[go: up one dir, main page]

JP2015140680A - 送風装置 - Google Patents

送風装置 Download PDF

Info

Publication number
JP2015140680A
JP2015140680A JP2014012520A JP2014012520A JP2015140680A JP 2015140680 A JP2015140680 A JP 2015140680A JP 2014012520 A JP2014012520 A JP 2014012520A JP 2014012520 A JP2014012520 A JP 2014012520A JP 2015140680 A JP2015140680 A JP 2015140680A
Authority
JP
Japan
Prior art keywords
orifice
air
blower
fan
side end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014012520A
Other languages
English (en)
Inventor
賢宣 和田
Masanobu Wada
賢宣 和田
小川 修
Osamu Ogawa
修 小川
昭宏 近藤
Akihiro Kondo
昭宏 近藤
欣公 田積
Yoshitaka Tazumi
欣公 田積
松井 大
Masaru Matsui
大 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2014012520A priority Critical patent/JP2015140680A/ja
Publication of JP2015140680A publication Critical patent/JP2015140680A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

【課題】流れの乱れを緩和して、送風性能を向上させ、乱流騒音の発生を低減させること。【解決手段】送風装置100は、ファン101と、ファン101の後縁部外周を囲み、内径がD1である第1オリフィス102aと、第1オリフィス102aよりも吹出側に、第1オリフィス102aと中心軸が一致するよう配置され、内径D2がD1より大きい第2オリフィス102bと、第1オリフィス102aの吹出側端と、第2オリフィス102bとを連接する環状の連接部102cと、を備え、連接部102cの環状部分の幅tは、(D2−D1)/2≰t≰(D2−D1)/√3を満たす。【選択図】 図1

Description

本発明は、軸流ファンや斜流ファンなどのファンを備え、空気調和機などに幅広く用いられる送風装置に関する。
一般に、空気調和機などに用いられている送風装置は、モータに直結されたファンと、ファンの外周に設置される略円筒形のオリフィスとで構成されている。ファンは、中心軸の周りに回転する略円筒形のハブに、複数の羽根が固定されて形成されている。
ファンの羽根の外周部における流速はハブ側の流れに比べ速く、気流の乱れも羽根の外周部で最も大きい。また、ファンからの吐出流れは、遠心力の作用で外向き半径方向に偏るため、オリフィスの壁面近傍の流速が非常に高速となる。そして、ファンの外周部における翼端渦を含んだ高速の乱れた気流はオリフィスに一旦衝突し、その後オリフィスに沿って流れるようになる。
ここで、従来の送風装置の一例として、特許文献1に開示されている送風装置について説明する。図12は、特許文献1に開示されている送風装置1の構成を示す図である。この送風装置1は、ファン2と、オリフィス3とから構成される。
オリフィス3は、吸込側に位置する吸込側壁部3aと、吹出側に位置する吹出側壁部3bとで構成される。図12に示すように、吹出側壁部3bをファン2側へ膨むような曲面形状とすることにより、ファン2から周方向または半径方向へ吹き出される空気は、曲面形状の壁面に沿って流れるようになる。これにより、損失の少ないスムーズな流れを実現し、低騒音化を促進することができるとされる。
特開2005−299432号公報
しかし、上述した特許文献1に係る送風装置1では、気流と吹出側壁部3bとの摩擦が発生するため、吹出側壁部3bの付近に不規則な渦が発生する場合がある。図13は、特許文献1に係る送風装置1において発生する不規則な渦を示す図である。このような渦が発生すると、ファン2の回転軸方向に吹き出された空気の流れが乱され、送風性能が低下し、乱流騒音が生じるという問題がある。
本発明の目的は、流れの乱れを緩和して、送風性能を向上させ、乱流騒音の発生を低減させることができる送風装置を提供することを目的とする。
本発明に係る送風装置は、ファンと、ファンの後縁部外周を囲み、内径がD1である第1オリフィスと、第1オリフィスよりも吹出側に、第1オリフィスと中心軸が一致するよう配置され、内径D2がD1より大きい第2オリフィスと、第1オリフィスの吹出側端と、第2オリフィスとを連接する環状の連接部と、を備え、連接部の環状部分の幅tが、(D2−D1)/2≦t≦(D2−D1)/√3を満たすという構成を採る。
本発明によれば、流れの乱れを緩和して、送風性能を向上し、乱流騒音の発生を低減させることができる。
実施の形態1に係る送風装置の構成の一例を示す断面図 実施の形態1に係る送風装置の空気の流れを示す図 実施の形態1に係る連接部の一例を示す断面図 実施の形態1に係る連接部の一例を示す断面図 気流の数値シミュレーション結果の一例を示す図 気流の数値シミュレーション結果の一例を示す図 気流の数値シミュレーション結果の一例を示す図 実施の形態1に係る第2オリフィスの一例を示す断面図 実施の形態1に係る第2オリフィスの一例を示す断面図 実施の形態1に係る第2オリフィスの一例を示す断面図 実施の形態1に係る第2オリフィスの一例を示す断面図 実施の形態1に係る第2オリフィスの一例を示す断面図 気流の数値シミュレーション結果の一例を示す図 気流の数値シミュレーション結果の一例を示す図 気流の数値シミュレーション結果の一例を示す図 気流の数値シミュレーション結果の一例を示す図 気流の数値シミュレーション結果の一例を示す図 実施の形態1に係る送風装置を備えるセパレート型空気調和機の室外機の一例を示す図 実施の形態2に係る送風装置の構成の一例を示す断面図 実施の形態2に係る送風装置を備えるセパレート型空気調和機の室外機の一例を示す図 実施の形態3に係る送風装置の構成の一例を示す断面図 実施の形態3に係る送風装置を備えるセパレート型空気調和機の室外機の一例を示す図 特許文献1に開示されている送風装置の構成を示す図 特許文献1に係る送風装置において発生する不規則な渦を示す図
以下、本発明の各実施形態について、図面を参照して詳細に説明する。なお、以下に説明する各実施の形態は一例であり、本発明は、以下の各実施の形態により限定されるものではない。
(実施の形態1)
図1は、本実施の形態1に係る送風装置100の構成の一例を示す断面図である。図1は、ファン101の回転軸を含む平面で送風装置100を切断した断面を示している。
この送風装置100は、ファン101とオリフィス102とを備える。また、オリフィス102は、円筒状の第1オリフィス102aと第2オリフィス102bとを備える。第1オリフィス102aは仕切り板103に固定され、この仕切り板103によって、送風装置100は、吸込側と吐出側とに区画される。
第1オリフィス102aの吹出側端と第2オリフィス102bの吸込側端とは、環状の連接部102cによって連接される。そして、第1オリフィス102aは、ファン101の後縁部外周を囲むように配置される。
第2オリフィス102bは、第1オリフィス102aより吹出側に、それらの中心軸が一致するよう形成される。第2オリフィス102bの内径D2は、第1オリフィス102aの内径D1よりも大きく、D1とD2とは、1.0<D2/D1≦1.09の関係にあることが好ましい。
また、連接部102cは、図1に示す角度αが、60°≦α≦120°となるように形成される。
ここで、角度αは、第1オリフィス102a、および、第2オリフィス102bを、それぞれの中心軸を含む平面で切断した場合に得られる第1オリフィス102aの吹出側端、および、第2オリフィス102bの吸込側端を結ぶ直線と、上記中心軸と平行な直線との間のなす角度である。
この場合、連接部102cの環状部分の幅tは、(D2−D1)/2≦t≦(D2−D1)/√3となる。幅tをこのような範囲に含まれる値とする理由については後に詳しく説明する。
また、第2オリフィス102bは、図1に示す角度βが、60°<β≦75°となるように形成される。
ここで、角度βは、第1オリフィス102a、および、第2オリフィス102bを、それぞれの中心軸を含む平面で切断した場合に得られる第1オリフィス102aの吹出側端、および、第2オリフィス102bの吹出側端を結ぶ直線と、上記中心軸に垂直な平面との間のなす角度である。角度βをこのような範囲に含まれる値とする理由については後に詳しく説明する。
ファン101は、ハブ101a、および、複数の羽101bを備える。ハブ101aは略円筒状の形状を有し、その中心軸はファンの回転軸と一致する。また、ハブ101aには、複数の羽101bが固定される。
そして、ファン101は、ハブ101aに直結されるモータ104によって回転する。モータ104がファン101を所定の回転方向に回転させると、空気が仕切り板103の吸込側から吸い込まれ、仕切り板103の吹出側へ吹出される。これにより、送風装置100の送風作用が生じる。
第1オリフィス102aを通過して吹出側へ吹き出す風の平均風速は、約3m/s〜約10m/s程度である。この平均風速は、後述する空気調和機に送風装置100が備えられる場合に想定される値である。なお、ファン101の回転数の増減により風速は増減する。
つぎに、送風装置100が送風作用を為すときの空気の流れを、図2を用いて詳しく説明する。図2は、本実施の形態1に係る送風装置100の空気の流れを示す図である。
図2に示すように、ファン101の外周部の気流Fは、高速であり、かつ、半径方向の成分を持っている。この気流Fは、ファン101の後縁部から流出した後、第1オリフィス102aの内壁に一旦短く接触する。その後、第1オリフィス102aの吹出側端から吹き出す際に、気流Fは、第1オリフィス102aの内壁から離脱する。
その際、連接部102cと第2オリフィス102bとから形成されるコーナー部分の空間では、第1オリフィス102aの吹出側端から流出する気流Fの一部が、バックステップ流となり、渦流Vが形成される。
渦流Vが形成されると、第1オリフィス102aの先端から一旦離脱した気流Fは、壁面のない空間を渦流Vに沿って流動し、送風装置100の外に吹き出される。このように、気流Fが壁面のない空間を渦流Vに沿って流動するので、壁面がある場合に生じるような流れの乱れが緩和され、乱流騒音の発生が抑制される。
なお、上述のように、気流Fは、ファン101の後縁部から流出し、第1オリフィス102aの内壁に一旦短く接触した後、第1オリフィス102aの吹出側端から吹き出すことになる。そのため、送風装置100で想定される平均風速の範囲においては、第1オリフィス102aの吹出側端から吹き出す空気の風向はほぼ一定となる。
図3A、図3Bは、本実施の形態1に係る連接部102cの一例を示す断面図である。連接部102cは、その環状部分の幅tが(D2−D1)/2≦t≦(D2−D1)/√3となるよう形成される。
幅tがt=(D2−D1)/2となる場合は、第1オリフィス102aの吹出側端と第2オリフィス102bの吸込側端とが最短距離で連接される場合である。この場合、α=90°となる。(D2−D1)/2≦t≦(D2−D1)/√3という範囲は、60°≦α≦120°という範囲に相当する。
60°≦αの範囲においては、気流Fは、第1オリフィス102aの吹出側端から一旦離脱し、連接部102cと第2オリフィス102bとから形成されるコーナー部分の空間においてバックステップ流によって形成される渦流Vに沿って流動する。
この場合、気流Fが壁面のない空間を渦流Vに沿って流動するので、壁面がある場合に生じるような流れの乱れが緩和され、乱流騒音の発生が抑制される。
90°≦αの範囲においても、連接部102cと第2オリフィス102bとから形成されるコーナー部分にバックステップ流によって渦流Vが形成されるので、気流Fが渦流Vに沿って空間内を移動することにより、乱流騒音発生の抑制効果が得られる。
ただし、90°≦αの範囲において、(D2−D1)/√3<tとなる場合、すなわち120°<αの範囲になると、オリフィス102を製造する際に、金型を使用する工法において、金型に非常に鋭角な端部が必要となり、金型の使用時に破損したり、保守の頻度が増大したりするなどの懸念が大きくなる。
そのため、幅tは、60°≦α≦120°の範囲に相当する(D2−D1)/2≦t≦(D2−D1)/√3の範囲とされる。これにより、金型の保守性をより向上することができる。
一方、α<60°の範囲(この場合、t>(D2−D1)/√3となる。)では、図3Bに示すように、気流Fは、第1オリフィス102aの吹出側端から、連接部102c、および、第2オリフィス102bの壁面に沿って流れる。
さらに、ファン101の外周部の高速の気流は、遠心力の作用で外向き半径方向に偏るため、連接部102c、および、第2オリフィス102bの壁面近傍の流速が非常に大きくなる。
そのため、空気が連接部102cから第2オリフィス102bに沿って流れる間に、壁面との摩擦により気流の乱れが大きくなり、第2オリフィス102bの吹出側端近傍では内壁面近傍の境界層の発達により乱流渦が生じる。その結果、送風性能の劣化や、乱流騒音の増加を招いてしまう。
図4A、図4B、図4Cは、気流の数値シミュレーション結果の一例を示す図である。図4A、図4B、図4Cに示す送風装置100のモデルは、図1等に示した送風装置100を単純化したものである。図4A、図4B、図4Cはそれぞれ、αが45°、50°、60°の場合の例である。また、ファン後縁における初速風速は4.2m/s、D1は720mm、D2は752mm、βは73°である。
図4Aに示すように、α=45°の場合、連接部102cと第2オリフィス102bとから形成されるコーナー部分の空間に、渦流は形成されない。α=50°の場合、渦流Vが形成されるものの、連接部102cの幅よりも小さいため、第1オリフィス102a近傍の連接部102cにおいて、連接部102cの壁面と気流との間で摩擦が生じる。
これに対し、α=60°の場合、連接部102cの幅とほぼ等しい渦流Vが生じることがわかる。そのため、第1オリフィス102a近傍の連接部102cにおいて、壁面と気流との間での摩擦を抑制できる。このようなことから、αは少なくとも60°以上とされる。
図5A〜図5Eは、本実施の形態1に係る第2オリフィス102bの一例を示す断面図である。図5Aに示すように、第2オリフィス102bの内径D2は第1オリフィス102aの内径D1よりも大きく、1.0<D2/D1≦1.09の関係とすることが好ましい。
第1オリフィス102aを通過して吹出側へ吹き出す風の平均風速が、約3m/s〜約10m/s程度では、第1オリフィス102aの吹出側端から吹き出した気流Fが渦流Vに沿って流動し、第2オリフィス102bの吹出側端近傍に再付着する。このように、気流Fが第2オリフィス102bに再付着することで、気流の乱れはいっそう低減され、乱流騒音の発生が抑制される。
また、第2オリフィス102bの内径D2は第1オリフィス102aの内径D1より大きいので、第1オリフィス102aの流路断面積に比べて、第2オリフィス102bの流路断面積は大きくなる。
そのため、気流Fが、第1オリフィス102aから第2オリフィス102bへ、第2オリフィス102bから送風装置100外へと流れるにつれ、流路断面積が段階的に拡大する。これにより、流速が段階的に減速され、動圧が静圧に変換されるため、静圧特性が向上し、送風性能も向上する。
しかし、図5Bに示すように、第2オリフィス102bの内径D2が第1オリフィス102aの内径D1に対して過剰に大きい(D2/D1>1.09)場合、連接部102cと第2オリフィス102bとから形成されるコーナー部分の空間に渦流Vが形成されない。
この場合、第1オリフィス102aの吹出側端から直接、送風装置100外へと気流Fが吹き出すことになる。この場合、風路断面積が急拡大するため、静圧特性の向上が得られず、送風性能の向上も望めない。
また、D2/D1>1.09の場合には、気流Fと第2オリフィス102bの壁面とは乖離しており、その間に広い空間が形成される。この空間にもともと存在した空気は、気流Fに巻き込まれ、さらに第2オリフィス102bの外側の空気も気流Fに巻き込まれる。
その結果、第1オリフィス102aの吹出側端の付近、および、第2オリフィス102bの吹出側端の付近で、大きく方向が変化する乱れた流れが誘引される。そして、この乱れた流れにより乱流騒音が増大してしまう。このようなことから、D1とD2とは、1.0<D2/D1≦1.09の関係を満たすことが好ましい。
また、図5Cに示すように、第2オリフィス102bは、角度βが、60°≦β≦75°となるように形成される。ここで、角度βは、第1オリフィス102a、および、第2オリフィス102bを、それぞれの中心軸を含む平面で切断した場合に得られる第1オリフィス102aの吹出側端、および、第2オリフィス102bの吹出側端を結ぶ直線と、上記中心軸に垂直な平面との間のなす角度である。
第1オリフィス102aを通過して吹出側へ吹き出す風の平均風速が約3m/s〜約10m/s程度では、第1オリフィス102aの吹出側端から吹き出した気流Fが渦流Vに沿って流動し、第2オリフィス102bの吹出側端近傍に再付着する。気流Fの再付着により、気流の乱れはいっそう低減され、乱流騒音の発生が抑制される。
しかし、図5Dに示すように、β<60°の場合、第1オリフィス102aの吹出側端から吹き出した気流Fが渦流Vに沿って流動した後、第2オリフィス102bに再付着せず、送風装置100外へと吹き出すことになる。
つまり、気流Fは、第2オリフィス102bの吹出側端よりも上方を通過するため、気流Fと第2オリフィス102bの吹出側端とが乖離し、その間に空間が形成される。そして、この空間にもともと存在した空気は気流Fに巻き込まれ、さらに第2オリフィス102bの外側の空気まで気流Fに巻き込まれて、第2オリフィス102bの吹出側端の付近で大きく方向が変化する乱れた流れが誘引される。そして、この乱れた流れにより乱流騒音が増大してしまう。
また、図5Eに示すように、β>75°の場合、第1オリフィス102aの吹出側端から吹き出した気流Fは、渦流Vに沿って流動し、第2オリフィス102bに再付着した後、第2オリフィス102bの内壁面に沿って流れる。
さらに、ファン101の外周部の高速の気流は、遠心力の作用で外向き半径方向に偏るため、第2オリフィス102bの壁面近傍の流速が非常に高速となる。そのため、空気が第2オリフィス102bに沿って流れる間に、壁面との摩擦で気流の乱れが大きくなり、第2オリフィス102bの吹出側端近傍では内壁面近傍の境界層の発達により乱流渦が生じる。その結果、送風性能の劣化や、乱流騒音の増加を招いてしまう。このようなことから、βの範囲は、60°≦β≦75°とすることが好ましい。
図6A〜図6Eは、気流の数値シミュレーション結果の一例を示す図である。図6A〜図6Eに示す送風装置100のモデルは、図1等に示した送風装置100を単純化したものである。図6A〜図6Eはそれぞれ、βが45°、55°、60°、75°、80°の場合の例である。また、ファン後縁における初速風速は4.2m/s、D1は720mm、D2は752mm、αは90°である。
図6Aに示すように、β=45°の場合、第2オリフィス102bを乗り越えて外気が流入し、連接部102cと第2オリフィス102bとから形成されるコーナー部分の空間に、渦流が形成されない。また、β=55°の場合、図6Bに示すように、渦流Vが形成されるものの、第2オリフィス102bを乗り越えて、外気が渦流Vの方向に誘引され、大きな風向きの変化が生じている。
これに対し、β=60°の場合、図6Cに示すように、外気は第2オリフィス102bの吹出側端部で緩やかに方向を変えるので、ファン後縁からの気流の流れに及ぼす影響が小さい。そのため、気流の乱れによる送風性能の劣化や、乱流騒音の増加を抑制することができる。
また、β=75°の場合、図6Dに示すように、第1オリフィス102aの吹出側端から吹き出した気流が渦流Vに沿って流動し、第2オリフィス102bの吹出側端近傍に再付着し始める。
そして、β=80°の場合、図6Eに示すように、第1オリフィス102aの吹出側端から吹き出した気流が渦流Vに沿って流動し、第2オリフィス102bの壁面に長い距離にわたって付着する。
そのため、壁面との摩擦で気流の乱れが大きくなり、第2オリフィス102bの吹出側端近傍では内壁面近傍の境界層の発達により乱流渦が生じる。その結果、送風性能の劣化や、乱流騒音の増加を招いてしまう。このようなことから、βは、60°≦β≦75°の範囲内の値とすることが好ましい。
図7は、本実施の形態1に係る送風装置100を備えるセパレート型空気調和機の室外機150の一例を示す図である。この室外機150は、箱体151と、箱体151の側面に設置した熱交換器152と、箱体151の上面に設置した送風装置100を備える。ここで、送風装置100の仕切り板103は、室外機150の天板を兼ねており、送風装置100の吸込側と吐出側とを仕切っている。
以上のように構成された空気調和機の室外機150について、その動作を説明する。まず、モータ104がファン101を所定の回転方向に回転させると、送風装置100は送風作用を為し、熱交換器152を介して空気を室外機150内に吸い込む。この際、空気は熱交換器152を通過する過程で冷媒と熱交換し、その温度が変化する。
温度が変化した空気は、さらに送風装置100に吸い込まれ、室外機150外に放出される。ここで、本実施の形態における送風装置100は、送風騒音の増加を抑えるとともに、送風性能を向上させるものであるため、送風装置100のモータ104の入力電力を低減することができる。
そのため、この送風装置100を搭載した空気調和機は、所定の熱交換能力を実現するための送風量を確保しつつ、機器の入力電力を低減することができ、さらに室外送風騒音の増加を抑えることができる。
なお、空気調和機の室外機150は、箱体151内に、機械室と圧縮機とを備えても良い。例えば、圧縮機は、機械室内に設置される。また、室外機150は、箱体151の側面に送風装置100を備え、側面方向に向かって室外機150外に空気を放出する構成でも良い。
(実施の形態2)
図8は、本実施の形態2に係る送風装置200の構成の一例を示す断面図である。図8は、ファン101の回転軸を含む平面で送風装置200を切断した断面を示している。図8において、実施の形態1で説明した送風装置100と共通の要素については、共通の符号を付している。
この送風装置200は、ファン101とオリフィス102とを備える。また、オリフィス102は、円筒状の第1オリフィス102aと第2オリフィス102bとを備える。第2オリフィス102bは仕切り板103に固定され、この仕切り板103によって、送風装置200は、吸込側と吐出側に区画される。
第1オリフィス102aの吹出側端と第2オリフィス102bの吸込側端とは、環状の連接部102cによって連接される。第1オリフィス102aは、ファン101の後縁部外周を囲むように配置される。
本実施の形態2に係る送風装置200では、オリフィス102が仕切り板103の吸込側へ挿入されるように構成されている。オリフィス102をこのように構成することで、仕切り板103の吹出側から見たときに突出する箇所が無くなる。その結果、送風装置200の小型化が可能になり、意匠の自由度を増すことができる。
次に、送風装置200が送風作用を為すときの気流の動きを説明する。本実施の形態2でも、第1オリフィス102aを通過して吹出側へ吹き出す風の平均風速は、約3m/s〜約10m/s程度である。
そして、実施の形態1と同様、第2オリフィス102bの内径D2と第1オリフィス102aの内径D1とは、1.0<D2/D1≦1.09の関係にあることが好ましい。また、連接部102cは、その環状部分の幅tが(D2−D1)/2≦t≦(D2−D1)/√3となるように形成される。
この場合、角度αは、60°≦α≦120°となる。ここで、角度αは、角度αは、第1オリフィス102a、および、第2オリフィス102bを、それぞれの中心軸を含む平面で切断した場合に得られる第1オリフィス102aの吹出側端、および、第2オリフィス102bの吸込側端を結ぶ直線と、上記中心軸と平行な直線との間のなす角度である。
さらに、第2オリフィス102bは、実施の形態1と同様、角度βが、60°<β≦75°となるように形成されることが好ましい。角度βは、第1オリフィス102a、および、第2オリフィス102bを、それぞれの中心軸を含む平面で切断した場合に得られる第1オリフィス102aの吹出側端、および、第2オリフィス102bの吹出側端を結ぶ直線と、上記中心軸に垂直な平面との間のなす角度である。
本実施の形態2に係る送風装置200の空気の流れは、実施の形態1に係る送風装置100の空気の流れと同等の流れとなる。つまり、ファン101の送風作用によって生じる気流Fは、ファン101の後縁部から流出した後、第1オリフィス102aの内壁に一旦短く接触した後、第1オリフィス102aの吹出側端から吹き出す際に、第1オリフィス102aの内壁から離脱する。
その際、連接部102cと第2オリフィス102bとから形成されるコーナー部分の空間では、第1オリフィス102aの吹出側端から流出する気流Fの一部がバックステップ流となり、渦流Vが形成される。
渦流Vが形成されると、第1オリフィス102aの先端から一旦離脱した気流Fは、壁面のない空間を渦流Vに沿って流動し、送風装置200の外に吹き出される。このように、気流Fが壁面のない空間を渦流Vに沿って流動するので、壁面がある場合に生じるような流れの乱れが緩和され、乱流騒音の発生が抑制される。
さらに、送風装置200において、第1オリフィス102aの吹出側端から吹き出した気流Fは、渦流Vに沿って流動し、第2オリフィス102bの吹出側端近傍に再付着する。このように、気流Fが第2オリフィス102bに再付着することで、気流の乱れはいっそう低減され、乱流騒音の発生が抑制される。
図9は、本実施の形態2に係る送風装置200を備えるセパレート型空気調和機の室外機250の一例を示す図である。図9に示すように、この室外機250は、送風装置200と、空気と冷媒の熱交換を行うフィンチューブ型の熱交換器251と、圧縮機252と、送風装置200、熱交換器251、および、圧縮機252を収納する箱体253とを備える。
ここで、送風装置200の仕切り板103は、室外機250の筐体の一部を兼ねており、送風装置100の吸込側と吐出側とを仕切っている。
モータ104がファン101を所定の回転方向に回転させると、送風装置200は送風作用を為し、空気を仕切り板103の吸込側から吸い込み、吸い込んだ空気を仕切り板103の吹出側へ放出する。
以上のように構成された空気調和機の室外機250について、その動作を説明する。まず、モータ104がファン101を所定の回転方向に回転させると、送風装置200は送風作用を為し、熱交換器251を介して空気を室外機250内に吸い込む。この際、空気は熱交換器251を通過する過程で冷媒と熱交換し、その温度が変化する。
温度が変化した空気は、さらに送風装置200に吸い込まれ、室外機250外に放出される。ここで、本実施の形態に係る送風装置200は、送風騒音の増加を抑えるとともに、送風性能を向上させるものであるため、送風装置200のモータ104の入力電力を低減することができる。
そのため、この送風装置200を搭載した空気調和機は、所定の熱交換能力を実現するための送風量を確保しつつ、機器の入力電力を低減することができ、さらに室外送風騒音の増加を抑えることができる。
また、このようなセパレート型空気調和機の室外機250においては、限られた空間に設置することを求められる場合がある。
このような場合でも、送風装置200のオリフィス102が吸込側へ挿入されるように構成することで、熱交換器251や箱体253の形状を変更することなく、設置許容空間に室外機250を収めることができるため、設置性を高めることができる。
また、送風装置200のオリフィス102が吸込側へ挿入されるように構成することで、室外機250の外観上の凹凸が少なくなり、外観がシンプルに構成される。これにより、意匠の自由度を増すことが可能になる。
(実施の形態3)
図10は、本実施の形態3に係る送風装置300の構成の一例を示す断面図である。図10は、ファン101の回転軸を含む平面で送風装置300を切断した断面を示している。図10において、実施の形態1で説明した送風装置100と共通の要素については、共通の符号を付している。
送風装置300は、ファン101とオリフィス301とを備える。また、オリフィス301は、第1オリフィス301aと第2オリフィス301bとを備える。ここで、第2オリフィス301bの吐出側端は、仕切り板302と連接し、仕切り板302と一体に形成されている。この仕切り板302によって、送風装置300は、吸込側と吐出側に区画される。
第1オリフィス301aと第2オリフィス301bとは、環状の連接部301cによって連接される。第1オリフィス301aは、ファン101の後縁部外周を囲むように配置される。
本実施の形態3に係る送風装置300では、オリフィス301は、板を吸込側に折り曲げることで形成される。これにより、仕切り板302の吹出側から見たときに突出する箇所が無くなる。その結果、送風装置200の小型化が可能になり、意匠の自由度を増すことができる。
また、オリフィス301を仕切り板302と一体に形成することで、部品材料の削減、組み付け工程の削減、リサイクルの容易化を実現することができる。さらに、この構成では、仕切り板302をカラー鋼板で製造する場合、塗装されない端面が吸込側へ収納される。
すなわち、第1オリフィス301aの吸込側端が吸込側へ収納される。このことにより、塗装されない第1オリフィス301aの吸込側端が、風雨にさらされることなく、錆の発生を防ぐことが可能となる。
つぎに、送風装置300が送風作用を為すときの気流の動きを説明する。本実施の形態3においても、第1オリフィス301aを通過して吹出側へ吹き出す風の平均風速は、約3m/s〜約10m/s程度である。
そして、実施の形態1と同様、第2オリフィス301bの内径D2と第1オリフィス301aの内径D1とは、1.0<D2/D1≦1.09の関係にあることが好ましい。また、連接部301cは、その環状部分の幅tが(D2−D1)/2≦t≦(D2−D1)/√3となるように形成される。
この場合、角度αは、60°≦α≦120°となる。ここで、角度αは、角度αは、第1オリフィス301a、および、第2オリフィス301bを、それぞれの中心軸を含む平面で切断した場合に得られる第1オリフィス301aの吹出側端、および、第2オリフィス301bの吸込側端を結ぶ直線と、上記中心軸と平行な直線との間のなす角度である。
さらに、第2オリフィス301bは、実施の形態1と同様、角度βが、60°<β≦75°となるように形成されることが好ましい。角度βは、第1オリフィス301a、および、第2オリフィス301bを、それぞれの中心軸を含む平面で切断した場合に得られる第1オリフィス301aの吹出側端、および、第2オリフィス301bの吹出側端を結ぶ直線と、上記中心軸に垂直な平面との間のなす角度である。
本実施の形態3に係る送風装置300の空気の流れは、実施の形態1に係る送風装置100の空気の流れと同等の流れとなる。つまり、ファン101の送風作用によって生じる気流Fは、ファン101の後縁部から流出した後、第1オリフィス301aの内壁に一旦短く接触した後、第1オリフィス301aの吹出側端から吹き出す際に、第1オリフィス301aの内壁から離脱する。
その際、連接部301cと第2オリフィス301bとから形成されるコーナー部分の空間では、第1オリフィス301aの吹出側端から流出する気流Fの一部がバックステップ流となり、渦流Vが形成される。
渦流Vが形成されると、第1オリフィス301aの先端から一旦離脱した気流Fは、壁面のない空間を渦流Vに沿って流動し、送風装置300の外に吹き出される。このように、気流Fが壁面のない空間を渦流Vに沿って流動するので、壁面がある場合に生じるような流れの乱れが緩和され、乱流騒音の発生が抑制される。
さらに、送風装置300において、第1オリフィス301aの吹出側端から吹き出した気流Fは、渦流Vに沿って流動し、第2オリフィス301bの吹出側端近傍に再付着する。このように、気流Fが第2オリフィス301bに再付着することで、気流の乱れはいっそう低減され、乱流騒音の発生が抑制される。
図11は、本実施の形態3に係る送風装置300を備えるセパレート型空気調和機の室外機350の一例を示す図である。図11に示すように、この室外機350は、送風装置300と、空気と冷媒の熱交換を行うフィンチューブ型の熱交換器351と、圧縮機352と、圧縮機352を収納する箱体353とを備える。
ここで、送風装置300の仕切り板302は、箱体353と一体に形成されており、送風装置300の吸込側と吐出側とを仕切っている。
モータ104がファン101を所定の回転方向に回転させると、送風装置300は送風作用を為し、空気を仕切り板302の吸込側から吸い込み、吸い込んだ空気を仕切り板302の吹出側へ放出する。
以上のように構成された空気調和機の室外機350について、その動作を説明する。まず、モータ104がファン101を所定の回転方向に回転させると、送風装置300は送風作用を為し、熱交換器351を介して空気を室外機350内に吸い込む。この際、空気は熱交換器351を通過する過程で冷媒と熱交換し、その温度が変化する。
温度が変化した空気は、さらに送風装置300に吸い込まれ、室外機350外に放出される。ここで、本実施の形態に係る送風装置300は、送風騒音の増加を抑えるとともに、送風性能を向上させるものであるため、送風装置300のモータ104に対する入力電力を低減することができる。
そのため、この送風装置300を搭載した空気調和機は、所定の熱交換能力を実現するための送風量を確保しつつ、機器の入力電力を低減することができ、さらに室外送風騒音の増加を抑えることができる。
このようなセパレート型空気調和機の室外機350においては、外観の劣化を可能な限り防ぎ、使用開始時の外観を維持することが求められる場合がある。
例えば、仕切り板302をカラー鋼板で製造する場合、第1オリフィス301aの吸込側端が吸込側へ収納されることにより、塗装されない端面となる第1オリフィス301aの吸込側端が風雨にさらされることがなくなる。その結果、錆の発生を防ぐことが可能となり、室外機350における外観上、および、品質上の劣化を防ぐことができる。
なお、上記実施の形態1〜3では、連接部102c、301cは、第1オリフィス102a、301aの吹出側端と、第2オリフィス102b、301bの吸込側端とを連接するものとした。
しかし、連接部102c、301cは、第1オリフィス102a、301aの吹出側端と、第2オリフィス102b、301bの吸込側端以外の部分(例えば、第2オリフィス102b、301bの吸込側端から吹出側に所定の距離だけ離れた部分)とを連接することとしてもよい。
この場合でも、実施の形態1〜3と同様に、第1オリフィス102a、301aの吹出側端と、第2オリフィス102b、301bとから形成されるコーナー部分の空間に渦流が形成されるため、流れの乱れを緩和して、送風性能を向上し、乱流騒音の発生を低減させることができる。
本発明は、送風性能を向上し、乱流騒音の発生を低減させることができることから、空気調和機の室外機などの送風装置に利用するのに好適である。
100,200,300 送風装置
101 ファン
102,301 オリフィス
102a,301a 第1オリフィス
102b,301b 第2オリフィス
102c,301c 連接部
103,302 仕切り板
104 モータ
150,250,350 室外機
151,253,353 箱体
152,251,351 熱交換器
252,352 圧縮機

Claims (4)

  1. ファンと、
    前記ファンの後縁部外周を囲み、内径がD1である第1オリフィスと、
    前記第1オリフィスよりも吹出側に、該第1オリフィスと中心軸が一致するよう配置され、内径D2がD1より大きい第2オリフィスと、
    前記第1オリフィスの吹出側端と、前記第2オリフィスとを連接する環状の連接部と、
    を備え、
    前記連接部の環状部分の幅tが、
    (D2−D1)/2≦t≦(D2−D1)/√3
    を満たす送風装置。
  2. 前記第1オリフィス、および、前記第2オリフィスを、前記中心軸を含む平面で切断した場合にそれぞれ得られる前記第1オリフィスの吹出側端、および、前記第2オリフィスの吹出側端を結ぶ直線と、前記中心軸に垂直な平面との間のなす角度βが、
    60°≦β≦75°
    を満たす請求項1に記載の送風装置。
  3. 前記D1と前記D2とは、
    1<D2/D1≦1.09
    を満たす請求項1または2に記載の送風装置。
  4. 空気の吸込側と吹出側とを仕切る仕切板をさらに備え、
    前記仕切板は、前記第2オリフィスと一体に形成される請求項1〜3のいずれか1項に記載の送風装置。
JP2014012520A 2014-01-27 2014-01-27 送風装置 Pending JP2015140680A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014012520A JP2015140680A (ja) 2014-01-27 2014-01-27 送風装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014012520A JP2015140680A (ja) 2014-01-27 2014-01-27 送風装置

Publications (1)

Publication Number Publication Date
JP2015140680A true JP2015140680A (ja) 2015-08-03

Family

ID=53771214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014012520A Pending JP2015140680A (ja) 2014-01-27 2014-01-27 送風装置

Country Status (1)

Country Link
JP (1) JP2015140680A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016118209A (ja) * 2013-12-02 2016-06-30 三星電子株式会社Samsung Electronics Co.,Ltd. 送風装置及び空気調和装置用室外機
JP2016173210A (ja) * 2015-03-17 2016-09-29 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 空気調和機の室外ユニット及びそれに備えられるベルマウス
JP2021162173A (ja) * 2020-03-30 2021-10-11 株式会社富士通ゼネラル 空気調和機の室外機

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016118209A (ja) * 2013-12-02 2016-06-30 三星電子株式会社Samsung Electronics Co.,Ltd. 送風装置及び空気調和装置用室外機
JP2016173210A (ja) * 2015-03-17 2016-09-29 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 空気調和機の室外ユニット及びそれに備えられるベルマウス
JP2021162173A (ja) * 2020-03-30 2021-10-11 株式会社富士通ゼネラル 空気調和機の室外機

Similar Documents

Publication Publication Date Title
KR102323777B1 (ko) 송풍장치 및 이를 포함하는 공기조화기의 실외기
WO2009139422A1 (ja) 遠心送風機
JP5213953B2 (ja) 送風機およびこの送風機を用いたヒートポンプ装置
JP5689538B2 (ja) 車両用空気調和装置の室外冷却ユニット
JP6029738B2 (ja) 車両用空気調和装置の室外冷却ユニット
JP6611676B2 (ja) 送風機および冷凍サイクル装置の室外機
CN105102824B (zh) 单侧吸入式离心风机
JP2015140680A (ja) 送風装置
JP6827531B2 (ja) プロペラファン及び空気調和装置用室外機
JP6405529B2 (ja) 送風装置
JP2010236372A (ja) 軸流送風機、空気調和機及び換気扇
JP2016160905A (ja) 遠心ファン
JP6524243B2 (ja) 空気調和機の室外機
JPWO2019021468A1 (ja) プロペラファン及び冷凍サイクル装置
JP2010236371A (ja) 軸流送風機、空気調和機及び換気扇
JP6692456B2 (ja) プロペラファン及び空気調和装置の室外機
JP2016070075A (ja) 遠心送風機
JP2015214912A (ja) 軸流ファン及びこれを備える空気調和機
JP7312934B2 (ja) ターボファン
JP6771589B2 (ja) 遠心送風機
WO2018173803A1 (ja) 送風装置
WO2018131183A1 (ja) 送風機及び空気調和装置
JP2017145764A (ja) 送風機
JPH04353300A (ja) 送風機