[go: up one dir, main page]

JP2015127612A - Water heater - Google Patents

Water heater Download PDF

Info

Publication number
JP2015127612A
JP2015127612A JP2013273072A JP2013273072A JP2015127612A JP 2015127612 A JP2015127612 A JP 2015127612A JP 2013273072 A JP2013273072 A JP 2013273072A JP 2013273072 A JP2013273072 A JP 2013273072A JP 2015127612 A JP2015127612 A JP 2015127612A
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
hot water
water supply
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013273072A
Other languages
Japanese (ja)
Inventor
田中 誠
Makoto Tanaka
田中  誠
峻 浅利
Shun Asari
峻 浅利
司 高山
Tsukasa Takayama
司 高山
貴宏 図司
Takahiro Zushi
貴宏 図司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carrier Japan Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2013273072A priority Critical patent/JP2015127612A/en
Publication of JP2015127612A publication Critical patent/JP2015127612A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hot water supply device capable of enlarging an operation range from a single stage compression to multi-stage compression while improving operation efficiency.SOLUTION: A hot water supply device has a refrigeration cycle forming a refrigerant flow channel by successively connecting a plurality of compressors 2, 3 connected in series so that multi-stage compression can be implemented, first and second four-way valves 12, 6 switching a heating operation or a defrosting operation by switching a circulating direction of a refrigerant, a water heat exchanger 7 for heating water by condensation latent heat of the refrigerant, first and second expansion valves 8, 10, and an air heat exchanger 11 by refrigerant pipes 13, for circulating the refrigerant. Further the first four-way valve 12 is disposed to switch a part of the refrigerant flow channel so that the refrigerant returning to a suction port side of the compressor is returned to the suction port side of the compressor in compressing operation, while bypassing the compressor in stopping the compressing operation, when the compressing operation of a part of the plurality of compressors is stopped.

Description

本発明の実施形態は、複数の圧縮機を備えたヒートポンプ式給湯装置に係り、特に、単段圧縮運転と多段圧縮運転の切り換えが可能な給湯装置に関する。   Embodiments of the present invention relate to a heat pump hot water supply apparatus including a plurality of compressors, and more particularly to a hot water supply apparatus capable of switching between a single-stage compression operation and a multistage compression operation.

従来、この種のヒートポンプ式給湯装置の一例としては、2段圧縮機を具備したものが知られている(例えば特許文献1参照)。   Conventionally, as an example of this type of heat pump type hot water supply apparatus, one having a two-stage compressor is known (see, for example, Patent Document 1).

一方、単段圧縮の冷凍サイクルを具備した給湯装置では、出湯温度が設定温度に近付くと加熱能力が抑制され、比較的高効率の運転が可能になる。   On the other hand, in a hot water supply apparatus equipped with a single-stage compression refrigeration cycle, when the hot water temperature approaches the set temperature, the heating capacity is suppressed, and a relatively high efficiency operation becomes possible.

特開2001−241780号公報JP 2001-241780 A

しかしながら、上記従来の2段圧縮機を具備した給湯装置では、2段圧縮であるために単段圧縮冷凍サイクルの給湯装置に比して、加熱能力を抑制する運転が困難であり、その分、運転可能範囲が狭まるという課題がある。   However, in the hot water supply apparatus equipped with the conventional two-stage compressor, since it is two-stage compression, it is difficult to operate to suppress the heating capacity as compared with the hot water supply apparatus of a single-stage compression refrigeration cycle. There is a problem that the operable range is narrowed.

また、従来の給湯装置では、四方弁の切換操作により、冷媒循環方向を加熱運転時とは逆方向へ逆転させる除霜運転を行う場合には、水熱交換器が蒸発器として作用する。   Moreover, in the conventional hot water supply apparatus, when performing the defrost operation which reverses a refrigerant | coolant circulation direction to a reverse direction with the heating operation by switching operation of a four-way valve, a water heat exchanger acts as an evaporator.

このために、この水熱交換器で冷媒が蒸発時に水(湯)から熱を吸収して除霜に使用するので、水熱交換器の水の取出し温度(出湯温度)が低下する虞がある。   For this reason, since the refrigerant absorbs heat from the water (hot water) at the time of evaporation in this water heat exchanger and is used for defrosting, there is a risk that the water extraction temperature (hot water temperature) of the water heat exchanger may be lowered. .

本発明が解決しようとする課題は、運転効率の向上を図りつつ単段圧縮から多段圧縮まで運転範囲の拡大を図ることができる給湯装置を提供することにある。   The problem to be solved by the present invention is to provide a hot water supply apparatus capable of expanding the operation range from single-stage compression to multi-stage compression while improving the operation efficiency.

実施形態に係る給湯装置は、多段圧縮可能に直列に接続された複数の圧縮機、冷媒の循環方向を切換えることにより加熱運転または除霜運転に切換える四方弁、水熱交換器、膨張手段、空気熱交換器を順次冷媒配管により接続して冷媒を循環させる冷媒流路を形成する冷凍サイクルを有する。   A hot water supply apparatus according to an embodiment includes a plurality of compressors connected in series so as to be capable of multistage compression, a four-way valve that switches to a heating operation or a defrosting operation by switching a refrigerant circulation direction, a water heat exchanger, an expansion means, and air It has a refrigeration cycle in which a heat exchanger is sequentially connected by a refrigerant pipe to form a refrigerant flow path for circulating the refrigerant.

また、複数の圧縮機の一部の圧縮運転を停止させたときに、圧縮機の吸込口側へ戻る冷媒を、圧縮運転停止中の圧縮機を迂回させて圧縮運転中の圧縮機の吸込口側へ戻すように冷媒流路の一部を切換える切換手段と、を具備している。   In addition, when the compression operation of a part of the plurality of compressors is stopped, the refrigerant returning to the compressor suction port side bypasses the compressor stopped during the compression operation, and the compressor suction port during the compression operation Switching means for switching a part of the refrigerant flow path so as to return to the side.

第1の実施形態に係る給湯装置の2段加熱運転時の冷凍サイクル図。The refrigerating cycle figure at the time of the two-stage heating operation of the hot water supply apparatus which concerns on 1st Embodiment. 第1の実施形態に係る給湯装置の単段加熱運転時の冷凍サイクル図。The refrigerating cycle figure at the time of the single stage heating operation of the hot water supply apparatus which concerns on 1st Embodiment. 図2で示す第1の実施形態に係る給湯装置の単段加熱運転時のモリエル線図。The Mollier diagram at the time of the single stage heating operation of the water heater according to the first embodiment shown in FIG. 図1で示す第1の実施形態に係る給湯装置の2段加熱運転時のモリエル線図。The Mollier diagram at the time of the two-stage heating operation of the water heater according to the first embodiment shown in FIG. 第1の実施形態に係る給湯装置の単段除霜運転時の冷凍サイクル図。The refrigeration cycle figure at the time of the single stage defrost operation of the hot-water supply apparatus which concerns on 1st Embodiment. 第2の実施形態に係る給湯装置の3段加熱運転時の冷凍サイクル図。The refrigeration cycle figure at the time of the 3 step | paragraph heating operation of the hot water supply apparatus which concerns on 2nd Embodiment. 第2の実施形態に係る給湯装置の単段加熱運転時の冷凍サイクル図。The refrigeration cycle figure at the time of the single stage heating operation of the hot water supply apparatus which concerns on 2nd Embodiment. 第3の実施形態に係る給湯装置の2段除霜運転時の冷凍サイクル図。The refrigeration cycle figure at the time of the two-stage defrost operation of the hot water supply apparatus which concerns on 3rd Embodiment. 第3の実施形態に係る給湯装置の単段除霜運転時の冷凍サイクル図。The refrigeration cycle figure at the time of the single stage defrost operation of the hot-water supply apparatus which concerns on 3rd Embodiment. 第4の実施形態に係る給湯装置の単段加熱運転時の冷凍サイクル図。The refrigeration cycle figure at the time of the single stage heating operation of the hot water supply apparatus which concerns on 4th Embodiment. 第4の実施形態に係る給湯装置の単段除霜運転時の冷凍サイクル図。The refrigeration cycle figure at the time of the single stage defrost operation of the hot-water supply apparatus which concerns on 4th Embodiment. 図8で示す第3の実施形態に係る給湯装置の2段除霜運転時のモリエル線図。The Mollier diagram at the time of the two-stage defrosting operation of the hot water supply device according to the third embodiment shown in FIG. 図9で示す第3の実施形態に係る給湯装置の単段除霜運転時のモリエル線図。The Mollier diagram at the time of the single stage defrosting operation of the water heater according to the third embodiment shown in FIG.

以下、実施形態に係る給湯装置を図面を参照して説明する。なお、複数の図面中、同一又は相当部分には同一符号を付している。   Hereinafter, a hot water supply apparatus according to an embodiment will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same or an equivalent part in several drawings.

[第1の実施形態]
(2段加熱運転)
図1は、第1の実施形態に係る給湯装置1による2段加熱運転時の冷凍サイクル図である。この図1に示すように給湯装置1は、複数台、例えば2台のロータリ圧縮機等の圧縮機2,3を連結管4により直列に接続して2段(多段)圧縮可能に構成している。すなわち、連結管4は、低段側の第1の圧縮機2の冷媒吐出口2aに、高段側の第2の圧縮機3の冷媒吸込口側3bを連結し、その途中に三方弁5を介装している。
[First Embodiment]
(Two-stage heating operation)
FIG. 1 is a refrigeration cycle diagram during a two-stage heating operation by the hot water supply apparatus 1 according to the first embodiment. As shown in FIG. 1, a hot water supply apparatus 1 is configured to be capable of two-stage (multi-stage) compression by connecting a plurality of, for example, two compressors 2 and 3 such as a rotary compressor in series by a connecting pipe 4. Yes. That is, the connecting pipe 4 connects the refrigerant suction port side 3b of the second compressor 3 on the high stage side to the refrigerant discharge port 2a of the first compressor 2 on the low stage side, and the three-way valve 5 in the middle thereof. Is intervening.

そして、給湯装置1は、上記第2の圧縮機3の吐出口3a、第2の四方弁6、水熱交換器7の凝縮器7a、第1の膨張弁8、気液分離器9、第2の膨張弁10、熱交換促進用のファン11aを備えた空気熱交換器11、切換手段の一例である第1の四方弁12、第1の圧縮機2の吸込口側2bを冷媒配管13により順次接続し、この冷媒配管13に冷媒を循環させる冷媒循環流路を構成している。   The hot water supply device 1 includes a discharge port 3a of the second compressor 3, a second four-way valve 6, a condenser 7a of the water heat exchanger 7, a first expansion valve 8, a gas-liquid separator 9, a second 2 expansion valve 10, air heat exchanger 11 provided with heat exchange promoting fan 11a, first four-way valve 12 as an example of switching means, and suction port side 2b of first compressor 2 are connected to refrigerant pipe 13 Are connected in sequence to form a refrigerant circulation passage for circulating the refrigerant through the refrigerant pipe 13.

第2の四方弁6はこの冷媒循環流路の循環方向を切り換えることにより、冷凍サイクルを加熱運転または除霜運転に切り換えることができる。   The second four-way valve 6 can switch the refrigeration cycle to the heating operation or the defrosting operation by switching the circulation direction of the refrigerant circulation passage.

すなわち、図1に示すように、第2の四方弁6は第2(高段側)の圧縮機3から吐出された吐出冷媒の流路を図中実線矢印に示すように水熱交換器7の凝縮器7aの入口側へ切り換えることにより、冷凍サイクルを加熱運転することができる。   That is, as shown in FIG. 1, the second four-way valve 6 is configured such that the flow path of the discharged refrigerant discharged from the second (higher stage) compressor 3 is the water heat exchanger 7 as shown by the solid line arrow in the figure. By switching to the inlet side of the condenser 7a, the refrigeration cycle can be heated.

また、図5中、破線矢印に示すように、第1,第2の四方弁12,6を切り換えて第2の圧縮機3からの吐出冷媒を空気熱交換器11に送ることで、冷媒の循環方向を、加熱運転の循環方向とは逆方向に逆転させることにより除霜運転することができる。   In addition, as shown by broken line arrows in FIG. 5, the refrigerant discharged from the second compressor 3 is switched to the air heat exchanger 11 by switching the first and second four-way valves 12 and 6, thereby The defrosting operation can be performed by reversing the circulation direction in the direction opposite to the circulation direction of the heating operation.

図1に示すように水熱交換器7は、高温高圧ガス冷媒を通す凝縮器7aを有し、この凝縮器7aへ流入される高温高圧のガス冷媒の凝縮潜熱の放熱により、通水路7bの給水を湯に沸き上げる加熱器である。すなわち、水熱交換器7は、この通水路7bを流れる通水と、凝縮器7aを流れる冷媒とを熱交換可能に構成されている。   As shown in FIG. 1, the water heat exchanger 7 has a condenser 7a through which the high-temperature and high-pressure gas refrigerant is passed. By the heat radiation of the condensation latent heat of the high-temperature and high-pressure gas refrigerant flowing into the condenser 7a, the water heat exchanger 7a It is a heater that boils water into hot water. That is, the water heat exchanger 7 is configured to exchange heat between water flowing through the water passage 7b and refrigerant flowing through the condenser 7a.

通水路7bは、通水入口と通水出口である出湯口を有し、その通水入口に給水管14を接続する一方、出湯口に出湯管15を接続している。給水管14は、その一端に図示省略の給水源を接続する一方、水熱交換器7の通水入口近傍に、給水の温度を検出する給水温度センサ16を設けている。   The water passage 7b has a water inlet and a water outlet that is a water outlet, and the water supply pipe 14 is connected to the water inlet, while the hot water pipe 15 is connected to the outlet. One end of the water supply pipe 14 is connected to a water supply source (not shown), and a water supply temperature sensor 16 for detecting the temperature of the water supply is provided in the vicinity of the water inlet of the water heat exchanger 7.

給湯管15は、その一端に給湯口を設ける一方、水熱交換器7の出湯口近傍に、出湯温度を検出する出湯温度センサ17を設けている。   The hot water supply pipe 15 is provided with a hot water supply port at one end thereof, and a hot water temperature sensor 17 for detecting the hot water temperature is provided in the vicinity of the hot water outlet of the water heat exchanger 7.

気液分離器9は、その上端内面に開口する開口部18aを有するインジェクション管18を具備している。このインジェクション管18は、その冷媒出口端を、第1,第2の四方弁12,6を介して第2の圧縮機3の冷媒吸込口側3bに接続し、第1の四方弁12と気液分離器9の間において、インジェクション管18に液冷媒温度センサ19を設けている。   The gas-liquid separator 9 includes an injection pipe 18 having an opening 18a that opens to the inner surface of the upper end. The injection pipe 18 connects the refrigerant outlet end to the refrigerant suction port side 3b of the second compressor 3 via the first and second four-way valves 12 and 6, and connects the first four-way valve 12 and the gas inlet. A liquid refrigerant temperature sensor 19 is provided in the injection pipe 18 between the liquid separators 9.

第1の四方弁12はインジェクション管18からのガス冷媒を第2の四方弁6へ案内し、空気熱交換器11からのガス冷媒を第1の圧縮機2の冷媒吸込口側2bへ案内する機能を有する。   The first four-way valve 12 guides the gas refrigerant from the injection pipe 18 to the second four-way valve 6, and guides the gas refrigerant from the air heat exchanger 11 to the refrigerant inlet side 2 b of the first compressor 2. It has a function.

また、図2,図5に示すように第1の四方弁12は、第1,第2の圧縮機2,3のうち一方、例えば第1の圧縮機2を圧縮運転を停止させる場合には、この停止中の圧縮機2を、冷凍サイクルの冷媒循環流路から切り離すように冷媒流路を切り換える機能を有する。   As shown in FIGS. 2 and 5, the first four-way valve 12 is used when one of the first and second compressors 2 and 3, for example, the first compressor 2, stops the compression operation. The compressor 2 that has been stopped has a function of switching the refrigerant flow path so as to be disconnected from the refrigerant circulation flow path of the refrigeration cycle.

したがって、図2に示すように、例えば第1の圧縮機2の圧縮運転を停止させる場合は、第1の四方弁12により空気熱交換器11から流出したガス冷媒を、停止中の第1の圧縮機2を迂回させて、運転中の第2の圧縮機3の吸込口側3bへ案内するように冷媒循環流路を切り換ることができる。   Therefore, as shown in FIG. 2, for example, when the compression operation of the first compressor 2 is stopped, the gas refrigerant flowing out of the air heat exchanger 11 by the first four-way valve 12 is changed to the first stopped state. The refrigerant circulation channel can be switched so as to bypass the compressor 2 and guide it to the suction port side 3b of the second compressor 3 in operation.

そして、液冷媒温度センサ19、給水温度センサ16および出湯温度センサ17は制御器20に図示省略の信号線を介して電気的に接続され、液冷媒温度、給水温度および出湯温度が制御器20により常時監視される。   The liquid refrigerant temperature sensor 19, the feed water temperature sensor 16, and the tapping temperature sensor 17 are electrically connected to the controller 20 via a signal line (not shown), and the liquid refrigerant temperature, the feed water temperature, and the tapping temperature are controlled by the controller 20. Always monitored.

制御器20は、マイクロコンピュータ等により構成され、CPU、ROM、RAMやメモリーを具備しており、第1,第2の圧縮機2,3およびファン11aの図示しない各インバータに電気的に接続され、これらの単位時間当りの回転数を、給湯温度の設定値等に基づいて制御する。   The controller 20 is constituted by a microcomputer or the like, and includes a CPU, a ROM, a RAM, and a memory, and is electrically connected to each inverter (not shown) of the first and second compressors 2 and 3 and the fan 11a. The number of revolutions per unit time is controlled based on the set value of the hot water supply temperature.

また、制御器20は、三方弁5と第1,第2の膨張弁8,10に図示省略の信号線を介して電気的に接続され、これらの開閉ないし開度を制御する。さらに、制御器20は、第1,第2の四方弁12,6に信号線を介して電気的に接続され、これら第1,第2の四方弁12,6の切換操作を制御して加熱運転または除霜運転を行う。   The controller 20 is electrically connected to the three-way valve 5 and the first and second expansion valves 8 and 10 via signal lines (not shown) to control the opening / closing or opening of these valves. Further, the controller 20 is electrically connected to the first and second four-way valves 12 and 6 through signal lines, and controls the switching operation of the first and second four-way valves 12 and 6 to heat them. Run or defrost.

図1はこのように構成された給湯装置1の2段加熱運転時の冷凍サイクルを示している。   FIG. 1 shows a refrigeration cycle during a two-stage heating operation of the water heater 1 configured as described above.

すなわち、このとき、制御器20は、冷凍サイクル内を循環する冷媒の循環方向が図1中実線方向に循環するように第1,第2の四方弁12,6を切換操作する。   That is, at this time, the controller 20 switches the first and second four-way valves 12 and 6 so that the circulation direction of the refrigerant circulating in the refrigeration cycle circulates in the solid line direction in FIG.

これにより、第1の圧縮機2により圧縮された高温高圧の吐出冷媒は、開弁中の三方弁5と連結管4に案内されて吸込口側3bを経て第2の圧縮機3へ導入され、ここでさらに圧縮されて2段圧縮される。このために、冷媒の温度と圧力が2段階高くなる。   As a result, the high-temperature and high-pressure discharged refrigerant compressed by the first compressor 2 is guided to the opened three-way valve 5 and the connecting pipe 4 and introduced into the second compressor 3 through the suction port side 3b. Here, it is further compressed and compressed in two stages. For this reason, the temperature and pressure of the refrigerant increase by two levels.

この2段圧縮された高温高圧の吐出冷媒は、第2の四方弁6により案内されて水熱交換器7の凝縮器7aへ流入し、ここで放熱して通水路7bの通水を加熱し、湯に沸き上げる。この湯は、出湯管15により例えば図示しない貯湯タンク内へ出湯される。この貯湯タンク内の貯湯は、再び給水管14を経て水熱交換器7の通水路7bへ給水され、凝縮器7aを流れる高温高圧の冷媒の凝縮潜熱により加熱される。この加熱の繰返しにより貯湯タンク内の貯湯温度が所要の設定温度まで沸き上げられる。   The two-stage compressed high-temperature and high-pressure discharged refrigerant is guided by the second four-way valve 6 and flows into the condenser 7a of the water heat exchanger 7, where it dissipates heat and heats the water flowing through the water passage 7b. Boil in hot water. The hot water is discharged into a hot water storage tank (not shown) through a hot water discharge pipe 15, for example. The hot water in the hot water storage tank is supplied again to the water passage 7b of the water heat exchanger 7 through the water supply pipe 14, and is heated by the condensation latent heat of the high-temperature and high-pressure refrigerant flowing through the condenser 7a. By repeating this heating, the hot water storage temperature in the hot water storage tank is raised to the required set temperature.

凝縮器7aで放熱して凝縮液化した高温高圧の液冷媒は、第1の膨張弁8で減圧され、かつ所定流量に制御されてから気液分離器9で気液に分離される。ここで分離された液分は第2の膨張弁10でさらに減圧され、かつ所定流量に制御されてから空気熱交換器11に流入し、ここで蒸発して外気から吸熱して気化する。ここで気化したガス冷媒は、第1の四方弁12により第1の圧縮機2の吸込口側2bへ案内され、第1の圧縮機2内へ吸い込まれて再び圧縮され、さらに第2の圧縮機3により圧縮されて、2段圧縮される。   The high-temperature and high-pressure liquid refrigerant radiated by the condenser 7a and condensed and liquefied is decompressed by the first expansion valve 8 and controlled to a predetermined flow rate, and then separated into gas and liquid by the gas-liquid separator 9. The separated liquid is further depressurized by the second expansion valve 10 and controlled to a predetermined flow rate, and then flows into the air heat exchanger 11 where it evaporates and absorbs heat from the outside air to be vaporized. The gas refrigerant thus vaporized is guided to the suction port side 2b of the first compressor 2 by the first four-way valve 12, and is sucked into the first compressor 2 and compressed again, and further the second compression. Compressed by the machine 3 and compressed in two stages.

一方、気液分離器9で分離された気相分はインジェクション管18、第1,第2の四方弁12,6、開弁中の三方弁5および連結管4を順次経て、吸込口側3bから第2の圧縮機3内へ吸い込まれ、再び圧縮される。   On the other hand, the gas phase component separated by the gas-liquid separator 9 sequentially passes through the injection pipe 18, the first and second four-way valves 12, 6, the opened three-way valve 5 and the connecting pipe 4, and then the suction port side 3b. Are sucked into the second compressor 3 and compressed again.

したがって、この2段加熱運転によれば、第1,第2の2台の圧縮機2,3により2段圧縮するので、高段側の第2の圧縮機3から吐出される高温高圧のガス冷媒の圧力と温度を単段圧縮の場合よりも増大させることができる。このために、水熱交換器7の凝縮器7aにおける凝縮潜熱を増大させることができるので、水熱交換器7の湯沸き上げ能力の増大を図ることができる。その結果、出湯温度の高温化と、所要温度に沸き上げるための時間の短縮を図ることができる。   Therefore, according to this two-stage heating operation, two-stage compression is performed by the first and second two compressors 2 and 3, so that the high-temperature and high-pressure gas discharged from the second compressor 3 on the higher stage side. The pressure and temperature of the refrigerant can be increased as compared with the single-stage compression. For this reason, since the condensation latent heat in the condenser 7a of the water heat exchanger 7 can be increased, the hot water boiling capacity of the water heat exchanger 7 can be increased. As a result, it is possible to increase the temperature of the tapping water and shorten the time for boiling up to the required temperature.

[単段加熱運転]
図2は図1で示す第1の実施形態に係る給湯装置1による単段加熱運転時の冷凍サイクル図である。この単段加熱は、図1で示す2段加熱運転の第1,第2の圧縮機2,3の一方、例えば低段側の第1の圧縮機2の圧縮運転を停止(OFF)し、第2の圧縮機3のみにより単段圧縮する運転方法である。図2以下の図において、図中破線で示す配管は冷媒が流れない不通流路を示し、破線矢印は除霜運転時の冷媒の循環方向を示している。
[Single stage heating operation]
FIG. 2 is a refrigeration cycle diagram at the time of single-stage heating operation by the hot water supply apparatus 1 according to the first embodiment shown in FIG. In this single stage heating, one of the first and second compressors 2 and 3 in the two stage heating operation shown in FIG. 1, for example, the compression operation of the first compressor 2 on the lower stage side is stopped (OFF), This is an operation method in which single-stage compression is performed only by the second compressor 3. In the drawings after FIG. 2, pipes indicated by broken lines in the drawings indicate non-passage channels through which the refrigerant does not flow, and broken line arrows indicate the refrigerant circulation direction during the defrosting operation.

そして、この単段加熱運転において、例えば低段側の第1の圧縮機2の圧縮運転を停止させる場合は、第1の四方弁12の切換操作により、空気熱交換器11のガス冷媒出口側を、圧縮運転中の高段側の第2の圧縮機3の吸込口側3bに連通させ、冷媒が圧縮運転停止中の第1の圧縮機2内へ流入しないように迂回させる制御が行われる。   In this single-stage heating operation, for example, when the compression operation of the first compressor 2 on the lower stage side is stopped, the gas refrigerant outlet side of the air heat exchanger 11 is switched by the switching operation of the first four-way valve 12. Is connected to the suction port side 3b of the second compressor 3 on the higher stage side during the compression operation, and control is performed to bypass the refrigerant so as not to flow into the first compressor 2 during the compression operation stop. .

すなわち、制御器20により、第1の圧縮機2の圧縮運転を停止させ、第1の四方弁12を切換操作させることにより、2段圧縮加熱(圧縮)運転を単段加熱(圧縮)運転に簡単かつ迅速に切り換えることができる。つまり、2段圧縮冷凍サイクルであっても、加熱能力を簡単かつ迅速に抑制(低減)することができる。   That is, the controller 20 stops the compression operation of the first compressor 2 and switches the first four-way valve 12 to change the two-stage compression heating (compression) operation to a single-stage heating (compression) operation. Easy and fast switching. That is, even in the two-stage compression refrigeration cycle, the heating capacity can be suppressed (reduced) easily and quickly.

図3はこの単段加熱運転時のモリエル線図Aであり、図4は上記2段加熱運転時のモリエル線図Bである。これら図3,図4中、破線は第1,第2の圧縮機2,3の回転数制御により加熱能力を抑制する場合のモリエル線図をそれぞれ示す。   FIG. 3 is a Mollier diagram A during the single-stage heating operation, and FIG. 4 is a Mollier diagram B during the two-stage heating operation. 3 and 4, broken lines indicate Mollier diagrams in the case where the heating capacity is suppressed by controlling the rotational speeds of the first and second compressors 2 and 3, respectively.

すなわち、第1,第2の圧縮機2,3の回転数制御により加熱能力を抑制すると、冷凍サイクルを循環する冷媒循環流量を減少させるので、断熱効率が低下する。   That is, if the heating capacity is suppressed by controlling the rotational speeds of the first and second compressors 2 and 3, the refrigerant circulation flow rate circulating in the refrigeration cycle is reduced, so that the adiabatic efficiency is lowered.

このために、高圧圧力が低下する一方、低圧圧力が上昇する。その結果、圧縮比が低下する。   For this reason, the high pressure is decreased while the low pressure is increased. As a result, the compression ratio decreases.

すなわち、図3,図4に示すように単段加熱運転時Aと2段加熱運転時Bの凝縮圧力P1と蒸発圧力P2をそれぞれ同じ圧力だとすると、2段加熱運転時Bの圧縮機1台に掛かる圧縮比は単段加熱運転時Aの圧縮機1台に掛かる圧縮比よりも小さくなる。   That is, as shown in FIGS. 3 and 4, if the condensing pressure P1 and the evaporation pressure P2 in the single stage heating operation A and the two stage heating operation B are the same pressure, respectively, one compressor in the two stage heating operation B The compression ratio applied is smaller than the compression ratio applied to one compressor A during single-stage heating operation.

したがって、これら両運転時に回転数制御による加熱能力を抑制すると、2段加熱運転時Bの方が圧縮機1台に必要な圧縮比が確保できなくなる。このために、加熱能力を抑制した運転では単段加熱運転の方が望ましい。   Therefore, if the heating capacity by the rotational speed control is suppressed during these two operations, the compression ratio necessary for one compressor cannot be ensured during the two-stage heating operation B. For this reason, the single-stage heating operation is more preferable in the operation in which the heating capacity is suppressed.

[単段除霜運転]
図5は図1で示す第1の実施形態に係る給湯装置1による単段除霜運転時の冷凍サイクル図である。この単段除霜運転では第1の圧縮機2の圧縮運転が停止(OFF)し、第2の四方弁6が除霜運転に切り換えられ、圧縮運転停止中の第1の圧縮機2を冷媒がバイパス(迂回)するように冷媒流路が第1の四方弁12により切り換えられる。
[Single-stage defrosting operation]
FIG. 5 is a refrigeration cycle diagram during the single-stage defrosting operation by the hot water supply apparatus 1 according to the first embodiment shown in FIG. In this single-stage defrosting operation, the compression operation of the first compressor 2 is stopped (OFF), the second four-way valve 6 is switched to the defrosting operation, and the first compressor 2 that has stopped the compression operation is refrigerated. Is switched by the first four-way valve 12 so as to be bypassed.

これにより、高段側の第2の圧縮機3から吐出された高温高圧のガス冷媒が第2,第1の四方弁6,12により案内されて空気熱交換器11内へ流入し、ここでガス冷媒の凝縮潜熱の放熱により、空気熱交換器11の着霜を加熱して除霜する。   As a result, the high-temperature and high-pressure gas refrigerant discharged from the second compressor 3 on the higher stage side is guided by the second and first four-way valves 6 and 12 and flows into the air heat exchanger 11, where The frost formation of the air heat exchanger 11 is heated and defrosted by the radiation of the latent heat of condensation of the gas refrigerant.

空気熱交換器11で凝縮して液化した液冷媒は第2の膨張弁10で減圧され、かつ所要流量に調整されてから気液分離器9内へ流入し、ここで気液に分離される。   The liquid refrigerant condensed and liquefied by the air heat exchanger 11 is decompressed by the second expansion valve 10 and adjusted to a required flow rate, and then flows into the gas-liquid separator 9 where it is separated into gas and liquid. .

そして、液冷媒は第1の膨張弁8により減圧され、かつ所要流量に調整されてから水熱交換器7の凝縮器7a内に流入し、ここで蒸発して、通水路7bを通水する給水または湯から吸熱し、ガス冷媒として第2の四方弁6と開弁中の三方弁5および連結管4により順次案内されて吸込口側3bから第2の圧縮機3内へ吸い込まれ、再び第2の圧縮機3により圧縮される。このとき、運転停止中の第1の圧縮機2は上記冷媒循環路から切り離されている。   The liquid refrigerant is decompressed by the first expansion valve 8 and adjusted to a required flow rate, and then flows into the condenser 7a of the water heat exchanger 7, where it evaporates and passes through the water passage 7b. It absorbs heat from the feed water or hot water, and is sequentially guided by the second four-way valve 6, the opened three-way valve 5, and the connecting pipe 4 as a gas refrigerant, and is sucked into the second compressor 3 from the suction port side 3 b. It is compressed by the second compressor 3. At this time, the first compressor 2 whose operation is stopped is disconnected from the refrigerant circulation path.

[第2の実施形態]
(3段加熱運転)
図6は第2の実施形態に係る給湯装置1Aにより、第1〜第3の3台の圧縮機2,3,21により3段加熱運転する場合の冷凍サイクル図である。
[Second Embodiment]
(3-stage heating operation)
FIG. 6 is a refrigeration cycle diagram when a three-stage heating operation is performed by the first to third compressors 2, 3, and 21 by the hot water supply apparatus 1 </ b> A according to the second embodiment.

この給湯装置1Aは、図1で示す第1の実施形態に係る給湯装置1に、第3の圧縮機21、第2の連結管22、第2の三方弁23、吐出側配管24、第3の四方弁25、第3の膨張弁26、第2の気液分離器27および第2のインジェクション管28を新たに設け、第1,第2,第3の3台の圧縮機2,3,21により3段加熱運転可能に構成した点に特徴があり、これ以外の構成は図1で示す給湯装置1と同様である。   This hot water supply apparatus 1A includes a third compressor 21, a second connection pipe 22, a second three-way valve 23, a discharge side pipe 24, a third hot water supply apparatus 1 according to the first embodiment shown in FIG. The four-way valve 25, the third expansion valve 26, the second gas-liquid separator 27, and the second injection pipe 28 are newly provided, and the first, second, and third three compressors 2, 3, 21 is characterized in that it is configured to be capable of three-stage heating operation, and the other configuration is the same as that of the hot water supply apparatus 1 shown in FIG.

このように構成された給湯装置1Aにより、第1,第2,第3の3台の圧縮機2,3,21により加熱運転する場合は、制御器20が第1,第2,第3の四方弁12,6,25を加熱運転側に切り換える。   When the heating operation is performed by the first, second, and third three compressors 2, 3, and 21 by the hot water supply device 1 </ b> A configured as described above, the controller 20 has the first, second, and third units. The four-way valves 12, 6, 25 are switched to the heating operation side.

これにより、第1〜第3の3台の圧縮機2,3,21により3段圧縮された高温高圧のガス冷媒は高段側の第3の圧縮機21の吐出側21aから吐出側配管24を通って第3の四方弁25へ流入し、ここで水熱交換器7の凝縮器7aへ案内される。   Thus, the high-temperature and high-pressure gas refrigerant compressed in three stages by the first to third compressors 2, 3, 21 is discharged from the discharge side 21 a of the third compressor 21 on the high stage side to the discharge side pipe 24. And flows into the third four-way valve 25, where it is guided to the condenser 7 a of the water heat exchanger 7.

凝縮器7aでは、高温高圧のガス状冷媒が凝縮して液化し、その凝縮潜熱により、通水路7b内の通水を加熱して湯に沸き上げる。   In the condenser 7a, the high-temperature and high-pressure gaseous refrigerant condenses and liquefies, and the condensed latent heat heats the water flow in the water flow path 7b to bring it to hot water.

この凝縮器7aで液化した液冷媒は、この後、第1の膨張弁8で所定の圧力に減圧され、かつ所定流量に調整されてから第1の気液分離器9内へ流入し、ここで気液に分離される。   The liquid refrigerant liquefied by the condenser 7a is then depressurized to a predetermined pressure by the first expansion valve 8 and adjusted to a predetermined flow rate, and then flows into the first gas-liquid separator 9, where It is separated into gas and liquid.

その液分は、さらに第3の膨張弁26で所定の圧力と流量に制御されてから第2の気液分離器27内へ流入し、ここで再び気液に分離される。   The liquid component is further controlled to a predetermined pressure and flow rate by the third expansion valve 26 and then flows into the second gas-liquid separator 27, where it is separated into gas and liquid again.

ここで分離された液分は、さらに第2の膨張弁10により所定の圧力と流量に制御されてから、空気熱交換器11内へ流入される。ここで液冷媒は、その蒸発潜熱により外気から熱を吸熱して気化する。ここで気化したガス冷媒は第2の四方弁6と第1の四方弁12により順次案内されて吸込口側2bから第1の圧縮機2内へ吸い込まれる。   The liquid component separated here is further controlled to a predetermined pressure and flow rate by the second expansion valve 10 and then flows into the air heat exchanger 11. Here, the liquid refrigerant is vaporized by absorbing heat from the outside air due to the latent heat of evaporation. The gas refrigerant thus vaporized is sequentially guided by the second four-way valve 6 and the first four-way valve 12 and is sucked into the first compressor 2 from the suction port side 2b.

この吸込ガス冷媒は、第1の圧縮機2により所定の圧縮比で圧縮されてから、開弁中の三方弁5と連結管4を通って第2の圧縮機3で再度、所定圧縮比で圧縮される。   The suction gas refrigerant is compressed at a predetermined compression ratio by the first compressor 2, passes through the open three-way valve 5 and the connecting pipe 4, and again at the predetermined compression ratio by the second compressor 3. Compressed.

こうして2段圧縮された高温高圧のガス冷媒は、さらに、開弁中の第2の三方弁23と第2の連結管22を通って第3の圧縮機21へ流入され、ここでさらに所定の圧縮比で圧縮される。すなわち、3段圧縮される。   The high-temperature and high-pressure gas refrigerant compressed in two stages in this way further flows into the third compressor 21 through the second three-way valve 23 and the second connecting pipe 22 that are being opened. Compressed at the compression ratio. That is, three-stage compression is performed.

こうして3段圧縮された高温高圧のガス冷媒は、再び水熱交換器7側へ吐出される。この後は、上記作用が繰り返され、水熱交換器7の通水路7bの通水が加熱され、所定温度の湯に沸き上げられる。   The high-temperature and high-pressure gas refrigerant thus compressed in three stages is again discharged to the water heat exchanger 7 side. Thereafter, the above operation is repeated, and the water flow in the water flow path 7b of the water heat exchanger 7 is heated and boiled up to hot water of a predetermined temperature.

したがって、この給湯装置1Aによれば、第1〜第3の3台の圧縮機2,3,21による3段圧縮により3段加熱運転するので、図1で示す2段加熱運転よりも湯の沸き上げ能力をさらに増大させることができる。このために、出湯温度の高温化とその沸き上げの迅速性の向上を図ることができる。   Therefore, according to this hot water supply apparatus 1A, since the three-stage heating operation is performed by the three-stage compression by the first to third compressors 2, 3 and 21, the hot water is more than the two-stage heating operation shown in FIG. The boiling capacity can be further increased. For this reason, it is possible to increase the temperature of the hot water and improve the speed of boiling.

[単段加熱運転]
図7は図6で示す第2の実施形態に係る給湯装置1Aによる単段加熱運転時の冷凍サイクル図である。
[Single stage heating operation]
FIG. 7 is a refrigeration cycle diagram during single-stage heating operation by the hot water supply apparatus 1A according to the second embodiment shown in FIG.

この給湯装置1Aによる単段加熱運転は、第1〜第3の3台の圧縮機2,3,21のうち、第1,第2の圧縮機2,3の圧縮運転を停止(OFF)し、高段側の第3の圧縮機21のみの単段により加熱運転する運転方法である。   The single stage heating operation by the hot water supply apparatus 1A stops (OFF) the compression operation of the first and second compressors 2 and 3 among the first to third compressors 2 and 3 and 21. This is an operation method in which the heating operation is performed by a single stage of only the third compressor 21 on the high stage side.

この単段加熱運転では、制御器20による制御により、第3の四方弁25が加熱運転側に切り換えられ、第1,第2の四方弁12,6は、圧縮運転停止中の第1,第2の圧縮機2,3を冷凍サイクルの冷媒循環流路から切り離するように切り換えられる。   In this single-stage heating operation, the third four-way valve 25 is switched to the heating operation side under the control of the controller 20, and the first and second four-way valves 12 and 6 are the first and first ones in which the compression operation is stopped. The two compressors 2 and 3 are switched so as to be disconnected from the refrigerant circulation passage of the refrigeration cycle.

このために、図7中破線で示す配管のように、第1,第2のインジェクション管18,28は冷媒を流さない不通配管となり、第1,第2の気液分離器9,27で気液分離された気相分のガス冷媒は、圧縮運転停止中の第1,第2の圧縮機2,3への流入が阻止される。   For this reason, as shown by the broken lines in FIG. 7, the first and second injection pipes 18 and 28 are non-passing pipes that do not allow the refrigerant to flow, and the first and second gas-liquid separators 9 and 27 The gas refrigerant for the gas phase separated from the liquid is prevented from flowing into the first and second compressors 2 and 3 during the stop of the compression operation.

また、空気熱交換器11で気化したガス冷媒も、第1,第2の四方弁12,6による冷媒流路の切換えにより、第1,第2の圧縮機2,3をバイパス(迂回)し、運転中の第3の圧縮機21のみに戻される。   The gas refrigerant vaporized by the air heat exchanger 11 also bypasses (bypasses) the first and second compressors 2 and 3 by switching the refrigerant flow paths by the first and second four-way valves 12 and 6. Returning to the operating third compressor 21 only.

したがって、この給湯装置1Aによれば、第1〜第3の圧縮機2,3,21の3台の運転から、2台の圧縮機、例えば2,3の運転を停止させて1台のみを運転させることにより、3台の多段加熱運転から単段加熱運転へ簡単に加熱能力抑制運転を行うことができる。これにより、運転範囲の拡大を図ることができる。   Therefore, according to this hot water supply apparatus 1A, from the operation of three of the first to third compressors 2, 3 and 21, two compressors, for example, the operation of 2, 3 are stopped, and only one unit is stopped. By operating, it is possible to easily perform the heating capacity suppressing operation from the three multi-stage heating operation to the single-stage heating operation. Thereby, the operation range can be expanded.

しかも、この加熱能力抑制運転は第1〜第3の圧縮機2,3,21の回転数制御は行わないので、運転効率の低下を抑制できる。   In addition, since this heating capacity suppression operation does not perform the rotational speed control of the first to third compressors 2, 3, and 21, it is possible to suppress a decrease in operating efficiency.

[第3の実施形態]
(第1の単段除霜運転)
図8は、図1で示す第1の実施形態に係る給湯装置1による第1の単段除霜運転時の冷凍サイクル図である。
[Third Embodiment]
(First single-stage defrosting operation)
FIG. 8 is a refrigeration cycle diagram during the first single-stage defrosting operation by the hot water supply apparatus 1 according to the first embodiment shown in FIG. 1.

この給湯装置1による単段除霜運転は、第1,第2の2台の圧縮機2,3のうち一方、例えば低段側の第1の圧縮機2の圧縮運転を停止(OFF)して巻線加熱で運転し、高段側の第2の圧縮機3のみが単段により除霜運転する方法である。   The single-stage defrosting operation by the hot water supply device 1 stops (OFF) the compression operation of one of the first and second compressors 2 and 3, for example, the first compressor 2 on the lower stage side. In this method, only the second compressor 3 on the higher stage side is defrosted by a single stage.

この第1の単段除霜運転では、制御器20による制御により、第1,第2の四方弁12,6が除霜運転側に切り換えられ、第1の圧縮機2の圧縮運転は停止されて巻線加熱運転に切り換えられる。これにより、第1の圧縮機2は、圧縮運転が停止されているが、巻線加熱で運転されているので、冷凍サイクルの冷媒循環流路からは切り離れずに、吸込側流路の一部を形成している。   In the first single-stage defrosting operation, the first and second four-way valves 12 and 6 are switched to the defrosting operation side under the control of the controller 20, and the compression operation of the first compressor 2 is stopped. To switch to winding heating operation. Thereby, although the compression operation of the first compressor 2 is stopped, the first compressor 2 is operated by winding heating. Therefore, the first compressor 2 is not separated from the refrigerant circulation passage of the refrigeration cycle. Forming part.

巻線加熱運転は第1の圧縮機2の巻線に回転磁界を発生させない電気を通電して、ロータを回転させずに巻線のみを通電加熱するものである。このために、第1の圧縮機2は圧縮運転されないが、その筺体の密閉容器内を冷媒が通る際に巻線加熱により加熱することができる。   In the winding heating operation, electricity that does not generate a rotating magnetic field is applied to the windings of the first compressor 2, and only the windings are energized and heated without rotating the rotor. For this reason, the first compressor 2 is not compressed, but can be heated by winding heating when the refrigerant passes through the sealed container of the casing.

したがって、高段側の第2の圧縮機3により圧縮機されて、その吐出口3aから吐出された高温高圧のガス冷媒は、冷媒配管13を通って第2,第1の四方弁6,12により順次案内されて空気熱交換器11内へ流入し、ここで、凝縮して液化すると共に、その凝縮潜熱の放熱により着霜を加熱して除霜する。   Therefore, the high-temperature and high-pressure gas refrigerant that has been compressed by the second compressor 3 on the higher stage side and discharged from the discharge port 3a passes through the refrigerant pipe 13 and the second and first four-way valves 6 and 12. Are sequentially guided to flow into the air heat exchanger 11, where they are condensed and liquefied, and the frost is heated and defrosted by the radiation of the condensed latent heat.

この空気熱交換器11で凝縮液化した液冷媒は、第2の膨張弁10で減圧されてから気液分離器9で気液に分離される。ここで分離された気相分のガス状冷媒は、インジェクション管18を経て、第1の四方弁12により案内されて圧縮運転停止中、かつ、巻線加熱運転中の第1の圧縮機2内を通る際に加熱されてから、第2の圧縮機3内へ吸い込まれる。   The liquid refrigerant condensed and liquefied by the air heat exchanger 11 is depressurized by the second expansion valve 10 and then separated into gas and liquid by the gas-liquid separator 9. The gaseous refrigerant separated here passes through the injection pipe 18 and is guided by the first four-way valve 12 to stop the compression operation and in the first compressor 2 during the winding heating operation. And is sucked into the second compressor 3 after being heated.

したがって、運転中の第2の圧縮機3へ吸い込まれる直前のガス状冷媒を巻線加熱運転中の第1の圧縮機2により加熱するので、その吸込ガス冷媒の温度を高めることができる。その結果、第2の圧縮機3の吐出冷媒の温度と圧力を高めることができるので、空気熱交換器11内での凝縮潜熱の増大を図ることができる。このために、除霜能力の増大を図ることができ、その分除霜時間の短縮を図ることができる。   Accordingly, since the gaseous refrigerant immediately before being sucked into the second compressor 3 during operation is heated by the first compressor 2 during the winding heating operation, the temperature of the suction gas refrigerant can be increased. As a result, since the temperature and pressure of the refrigerant discharged from the second compressor 3 can be increased, the latent heat of condensation in the air heat exchanger 11 can be increased. For this reason, the defrosting capability can be increased, and the defrosting time can be shortened accordingly.

また、第2の圧縮機3の吸込ガスを加熱することにより、その液分を気化させることができるので、液バックによる第2の圧縮機3の損傷を未然に防止できる。   Moreover, since the liquid component can be vaporized by heating the suction gas of the 2nd compressor 3, the damage of the 2nd compressor 3 by a liquid back can be prevented beforehand.

図12はこの第3の実施形態に係る単段除霜運転時のモリエル線図である。図12中、点c2−d2は第2の圧縮機3の断熱圧縮を示し、d2−i2は空気熱交換器11での凝縮を、i2−f2は第1の膨張弁8の減圧を、f2−g2,j2は気液分離器9での気液分離を、j2−c2は第1の圧縮機2の巻線加熱により加熱されてから第1の圧縮機2へ循環する行程をそれぞれ示している。   FIG. 12 is a Mollier diagram at the time of single-stage defrosting operation according to the third embodiment. In FIG. 12, point c2-d2 indicates adiabatic compression of the second compressor 3, d2-i2 indicates condensation in the air heat exchanger 11, i2-f2 indicates pressure reduction of the first expansion valve 8, and f2 -G2, j2 indicate the gas-liquid separation in the gas-liquid separator 9, and j2-c2 indicates the process of circulating to the first compressor 2 after being heated by the winding heating of the first compressor 2. Yes.

(第2の単段除霜運転)
図9は図1で示す第1の実施形態に係る給湯装置1による第2の単段除霜運転時の冷凍サイクル図である。
(Second single-stage defrosting operation)
FIG. 9 is a refrigeration cycle diagram in the second single-stage defrosting operation by the hot water supply apparatus 1 according to the first embodiment shown in FIG.

この第2の単段除霜運転の主な特徴は、上記図8で示す第1の単段除霜運転に対し、水熱交換器7の通水路7bを通水する水(湯)の熱量を空気熱交換器11の除霜に利用する点にある。これ以外は、上記第1の単段除霜運転と同様であるので、その重複した説明は省略する。   The main feature of the second single-stage defrosting operation is that the amount of heat of hot water flowing through the water passage 7b of the water heat exchanger 7 with respect to the first single-stage defrosting operation shown in FIG. Is used for defrosting the air heat exchanger 11. Other than this, since it is the same as the first single-stage defrosting operation, the redundant description is omitted.

すなわち、制御器20により第1の膨張弁8の開度を制御して、気液分離器9で分離された液冷媒を、水熱交換器7の凝縮器7aへ循環させる(図13の点g3−e3)。   That is, the controller 20 controls the opening degree of the first expansion valve 8 to circulate the liquid refrigerant separated by the gas-liquid separator 9 to the condenser 7a of the water heat exchanger 7 (point of FIG. 13). g3-e3).

なお、図13はこの第2の単段除霜運転時のモリエル線図であり、図13中、点c3−d3は第1の圧縮機2の単段圧縮を示し、d3−i3は、空気熱交換器11での凝縮を、i3−f3は第1の膨張弁8による減圧、g3−e3は第2の膨張弁10による減圧を、e3−c3は水熱交換器7での蒸発の行程をそれぞれ示している。   FIG. 13 is a Mollier diagram at the time of the second single-stage defrosting operation. In FIG. 13, points c3-d3 indicate single-stage compression of the first compressor 2, and d3-i3 indicates air. Condensation in the heat exchanger 11, i3-f3 is depressurization by the first expansion valve 8, g3-e3 is depressurization by the second expansion valve 10, and e3-c3 is a process of evaporation in the water heat exchanger 7. Respectively.

この第2の単段除霜運転によれば、水熱交換器7の通水路7bの水(湯)から蒸発器として作用する凝縮器7aの液冷媒が吸熱するので、その分、出湯温度は低下するが、第2の圧縮機3の発熱量では除霜に不足する熱量を補足できる。これにより、除霜能力の増大を図ることができ、その分、除霜時間の短縮を図ることができるので、その分、給湯運転の効率向上を図ることができる。   According to the second single-stage defrosting operation, the liquid refrigerant in the condenser 7a acting as an evaporator absorbs heat from the water (hot water) in the water passage 7b of the water heat exchanger 7, so that the tapping temperature is correspondingly increased. Although it decreases, the amount of heat generated by the second compressor 3 can supplement the amount of heat that is insufficient for defrosting. As a result, the defrosting capacity can be increased, and the defrosting time can be shortened accordingly, so that the efficiency of the hot water supply operation can be improved accordingly.

また、気液分離器9で分離されたガス分の冷媒をインジェクション管18、第1の圧縮機2、開弁中の三方弁5および連結管4を介して第2の圧縮機3に注入できる。これにより、冷凍サイクルの冷媒循環流量の増加を図ることができるので、さらに、除霜能力の増大を図ることができる。   Further, the refrigerant for the gas separated by the gas-liquid separator 9 can be injected into the second compressor 3 through the injection pipe 18, the first compressor 2, the three-way valve 5 being opened, and the connecting pipe 4. . Thereby, since the refrigerant | coolant circulation flow rate of a refrigerating cycle can be aimed at, the increase in defrosting capability can be aimed at further.

[第4の実施形態]
(単段加熱運転)
図10は、図6で示す給湯装置1Aによる3段加熱運転を単段加熱運転に代えたときの冷凍サイクル図である。
[Fourth Embodiment]
(Single stage heating operation)
FIG. 10 is a refrigeration cycle diagram when the three-stage heating operation by the hot water supply apparatus 1A shown in FIG. 6 is replaced with a single-stage heating operation.

すなわち、上記図6で示す3段加熱運転では、第1〜第3の3台の圧縮機2,3,21により加熱運転を行うが、この第4の実施形態に係る単段加熱運転では、第1〜第3の3台の圧縮機2,3,21のうち、第1,第2の2台の圧縮機2,3の圧縮運転を停止(OFF)させる一方、巻線加熱運転を行い、高段側の第3の圧縮機21のみの単段で加熱運転する点に主な特徴を有する。   That is, in the three-stage heating operation shown in FIG. 6, the first to third compressors 2, 3, and 21 perform the heating operation. In the single-stage heating operation according to the fourth embodiment, Among the first to third compressors 2, 3 and 21, the compression operation of the first and second compressors 2 and 3 is stopped (OFF), while the winding heating operation is performed. The main feature is that the heating operation is performed in a single stage using only the third compressor 21 on the high stage side.

この単段加熱運転によっても、第1〜第3の3台の圧縮機2,3,21のうち、2台の圧縮運転を停止させるので、加熱能力抑制運転を簡単かつ効率的に行うことができる。   Even in this single-stage heating operation, two of the first to third compressors 2, 3, and 21 are stopped, so that the heating capacity suppression operation can be performed easily and efficiently. it can.

また、圧縮運転を停止させた第1,第2の圧縮機2,3については、巻線加熱運転するので、圧縮運転中の高段側の第3の圧縮機21に吸い込まれる直前の吸込ガスの温度を第1,第2の圧縮機2,3の巻線加熱により高めることができる。   In addition, since the first and second compressors 2 and 3 that have stopped the compression operation are wound and heated, the suction gas immediately before being sucked into the third compressor 21 on the high stage side during the compression operation. Can be increased by heating the windings of the first and second compressors 2 and 3.

このために、第3の圧縮機21から吐出される吐出ガスの温度と圧力を高くことができるので、加熱運転の効率向上を図ることができる。   For this reason, since the temperature and pressure of the discharge gas discharged from the third compressor 21 can be increased, the efficiency of the heating operation can be improved.

[単段除霜運転]
図11は上記図10で示す給湯装置1Aの単段加熱運転を単段除霜運転に代えたときの冷凍サイクル図である。
[Single-stage defrosting operation]
FIG. 11 is a refrigeration cycle diagram when the single-stage heating operation of the water heater 1A shown in FIG. 10 is replaced with a single-stage defrosting operation.

すなわち、この単段除霜運転は、制御器20により、第1〜第3の四方弁12,6,25を加熱運転から除霜運転に切り換えることにより、第3の圧縮機21のみで単段で除霜運転するものである。   That is, this single-stage defrosting operation is performed only by the third compressor 21 by switching the first to third four-way valves 12, 6, and 25 from the heating operation to the defrosting operation by the controller 20. In the defrosting operation.

そして、圧縮運転を停止させた第1,第2の圧縮機2,3については、巻線加熱運転するので、第3の圧縮機21に吸い込まれる直前の吸込ガスをこの第1,第2の圧縮機2,3の巻線加熱により加熱することができる。これにより、上述したように除霜運転の効率向上を図ることができる。   And about the 1st, 2nd compressors 2 and 3 which stopped compression operation, since winding heating operation is carried out, the suction gas just before suck | inhaled by the 3rd compressor 21 is this 1st, 2nd Heating can be performed by heating the windings of the compressors 2 and 3. Thereby, the efficiency improvement of a defrost operation can be aimed at as mentioned above.

なお、上記実施形態では圧縮機を2台と3台設けた場合について説明したが、本発明はこれに限定されるものではなく、圧縮機は4台以上設けてもよい。   In the above embodiment, two and three compressors have been described. However, the present invention is not limited to this, and four or more compressors may be provided.

また、加熱運転と除霜運転時に第1,第2,第3の圧縮機2,3,21を停止させる台数や巻線加熱運転する台数も上記実施例に限定されるものではない。   Further, the number of the first, second, and third compressors 2, 3, and 21 that are stopped during the heating operation and the defrosting operation and the number that performs the winding heating operation are not limited to the above embodiment.

以上、本発明の幾つかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、本発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、本発明の要旨を逸脱しない範囲で、種々の省略、置換え、変更を行うことができる。これら実施形態やその変形は、本発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although several embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of this invention. These novel embodiments can be implemented in various other forms, and various omissions, substitutions, and changes can be made without departing from the scope of the present invention. These embodiments and modifications thereof are included in the scope and gist of the present invention, and are included in the invention described in the claims and the equivalents thereof.

1,1A…給湯装置、2…第1の圧縮機、3…第2の圧縮機、6…第2の四方弁、7…水熱交換器、7a…凝縮器、8…第1の膨張弁、10…第2の膨張弁、11…空気熱交換器、12…第1の四方弁(切換手段)、13…冷媒配管、18…インジェクション管、20…制御器、21…第3の圧縮機、25…第3の四方弁、26…第3の膨張弁、27…第2の気液分離器。   DESCRIPTION OF SYMBOLS 1,1A ... Hot-water supply apparatus, 2 ... 1st compressor, 3 ... 2nd compressor, 6 ... 2nd four-way valve, 7 ... Hydrothermal exchanger, 7a ... Condenser, 8 ... 1st expansion valve DESCRIPTION OF SYMBOLS 10 ... 2nd expansion valve, 11 ... Air heat exchanger, 12 ... 1st four-way valve (switching means), 13 ... Refrigerant piping, 18 ... Injection pipe, 20 ... Controller, 21 ... 3rd compressor 25 ... a third four-way valve, 26 ... a third expansion valve, 27 ... a second gas-liquid separator.

Claims (5)

多段圧縮可能に直列に接続された複数の圧縮機、冷媒の循環方向を切換えることにより加熱運転または除霜運転に切換える四方弁、水熱交換器、膨張手段、空気熱交換器を順次冷媒配管により接続して冷媒を循環させる冷媒流路を形成する冷凍サイクルと、
前記複数の圧縮機の一部の圧縮運転を停止させたときに、前記圧縮機の吸込口側へ戻る冷媒を、前記圧縮運転停止中の圧縮機を迂回させて圧縮運転中の圧縮機の吸込口側へ戻すように前記冷媒流路の一部を切換える切換手段と、
を具備していることを特徴とする給湯装置。
Multiple compressors connected in series for multi-stage compression, four-way valve, water heat exchanger, expansion means, and air heat exchanger, which are switched to heating operation or defrosting operation by switching the circulation direction of refrigerant, sequentially through refrigerant piping A refrigeration cycle that forms a refrigerant flow path for connecting and circulating the refrigerant;
When the compression operation of a part of the plurality of compressors is stopped, the refrigerant returning to the suction port side of the compressor is bypassed by the compressor during the compression operation stop, and the suction of the compressor during the compression operation is performed Switching means for switching a part of the refrigerant flow path so as to return to the mouth side;
The hot water supply apparatus characterized by comprising.
前記冷凍サイクルは、冷媒の気液を分離する気液分離器と、この気液分離器で分離されたガス状冷媒を圧縮機の吸込口側へ戻す冷媒流路を具備し、
前記切換手段は、除霜運転時、前記気液分離器からのガス状冷媒を、前記水熱交換器を迂回させて前記前記圧縮運転中の圧縮機の吸込口側へ戻すように前記冷媒流路の一部を切換えるように構成されていることを特徴とする請求項1記載の給湯装置
The refrigeration cycle includes a gas-liquid separator that separates the gas-liquid refrigerant, and a refrigerant flow path that returns the gaseous refrigerant separated by the gas-liquid separator to the suction port side of the compressor,
In the defrosting operation, the switching means bypasses the refrigerant flow so that the gaseous refrigerant from the gas-liquid separator bypasses the water heat exchanger and returns to the suction port side of the compressor during the compression operation. The hot water supply apparatus according to claim 1, wherein a part of the path is switched.
前記冷凍サイクルは、前記切換手段と前記四方弁の切換操作により単段の圧縮機により除霜運転可能に構成されていることを特徴とする請求項1または2記載の給湯装置。 The hot water supply apparatus according to claim 1 or 2, wherein the refrigeration cycle is configured to be capable of defrosting operation by a single-stage compressor by switching operation of the switching means and the four-way valve. 除霜運転時、前記圧縮運転停止中の圧縮機は、巻線加熱運転され、前記切換手段は、前記空気熱交換器からの冷媒を、前記巻線加熱運転中の圧縮機を介して運転中の圧縮機の吸込口側へ戻すように前記冷媒流路の一部を切換えるように構成されていることを特徴とする請求項3記載の給湯装置。 During the defrosting operation, the compressor that has stopped the compression operation is subjected to winding heating operation, and the switching unit is operating the refrigerant from the air heat exchanger via the compressor during the winding heating operation. The hot water supply apparatus according to claim 3, wherein a part of the refrigerant flow path is switched so as to return to the suction port side of the compressor. 除霜運転時、前記切換手段は、前記気液分離器からの液状冷媒を、前記水熱交換器を通してから前記圧縮機の吸込口側へ戻すように前記冷媒流路の一部を切換えるように構成されていることを特徴とする請求項4記載の給湯装置。 During the defrosting operation, the switching means switches a part of the refrigerant flow path so as to return the liquid refrigerant from the gas-liquid separator through the water heat exchanger to the suction port side of the compressor. The hot water supply apparatus according to claim 4, wherein the hot water supply apparatus is configured.
JP2013273072A 2013-12-27 2013-12-27 Water heater Pending JP2015127612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013273072A JP2015127612A (en) 2013-12-27 2013-12-27 Water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013273072A JP2015127612A (en) 2013-12-27 2013-12-27 Water heater

Publications (1)

Publication Number Publication Date
JP2015127612A true JP2015127612A (en) 2015-07-09

Family

ID=53837682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013273072A Pending JP2015127612A (en) 2013-12-27 2013-12-27 Water heater

Country Status (1)

Country Link
JP (1) JP2015127612A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105444453A (en) * 2015-12-18 2016-03-30 珠海格力电器股份有限公司 Double-temperature refrigerating and heating system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105444453A (en) * 2015-12-18 2016-03-30 珠海格力电器股份有限公司 Double-temperature refrigerating and heating system

Similar Documents

Publication Publication Date Title
JP5181813B2 (en) Refrigeration equipment
JP5575191B2 (en) Dual refrigeration equipment
JP6019837B2 (en) Heat pump system
JPWO2011048662A1 (en) Heat pump equipment
WO2014091909A1 (en) Heat pump-type heating device
KR20150068710A (en) Cooling Apparatus
JP5018724B2 (en) Ejector refrigeration cycle
US20190360725A1 (en) Refrigeration apparatus
JP6057871B2 (en) Heat pump system and heat pump type water heater
GB2567333A (en) Heat pump device
JP2009204235A (en) Heat pump type water heater
WO2020071293A1 (en) Refrigeration cycle device
JP2013181736A (en) Refrigerating apparatus for container
JP5659908B2 (en) Heat pump equipment
JP2010060181A (en) Refrigeration system
JP2015143597A (en) Water heater
JP6233499B2 (en) Heat pump equipment
EP3786544B1 (en) Refrigeration cycle device
JP2015127612A (en) Water heater
KR20130086864A (en) A combined refrigerating and freezing system and a control method the same
JP2010078257A (en) Refrigerating device
JP2011027358A (en) Heater
JP2014149103A (en) Refrigeration cycle device
JP2006003023A (en) Refrigerating unit
JP2018119707A (en) Refrigerant circuit system and control method