansion valve 47 throttles the liquid refrigerant flowing out from the lower part of the liquid receiver 36, returns it to the compressor 11 to evaporate it, and cools the compressor 11. However, the control device 57 is an electric expansion valve. By controlling the valve opening of 47, the amount of refrigerant injected into the compressor 11 is adjusted.

圧縮機11へのインジェクション冷媒量が増大すれば、圧縮機11の温度が低下して圧縮機11からガスクーラ28に吐出される冷媒の吐出温度も低下することになる。この場合、制御装置57は吐出温度センサ67が検出する冷媒の吐出温度DTに基づいて、当該吐出温度DTが所定の目標値となるように電動膨張弁47の弁開度を制御することにより、圧縮機11へのインジェクション冷媒の量を調整する。これにより、圧縮機11の第2の回転圧縮要素16から吐出される吐出冷媒の温度が異常に高温となる不都合を防止する。   If the amount of refrigerant injected into the compressor 11 increases, the temperature of the compressor 11 decreases and the discharge temperature of the refrigerant discharged from the compressor 11 to the gas cooler 28 also decreases. In this case, the control device 57 controls the valve opening degree of the electric expansion valve 47 based on the refrigerant discharge temperature DT detected by the discharge temperature sensor 67 so that the discharge temperature DT becomes a predetermined target value. The amount of the injection refrigerant to the compressor 11 is adjusted. Thereby, the problem that the temperature of the discharged refrigerant discharged from the second rotary compression element 16 of the compressor 11 becomes abnormally high is prevented.

(2−4)電動膨張弁65の制御
次に、制御装置57による電動膨張弁65の制御について図2のP−h線図を参照しながら説明する。前述した如くバイパス回路60は受液器出口配管37から熱交換器29の第1の流路29Aより上流側の冷媒導入配管22に渡って接続され、電動膨張弁39と蒸発器41の直列回路に対して並列となる。
(2-4) Control of Electric Expansion Valve 65 Next, control of the electric expansion valve 65 by the control device 57 will be described with reference to the Ph diagram of FIG. As described above, the bypass circuit 60 is connected from the receiver outlet pipe 37 to the refrigerant introduction pipe 22 upstream of the first flow path 29A of the heat exchanger 29, and a series circuit of the electric expansion valve 39 and the evaporator 41. In parallel.

そのため、電動膨張弁65が開放されると、受液器36下部から受液器出口配管37に流出した液冷媒の一部は、電動膨張弁39及び蒸発器41を迂回(バイパス)してバイパス回路60に流れ、電動膨張弁65にて絞られた後、冷媒導入配管22を経て直接熱交換器29の第1の流路29Aに流入することになる。第1の流路29Aに流入した冷媒はそこで蒸発するので温度が低下する。これにより、圧縮機11に吸い込まれる冷媒の吸込温度STが低下することになる。   Therefore, when the electric expansion valve 65 is opened, a part of the liquid refrigerant flowing out from the lower part of the liquid receiver 36 to the liquid receiver outlet pipe 37 bypasses and bypasses the electric expansion valve 39 and the evaporator 41. After flowing through the circuit 60 and being throttled by the electric expansion valve 65, it flows directly into the first flow path 29 </ b> A of the heat exchanger 29 through the refrigerant introduction pipe 22. Since the refrigerant flowing into the first flow path 29A evaporates there, the temperature decreases. Thereby, the suction temperature ST of the refrigerant | coolant suck | inhaled by the compressor 11 falls.

ここで、蒸発器41を出た低圧側の冷媒で高圧側の冷媒を過冷却することで、圧縮機11に吸い込まれる冷媒の吸込温度は上昇することになる。この温度上昇が過度に大きくなると、圧縮機11の第1の回転圧縮要素14に吸い込まれる冷媒の温度が高くなることで、当該第1の回転圧縮要素14から吐出される中間圧の冷媒の温度も異常に高くなってしまうことになる。   Here, by supercooling the high-pressure side refrigerant with the low-pressure side refrigerant exiting the evaporator 41, the suction temperature of the refrigerant sucked into the compressor 11 is increased. When this temperature rise becomes excessively large, the temperature of the refrigerant sucked into the first rotary compression element 14 of the compressor 11 becomes high, so that the temperature of the intermediate-pressure refrigerant discharged from the first rotary compression element 14 is increased. Will become abnormally high.

そこで制御装置57は、冷凍機入口温度センサ62が検出する圧縮機11への冷媒の吸込温度STに基づき、この吸込温度STが所定の目標値(例えば+18℃等)に制御されるように電動膨張弁65の弁開度を調整する。係る制御によって圧縮機11の第1の回転圧縮要素14の冷媒の吐出温度が異常に高温となることを防止し、圧縮機11の保護を図る。   Therefore, the control device 57 is electrically driven so that the suction temperature ST is controlled to a predetermined target value (for example, + 18 ° C.) based on the refrigerant suction temperature ST into the compressor 11 detected by the refrigerator inlet temperature sensor 62. The valve opening degree of the expansion valve 65 is adjusted. Such control prevents the refrigerant discharge temperature of the first rotary compression element 14 of the compressor 11 from becoming abnormally high, thereby protecting the compressor 11.

図2のP−h線図のX1で示す部分がこの電動膨張弁65による効果であり、破線で示す状態から実線で示す状態に第1の回転圧縮要素14の冷媒の吐出温度を下げる。尚、図2中のX2は熱交換器29における過冷却の効果であり、実線で示す状態から破線で示す状態まで電動膨張弁33に流入する冷媒が過冷却される。   The portion indicated by X1 in the Ph diagram of FIG. 2 is the effect of the electric expansion valve 65, and the refrigerant discharge temperature of the first rotary compression element 14 is lowered from the state indicated by the broken line to the state indicated by the solid line. Note that X2 in FIG. 2 is an effect of supercooling in the heat exchanger 29, and the refrigerant flowing into the electric expansion valve 33 is supercooled from the state indicated by the solid line to the state indicated by the broken line.

(2−5)ガスクーラ用送風機31の制御
次に、制御装置57によるガスクーラ用送風機31の制御について説明する。実施例の制御装置57は、ガスクーラ出口温度センサ54が検出する冷媒の温度(ガスクーラ28を出た冷媒の温度)に基づき、この冷媒の温度が所定の目標値となるようにガスクーラ用送風機31の回転数を制御する。その場合、制御装置57は外気温度センサ61が検出する外気温度ATに基づき、ガスクーラ28を出た冷媒の温度の目標値を設定する。この目標値は、外気温度毎に予め決定された冷媒(ガスクーラ28を出た冷媒)の温度の適正値である。
(2-5) Control of Gas Cooler Blower 31 Next, control of the gas cooler blower 31 by the control device 57 will be described. The control device 57 of the embodiment is based on the temperature of the refrigerant detected by the gas cooler outlet temperature sensor 54 (the temperature of the refrigerant that has exited the gas cooler 28), so that the temperature of the refrigerant reaches a predetermined target value. Control the number of revolutions. In this case, the control device 57 sets a target value for the temperature of the refrigerant that has exited the gas cooler 28 based on the outside air temperature AT detected by the outside air temperature sensor 61. This target value is an appropriate value of the temperature of the refrigerant (the refrigerant that has exited the gas cooler 28) that is predetermined for each outside air temperature.

このように、制御装置57が、ガスクーラ28を出た冷媒の温度が、外気温度ATに対して決定される所定の目標値となるようにガスクーラ用送風機31の運転(回転数)を制御することにより、ガスクーラ28を空冷するガスクーラ用送風機31の過剰な運転を抑制しながら、ガスクーラ28の出口の冷媒の温度を適正な値に維持することができるようになる。   In this way, the control device 57 controls the operation (rotation speed) of the gas cooler blower 31 so that the temperature of the refrigerant that has exited the gas cooler 28 becomes a predetermined target value determined with respect to the outside air temperature AT. Thus, the temperature of the refrigerant at the outlet of the gas cooler 28 can be maintained at an appropriate value while suppressing excessive operation of the gas cooler blower 31 that air-cools the gas cooler 28.

一方で制御装置57は、前述した如く受液器36の上流側の電動膨張弁33で高圧側圧力HPを目標値に制御するので、これら電動膨張弁33による高圧側圧力HPの制御とガスクーラ用送風機31による冷媒温度(ガスクーラ28を出た冷媒の温度)の制御によって圧縮機11の保護を図り、安定した運転を維持する。   On the other hand, the control device 57 controls the high pressure side pressure HP to the target value by the electric expansion valve 33 upstream of the liquid receiver 36 as described above. The compressor 11 is protected by controlling the refrigerant temperature (the temperature of the refrigerant that has exited the gas cooler 28) by the blower 31, and a stable operation is maintained.

以上詳述したように本発明では、圧縮機11と、ガスクーラ28と、電動膨張弁39と、蒸発器41とから冷媒回路1が構成され、高圧側が超臨界圧力となる冷凍装置Rにおいて、ガスクーラ28の下流側であって、電動膨張弁39の上流側の冷媒回路1に接続された電動膨張弁33と、この電動膨張弁33の下流側であって、電動膨張弁39の上流側の冷媒回路1に接続された受液器36と、ガスクーラ28の下流側であって、電動膨張弁33の上流側の冷媒回路1に設けられた熱交換器29と、ガスクーラ28から熱交換器29及び電動膨張弁33を経て受液器36に至り、この受液器36下部から冷媒を流出させて電動膨張弁39に流入させる主回路38と、受液器36内の冷媒を、電動膨張弁43や電動膨張弁47を介して圧縮機11の中間圧部に戻す補助回路48と、電動膨張弁39及び蒸発器41の直列回路に対して並列に接続されたバイパス回路60と、このバイパス回路60に設けられた電動膨張弁65と、電動膨張弁33、電動膨張弁43、47、及び、電動膨張弁65を制御する制御装置57とを備え、蒸発器41から出て圧縮機11に吸い込まれる冷媒を熱交換器29の第1の流路29Aに流し、ガスクーラ28から出て電動膨張弁33に流入する冷媒を熱交換器29の第2の流路29Bに流すようにしたので、熱交換器29の第1の流路29Aを流れる低圧側の冷媒により熱交換器29の第2の流路29Bを流れる高圧側の冷媒を過冷却し、電動膨張弁33の出口の冷媒の乾き度を小さくすることができる。   As described in detail above, in the present invention, in the refrigerating apparatus R in which the refrigerant circuit 1 is configured by the compressor 11, the gas cooler 28, the electric expansion valve 39, and the evaporator 41, and the high pressure side is at the supercritical pressure, the gas cooler 28, the electric expansion valve 33 connected to the refrigerant circuit 1 upstream of the electric expansion valve 39, and the refrigerant downstream of the electric expansion valve 33 and upstream of the electric expansion valve 39. A liquid receiver 36 connected to the circuit 1, a heat exchanger 29 provided in the refrigerant circuit 1 downstream of the gas cooler 28 and upstream of the electric expansion valve 33, a heat exchanger 29 and a heat exchanger 29 A main circuit 38 that reaches the liquid receiver 36 through the electric expansion valve 33, causes the refrigerant to flow out from the lower portion of the liquid receiver 36 and flows into the electric expansion valve 39, and the refrigerant in the liquid receiver 36 is supplied to the electric expansion valve 43. And the compressor 1 through the electric expansion valve 47 An auxiliary circuit 48 for returning to the intermediate pressure portion, a bypass circuit 60 connected in parallel to the series circuit of the electric expansion valve 39 and the evaporator 41, an electric expansion valve 65 provided in the bypass circuit 60, The expansion valve 33, the electric expansion valves 43 and 47, and the control device 57 that controls the electric expansion valve 65. The refrigerant flowing out of the evaporator 41 and sucked into the compressor 11 is supplied to the first flow of the heat exchanger 29. Since the refrigerant flowing into the passage 29A and flowing out of the gas cooler 28 and flowing into the electric expansion valve 33 flows into the second flow path 29B of the heat exchanger 29, it flows through the first flow path 29A of the heat exchanger 29. The high-pressure side refrigerant flowing through the second flow path 29B of the heat exchanger 29 can be supercooled by the low-pressure side refrigerant, and the dryness of the refrigerant at the outlet of the electric expansion valve 33 can be reduced.

この熱交換器29の第2の流路29Bを流れた冷媒は、電動膨張弁33を経て受液器36に入り、受液器36下部から流出し、電動膨張弁39により絞られた後、蒸発器41に流入するので、熱交換器29における過冷却によって電動膨張弁33の出口の冷媒の乾き度が小さくなり、電動膨張弁39に搬送される冷媒の液相割合が高くなるため、冷凍能力を効果的に改善することができるようになる。   The refrigerant flowing through the second flow path 29B of the heat exchanger 29 enters the liquid receiver 36 through the electric expansion valve 33, flows out from the lower part of the liquid receiver 36, and is throttled by the electric expansion valve 39. Since the refrigerant flows into the evaporator 41, the degree of dryness of the refrigerant at the outlet of the electric expansion valve 33 is reduced by the supercooling in the heat exchanger 29, and the liquid phase ratio of the refrigerant conveyed to the electric expansion valve 39 is increased. You will be able to improve your abilities effectively.

また、電動膨張弁33で膨張されることで液化した冷媒の一部は受液器36内で蒸発し、温度が低下したガス冷媒となり、残りは液冷媒となって受液器36内下部に一旦貯留されるかたちとなる。そして、この受液器36内下部の液冷媒が電動膨張弁39に流入することになるので、満液状態で電動膨張弁39に冷媒を流入させることが可能となり、特に蒸発器41における蒸発温度が高い冷蔵条件における冷凍能力の向上を図ることができるようになる。更に、受液器36にて冷媒回路1内の循環冷媒量の変動が吸収される効果もあるので、冷媒充填量の誤差も吸収される効果もある。   In addition, a part of the refrigerant liquefied by being expanded by the electric expansion valve 33 is evaporated in the liquid receiver 36 to become a gas refrigerant having a lowered temperature, and the rest becomes a liquid refrigerant in the lower part of the liquid receiver 36. Once it is stored. Then, since the liquid refrigerant in the lower part of the liquid receiver 36 flows into the electric expansion valve 39, the refrigerant can flow into the electric expansion valve 39 in a full liquid state, and in particular, the evaporation temperature in the evaporator 41. However, it is possible to improve the refrigeration capacity under high refrigeration conditions. Further, since the liquid receiver 36 has an effect of absorbing the fluctuation of the circulating refrigerant amount in the refrigerant circuit 1, there is also an effect of absorbing the refrigerant filling amount error.

特に、電動膨張弁39及び蒸発器41の直列回路に対して並列に接続されたバイパス回路60と、このバイパス回路60に設けられた電動膨張弁65を備えており、制御装置57が、電動膨張弁65により電動膨張弁39及び蒸発器41を迂回して熱交換器29の第1の流路29Aに冷媒を流し、そこで蒸発させて圧縮機11に吸い込まれる低圧側の冷媒の吸込温度を所定の目標値に制御するので、圧縮機11の冷媒の吸込温度の上昇を防止し、圧縮機11の運転効率の低下や損傷の発生を未然に回避することが可能となる。   In particular, a bypass circuit 60 connected in parallel to the series circuit of the electric expansion valve 39 and the evaporator 41 and an electric expansion valve 65 provided in the bypass circuit 60 are provided. The refrigerant flows through the first flow path 29A of the heat exchanger 29 by bypassing the electric expansion valve 39 and the evaporator 41 by the valve 65, evaporates there, and sets the suction temperature of the low-pressure side refrigerant sucked into the compressor 11 to a predetermined value. Therefore, it is possible to prevent an increase in the refrigerant suction temperature of the compressor 11 and to avoid a reduction in operating efficiency and damage to the compressor 11 in advance.

また、制御装置57は電動膨張弁33により、当該電動膨張弁33より上流側の冷媒回路1の高圧側圧力を所定の目標値に制御するので、圧縮機11から冷媒が吐出される高圧側圧力が高くなって圧縮機11の運転効率が低下し、或いは、圧縮機11に損傷を来す不都合を未然に回避することが可能となる。   Further, since the control device 57 controls the high pressure side pressure of the refrigerant circuit 1 upstream of the electric expansion valve 33 to a predetermined target value by the electric expansion valve 33, the high pressure side pressure at which the refrigerant is discharged from the compressor 11. As a result, the operating efficiency of the compressor 11 decreases, or the inconvenience of damaging the compressor 11 can be avoided.

また、補助回路48が電動膨張弁43と、受液器36上部から冷媒を流出させ、電動膨張弁43に流入させるガス配管42を有し、制御装置57が電動膨張弁43により、受液器36内の冷媒の圧力を所定の目標値に制御するので、この電動膨張弁43によって、高圧側圧力の変動の影響を抑制して、受液器36下部から電動膨張弁39に搬送される冷媒の圧力を制御することができるようになる。   The auxiliary circuit 48 has an electric expansion valve 43 and a gas pipe 42 for allowing the refrigerant to flow out from the upper portion of the liquid receiver 36 and into the electric expansion valve 43. Since the pressure of the refrigerant in 36 is controlled to a predetermined target value, the electric expansion valve 43 suppresses the influence of fluctuations in the high-pressure side pressure and is conveyed from the lower part of the liquid receiver 36 to the electric expansion valve 39. It will be possible to control the pressure.

また、電動膨張弁43によって電動膨張弁39に流入する冷媒の圧力を下げることにより、電動膨張弁39に至る冷媒配管8として耐圧強度が低いものを使用することができるようになる。これにより、施工性や施工コストの改善を図ることが可能となる。特に、受液器36上部から電動膨張弁43を介して低温のガスを抜くことで、受液器36内の圧力が低下する。これにより、受液器36内では温度が低下するので、冷媒の凝縮作用が生じ、当該受液器36内に液状態の冷媒を効果的に貯めることができるようになる。   Further, by lowering the pressure of the refrigerant flowing into the electric expansion valve 39 by the electric expansion valve 43, it is possible to use a refrigerant pipe 8 having a low pressure resistance strength that reaches the electric expansion valve 39. Thereby, it becomes possible to improve workability and construction cost. In particular, when the low-temperature gas is extracted from the upper part of the liquid receiver 36 via the electric expansion valve 43, the pressure in the liquid receiver 36 decreases. As a result, the temperature is lowered in the liquid receiver 36, so that the refrigerant condenses, and the liquid refrigerant can be effectively stored in the liquid receiver 36.

また、補助回路48が電動膨張弁47と、受液器36下部から冷媒を流出させ、電動膨張弁47に流入させる液配管46を有し、制御装置57が電動膨張弁47により、圧縮機11からガスクーラ28に吐出される冷媒の吐出温度を所定の目標値に制御するので、圧縮機11の中間圧部にインジェクションを行って圧縮機11を冷却し、圧縮機11及び圧縮機11からの冷媒の吐出温度が高くなり過ぎる不都合を未然に回避することが可能となる。   Further, the auxiliary circuit 48 has an electric expansion valve 47 and a liquid pipe 46 through which refrigerant flows out from the lower part of the liquid receiver 36 and flows into the electric expansion valve 47, and the control device 57 is driven by the electric expansion valve 47. Since the discharge temperature of the refrigerant discharged to the gas cooler 28 is controlled to a predetermined target value, the compressor 11 is cooled by injecting the intermediate pressure portion of the compressor 11, and the refrigerant from the compressor 11 and the compressor 11. It is possible to avoid inconvenience that the discharge temperature becomes too high.

更に、ガスクーラ28を空冷するガスクーラ用送風機31を備え、制御装置57が、ガスクーラ28を出た冷媒の温度が、外気温度に対して決定される所定の目標値となるようにガスクーラ用送風機31の運転を制御するので、ガスクーラ28を空冷するガスクーラ用送風機31の過剰な運転を抑制しながら、ガスクーラ28出口の冷媒の温度を適正な値に維持することが可能となる。一方、高圧側圧力は電動膨張弁33で制御すれば良く、これらにより圧縮機11の保護を図って安定した運転を維持することができるようになる。   Furthermore, the gas cooler blower 31 for air-cooling the gas cooler 28 is provided, and the control device 57 of the gas cooler blower 31 is set so that the temperature of the refrigerant exiting the gas cooler 28 becomes a predetermined target value determined with respect to the outside air temperature. Since the operation is controlled, it is possible to maintain the temperature of the refrigerant at the outlet of the gas cooler 28 at an appropriate value while suppressing excessive operation of the gas cooler blower 31 that air-cools the gas cooler 28. On the other hand, the high-pressure side pressure only needs to be controlled by the electric expansion valve 33, thereby protecting the compressor 11 and maintaining stable operation.

特に、実施例のように二酸化炭素を使用した場合に、冷凍能力を効果的に改善し、性能の向上を図ることができるようになるものである。   In particular, when carbon dioxide is used as in the embodiment, the refrigerating capacity can be effectively improved and the performance can be improved.

次に、図3及び図4を参照しながら本発明の他の実施例について説明する。尚、図3及び図4中、図1及び図2と同一符号で示すものは同一のもの、若しくは、同様の機能を奏するものとする。この実施例の場合、図1の冷媒回路1に内部熱交換器68が追加されている。この内部熱交換器68は受液器36の下流側であって、電動膨張弁39(主絞り手段)の上流側の冷媒回路1に設けられる。   Next, another embodiment of the present invention will be described with reference to FIGS. 3 and 4, the same reference numerals as those in FIGS. 1 and 2 denote the same or similar functions. In the case of this embodiment, an internal heat exchanger 68 is added to the refrigerant circuit 1 of FIG. The internal heat exchanger 68 is provided in the refrigerant circuit 1 downstream of the liquid receiver 36 and upstream of the electric expansion valve 39 (main throttle means).

内部熱交換器68は第1の流路68Aと第2の流路68Bを有しており、第1の流路68Aはバイパス回路60との接続点と熱交換器29の第1の流路29Aの間の冷媒導入配管22中に介設され、第2の流路68Bは液配管46と分岐する前の受液器出口配管37中に介設される。係る構成により、受液器36から受液器出口配管37に流出して第2の流路68Bを流れる液冷媒は、蒸発器41を出た冷媒とバイパス回路60を経た低温の低圧側の冷媒が流れる第1の流路68Aによって過冷却される。尚、バイパス回路60を経た冷媒は、電動膨張弁65で絞られた後、第1の流路68Aで蒸発して冷却作用を発揮する。   The internal heat exchanger 68 has a first flow path 68A and a second flow path 68B, and the first flow path 68A is a connection point between the bypass circuit 60 and the first flow path of the heat exchanger 29. The second flow path 68 </ b> B is interposed in the liquid receiver outlet pipe 37 before branching from the liquid pipe 46. With this configuration, the liquid refrigerant that flows out from the liquid receiver 36 to the liquid receiver outlet pipe 37 and flows through the second flow path 68 </ b> B is a low-temperature low-pressure refrigerant that has passed through the evaporator 41 and the bypass circuit 60. Is cooled by the first flow path 68A. The refrigerant that has passed through the bypass circuit 60 is throttled by the electric expansion valve 65 and then evaporated in the first flow path 68A to exhibit a cooling action.

図4のP−h線図のX3で示す部分がこの内部熱交換器68による効果であり、実線で示す状態から破線で示す状態に電動膨張弁39に流入する冷媒の温度を下げることができる。このように、受液器36の下流側であって、電動膨張弁39の上流側の冷媒回路1に内部熱交換器68を更に設け、蒸発器41から出て熱交換器29に向かう冷媒を内部熱交換器68の第1の流路68Aに流し、受液器36下部から出て電動膨張弁39に向かう冷媒を内部熱交換器68の第2の流路68Bに流すことにより、内部熱交換器68の第1の流路68Aを流れる低圧側の冷媒により、受液器41から出て内部熱交換器68の第2の流路68Bを流れる冷媒を過冷却することができるようになり、受液器36から出て電動膨張弁39や47、65に向かう液冷媒の再膨張を抑制して、更なる冷凍能力の向上を図ることが可能となる。   The portion indicated by X3 in the Ph diagram of FIG. 4 is the effect of the internal heat exchanger 68, and the temperature of the refrigerant flowing into the electric expansion valve 39 can be lowered from the state indicated by the solid line to the state indicated by the broken line. . In this way, the internal heat exchanger 68 is further provided in the refrigerant circuit 1 downstream of the liquid receiver 36 and upstream of the electric expansion valve 39, and the refrigerant that leaves the evaporator 41 and goes to the heat exchanger 29 is supplied. By flowing the refrigerant that flows from the lower part of the receiver 36 toward the electric expansion valve 39 to the second flow path 68B of the internal heat exchanger 68, the internal heat is passed through the first flow path 68A of the internal heat exchanger 68. With the low-pressure side refrigerant flowing through the first flow path 68A of the exchanger 68, the refrigerant flowing out of the liquid receiver 41 and flowing through the second flow path 68B of the internal heat exchanger 68 can be supercooled. Further, it is possible to further improve the refrigerating capacity by suppressing the re-expansion of the liquid refrigerant from the liquid receiver 36 toward the electric expansion valves 39, 47, and 65.

R 冷凍装置
1 冷媒回路
3 冷凍機ユニット
4 ショーケース
8、9 冷媒配管
11 圧縮機
22 冷媒導入配管
26 中間圧吸入配管
28 ガスクーラ
29 熱交換器
29A 第1の流路
29B 第2の流路
32 ガスクーラ出口配管
33 電動膨張弁(圧力調整用絞り手段)
36 受液器
37 ガスクーラ出口配管
38 主回路
39 電動膨張弁(主絞り手段)
41 蒸発器
42 ガス配管
43 電動膨張弁(第1の補助回路用絞り手段)
44 戻り配管
46 液配管
47 電動膨張弁(第2の補助回路用絞り手段)
48 補助回路
57 制御装置(制御手段)
60 バイパス回路
65 電動膨張弁(バイパス用絞り手段)
68 内部熱交換器
68A 第1の流路
68B 第2の流路
R Refrigeration apparatus 1 Refrigerant circuit 3 Refrigerator unit 4 Showcase 8, 9 Refrigerant pipe 11 Compressor 22 Refrigerant introduction pipe 26 Intermediate pressure suction pipe 28 Gas cooler 29 Heat exchanger 29A First flow path 29B Second flow path 32 Gas cooler Outlet piping 33 Electric expansion valve (throttle means for pressure adjustment)
36 Liquid receiver 37 Gas cooler outlet piping 38 Main circuit 39 Electric expansion valve (main throttle means)
41 Evaporator 42 Gas piping 43 Electric expansion valve (first auxiliary circuit throttle means)
44 Return piping 46 Liquid piping 47 Electric expansion valve (second auxiliary circuit throttle means)
48 Auxiliary circuit 57 Control device (control means)
60 Bypass circuit 65 Electric expansion valve (throttle means for bypass)
68 Internal heat exchanger 68A First flow path 68B Second flow path

Claims (8)

圧縮手段と、ガスクーラと、主絞り手段と、蒸発器とから冷媒回路が構成され、高圧側が超臨界圧力となる冷凍装置において、
前記ガスクーラの下流側であって、前記主絞り手段の上流側の前記冷媒回路に接続された圧力調整用絞り手段と、
該圧力調整用絞り手段の下流側であって、前記主絞り手段の上流側の前記冷媒回路に接続された受液器と、
前記ガスクーラの下流側であって、前記圧力調整用絞り手段の上流側の前記冷媒回路に設けられた熱交換器と、
前記ガスクーラから前記熱交換器及び前記圧力調整用絞り手段を経て前記受液器に至り、該受液器下部から冷媒を流出させて前記主絞り手段に流入させる主回路と、
前記受液器内の冷媒を、補助絞り手段を介して前記圧縮手段の中間圧部に戻す補助回路と、
前記主絞り手段及び前記蒸発器の直列回路に対して並列に接続されたバイパス回路と、
該バイパス回路に設けられたバイパス用絞り手段と、
前記圧力調整用絞り手段、前記補助絞り手段、及び、前記バイパス用絞り手段を制御する制御手段とを備え、
前記蒸発器から出て前記圧縮手段に吸い込まれる冷媒を前記熱交換器の第1の流路に流し、前記ガスクーラから出て前記圧力調整用絞り手段に流入する冷媒を前記熱交換器の第2の流路に流すことにより、前記熱交換器の第1の流路を流れる冷媒により前記熱交換器の第2の流路を流れる冷媒を過冷却することを特徴とする冷凍装置。
In the refrigerating apparatus in which the refrigerant circuit is configured by the compression means, the gas cooler, the main throttle means, and the evaporator, and the high pressure side is the supercritical pressure,
A pressure adjusting throttle means connected to the refrigerant circuit downstream of the gas cooler and upstream of the main throttle means;
A liquid receiver connected to the refrigerant circuit downstream of the pressure adjusting throttle means and upstream of the main throttle means;
A heat exchanger provided in the refrigerant circuit downstream of the gas cooler and upstream of the pressure adjusting throttle means;
A main circuit that leads from the gas cooler to the liquid receiver through the heat exchanger and the pressure adjusting throttle means, and causes the refrigerant to flow out from the lower part of the liquid receiver and flow into the main throttle means;
An auxiliary circuit for returning the refrigerant in the receiver to the intermediate pressure part of the compression means via auxiliary throttle means;
A bypass circuit connected in parallel to a series circuit of the main throttle means and the evaporator;
Bypass throttle means provided in the bypass circuit;
The pressure adjusting throttle means, the auxiliary throttle means, and a control means for controlling the bypass throttle means,
The refrigerant that comes out of the evaporator and is sucked into the compression means flows into the first flow path of the heat exchanger, and the refrigerant that comes out of the gas cooler and flows into the pressure adjusting throttle means becomes the second of the heat exchanger. The refrigerant flowing through the first flow path is supercooled by the refrigerant flowing through the first flow path of the heat exchanger, and the refrigerant flowing through the second flow path of the heat exchanger.
前記制御手段は、前記バイパス用絞り手段により前記圧縮手段に吸い込まれる低圧側の冷媒の吸込温度を所定の目標値に制御することを特徴とする請求項1に記載の冷凍装置。   2. The refrigeration apparatus according to claim 1, wherein the control unit controls the suction temperature of the low-pressure side refrigerant sucked into the compression unit by the bypass throttling unit to a predetermined target value. 前記受液器の下流側であって、前記主絞り手段の上流側の前記冷媒回路に設けられた内部熱交換器を備え、
前記蒸発器から出て前記熱交換器に向かう冷媒を前記内部熱交換器の第1の流路に流し、前記受液器下部から出て前記主絞り手段に向かう冷媒を前記内部熱交換器の第2の流路に流すことにより、前記内部熱交換器の第1の流路を流れる冷媒により前記内部熱交換器の第2の流路を流れる冷媒を過冷却することを特徴とする請求項1又は請求項2に記載の冷凍装置。
An internal heat exchanger provided in the refrigerant circuit downstream of the liquid receiver and upstream of the main throttle means;
The refrigerant exiting from the evaporator and flowing toward the heat exchanger is caused to flow through the first flow path of the internal heat exchanger, and the refrigerant exiting from the lower part of the receiver and toward the main throttle means is transferred to the internal heat exchanger. The refrigerant flowing through the second flow path of the internal heat exchanger is supercooled by flowing through the second flow path by the refrigerant flowing through the first flow path of the internal heat exchanger. The refrigeration apparatus according to claim 1 or 2.
前記制御手段は、前記圧力調整用絞り手段により、当該圧力調整用絞り手段より上流側の前記冷媒回路の高圧側圧力を所定の目標値に制御することを特徴とする請求項1乃至請求項3のうちの何れかに記載の冷凍装置。   The said control means controls the high pressure side pressure of the said refrigerant circuit upstream from the said pressure adjustment throttle means to the predetermined target value by the said pressure adjustment throttle means. The refrigeration apparatus according to any one of the above. 前記補助絞り手段は、第1の補助回路用絞り手段を有すると共に、
前記補助回路は、前記受液器上部から冷媒を流出させ、前記第1の補助回路用絞り手段に流入させるガス配管を有し、
前記制御手段は、前記第1の補助回路用絞り手段により、前記受液器内の冷媒の圧力を所定の目標値に制御することを特徴とする請求項1乃至請求項4のうちの何れかに記載の冷凍装置。
The auxiliary throttle means has a first auxiliary circuit throttle means,
The auxiliary circuit has a gas pipe that causes the refrigerant to flow out from the upper part of the receiver and to flow into the first auxiliary circuit throttle means,
5. The control device according to claim 1, wherein the control means controls the pressure of the refrigerant in the liquid receiver to a predetermined target value by the first auxiliary circuit throttle means. The refrigeration apparatus described in 1.
前記補助絞り手段は、第2の補助回路用絞り手段を有すると共に、
前記補助回路は、前記受液器下部から冷媒を流出させ、前記第2の補助回路用絞り手段に流入させる液配管を有し、
前記制御手段は、前記第2の補助回路用絞り手段により、前記圧縮手段から前記ガスクーラに吐出される冷媒の吐出温度を所定の目標値に制御することを特徴とする請求項1乃至請求項5のうちの何れかに記載の冷凍装置。
The auxiliary throttle means has second auxiliary circuit throttle means,
The auxiliary circuit has a liquid pipe that causes the refrigerant to flow out from the lower part of the receiver and to flow into the second auxiliary circuit throttle means,
The control means controls the discharge temperature of the refrigerant discharged from the compression means to the gas cooler to a predetermined target value by the second auxiliary circuit throttle means. The refrigeration apparatus according to any one of the above.
前記ガスクーラを空冷する送風機を備え、
前記制御手段は、前記ガスクーラを出た冷媒の温度が、外気温度に対して決定される所定の目標値となるように前記送風機の運転を制御することを特徴とする請求項1乃至請求項6のうちの何れかに記載の冷凍装置。
A blower for air-cooling the gas cooler;
The said control means controls the operation | movement of the said air blower so that the temperature of the refrigerant | coolant which came out of the said gas cooler may become the predetermined target value determined with respect to external temperature. The refrigeration apparatus according to any one of the above.
前記冷媒として二酸化炭素を使用したことを特徴とする請求項1乃至請求項7のうちの何れかに記載の冷凍装置。   The refrigeration apparatus according to any one of claims 1 to 7, wherein carbon dioxide is used as the refrigerant.
JP2014022514A 2014-02-07 2014-02-07 Refrigeration device Pending JP2015148407A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014022514A JP2015148407A (en) 2014-02-07 2014-02-07 Refrigeration device
CN201510060865.1A CN104833122B (en) 2014-02-07 2015-02-05 Refrigerating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014022514A JP2015148407A (en) 2014-02-07 2014-02-07 Refrigeration device

Publications (1)

Publication Number Publication Date
JP2015148407A true JP2015148407A (en) 2015-08-20

Family

ID=53811179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014022514A Pending JP2015148407A (en) 2014-02-07 2014-02-07 Refrigeration device

Country Status (2)

Country Link
JP (1) JP2015148407A (en)
CN (1) CN104833122B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017053598A (en) * 2015-09-11 2017-03-16 パナソニックIpマネジメント株式会社 Refrigeration device
JP2017053599A (en) * 2015-09-11 2017-03-16 パナソニックIpマネジメント株式会社 Refrigeration device
CN107676973A (en) * 2017-10-27 2018-02-09 顺德职业技术学院 Frequency conversion two-stage compression heat pump water heater dynamic heat frequency optimization and control method
CN107906752A (en) * 2017-10-27 2018-04-13 顺德职业技术学院 Twin-stage frequency conversion two-stage compression heat pump water heater frequency dynamic optimizes and control method
KR20190040781A (en) * 2017-10-11 2019-04-19 주식회사 씨앤엘 High temperature air cooling system
WO2021065117A1 (en) * 2019-09-30 2021-04-08 ダイキン工業株式会社 Heat source unit and refrigeration device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3699515B1 (en) * 2019-02-20 2023-01-11 Weiss Technik GmbH Temperature-controlled chamber and method
CN114251862A (en) * 2020-09-24 2022-03-29 北京市京科伦工程设计研究院有限公司 Single-stage carbon dioxide multi-split air-conditioning unit cold and hot multifunctional central air conditioner
JP6989808B1 (en) * 2020-11-24 2022-01-12 ダイキン工業株式会社 Refrigerant and Refrigerant Amount Determination Method for Refrigerator

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5359558U (en) * 1976-10-22 1978-05-20
JPS5428048A (en) * 1977-08-02 1979-03-02 Daikin Ind Ltd Air conditioner
JPS55144945U (en) * 1980-03-27 1980-10-17
JPS57179066U (en) * 1981-05-08 1982-11-12
JPH0545011A (en) * 1991-08-09 1993-02-23 Fuji Facom Corp Vending machine cooling system
JPH0979668A (en) * 1995-09-20 1997-03-28 Hitachi Ltd Refrigerating apparatus, control method thereof, and outdoor unit for refrigerating apparatus
JP2001133058A (en) * 1999-11-05 2001-05-18 Matsushita Electric Ind Co Ltd Refrigeration cycle
JP2001241780A (en) * 2000-03-01 2001-09-07 Mitsubishi Electric Corp Refrigerating air conditioner
JP2003184775A (en) * 2001-09-10 2003-07-03 Hitachi Ltd Scroll compressor and refrigeration system for ammonia-based refrigerant
JP2007093105A (en) * 2005-09-28 2007-04-12 Sanyo Electric Co Ltd Freezing device and gas-liquid separator
JP2007139269A (en) * 2005-11-16 2007-06-07 Denso Corp Supercritical refrigerating cycle
JP2008051369A (en) * 2006-08-23 2008-03-06 Matsushita Electric Ind Co Ltd Refrigerating system and cold storage comprising the same
JP2014016079A (en) * 2012-07-06 2014-01-30 Daikin Ind Ltd Heat pump

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8769982B2 (en) * 2006-10-02 2014-07-08 Emerson Climate Technologies, Inc. Injection system and method for refrigeration system compressor
JP2009180426A (en) * 2008-01-30 2009-08-13 Daikin Ind Ltd Refrigeration equipment
US20110174014A1 (en) * 2008-10-01 2011-07-21 Carrier Corporation Liquid vapor separation in transcritical refrigerant cycle
CN101749909B (en) * 2008-11-28 2012-07-25 财团法人工业技术研究院 Refrigerator and temperature control method thereof
JP5500240B2 (en) * 2012-05-23 2014-05-21 ダイキン工業株式会社 Refrigeration equipment

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5359558U (en) * 1976-10-22 1978-05-20
JPS5428048A (en) * 1977-08-02 1979-03-02 Daikin Ind Ltd Air conditioner
JPS55144945U (en) * 1980-03-27 1980-10-17
JPS57179066U (en) * 1981-05-08 1982-11-12
JPH0545011A (en) * 1991-08-09 1993-02-23 Fuji Facom Corp Vending machine cooling system
JPH0979668A (en) * 1995-09-20 1997-03-28 Hitachi Ltd Refrigerating apparatus, control method thereof, and outdoor unit for refrigerating apparatus
JP2001133058A (en) * 1999-11-05 2001-05-18 Matsushita Electric Ind Co Ltd Refrigeration cycle
JP2001241780A (en) * 2000-03-01 2001-09-07 Mitsubishi Electric Corp Refrigerating air conditioner
JP2003184775A (en) * 2001-09-10 2003-07-03 Hitachi Ltd Scroll compressor and refrigeration system for ammonia-based refrigerant
JP2007093105A (en) * 2005-09-28 2007-04-12 Sanyo Electric Co Ltd Freezing device and gas-liquid separator
JP2007139269A (en) * 2005-11-16 2007-06-07 Denso Corp Supercritical refrigerating cycle
JP2008051369A (en) * 2006-08-23 2008-03-06 Matsushita Electric Ind Co Ltd Refrigerating system and cold storage comprising the same
JP2014016079A (en) * 2012-07-06 2014-01-30 Daikin Ind Ltd Heat pump

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017053598A (en) * 2015-09-11 2017-03-16 パナソニックIpマネジメント株式会社 Refrigeration device
JP2017053599A (en) * 2015-09-11 2017-03-16 パナソニックIpマネジメント株式会社 Refrigeration device
CN106524546A (en) * 2015-09-11 2017-03-22 松下知识产权经营株式会社 Refrigeration apparatus
CN106524546B (en) * 2015-09-11 2021-11-09 松下知识产权经营株式会社 Refrigerating device
KR102064453B1 (en) * 2017-10-11 2020-02-11 주식회사 씨앤엘 High temperature air cooling system
KR20190040781A (en) * 2017-10-11 2019-04-19 주식회사 씨앤엘 High temperature air cooling system
WO2019080278A1 (en) * 2017-10-27 2019-05-02 顺德职业技术学院 Method for dynamically optimizing and controlling frequency two-stage variable frequency two-stage compression heat pump water heater
CN107906752B (en) * 2017-10-27 2019-06-14 顺德职业技术学院 The optimization of twin-stage frequency conversion two-stage compression heat pump water heater frequency dynamic and control method
CN107906752A (en) * 2017-10-27 2018-04-13 顺德职业技术学院 Twin-stage frequency conversion two-stage compression heat pump water heater frequency dynamic optimizes and control method
CN107676973A (en) * 2017-10-27 2018-02-09 顺德职业技术学院 Frequency conversion two-stage compression heat pump water heater dynamic heat frequency optimization and control method
JP2021103081A (en) * 2019-09-30 2021-07-15 ダイキン工業株式会社 Heat source unit and refrigeration unit
JP2021055921A (en) * 2019-09-30 2021-04-08 ダイキン工業株式会社 Heat source unit and refrigeration unit
WO2021065117A1 (en) * 2019-09-30 2021-04-08 ダイキン工業株式会社 Heat source unit and refrigeration device
CN114270111A (en) * 2019-09-30 2022-04-01 大金工业株式会社 Heat source unit and refrigeration device
US20220205680A1 (en) * 2019-09-30 2022-06-30 Daikin Industries, Ltd. Heat source unit and refrigeration apparatus
JP7116346B2 (en) 2019-09-30 2022-08-10 ダイキン工業株式会社 Heat source unit and refrigerator
EP4027077A4 (en) * 2019-09-30 2022-10-12 Daikin Industries, Ltd. HEAT SOURCE UNIT AND REFRIGERATION DEVICE
CN114270111B (en) * 2019-09-30 2023-08-04 大金工业株式会社 Heat source unit and refrigerating device

Also Published As

Publication number Publication date
CN104833122A (en) 2015-08-12
CN104833122B (en) 2018-04-20

Similar Documents

Publication Publication Date Title
JP6292480B2 (en) Refrigeration equipment
JP2015148407A (en) Refrigeration device
JP6264688B2 (en) Refrigeration equipment
JP2015148406A (en) Refrigeration device
JP6814974B2 (en) Refrigeration equipment
JP2011133209A (en) Refrigerating apparatus
JP6388260B2 (en) Refrigeration equipment
JP6080031B2 (en) Refrigeration equipment
JP2011133210A (en) Refrigerating apparatus
JP6653463B2 (en) Refrigeration equipment
JP6253370B2 (en) Refrigeration cycle equipment
JP6467682B2 (en) Refrigeration equipment
JP6555584B2 (en) Refrigeration equipment
JP6094859B2 (en) Refrigeration equipment
JP6206787B2 (en) Refrigeration equipment
JP5659909B2 (en) Heat pump equipment
JPWO2019186647A1 (en) Refrigeration equipment
JP2011137557A (en) Refrigerating apparatus
JP6497582B2 (en) Refrigerator unit
JP6534062B2 (en) Refrigerator unit
JP6765086B2 (en) Refrigeration equipment
JP2009293887A (en) Refrigerating device
JP6653464B2 (en) Refrigeration equipment
JP2013164242A (en) Refrigerating apparatus
JP6497581B2 (en) Refrigerator unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170307

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170926