[go: up one dir, main page]

JP2015122447A - Light-emitting device and illumination device - Google Patents

Light-emitting device and illumination device Download PDF

Info

Publication number
JP2015122447A
JP2015122447A JP2013266091A JP2013266091A JP2015122447A JP 2015122447 A JP2015122447 A JP 2015122447A JP 2013266091 A JP2013266091 A JP 2013266091A JP 2013266091 A JP2013266091 A JP 2013266091A JP 2015122447 A JP2015122447 A JP 2015122447A
Authority
JP
Japan
Prior art keywords
light
wavelength conversion
conversion member
emitting device
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013266091A
Other languages
Japanese (ja)
Inventor
昌道 原田
Masamichi Harada
昌道 原田
一規 安念
Kazunori Annen
一規 安念
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2013266091A priority Critical patent/JP2015122447A/en
Publication of JP2015122447A publication Critical patent/JP2015122447A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Device Packages (AREA)
  • Semiconductor Lasers (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve an effect of suppressing degradation of a wavelength conversion member when an emission end part of a light guide part is made close to the wavelength conversion member.SOLUTION: The light-emitting device includes: a light guide part (5) emitting light propagating through a light propagation part formed of a material whose base material is a material having transparency; and a wavelength conversion member (6). A tip part (5a), which is an end part of the light-emission side of the light propagation part has a configuration in which a diameter of a cross section perpendicular to a direction of light propagation is monotonously increasing when approaching to the wavelength conversion member (6) side.

Description

本発明は、波長変換部材に照射することによって発生する波長変換光を照明光として用いる発光装置および該発光装置を備えた照明装置に関する。   The present invention relates to a light-emitting device that uses wavelength-converted light generated by irradiating a wavelength conversion member as illumination light, and an illumination device including the light-emitting device.

近年、励起光源として半導体レーザ(LD;Laser Diode)等の半導体発光素子を用い、これらの励起光源から発生した励起光を、波長変換部材に照射することによって発生する波長変換光を照明光として用いる発光装置の研究が盛んになってきている。   In recent years, a semiconductor light emitting device such as a semiconductor laser (LD) is used as an excitation light source, and wavelength conversion light generated by irradiating the wavelength conversion member with excitation light generated from these excitation light sources is used as illumination light. Research on light-emitting devices has become active.

このような発光装置の一例として特許文献1に開示された光源装置がある。この装置は、図7の(a)に示すように、ライトガイドで導光した励起光を射出する部分であるライトガイド射出端部および凹レンズ等の励起光発散手段と、波長変換部材と、の距離や、励起光発散手段の有効領域および波長変換部材の波長変換領域の範囲などを最適化することで、励起光の利用効率を高くしている。   As an example of such a light emitting device, there is a light source device disclosed in Patent Document 1. As shown in FIG. 7 (a), this apparatus includes: a light guide emitting end portion that is a portion that emits excitation light guided by a light guide; and a pumping light diffusing means such as a concave lens; and a wavelength conversion member. Optimizing the distance, the effective area of the excitation light diffusing means, the range of the wavelength conversion area of the wavelength conversion member, and the like increase the use efficiency of the excitation light.

また、別の例として特許文献2に開示された半導体発光装置がある。この装置では、図7の(b)に示すように、キャップ本体上面のほぼ中央であって、キャップ本体の内外と貫通した開口が形成され、該開口の壁面が傾斜部を為している。この開口の開口幅は、入光部から光の進行方向にしたがって大きくなるテーパー状を為しており、LD素子からの出射光を半導体発光装置の外へ効率よく出射させるようになっている。   Another example is a semiconductor light emitting device disclosed in Patent Document 2. In this apparatus, as shown in FIG. 7 (b), an opening is formed substantially at the center of the upper surface of the cap body and penetrates the inside and outside of the cap body, and the wall surface of the opening forms an inclined portion. The opening width of the opening has a tapered shape that increases from the light incident portion in accordance with the traveling direction of the light, so that the light emitted from the LD element is efficiently emitted out of the semiconductor light emitting device.

また、さらに別の例として特許文献3に開示された発光装置がある。この装置では、図7の(c)に示すように、ライトガイドとライトガイド先端部材の少なくとも一部とが、波長変換部材に被覆されている。   Another example is a light emitting device disclosed in Patent Document 3. In this apparatus, as shown in FIG. 7C, the light guide and at least a part of the light guide tip member are covered with the wavelength conversion member.

特開2010−81957号公報(2010年4月15日公開)JP 2010-81957 A (released on April 15, 2010) 特開2008−153617号公報(2008年7月3日公開)JP 2008-153617 A (released July 3, 2008) 特開2006−253099号公報(2006年9月21日公開)JP 2006-253099 A (published September 21, 2006)

しかしながら、上述のような従来技術には以下のような問題点がある。例えば、特許文献1に記載の装置では、ライトガイド射出端部と波長変換部材との間は、テーパーのついた保持部材に囲まれた、空気や凹レンズなどのライトガイドとは別の光学媒体が存在する空間となっている。よって、波長変換部材とライトガイド射出端部との間に凹レンズや空気などの別の光学媒体が存在していること等に起因して波長変換部材に対する励起光の照射効率が低下してしまうという問題点がある。また、特許文献2に記載の装置では、励起光を出射するLD素子と波長変換部材との間の距離が離れており、空気が存在する領域などが存在するため、励起光の波長変換部材に対する入射効率(または照射効率)が低下してしまうという問題点がある。以上のような問題点を解決するためには、ライトガイド射出端部やLD素子を、波長変換部材にできるだけ近づけることが好ましい。しかしながら、これらの文献の技術では、ライトガイドやLD素子の発光点の断面の直径が、波長変換部材のサイズと比較してかなり小さいため、ライトガイド射出端部やLD素子を、波長変換部材にそのまま近づけると、波長変換部材の一部分に励起光が集中し、波長変換部材の劣化を招く可能性がある。   However, the conventional techniques as described above have the following problems. For example, in the apparatus described in Patent Document 1, an optical medium different from the light guide, such as air or a concave lens, surrounded by a tapered holding member is provided between the light guide emission end portion and the wavelength conversion member. It is an existing space. Therefore, the irradiation efficiency of the excitation light to the wavelength conversion member is reduced due to the presence of another optical medium such as a concave lens or air between the wavelength conversion member and the light guide exit end. There is a problem. Further, in the apparatus described in Patent Document 2, since the distance between the LD element that emits the excitation light and the wavelength conversion member is large and there is a region where air exists, the wavelength conversion member for the excitation light is not affected. There is a problem that the incidence efficiency (or irradiation efficiency) is lowered. In order to solve the above-described problems, it is preferable that the light guide emission end and the LD element be as close as possible to the wavelength conversion member. However, in the techniques of these documents, the diameter of the cross section of the light emitting point of the light guide or LD element is considerably smaller than the size of the wavelength conversion member, so the light guide emission end or LD element is used as the wavelength conversion member. If approached as it is, the excitation light is concentrated on a part of the wavelength conversion member, which may cause deterioration of the wavelength conversion member.

次に、特許文献3には、ライトガイド先端部材と波長変換部材との接触面積を増加させるためにライトガイド先端部材の端面の面積を大きくする点が記載されている。しかしながら、同文献に記載の装置では、ライトガイドの光が出射される出射端部は、光の進行方向に垂直なライトガイドの断面の直径が、波長変換部材のサイズと比較してかなり小さいまま波長変換部材に接続されているため、波長変換部材の一部分に励起光が集中し、波長変換部材の劣化を招く可能性がある。   Next, Patent Document 3 describes that the area of the end surface of the light guide tip member is increased in order to increase the contact area between the light guide tip member and the wavelength conversion member. However, in the apparatus described in this document, the diameter of the cross section of the light guide that is perpendicular to the light traveling direction remains considerably smaller than the size of the wavelength conversion member. Since it is connected to the wavelength conversion member, the excitation light is concentrated on a part of the wavelength conversion member, which may cause deterioration of the wavelength conversion member.

本発明は、上記の問題点に鑑みて為されたものであって、その目的は、導光部の出射端部を波長変換部材に近づけた場合における波長変換部材の劣化の抑制効果を向上させることができる発光装置を提供することにある。   The present invention has been made in view of the above-described problems, and its purpose is to improve the effect of suppressing deterioration of the wavelength conversion member when the exit end of the light guide unit is brought close to the wavelength conversion member. An object of the present invention is to provide a light-emitting device that can be used.

上記の課題を解決するために、本発明の一態様に係る発光装置は、透光性を有する材料を母材とする材料で形成された光伝搬部を有し、当該光伝搬部を伝搬した光を出射する導光部と、上記導光部から出射される光の波長を変換する波長変換部材と、を備え、上記光伝搬部の光出射側の端部である出射端部は、光の進行方向に垂直な断面の直径が上記波長変換部材の側に近づくにつれて単調に増加する構造を有していることを特徴としている。   In order to solve the above problems, a light-emitting device according to one embodiment of the present invention includes a light propagation portion formed using a material using a light-transmitting material as a base material, and propagates through the light propagation portion. A light guide part that emits light, and a wavelength conversion member that converts a wavelength of light emitted from the light guide part, and an emission end part that is an end part on the light emission side of the light propagation part is light The diameter of the cross section perpendicular to the traveling direction is monotonously increased as it approaches the wavelength conversion member side.

本発明の一態様によれば、導光部の出射端部を波長変換部材に近づけた場合における波長変換部材の劣化の抑制効果を向上させるという効果を奏する。   According to one aspect of the present invention, there is an effect of improving the effect of suppressing deterioration of the wavelength conversion member when the exit end portion of the light guide portion is brought close to the wavelength conversion member.

本発明の実施形態1に係る発光装置の構造を示す断面図である。It is sectional drawing which shows the structure of the light-emitting device which concerns on Embodiment 1 of this invention. 比較例に係る発光装置の構造を示す図であり、(a)は、比較例1に係る発光装置の構造を示す断面図であり、(b)は、比較例2に係る発光装置の構造を示す断面図である。It is a figure which shows the structure of the light-emitting device which concerns on a comparative example, (a) is sectional drawing which shows the structure of the light-emitting device which concerns on the comparative example 1, (b) is the structure of the light-emitting device which concerns on the comparative example 2. It is sectional drawing shown. 本発明の実施形態2に係る発光装置の構造を示す断面図である。It is sectional drawing which shows the structure of the light-emitting device which concerns on Embodiment 2 of this invention. 本発明の実施形態3に係る発光装置の構造、および上記発光装置の光学的特性を示す図であり、(a)は、上記発光装置の構造を示す断面図であり、(b)は、上記発光装置に関し、励起光源の光出力と、上記発光装置から出力される光の全光束との関係を示すグラフである。It is a figure which shows the structure of the light-emitting device which concerns on Embodiment 3 of this invention, and the optical characteristic of the said light-emitting device, (a) is sectional drawing which shows the structure of the said light-emitting device, (b) is the said It is a graph which shows the relationship between the light output of an excitation light source, and the total luminous flux of the light output from the said light-emitting device regarding a light-emitting device. 本発明の実施形態4に係る発光装置の構造、および本発明の実施形態1、3および4に係る発光装置の光学的特性を示す図であり、(a)は、上記実施形態4に係る発光装置の構造を示す断面図であり、(b)は、上記実施形態1、3および4に係る発光装置に関し、励起光源の光出力と、これらの発光装置から出力される全光束との関係を示すグラフである。It is a figure which shows the structure of the light-emitting device which concerns on Embodiment 4 of this invention, and the optical characteristic of the light-emitting device which concerns on Embodiment 1, 3, and 4 of this invention, (a) is light emission which concerns on the said Embodiment 4. It is sectional drawing which shows the structure of an apparatus, (b) is related with the light-emitting device which concerns on the said Embodiment 1, 3, and 4, and shows the relationship between the light output of an excitation light source, and the total light beam output from these light-emitting devices. It is a graph to show. 本発明の実施形態5およびその変形例に係る照明装置の構造を示す図であり、(a)は、上記実施形態5に係る照明装置の構造を示す断面図であり、(b)は、上記変形例に係る照明装置の構造を示す断面図である。It is a figure which shows the structure of the illuminating device which concerns on Embodiment 5 and its modification of this invention, (a) is sectional drawing which shows the structure of the illuminating device which concerns on the said Embodiment 5, (b) is the said It is sectional drawing which shows the structure of the illuminating device which concerns on a modification. 従来の発光装置の構造を示す図であり、(a)は、従来の発光装置の一例の構造を示す断面図であり、(b)は、別の例の構造を示す断面図であり、(c)および(d)は、さらに別の例の構造を示す断面図である。It is a figure which shows the structure of the conventional light-emitting device, (a) is sectional drawing which shows the structure of an example of the conventional light-emitting device, (b) is sectional drawing which shows the structure of another example, (c) And (d) is sectional drawing which shows the structure of another example.

本発明を具現化する実施の形態について図1〜図6に基づいて説明すれば以下の通りである。以下、特定の実施形態で説明する構成以外の構成については、必要に応じて説明を省略する場合があるが、他の実施形態で説明されている場合は、その構成と同じである。また、説明の便宜上、各実施形態に示した部材と同一の機能を有する部材については、同一の符号を付し、適宜その説明を省略する。   An embodiment embodying the present invention will be described below with reference to FIGS. Hereinafter, descriptions of configurations other than those described in the specific embodiment may be omitted as necessary, but when described in other embodiments, the configurations are the same. For convenience of explanation, members having the same functions as those shown in each embodiment are given the same reference numerals, and the explanation thereof is omitted as appropriate.

〔実施形態1:発光装置10〕
まず、図1に基づき、本発明の実施形態1に係る発光装置(照明装置)10の構造について説明する。図1は、発光装置10の構造を示す断面図である。本実施形態の発光装置10は、励起光源として半導体レーザ(LD)を用い、この励起光源から発生した励起光(レーザ光)を、波長変換部材に照射することによって発生する波長変換光(蛍光)を照明光として用いる発光装置である。図1に示すように、発光装置10は、励起光源1、光ファイバ2、被覆部4、導光部5、波長変換部材6、およびリフレクター(反射鏡)7を備える。
[Embodiment 1: Light-emitting device 10]
First, based on FIG. 1, the structure of the light-emitting device (illuminating device) 10 which concerns on Embodiment 1 of this invention is demonstrated. FIG. 1 is a cross-sectional view showing the structure of the light emitting device 10. The light emitting device 10 of this embodiment uses a semiconductor laser (LD) as an excitation light source, and wavelength converted light (fluorescence) generated by irradiating the wavelength conversion member with excitation light (laser light) generated from the excitation light source. It is a light-emitting device which uses as an illumination light. As shown in FIG. 1, the light emitting device 10 includes an excitation light source 1, an optical fiber 2, a covering portion 4, a light guide portion 5, a wavelength conversion member 6, and a reflector (reflecting mirror) 7.

(励起光源1)
励起光源1は、励起光を発生させる装置であり、LDを少なくとも1つ備えている。LDを1つのみ用いてもよいが、高出力のレーザ光を得るためには、複数のLDを用いる方が容易である。本実施形態のLDの発振波長は、440nm以上〜460nm以下(青色領域)の波長範囲の波長であるが、これに限定されない。例えば、LDの発振波長は、370nm以上420nm以下(近紫外領域から青紫色領域)の波長範囲の波長でも良く、近紫外領域から青色領域(350nm以上460nm以下)の波長範囲に発光ピーク波長を有するものであれば良い。また、本実施形態のLDの光出力は1.2Wであり、動作電圧は4.7V、動作電流は0.8Aである。
(Excitation light source 1)
The excitation light source 1 is a device that generates excitation light, and includes at least one LD. Although only one LD may be used, it is easier to use a plurality of LDs in order to obtain a high-power laser beam. The oscillation wavelength of the LD of the present embodiment is a wavelength in the wavelength range of 440 nm to 460 nm (blue region), but is not limited thereto. For example, the oscillation wavelength of the LD may be a wavelength in the wavelength range of 370 nm to 420 nm (near ultraviolet region to blue-violet region), and has an emission peak wavelength in the wavelength range from the near ultraviolet region to blue region (350 nm to 460 nm or less). Anything is fine. Further, the optical output of the LD of the present embodiment is 1.2 W, the operating voltage is 4.7 V, and the operating current is 0.8 A.

なお、本実施形態の励起光源1は、LDから構成されているが、励起光源1は、LD以外の光源から構成されていても良い。LDの代わりに、高出力のLED(Light Emitting Diode)チップを用いても良い。   In addition, although the excitation light source 1 of this embodiment is comprised from LD, the excitation light source 1 may be comprised from light sources other than LD. A high output LED (Light Emitting Diode) chip may be used instead of the LD.

(光ファイバ2)
光ファイバ2は、励起光源1から出力される励起光を導光部5へと導く導光部材である。励起光源1は、光ファイバ2を介して導光部5に光学的に接続されている。光ファイバ2の母材は石英ガラス(酸化ケイ素酸;屈折率1.45〜1.48)であり、必要に応じてドーパントが添加される。光ファイバ2は、中芯のコアを、当該コアよりも屈折率の低いクラッドで覆った2層構造をしている。コアの屈折率は、1.463〜1.467であり、クラッドの屈折率は、1.45〜1.46である。また、本実施形態の光ファイバ2は、コアの径が114μm、クラッドの径が125μm、開口数NA(Numerical Aperture)が0.20の構造を有しているが、光ファイバ2の構造は上述のものに限定されない。
(Optical fiber 2)
The optical fiber 2 is a light guide member that guides the excitation light output from the excitation light source 1 to the light guide unit 5. The excitation light source 1 is optically connected to the light guide unit 5 through the optical fiber 2. The base material of the optical fiber 2 is quartz glass (silicon oxide acid; refractive index 1.45 to 1.48), and a dopant is added as necessary. The optical fiber 2 has a two-layer structure in which an inner core is covered with a clad having a refractive index lower than that of the core. The refractive index of the core is 1.463 to 1.467, and the refractive index of the cladding is 1.45 to 1.46. The optical fiber 2 of the present embodiment has a structure in which the core diameter is 114 μm, the cladding diameter is 125 μm, and the numerical aperture NA (Numerical Aperture) is 0.20. It is not limited to those.

また、本実施形態の光ファイバ2の光の進行方向に対して垂直な断面の形状は円形であるが断面の形状はこれに限定されない。例えば、断面の形状は矩形などであっても良い。なお、本実施形態の発光装置10では、光ファイバ2により、波長変換部材6と励起光源1(半導体レーザ)との間の距離が離れている。これにより波長変換部材6と励起光源1での発熱を分離できるので、波長変換部材6は、励起光源1の発熱の影響を受けなくて済む。これにより、励起光源1を除く発光装置10全体の大きさを小さくすることができる。   Moreover, although the shape of the cross section perpendicular | vertical with respect to the advancing direction of the optical fiber 2 of this embodiment is circular, the shape of a cross section is not limited to this. For example, the cross-sectional shape may be a rectangle or the like. In the light emitting device 10 of the present embodiment, the distance between the wavelength conversion member 6 and the excitation light source 1 (semiconductor laser) is separated by the optical fiber 2. As a result, since the heat generation in the wavelength conversion member 6 and the excitation light source 1 can be separated, the wavelength conversion member 6 is not affected by the heat generation of the excitation light source 1. Thereby, the magnitude | size of the light-emitting device 10 whole except the excitation light source 1 can be made small.

(被覆部4,導光部5)
導光部5は、中芯にコア(光伝搬部)5bを有し、光ファイバ2から受け取った励起光を導光部5の先端部(出射端部,光伝搬部)5aに導光する導光部材である。先端部5aは、コア5bと光学的に接続されている。導光部5は、透光性を有する材料を母材(例えば、石英ガラス)とする材料で構成されており、母材には必要に応じてドーパントが添加される。なお、導光部5の母材は、石英などの無機ガラス以外の樹脂材料などであっても良いが、該樹脂材料などと波長変換部材6との屈折率差はできるだけ小さくすることが好ましい。また、導光部5は、中芯のコア5bを、当該コア5bよりも屈折率の低いクラッド5cで覆った2層構造をしている。上述した光ファイバ2と同様に、コア5bの屈折率は、1.463〜1.467であり、クラッド5cの屈折率は、1.45〜1.46である。先端部5aは、導光部5のコア5bで導光した励起光が出射される部分であり、その屈折率は、1.463〜1.467である。
(Coating part 4, light guide part 5)
The light guide part 5 has a core (light propagation part) 5b in the center, and guides the excitation light received from the optical fiber 2 to the tip part (emission end part, light propagation part) 5a of the light guide part 5. It is a light guide member. The tip 5a is optically connected to the core 5b. The light guide 5 is made of a material having a light-transmitting material as a base material (for example, quartz glass), and a dopant is added to the base material as necessary. The base material of the light guide 5 may be a resin material other than inorganic glass such as quartz, but it is preferable to make the difference in refractive index between the resin material and the wavelength conversion member 6 as small as possible. The light guide 5 has a two-layer structure in which the core 5b is covered with a clad 5c having a refractive index lower than that of the core 5b. Similar to the optical fiber 2 described above, the core 5b has a refractive index of 1.463 to 1.467, and the cladding 5c has a refractive index of 1.45 to 1.46. The front end portion 5a is a portion from which excitation light guided by the core 5b of the light guide portion 5 is emitted, and the refractive index thereof is 1.463 to 1.467.

図1に示すように、この先端部5aは、光の進行方向に垂直な断面の直径が波長変換部材6の側に近づくにつれて単調に増加する構造(リフレクター構造)を有している。このため、先端部5aに導光される光のスポット径を拡大することができる。これにより、先端部5aを波長変換部材6に近づけても、波長変換部材6の一部の狭い範囲に部分的に励起光の強度が集中することを抑制できるので、波長変換部材6の劣化を抑制することができる。以上により、先端部5aを波長変換部材6に近づけた場合における波長変換部材6の劣化の抑制効果を向上させることができる。   As shown in FIG. 1, the tip 5a has a structure (reflector structure) that monotonously increases as the diameter of the cross section perpendicular to the light traveling direction approaches the wavelength conversion member 6 side. For this reason, the spot diameter of the light guided to the front-end | tip part 5a can be expanded. Thereby, even if the front end 5a is brought close to the wavelength conversion member 6, it is possible to suppress the concentration of the excitation light partially in a narrow range of a part of the wavelength conversion member 6. Can be suppressed. As described above, it is possible to improve the effect of suppressing deterioration of the wavelength conversion member 6 when the distal end portion 5a is brought close to the wavelength conversion member 6.

次に、例えば、図2の(a)に示す比較例1のような構造の発光装置では、励起光を波長変換部材に照射しても、励起光の一部は波長変換部材に反射されて照明光の進行方向の後方に戻ってしまい、発光装置としての発光効率が低下してしまうという問題点がある。また、比較例1の発光装置では、波長変換部材中の蛍光体からの蛍光も、照明光の進行方向の前方だけでなく後方へも進むため、発光装置としての光の取り出し効率が低下してしまうという問題点もある。   Next, for example, in the light emitting device having the structure as in Comparative Example 1 shown in FIG. 2A, even when the wavelength conversion member is irradiated with the excitation light, a part of the excitation light is reflected by the wavelength conversion member. There is a problem in that it returns to the rear in the traveling direction of the illumination light, and the luminous efficiency of the light emitting device is lowered. Further, in the light emitting device of Comparative Example 1, the fluorescence from the phosphor in the wavelength conversion member also travels not only forward but also backward in the traveling direction of the illumination light, so that the light extraction efficiency as the light emitting device is reduced. There is also a problem that it ends up.

一方、本実施形態の発光装置10では、上述した先端部5aのリフレクター構造と、被覆部4および導光部5間の界面が鏡面となること、とを組合せることによって、導光部5側に戻ってきた波長変換光(蛍光)および励起光を反射し、発光装置10の照明光の進行方向の前方へ出射させ易くしている。このため、発光装置としての発光効率および光の取り出し効率を向上させることができる。   On the other hand, in the light emitting device 10 of the present embodiment, the light guide unit 5 side is obtained by combining the reflector structure of the tip portion 5a described above and the interface between the covering unit 4 and the light guide unit 5 being a mirror surface. The wavelength-converted light (fluorescence) and the excitation light that have returned to the above are reflected so that the illumination light of the light emitting device 10 can be easily emitted forward in the traveling direction. For this reason, the light emission efficiency as a light-emitting device and the light extraction efficiency can be improved.

次に、図1に示すように本実施形態の先端部5aの側の端面(導光部端面SUF3)は、波長変換部材6の励起光が照射される光照射側の面(発光部表面SUF2)に近接させている。このため、波長変換部材6と先端部5aとの間の距離が離れていること、もしくは波長変換部材と出射端部との間に別の光学系などが存在することに起因する励起光の照射効率(または入射効率)の低下を抑制することができる。より具体的には、本実施形態の先端部5aの導光部端面SUF3は、波長変換部材6の発光部表面SUF2に接触させている。または、先端部5aは、波長変換部材6の発光部表面SUF2の側から波長変換部材6の内部に向けて挿入されている。これにより、波長変換部材6(発光部表面SUF2)と先端部5a(導光部端面SUF3)との界面での光のロスを低減させている。   Next, as shown in FIG. 1, the end surface (light guide unit end surface SUF3) on the front end portion 5a side of the present embodiment is a light irradiation side surface (light emitting unit surface SUF2) to which the excitation light of the wavelength conversion member 6 is irradiated. ). For this reason, the irradiation of excitation light caused by the distance between the wavelength conversion member 6 and the tip 5a being separated, or the presence of another optical system or the like between the wavelength conversion member and the emission end. A decrease in efficiency (or incident efficiency) can be suppressed. More specifically, the light guide part end surface SUF3 of the tip part 5a of the present embodiment is in contact with the light emitting part surface SUF2 of the wavelength conversion member 6. Or the front-end | tip part 5a is inserted toward the inside of the wavelength conversion member 6 from the light emission part surface SUF2 side of the wavelength conversion member 6. FIG. Thereby, the loss of light at the interface between the wavelength conversion member 6 (light emitting part surface SUF2) and the tip part 5a (light guide part end surface SUF3) is reduced.

次に、被覆部4は、導光部5の光軸方向に沿う側面の周囲を被覆するものである。被覆部4の材質は、熱伝導性が高く、光反射性の良い材料が好ましく、例えば、Al等の金属材料を例示することができる。これにより導光部5の光軸方向に沿う側面の周囲を後述するヒートシンク9に熱的に接続して放熱性を高めることができる。また、被覆部4で導光部6を被覆することにより、被覆部4と導光部5との界面(被覆部表面SUF1)が鏡の役割を果たし、波長変換部材6からの戻り光(励起光または波長変換光)を再度波長変換部材6へ入射させ易くなる。   Next, the covering portion 4 covers the periphery of the side surface along the optical axis direction of the light guide portion 5. The material of the covering portion 4 is preferably a material having high thermal conductivity and good light reflectivity. For example, a metal material such as Al can be exemplified. Thereby, the periphery of the side surface along the optical axis direction of the light guide portion 5 can be thermally connected to a heat sink 9 described later to enhance heat dissipation. Further, by covering the light guide part 6 with the cover part 4, the interface (cover part surface SUF1) between the cover part 4 and the light guide part 5 serves as a mirror, and the return light (excitation) from the wavelength conversion member 6 Light or wavelength-converted light) is easily incident on the wavelength conversion member 6 again.

(波長変換部材6)
波長変換部材6は、入射光(励起光)の波長を変換し、入射光とは異なる波長を有する光を出射する部材である。本実施形態の波長変換部材6は、蛍光体を封止剤(または保持部材)で封止したものである。本実施形態では、黄色〜橙色に発光するCa−α‐SiAlON:Eu蛍光体(サイアロン蛍光体)を用いている。
(Wavelength conversion member 6)
The wavelength conversion member 6 is a member that converts the wavelength of incident light (excitation light) and emits light having a wavelength different from that of the incident light. The wavelength conversion member 6 of the present embodiment is obtained by sealing a phosphor with a sealing agent (or holding member). In the present embodiment, a Ca-α-SiAlON: Eu phosphor (sialon phosphor) that emits yellow to orange light is used.

α−サイアロンは、高硬度、高強度、耐熱性に優れるため、高温構造材料として研究されてきた材料である。この結晶はα−窒化ケイ素と同じ結晶構造をもつ固溶体であり、一般式Si12−(m+n)Al(m+n)16−n(m+n<12,0<m ,n<11;m ,nは整数)で表される28原子からなる単位構造の中に2箇所の空隙があり、ここに各種金属を侵入固溶させることが可能である。希土類元素を固溶させることで蛍光体になる。カルシウム(Ca)とユーロピウム(Eu)とを固溶させると、最も一般的に用いられている黄色発光蛍光体(以下、単に「黄色蛍光体」という)であるYAG:Ce蛍光体よりも長波長の黄色から橙色の範囲で発光する特性の良いCa−α−SiAlON:Eu蛍光体が得られる。この橙色発光と励起光源1から出射されるレーザ光の青色との混色で白色光(疑似白色)が出力され、良質な電球色の発光が得られる。 α-Sialon is a material that has been studied as a high-temperature structural material because it has high hardness, high strength, and excellent heat resistance. The crystals are solid solution having the same crystal structure as silicon α- nitride, the general formula Si 12- (m + n) Al (m + n) O n N 16-n (m + n <12,0 <m, n <11; m, There are two voids in the unit structure consisting of 28 atoms represented by (n is an integer), and various metals can enter and dissolve therein. A phosphor is obtained by dissolving a rare earth element. When calcium (Ca) and europium (Eu) are dissolved, a longer wavelength than the YAG: Ce phosphor, which is the most commonly used yellow-emitting phosphor (hereinafter simply referred to as “yellow phosphor”). Ca-α-SiAlON: Eu phosphor having good characteristics of emitting light in the yellow to orange range. White light (pseudo white) is output as a mixture of the orange light emission and the blue color of the laser light emitted from the excitation light source 1, and light emission of a good bulb color can be obtained.

波長変換部材6の形状は特に限定されないが、例えば円盤状のものを用いることができる。本実施例では、厚み0.5〜3mmの円盤状のものを用いた。封止剤(波長変換部材6の母材)に対する蛍光体の混合量は、発光装置としての色温度が概3000Kとなるように混合量を調整した。   Although the shape of the wavelength conversion member 6 is not specifically limited, For example, a disk-shaped thing can be used. In this example, a disk-shaped one having a thickness of 0.5 to 3 mm was used. The mixing amount of the phosphor with respect to the sealing agent (the base material of the wavelength conversion member 6) was adjusted so that the color temperature as the light emitting device was about 3000K.

封止剤(波長変換部材6の母材)は、有機成分を含まない石英ガラス(酸化ケイ素;屈折率1.45〜1.48)などの無機ガラスであることが好ましいが、極端に高出力・高光密度での励起光を用いないのであれば、シリコーン樹脂などの樹脂や、有機ハイブリッドガラスであっても良い。   The sealant (the base material of the wavelength conversion member 6) is preferably an inorganic glass such as quartz glass (silicon oxide; refractive index: 1.45 to 1.48) that does not contain an organic component, but has an extremely high output. As long as excitation light at high light density is not used, a resin such as silicone resin or organic hybrid glass may be used.

なお、波長変換部材6の劣化は、波長変換部材6に含まれる蛍光体の封止剤(例えば、シリコーン樹脂)の劣化が主たる原因であると考えられる。すなわち、上記のサイアロン蛍光体は、レーザ光が照射されると60〜80%の効率で蛍光を発生させるが、残りは熱となって放出される。この熱によって封止剤が劣化すると考えられる。従って、封止剤としては、熱耐性の高い封止剤が好ましい。また、導光部5と波長変換部材6との屈折率差を小さくするためには、導光部5の母材と、封止剤とを同じ材料とすることが好ましい。そこで、本実施形態の波長変換部材6では、熱耐性が高く、かつ導光部5の母材と同じ材料である石英ガラスを封止剤として用いている。これにより、波長変換部材6の耐熱性を高くするとともに、導光部5と波長変換部材6との屈折率差を小さくでき、波長変換部材6と導光部5との界面での光のロスを低減させることができる。以上により、波長変換部材6の劣化および波長変換部材6に対する励起光の照射効率の低下を抑制することができる。   The deterioration of the wavelength conversion member 6 is considered to be mainly caused by the deterioration of the phosphor sealing agent (for example, silicone resin) contained in the wavelength conversion member 6. That is, the sialon phosphor generates fluorescence with an efficiency of 60 to 80% when irradiated with laser light, but the rest is released as heat. It is considered that the sealant deteriorates due to this heat. Therefore, as the sealant, a sealant with high heat resistance is preferable. In order to reduce the difference in refractive index between the light guide 5 and the wavelength conversion member 6, it is preferable that the base material of the light guide 5 and the sealant are made of the same material. Therefore, in the wavelength conversion member 6 of the present embodiment, quartz glass that has high heat resistance and is the same material as the base material of the light guide unit 5 is used as a sealant. Thereby, while improving the heat resistance of the wavelength conversion member 6, the refractive index difference of the light guide part 5 and the wavelength conversion member 6 can be made small, and the loss of the light in the interface of the wavelength conversion member 6 and the light guide part 5 is lost. Can be reduced. As described above, it is possible to suppress the deterioration of the wavelength conversion member 6 and the decrease in the irradiation efficiency of the excitation light with respect to the wavelength conversion member 6.

次に、一般に、照明光として用いられる白色(または擬似白色)光は、R(赤色)、G(緑色)およびB(青色)の3種類の色の混色、または補色の関係を満たす2種類の色の混色などで実現できる。例えば、波長変換部材6に含まれる蛍光体が発する蛍光の色と、励起光源1から出射されるレーザ光の色との混色で、白色(または擬似白色)光を実現できる。より具体的には、本実施形態の発光装置10は、上述した波長変換部材6に含まれる黄色蛍光体から出射される蛍光の黄色、および励起光源1から出射されるレーザ光の青色との混色で、白色光(疑似白色)が出力されるようにしている。上述したように、本実施形態では、黄色蛍光体として、α‐SiAlON:Eu蛍光体を用いているが蛍光体の種類はこれに限定されない。   Next, in general, white (or pseudo-white) light used as illumination light is a mixture of three colors of R (red), G (green), and B (blue), or two types satisfying a complementary color relationship. This can be achieved by mixing colors. For example, white (or pseudo-white) light can be realized by mixing the color of the fluorescence emitted from the phosphor included in the wavelength conversion member 6 and the color of the laser light emitted from the excitation light source 1. More specifically, the light emitting device 10 of this embodiment is a color mixture of the yellow fluorescent light emitted from the yellow phosphor included in the wavelength conversion member 6 and the blue color of the laser light emitted from the excitation light source 1. Thus, white light (pseudo white) is output. As described above, in this embodiment, the α-SiAlON: Eu phosphor is used as the yellow phosphor, but the type of the phosphor is not limited to this.

例えば、波長変換部材6は、青色発光蛍光体(以下、単に「青色蛍光体」という)、緑色発光蛍光体(以下、単に「緑色蛍光体」という)、および赤色発光蛍光体(以下、単に「赤色蛍光体」という)が、封止剤の中に分散されたものであっても良い。波長変換部材6に含まれる蛍光体として、緑色蛍光体、および赤色蛍光体を使用した場合は、励起光源1から出射されるレーザ光の青色との混色で、白色光が出力される。この場合の方が演色性の高い白色光が得られる。   For example, the wavelength conversion member 6 includes a blue light emitting phosphor (hereinafter simply referred to as “blue phosphor”), a green light emitting phosphor (hereinafter simply referred to as “green phosphor”), and a red light emitting phosphor (hereinafter simply referred to as “ Red phosphor ”) may be dispersed in a sealant. When a green phosphor and a red phosphor are used as the phosphor included in the wavelength conversion member 6, white light is output in a mixed color with the blue of the laser light emitted from the excitation light source 1. In this case, white light with higher color rendering can be obtained.

また、励起光源1に近紫外領域から青紫色領域(370nm以上420nm以下)のレーザ光を用いてもよく、この場合の波長変換部材6に含まれる蛍光体として、青色蛍光体、緑色蛍光体、および赤色蛍光体を使用することにより、励起光源1から出射されるレーザ光の青紫色との混色で、白色光が出力される。この場合の方がさらに演色性の高い良質な白色光が得られる。   Moreover, you may use the laser beam of a near ultraviolet region to a blue-violet region (370 nm or more and 420 nm or less) for the excitation light source 1, As a fluorescent substance contained in the wavelength conversion member 6 in this case, a blue fluorescent substance, a green fluorescent substance, By using the red phosphor, white light is output in a color mixture with the blue-violet laser light emitted from the excitation light source 1. In this case, good white light with higher color rendering can be obtained.

また、本実施形態の波長変換部材6の光が照射される光照射側の面(発光部表面SUF2)は、後述するリフレクター7の光反射凹面の焦点付近の底部に接合されている。このため、波長変換部材6は、リフレクター7の光反射凹面の底部付近において光反射凹面の形状に沿って円盤状の形状(または底部を封止する形状)を為している。以上により波長変換部材6とリフレクター7とが一体化されるため、波長変換部材6からの光の取り出し効率を高めることができる。   In addition, the light irradiation side surface (light emitting unit surface SUF2) on which the light of the wavelength conversion member 6 of the present embodiment is irradiated is joined to the bottom portion near the focal point of the light reflecting concave surface of the reflector 7 described later. For this reason, the wavelength conversion member 6 has a disk-like shape (or a shape for sealing the bottom) along the shape of the light reflecting concave surface in the vicinity of the bottom of the light reflecting concave surface of the reflector 7. Since the wavelength conversion member 6 and the reflector 7 are integrated by the above, the extraction efficiency of the light from the wavelength conversion member 6 can be improved.

(リフレクター7)
リフレクター7は、波長変換部材6が出射した波長変換光(蛍光)の一部を反射することにより、所定の立体角内を進む光線束を形成するものである。すなわち、リフレクター7は、波長変換部材6からの蛍光を反射することにより、発光装置10の前方(光軸方向)へ進む光線束を形成する。このリフレクター7は、例えば、金属薄膜がその表面に形成された曲面形状(カップ状曲面)の部材であり、光を反射する光反射凹面を有し、反射した蛍光(照明光)の進行方向に開口している。
(Reflector 7)
The reflector 7 forms a light bundle that travels within a predetermined solid angle by reflecting a part of the wavelength-converted light (fluorescence) emitted from the wavelength conversion member 6. That is, the reflector 7 reflects the fluorescence from the wavelength conversion member 6 to form a light beam that travels forward (in the optical axis direction) of the light emitting device 10. The reflector 7 is, for example, a curved surface (cup-shaped curved surface) member having a metal thin film formed on the surface thereof, has a light reflecting concave surface that reflects light, and travels in the traveling direction of reflected fluorescence (illumination light). It is open.

〈発光装置10の効果〉
ここで、本実施形態の発光装置10の効果を検証するため、比較例の発光装置を試作し、発光装置10が奏する効果と、比較例の発光装置が奏する効果と、を比較したので、以下、その比較結果について説明する。
<Effect of the light emitting device 10>
Here, in order to verify the effect of the light emitting device 10 of the present embodiment, the light emitting device of the comparative example was prototyped, and the effect of the light emitting device 10 and the effect of the light emitting device of the comparative example were compared. The comparison result will be described.

図2の(a)に示す比較例1の発光装置は、発光装置10と比較して、LD素子と波長変換部材との間に導光部材が存在していない点で異なっている。このため、比較例1の発光装置では、発光装置10における、先端部5aがリフレクター構造となっている点、導光部5と波長変換部材6との屈折率差が小さい点、および先端部5aが、波長変換部材6に接触している、または波長変換部材6に挿入されている点、から得られるメリットは享受できない。   The light emitting device of Comparative Example 1 shown in FIG. 2A differs from the light emitting device 10 in that no light guide member exists between the LD element and the wavelength conversion member. For this reason, in the light-emitting device of Comparative Example 1, in the light-emitting device 10, the tip 5a has a reflector structure, the difference in refractive index between the light guide 5 and the wavelength conversion member 6, and the tip 5a. However, the merit obtained from the point which is contacting the wavelength conversion member 6 or inserted in the wavelength conversion member 6 cannot be enjoyed.

一方、図2の(b)に示す比較例2の発光装置は、発光装置10と比較して、先端部5aがリフレクター構造となっていない点が異なっている。すなわち、比較例2の発光装置では、発光装置10における、先端部5aがリフレクター構造となっている点から得られるメリットは享受できない。   On the other hand, the light emitting device of Comparative Example 2 shown in FIG. 2B is different from the light emitting device 10 in that the tip portion 5a does not have a reflector structure. That is, in the light emitting device of Comparative Example 2, the advantage obtained from the point that the tip portion 5a of the light emitting device 10 has a reflector structure cannot be enjoyed.

以下の表1に、比較例1の発光装置から出射される照明光の全光束を基準として、実施形態1の発光装置10から出射される照明光の全光束を比較した結果、および比較例2の発光装置から出射される照明光の全光束を基準として、実施形態1の発光装置10から出射される照明光の全光束を比較した結果を示す。なお、励起光源であるLDの光出力は同出力とした。実施形態1は、比較例1に比べて、全光束は1.5倍に向上した。また、実施形態1は、比較例2に比べて、全光束は1.3倍に向上した。この比較結果より、先端部5aをリフレクター構造とすることで照明光の全光束を顕著に向上させることができることが分かる。   Table 1 below shows the result of comparing the total luminous flux of the illumination light emitted from the light-emitting device 10 of Embodiment 1 with reference to the total luminous flux of the illumination light emitted from the light-emitting device of Comparative Example 1, and Comparative Example 2 The result of having compared the total luminous flux of the illumination light emitted from the light emitting device 10 of Embodiment 1 on the basis of the total luminous flux of the illumination light emitted from the light emitting device is shown. The light output of the LD, which is an excitation light source, was the same output. In Embodiment 1, the total luminous flux was improved by 1.5 times compared to Comparative Example 1. Further, in Embodiment 1, the total luminous flux was improved 1.3 times compared to Comparative Example 2. From this comparison result, it is understood that the total luminous flux of the illumination light can be remarkably improved by making the tip portion 5a a reflector structure.

Figure 2015122447
Figure 2015122447

〈従来技術の問題点と発光装置10の効果との関係〉
上述した特許文献1に記載の光源装置〔図7の(a)参照〕では、波長変換部材の蛍光体を封止する封止剤は、シリコーン樹脂(屈折率は1.4)である。このため、ライトガイド射出端部と波長変換部材との間に、励起光発散手段としての凹レンズを備えていても、励起光の光出力(パワー)を上げれば、封止剤がすぐに劣化してしまうという問題点がある。しかしながら、本実施形態の発光装置10では、上述したように、波長変換部材6における蛍光体の封止剤は、石英ガラスである。また、蛍光体は酸窒化物系蛍光体である。このため、レーザ光の光出力を上げても劣化しにくい。
<Relationship between problems of conventional technology and effects of light emitting device 10>
In the light source device described in Patent Document 1 described above (see FIG. 7A), the sealant that seals the phosphor of the wavelength conversion member is a silicone resin (refractive index is 1.4). For this reason, even if a concave lens as excitation light diffusing means is provided between the light guide exit end and the wavelength conversion member, the sealant deteriorates quickly if the light output (power) of the excitation light is increased. There is a problem that. However, in the light emitting device 10 of this embodiment, as described above, the phosphor sealing agent in the wavelength conversion member 6 is quartz glass. The phosphor is an oxynitride phosphor. For this reason, even if the optical output of the laser beam is increased, it is difficult to deteriorate.

次に、特許文献1に記載の光源装置では、ライトガイド出射端部と波長変換部材との間は、テーパーのついた保持部材に囲まれた空間となっている。このため、波長変換部材とライトガイド出射端部との間に凹レンズや空気が存在すること、ライトガイド射出端部、空気および波長変換部材(シリコーン樹脂;屈折率1.4)のそれぞれの屈折率差が有意な大きさをもつこと、ライトガイド射出端部と波長変換部材との間の距離が離れていること等に起因して波長変換部材に対する励起光の照射効率が低下してしまうという問題点がある。また、上述した特許文献2に記載の半導体光源装置〔図7の(b)参照〕では、励起光を出射するLD素子と、波長変換部材との間の距離が離れており、空気や波長変換部材が存在している領域などの屈折率が大きく異なる領域(≧1.4)が存在するため、励起光の波長変換部材への入射効率が低いという問題点がある。さらに上述した特許文献3に記載の発光装置〔図7の(c)参照〕では、波長変換部材の蛍光体を封止する封止剤は、エポキシ樹脂、シリコーン樹脂、およびガラス等の無機材料が例示されているものの、導光部5と波長変換部6との屈折率差については何も言及されていない。   Next, in the light source device described in Patent Document 1, a space surrounded by a tapered holding member is provided between the light guide emitting end and the wavelength conversion member. Therefore, the presence of a concave lens or air between the wavelength conversion member and the light guide exit end, the light guide exit end, air, and the refractive index of each of the wavelength conversion member (silicone resin; refractive index 1.4) The problem is that the irradiation efficiency of the excitation light to the wavelength conversion member decreases due to the difference being significant, the distance between the light guide exit end and the wavelength conversion member being separated, etc. There is a point. Further, in the semiconductor light source device described in Patent Document 2 described above (see FIG. 7B), the distance between the LD element that emits the excitation light and the wavelength conversion member is separated, and air or wavelength conversion is performed. Since there is a region (≧ 1.4) having a significantly different refractive index, such as a region where the member is present, there is a problem that the incident efficiency of the excitation light to the wavelength conversion member is low. Furthermore, in the light emitting device described in Patent Document 3 described above (see FIG. 7C), the sealing agent for sealing the phosphor of the wavelength conversion member is made of an inorganic material such as an epoxy resin, a silicone resin, and glass. Although illustrated, nothing is mentioned about the refractive index difference between the light guide unit 5 and the wavelength conversion unit 6.

一方、本実施形態の発光装置10では、導光部5の母材と、波長変換部材6の蛍光体の封止剤の材料を同じ石英(酸化ケイ素)とすることで、波長変換部材6と導光部5の屈折率差を小さくしているので、該屈折率差が有意な大きさであることに起因する照射効率の低下を抑制することができる。また、本実施形態の発光装置10では、先端部5aの導光部端面SUF3を、波長変換部材6の発光部表面SUF2に接触させるか、または、先端部5aを波長変換部材6の発光部表面SUF2から波長変換部材6の内部へ挿入させている。このため、波長変換部材6と先端部5aとの界面での光のロスを低減させることができる。   On the other hand, in the light emitting device 10 of the present embodiment, the wavelength conversion member 6 and the base material of the light guide 5 and the phosphor sealing material of the wavelength conversion member 6 are made of the same quartz (silicon oxide). Since the refractive index difference of the light guide unit 5 is reduced, it is possible to suppress a decrease in irradiation efficiency due to the significant difference in the refractive index. Further, in the light emitting device 10 of the present embodiment, the light guide part end surface SUF3 of the tip part 5a is brought into contact with the light emitting part surface SUF2 of the wavelength conversion member 6, or the tip part 5a is contacted with the light emitting part surface of the wavelength conversion member 6. It is inserted into the wavelength conversion member 6 from the SUF 2. For this reason, the loss of light at the interface between the wavelength conversion member 6 and the tip 5a can be reduced.

次に、上述した特許文献2に記載の半導体発光装置〔図7(b)参照〕では、開口の傾斜部の入光部とLD素子との間の距離が離れているため、入光部を超えてLD素子側へ戻ってきた励起光および蛍光が、再び波長変換部側へ戻る確率が低下してしまうという問題点がある。しかしながら、本実施形態の発光装置10では、上述したように、波長変換部材6と先端部5aとを近接させるとともに、先端部5aをリフレクター構造としているので、導光部5側に戻ってきた戻り光(蛍光および励起光)を反射し、光軸方向の前方へ出射させることができる。また、特許文献3では、波長変換部材との接触面積を増加させるためにライトガイド先端部材の端面の面積を大きくすることが記載されているものの、ライトガイドの出射端部がリフレクター構造にはなっていないため、本実施形態の発光装置10の上述した戻り光を反射させる効果は得られない。また、同文献に記載の発光装置では、本実施形態の発光装置10のように、波長変換部材をリフレクターと一体化する観点については何も記載されていない。このため、同文献に記載の発光装置では、本実施形態の発光装置10と比較して、波長変換部材からの光の取り出し効率が低下してしまう可能性がある。   Next, in the semiconductor light emitting device described in Patent Document 2 described above (see FIG. 7B), since the distance between the light incident portion of the inclined portion of the opening and the LD element is large, the light incident portion is There is a problem in that the probability that the excitation light and fluorescence that have returned to the LD element side will return to the wavelength conversion unit side again decreases. However, in the light emitting device 10 of the present embodiment, as described above, the wavelength conversion member 6 and the tip portion 5a are brought close to each other, and the tip portion 5a has a reflector structure. Light (fluorescence and excitation light) can be reflected and emitted forward in the optical axis direction. Further, Patent Document 3 describes that the area of the end surface of the light guide tip member is increased in order to increase the contact area with the wavelength conversion member, but the light guide emission end portion has a reflector structure. Therefore, the above-described effect of reflecting the return light of the light emitting device 10 of this embodiment cannot be obtained. Moreover, in the light-emitting device described in the same document, as in the light-emitting device 10 of the present embodiment, nothing is described about the viewpoint of integrating the wavelength conversion member with the reflector. For this reason, in the light-emitting device described in the document, the light extraction efficiency from the wavelength conversion member may be lower than that of the light-emitting device 10 of the present embodiment.

〔実施形態2:発光装置20〕
次に、図3に基づき、本発明の実施形態2に係る発光装置(照明装置)20の構造について説明する。図3は、発光装置20の構造を示す断面図である。本実施形態の発光装置20は、先端部5aの光出射側の端面(導光部端面SUF3)が、中央付近が突出する凸曲面(凸面)を為し、凸部5bを形成している点で、上述した実施形態1の発光装置10と異なっている。なお、発光装置20のその他の構成は、発光装置10と同様なので、ここでは説明を省略する。
[Embodiment 2: Light-emitting device 20]
Next, based on FIG. 3, the structure of the light-emitting device (illuminating device) 20 which concerns on Embodiment 2 of this invention is demonstrated. FIG. 3 is a cross-sectional view showing the structure of the light emitting device 20. In the light emitting device 20 of the present embodiment, the light emitting side end surface (light guide unit end surface SUF3) of the tip 5a has a convex curved surface (convex surface) that protrudes near the center to form a convex 5b. Thus, it is different from the light emitting device 10 of Embodiment 1 described above. In addition, since the other structure of the light-emitting device 20 is the same as that of the light-emitting device 10, description is abbreviate | omitted here.

(先端部5a)
本実施形態では、先端部5aは、波長変換部材6の発光部表面SUF2の側から内部に向けて挿入されている。これにより、波長変換部材6と先端部5aとの界面での光のロスを低減させている。また、本実施形態では、先端部5aの導光部端面SUF3が、中央付近が突出する凸曲面(凸面)を為し、凸部5bを形成している。これにより、発光装置10よりも先端部5aと、波長変換部材6との接触面積を増加させている。よって、波長変換部材6に照射される励起光の密度が低減され、波長変換部材の放熱性が少し改善され、波長変換部材6に対する励起光の照射効率の低下をより抑制することができる。なお、本実施形態では、凸部5bの形状を凸曲面形状としているが、これに限定されない。例えば、凸部5bの形状は円錐台状、角錐台状、円錐状、角錐状などであっても良い。
(Tip 5a)
In this embodiment, the front-end | tip part 5a is inserted toward the inside from the light emission part surface SUF2 side of the wavelength conversion member 6. FIG. Thereby, the loss of light at the interface between the wavelength conversion member 6 and the tip 5a is reduced. Moreover, in this embodiment, the light guide part end surface SUF3 of the front-end | tip part 5a makes the convex curved surface (convex surface) which the center vicinity protrudes, and forms the convex part 5b. Thereby, the contact area of the front-end | tip part 5a and the wavelength conversion member 6 is increased rather than the light-emitting device 10. FIG. Therefore, the density of the excitation light irradiated to the wavelength conversion member 6 is reduced, the heat dissipation of the wavelength conversion member is slightly improved, and the decrease in the irradiation efficiency of the excitation light on the wavelength conversion member 6 can be further suppressed. In addition, in this embodiment, although the shape of the convex part 5b is made into the convex curved surface shape, it is not limited to this. For example, the shape of the convex portion 5b may be a truncated cone shape, a truncated pyramid shape, a conical shape, a truncated pyramid shape, or the like.

〈発光装置20の効果〉
ここで、本実施形態の発光装置20の効果を検証するため、実施形態1および2の発光装置10,20のそれぞれを試作し、発光装置10が奏する効果と、発光装置20が奏する効果と、を比較したので、以下、その比較結果について説明する。
<Effect of the light emitting device 20>
Here, in order to verify the effect of the light-emitting device 20 of the present embodiment, each of the light-emitting devices 10 and 20 of the first and second embodiments is prototyped, and the effect exhibited by the light-emitting device 10, the effect exhibited by the light-emitting device 20, The comparison results will be described below.

以下の表2に、実施形態1の発光装置から出射される照明光の最大光束を基準として、実施形態2の発光装置20から出射される照明光の最大光束を比較した結果を示す。なお、励起光源であるLDの光出力は同出力とした。実施形態2は、実施形態1に比べて、最大光束は1.05倍に向上した。この比較結果より、先端部5aの導光部端面SUF3を凸面とするだけで発光装置10と比較して照明光の最大光束を約5%向上させることができることが分かる。   Table 2 below shows the result of comparing the maximum luminous flux of the illumination light emitted from the light emitting device 20 of the second embodiment with the maximum luminous flux of the illumination light emitted from the light emitting device of the first embodiment as a reference. The light output of the LD, which is an excitation light source, was the same output. In the second embodiment, the maximum luminous flux is improved 1.05 times compared to the first embodiment. From this comparison result, it can be seen that the maximum luminous flux of the illumination light can be improved by about 5% as compared with the light emitting device 10 only by making the light guide part end surface SUF3 of the tip part 5a convex.

Figure 2015122447
Figure 2015122447

〔実施形態3:発光装置30〕
次に、図4の(a)に基づき、本発明の実施形態3に係る発光装置(照明装置)30の構造について説明する。図4の(a)は、発光装置30の構造を示す断面図である。本実施形態の発光装置30は、先端部5aの側の端面(導光部端面SUF3)に透光性を有する熱伝導性部材8が設けられている点で、上述した実施形態1の発光装置10と異なっている。
[Embodiment 3: Light-emitting device 30]
Next, based on (a) of FIG. 4, the structure of the light-emitting device (illuminating device) 30 which concerns on Embodiment 3 of this invention is demonstrated. FIG. 4A is a cross-sectional view illustrating the structure of the light emitting device 30. The light emitting device 30 according to the present embodiment is the light emitting device according to the first embodiment described above in that the heat conductive member 8 having translucency is provided on the end surface (light guide unit end surface SUF3) on the distal end portion 5a side. 10 and different.

さらに、実施形態3で使用する励起光源1は、LDの光出力を高くするために、励起光源を5個備え、発光装置30または図4の(b)に係る発光装置10とバンドルファイバ2で光学的に接続されている点で、上述した実施形態1の発光装置10と異なっている。なお、発光装置30のその他の構成は、発光装置10と同様なので、ここでは説明を省略する。   Furthermore, the excitation light source 1 used in the third embodiment includes five excitation light sources in order to increase the light output of the LD, and includes the light emitting device 30 or the light emitting device 10 and the bundle fiber 2 according to FIG. It is different from the light emitting device 10 of the first embodiment described above in that it is optically connected. In addition, since the other structure of the light-emitting device 30 is the same as that of the light-emitting device 10, description is abbreviate | omitted here.

(熱伝導性部材8)
図4の(a)に示すように、本実施形態の熱伝導性部材8は、導光部端面SUF3と発光部表面SUF2との間に配置され、これらの各面の間に挟みこまれている。熱伝導性部材8は、高い熱伝導率を有する部材であり、本実施形態では、サファイア(Al;熱伝導率42W/m・K)板を用いている。しかしながら、熱伝導性部材8の材質はこれに限定されず、マグネシア(MgO)などであって良い。以上の材料を用いることにより、熱伝導率20W/m・K以上を実現できる。
(Thermal conductive member 8)
As shown in FIG. 4A, the heat conductive member 8 of the present embodiment is disposed between the light guide unit end surface SUF3 and the light emitting unit surface SUF2, and is sandwiched between these surfaces. Yes. The thermally conductive member 8 is a member having a high thermal conductivity. In this embodiment, a sapphire (Al 2 O 3 ; thermal conductivity 42 W / m · K) plate is used. However, the material of the heat conductive member 8 is not limited to this, and may be magnesia (MgO) or the like. By using the above materials, a thermal conductivity of 20 W / m · K or more can be realized.

熱伝導性部材8の熱伝導率は、波長変換部材6の封止剤および導光部5の母材である石英ガラスの熱伝導率1.4〜1.5W/m・Kよりも高くすることが好ましい。これにより、波長変換部材6の放熱性を高めることができる。その結果、LDの光出力を高くしても、波長変換部材6の劣化が起こらない。   The thermal conductivity of the thermal conductive member 8 is higher than the thermal conductivity of 1.4 to 1.5 W / m · K of the sealing material of the wavelength conversion member 6 and the quartz glass that is the base material of the light guide unit 5. It is preferable. Thereby, the heat dissipation of the wavelength conversion member 6 can be improved. As a result, even if the optical output of the LD is increased, the wavelength conversion member 6 does not deteriorate.

また、熱伝導性部材8は、透光性を有する材料で構成し、先端部5aから出射される励起光を透過させて波長変換部材6に照射させるようにする。波長変換部材6に対する励起光の照射効率の低下を抑制するためには、熱伝導性部材8、波長変換部材6および導光部5のそれぞれの屈折率差は小さい方が好ましい。本実施形態では、熱伝導性部材8は、サファイア板であり、その屈折率は、1.75である。波長変換部材6および導光部5のそれぞれの屈折率は、母材とほぼ等しいものとすると、1.45〜1.48程度である。サファイア板の屈折率(1.75)は、波長変換部材6および導光部5のそれぞれの屈折率、ならびに、石英ガラスの屈折率(1.45〜1.48)および光ファイバ2(コア;1.463〜1.467,クラッド;1.45〜1.46)の屈折率よりも約0.3高い。しかしながら、図2の(a)に示す比較例1の発光装置のように波長変換部材とLD素子との間に空気(屈折率=1.0)が介在する場合と比べると、屈折率差は半分以下であり、その影響は軽減される。   Moreover, the heat conductive member 8 is comprised with the material which has translucency, permeate | transmits the excitation light radiate | emitted from the front-end | tip part 5a, and is made to irradiate the wavelength conversion member 6. FIG. In order to suppress a decrease in the irradiation efficiency of the excitation light with respect to the wavelength conversion member 6, it is preferable that the refractive index differences of the heat conductive member 8, the wavelength conversion member 6, and the light guide unit 5 are small. In this embodiment, the heat conductive member 8 is a sapphire plate, and its refractive index is 1.75. Respective refractive indexes of the wavelength conversion member 6 and the light guide portion 5 are about 1.45 to 1.48, assuming that they are substantially equal to the base material. The refractive index of the sapphire plate (1.75) is the refractive index of each of the wavelength conversion member 6 and the light guide 5, and the refractive index of quartz glass (1.45-1.48) and the optical fiber 2 (core; 1.463 to 1.467, cladding; 1.45 to 1.46), which is about 0.3 higher than the refractive index. However, as compared with the case where air (refractive index = 1.0) is interposed between the wavelength conversion member and the LD element as in the light emitting device of Comparative Example 1 shown in FIG. Less than half, the impact is reduced.

また、高い熱伝導性を有する熱伝導性部材8によれば、先端部5aと波長変換部材6とを熱的に接続し、波長変換部材6で生じた熱を逃がすことができるので波長変換部材6の放熱性を高めることができる。このため、励起光の光出力を大きくしても波長変換部材6の劣化を抑制することができる。熱伝導性部材8の厚さ(発光部表面SUF2と導光部端面SUF3との間の距離にほぼ等しい)は、0.2mm以上、1.5mm以下であることがより好ましい。0.2mm以上であれば、波長変換部材6の放熱を十分にでき、波長変換部材6の劣化を防止できる。一方、熱伝導性部材8が、1.5mmを超えると、熱伝導性部材8に向けて照射された励起光が、熱伝導性部材8において吸収される率が大きくなり、励起光の利用効率が顕著に下がる。また、熱伝導性部材8を以上のように適切な厚さで波長変換部材6に接合させることにより、特に波長変換部材6での発熱が1W(ワット)を大きく超えるような極めて強いレーザ光を照射しても、その発熱が迅速、かつ、効率的に放熱され、熱伝導性部材8および波長変換部材6が損傷(劣化)してしまうことを防止できる。   Further, according to the heat conductive member 8 having high heat conductivity, the tip 5a and the wavelength conversion member 6 can be thermally connected, and the heat generated in the wavelength conversion member 6 can be released, so that the wavelength conversion member can be released. The heat dissipation of 6 can be improved. For this reason, deterioration of the wavelength conversion member 6 can be suppressed even if the optical output of the excitation light is increased. The thickness of the heat conductive member 8 (approximately equal to the distance between the light emitting unit surface SUF2 and the light guide unit end surface SUF3) is more preferably 0.2 mm or more and 1.5 mm or less. If it is 0.2 mm or more, the heat radiation of the wavelength conversion member 6 can be sufficiently performed, and deterioration of the wavelength conversion member 6 can be prevented. On the other hand, when the heat conductive member 8 exceeds 1.5 mm, the rate at which the excitation light irradiated toward the heat conductive member 8 is absorbed by the heat conductive member 8 increases, and the utilization efficiency of the excitation light is increased. Is significantly reduced. In addition, by bonding the heat conductive member 8 to the wavelength conversion member 6 with an appropriate thickness as described above, an extremely strong laser beam that particularly generates heat at the wavelength conversion member 6 greatly exceeds 1 W (Watt). Even if it irradiates, the heat_generation | fever is rapidly and efficiently thermally radiated and it can prevent that the heat conductive member 8 and the wavelength conversion member 6 are damaged (deteriorated).

〈発光装置30の効果〉
ここで、本実施形態の発光装置30の効果を検証するため、実施形態1および3の発光装置10,30のそれぞれを試作し、発光装置10が奏する効果と、発光装置30が奏する効果と、を比較したので、以下、その比較結果について説明する。図4の(b)は、発光装置10,30に関し、励起光源(LD)の光出力(W)と、発光装置10,30から出力される光の全光束比のとの関係を示すグラフである(LDの光出力が3Wのときの発光装置10の全光束を1.0とする。)。同図に示すように、本実施形態の発光装置30は、LDの光出力が大きくなっても、LDの光出力と全光束との関係を示すグラフの線形性の崩れはあるものの、その程度は小さい。これに対して、発光装置10では、LDの光出力が、3Wを超える付近から、グラフの線形性が顕著に崩れている。以上により、本実施形態の発光装置30によれば、実施形態1の発光装置10と比較して、LDの光出力を高くしても、それに応じた高光束の照明光を出射させることができることが分かる。例えば、LDの光出力が、5Wのとき、発光装置30の全光束は、発光装置10の全光束の約1.3倍と顕著に高い。
<Effect of light emitting device 30>
Here, in order to verify the effect of the light-emitting device 30 of the present embodiment, each of the light-emitting devices 10 and 30 of the first and third embodiments is prototyped, and the effect exhibited by the light-emitting device 10, the effect exhibited by the light-emitting device 30, The comparison results will be described below. FIG. 4B is a graph showing the relationship between the light output (W) of the excitation light source (LD) and the total luminous flux ratio of the light output from the light emitting devices 10 and 30 with respect to the light emitting devices 10 and 30. Yes (the total luminous flux of the light emitting device 10 when the light output of the LD is 3 W is 1.0). As shown in the figure, the light emitting device 30 of the present embodiment has a degree of linearity in the graph showing the relationship between the light output of the LD and the total luminous flux even if the light output of the LD increases. Is small. On the other hand, in the light emitting device 10, the linearity of the graph is significantly broken from the vicinity of the light output of the LD exceeding 3W. As described above, according to the light emitting device 30 of the present embodiment, compared with the light emitting device 10 of the first embodiment, even if the light output of the LD is increased, it is possible to emit illumination light with a high luminous flux corresponding thereto. I understand. For example, when the light output of the LD is 5 W, the total luminous flux of the light emitting device 30 is remarkably high at about 1.3 times the total luminous flux of the light emitting device 10.

〔実施形態4:発光装置40〕
次に、図5の(a)に基づき、本発明の実施形態4に係る発光装置(照明装置)40の構造について説明する。図5の(a)は、発光装置40の構造を示す断面図である。本実施形態の発光装置40は、波長変換部材6aに含まれる蛍光体の濃度が発光装置30の波長変換部材6に含まれる蛍光体の濃度よりも高い点、および波長変換部材6aの照明光の進行方向に対する厚みd2が、発光装置30の波長変換部材6の照明光の進行方向に対する厚みd1よりも薄い点で、上述した実施形態3の発光装置30と異なっている。また、励起光源1は、実施形態3と同様に、LDを5個使用している。なお、発光装置40のその他の構成は、実施形態3における発光装置30(または発光装置10)と同様なので、ここでは説明を省略する。
[Embodiment 4: Light-emitting device 40]
Next, based on (a) of FIG. 5, the structure of the light-emitting device (illuminating device) 40 which concerns on Embodiment 4 of this invention is demonstrated. FIG. 5A is a cross-sectional view showing the structure of the light emitting device 40. In the light emitting device 40 of the present embodiment, the concentration of the phosphor contained in the wavelength conversion member 6a is higher than the concentration of the phosphor contained in the wavelength conversion member 6 of the light emitting device 30, and the illumination light of the wavelength conversion member 6a. The thickness d2 with respect to the traveling direction is different from the light emitting device 30 of Embodiment 3 described above in that the wavelength conversion member 6 of the light emitting device 30 is thinner than the thickness d1 with respect to the traveling direction of the illumination light. The excitation light source 1 uses five LDs as in the third embodiment. Since the other configuration of the light emitting device 40 is the same as that of the light emitting device 30 (or the light emitting device 10) in the third embodiment, the description thereof is omitted here.

(波長変換部材6a)
本実施形態の発光装置40では、波長変換部材6の厚みd2が、0.02〜0.2mm程度と、波長変換部材6の厚みd1よりも薄くしている。封止剤(波長変換部材6の母材)に対する蛍光体の混合量は、発光装置としての色温度が概3000Kとなるように混合量を調整した。波長変換部材の厚みが薄い分だけ、波長変換部材の単位体積あたりの蛍光体の混合量は多くなっている。
(Wavelength conversion member 6a)
In the light emitting device 40 of this embodiment, the thickness d2 of the wavelength conversion member 6 is about 0.02 to 0.2 mm, which is thinner than the thickness d1 of the wavelength conversion member 6. The mixing amount of the phosphor with respect to the sealing agent (the base material of the wavelength conversion member 6) was adjusted so that the color temperature as the light emitting device was about 3000K. The amount of phosphor mixed per unit volume of the wavelength conversion member increases as the wavelength conversion member is thinner.

蛍光体を封止する封止剤である石英ガラス(熱伝導率=約1.4W/m・K)よりも酸窒化物蛍光体の熱伝導率(=約20W/m・K)の方が高いので、蛍光体の濃度が濃く、波長変換部材の厚みが薄くなると、熱伝導性部材8への熱伝導性が高まり、波長変換部材からの発熱を抑制でき、より高出力での励起光の照射が可能となる。   The thermal conductivity (= about 20 W / m · K) of the oxynitride phosphor is higher than that of quartz glass (thermal conductivity = about 1.4 W / m · K) which is a sealing agent for sealing the phosphor. Since the phosphor concentration is high and the wavelength conversion member is thin, the thermal conductivity to the heat conductive member 8 is increased, the heat generation from the wavelength conversion member can be suppressed, and the excitation light with higher output can be suppressed. Irradiation is possible.

〈発光装置40の効果〉
ここで、本実施形態の発光装置40の効果を検証するため、実施形態1、3および4の発光装置10,30,40のそれぞれを試作し、各発光装置が奏する効果を比較したので、以下、その比較結果について説明する。図5の(b)は、発光装置10,30,40に関し、励起光源(LD)の光出力(W)と、発光装置10,30,40から出力される光の全光束比との関係を示すグラフである(LDの光出力が3Wのときの発光装置10の全光束を1.0とする。)。同図に示すように、本実施形態の発光装置40は、LDの光出力が大きくなっても、LDの光出力と全光束との関係を示すグラフの線形性はほとんど崩れていない。これに対して、発光装置10では、LDの光出力が、3W付近から、顕著にグラフの線形性が崩れている。一方、発光装置30では、グラフの線形性の崩れは、発光装置10よりも緩やかであるが、4W付近から、グラフの線形性が若干崩れている。以上により、本実施形態の発光装置40によれば、実施形態1および3の発光装置10,30と比較して、LDの光出力を高くしても、それに応じた高光束の照明光を出射させることができることが分かる。例えば、LDの光出力が、5Wのときの発光装置40の全光束は、発光装置10に対して約1.6倍、発光装置30に対して約1.25倍程度、全光束が向上する。
<Effect of light emitting device 40>
Here, in order to verify the effect of the light-emitting device 40 of the present embodiment, each of the light-emitting devices 10, 30, and 40 of Embodiments 1, 3, and 4 was prototyped and the effects exhibited by each light-emitting device were compared. The comparison result will be described. FIG. 5B shows the relationship between the light output (W) of the excitation light source (LD) and the total luminous flux ratio of the light output from the light emitting devices 10, 30, 40 with respect to the light emitting devices 10, 30, 40. (The total luminous flux of the light emitting device 10 when the light output of the LD is 3 W is 1.0). As shown in the figure, in the light emitting device 40 of this embodiment, even when the light output of the LD increases, the linearity of the graph showing the relationship between the light output of the LD and the total luminous flux is hardly broken. On the other hand, in the light emitting device 10, the linearity of the graph is significantly broken from the light output of the LD from around 3 W. On the other hand, in the light emitting device 30, the linearity of the graph is more gradual than that of the light emitting device 10, but the linearity of the graph is slightly broken from around 4 W. As described above, according to the light emitting device 40 of the present embodiment, compared with the light emitting devices 10 and 30 of the first and third embodiments, even if the light output of the LD is increased, the illumination light with a high luminous flux corresponding thereto is emitted. You can see that For example, when the light output of the LD is 5 W, the total luminous flux of the light emitting device 40 is about 1.6 times that of the light emitting device 10 and about 1.25 times that of the light emitting device 30. .

〔実施形態5:照明装置50a〕
次に、図6の(a)に基づき、本発明の実施形態5に係る発光装置(照明装置)50aの構造について説明する。
[Embodiment 5: Lighting device 50a]
Next, based on (a) of FIG. 6, the structure of the light-emitting device (illuminating device) 50a which concerns on Embodiment 5 of this invention is demonstrated.

本実施形態の照明装置50aは、上述した実施形態10〜40のいずれかの発光装置と、ヒートシンク9を備える構成とし、スポットライト等の照明装置に応用したものである。本実施形態の照明装置50aでは、光ファイバ2により、波長変換部材6,6aと励起光源1(半導体レーザ)との間の距離が離れている。これにより波長変換部材6,6aと励起光源1での発熱を分離できるので、波長変換部材6,6aは、励起光源1の発熱の影響を受けなくて済む。これにより、励起光源1を除く、ヒートシンク9を含めた発光装置部(発光装置10〜40)全体(灯具)の大きさを小さくすることができる。また、本実施形態の照明装置50aでは、さらに導光部5の断面方向の周囲をヒートシンク9に熱的に接続して放熱性を高めている。   The illuminating device 50a of this embodiment is configured to include any one of the above-described light emitting devices of Embodiments 10 to 40 and the heat sink 9, and is applied to an illuminating device such as a spotlight. In the illuminating device 50a of this embodiment, the distance between the wavelength conversion members 6 and 6a and the excitation light source 1 (semiconductor laser) is separated by the optical fiber 2. As a result, since the heat generation in the wavelength conversion members 6 and 6a and the excitation light source 1 can be separated, the wavelength conversion members 6 and 6a need not be affected by the heat generation in the excitation light source 1. Thereby, the magnitude | size of the whole light-emitting device part (light-emitting devices 10-40) including the heat sink 9 (lamp) except the excitation light source 1 can be made small. Moreover, in the illuminating device 50a of this embodiment, the circumference | surroundings of the cross-sectional direction of the light guide part 5 are further thermally connected to the heat sink 9, and heat dissipation is improved.

〔変形例:照明装置50b〕
図6の(b)に示す変形例の照明装置50bのように励起光源1を複数備え、発光装置10〜40のいずれか一つとバンドルファイバ2aで光学的に接続する構成を採用しても良い。なお、本変形例では、励起光源1の数は3つであるが、励起光源1の数は、2つ以上であれば良い。これにより、ヒートシンク9を含めた発光装置部(発光装置10〜40)全体(灯具)の大きさを変えることなく、簡単に照明装置50bの照明光の光出力を高めることができる。
[Modification: Lighting device 50b]
A configuration in which a plurality of excitation light sources 1 are provided and optically connected to any one of the light emitting devices 10 to 40 by a bundle fiber 2a as in the illumination device 50b of the modified example illustrated in FIG. 6B may be employed. . In this modification, the number of excitation light sources 1 is three, but the number of excitation light sources 1 may be two or more. Thereby, the light output of the illumination light of the illuminating device 50b can be easily increased without changing the size of the entire light emitting device portion (light emitting devices 10 to 40) including the heat sink 9 (lamp).

〔まとめ〕
本発明の態様1に係る発光装置(10〜40)は、透光性を有する材料を母材とする材料で形成された光伝搬部を有し、当該光伝搬部を伝搬した光を出射する導光部(5)と、上記導光部から出射される光の波長を変換する波長変換部材(6)と、を備え、上記光伝搬部の光出射側の端部である出射端部(先端部5a)は、光の進行方向に垂直な断面の直径が上記波長変換部材の側に近づくにつれて単調に増加する構造を有している。
[Summary]
The light emitting device (10 to 40) according to the first aspect of the present invention includes a light propagation portion formed of a material having a light-transmitting material as a base material, and emits light propagated through the light propagation portion. A light guide part (5) and a wavelength conversion member (6) for converting the wavelength of light emitted from the light guide part, and an emission end part (end part on the light emission side of the light propagation part) The tip 5a) has a structure that monotonously increases as the diameter of the cross section perpendicular to the light traveling direction approaches the wavelength conversion member side.

上記構成によれば、導光部は、透光性を有する材料を母材とする材料で形成された光伝搬部を有している。また、光伝搬部の光出射側の端部である出射端部は、光の進行方向に垂直な断面の直径が波長変換部材の側に近づくにつれて単調に増加する構造を有している。このため、出射端部に導光される光のスポット径を拡大することができる。これにより、出射端部を波長変換部材に近づけても、波長変換部材の一部の狭い範囲に部分的に励起光の強度が集中することを抑制できるので、波長変換部材の劣化を抑制することができる。以上により、導光部の出射端部を波長変換部材に近づけた場合における波長変換部材の劣化の抑制効果を向上させることができる。   According to the said structure, the light guide part has the light propagation part formed with the material which uses as a base material the material which has translucency. In addition, an emission end portion that is an end portion on the light emission side of the light propagation portion has a structure that monotonously increases as the diameter of the cross section perpendicular to the light traveling direction approaches the wavelength conversion member side. For this reason, the spot diameter of the light guided to the exit end can be enlarged. As a result, even if the emission end portion is brought close to the wavelength conversion member, it is possible to suppress the concentration of the excitation light from being partially concentrated in a narrow range of a part of the wavelength conversion member, thereby suppressing deterioration of the wavelength conversion member. Can do. As described above, it is possible to improve the effect of suppressing the deterioration of the wavelength conversion member when the exit end of the light guide unit is brought close to the wavelength conversion member.

本発明の態様2に係る発光装置は、上記態様1において、上記出射端部の端面は、上記波長変換部材に接触していても良い。   In the light emitting device according to aspect 2 of the present invention, in the above aspect 1, the end face of the emission end portion may be in contact with the wavelength conversion member.

上記構成によれば、波長変換部材と出射端部との界面での光のロスを低減させることができ、波長変換部材に対する励起光の照射効率の低下を抑制することができる。   According to the said structure, the loss of the light in the interface of a wavelength conversion member and an output edge part can be reduced, and the fall of the irradiation efficiency of the excitation light with respect to a wavelength conversion member can be suppressed.

本発明の態様3に係る発光装置は、上記態様1において、上記出射端部は、上記波長変換部材の光が照射される光照射側の面の側から上記波長変換部材の内部に向けて挿入されていても良い。   The light-emitting device according to aspect 3 of the present invention is the light-emitting device according to aspect 1, in which the emission end is inserted from the side of the light irradiation side irradiated with the light of the wavelength conversion member toward the inside of the wavelength conversion member. May be.

上記構成によれば、波長変換部材と出射端部との界面での光のロスを低減させることができ、波長変換部材に対する励起光の照射効率の低下を抑制することができる。   According to the said structure, the loss of the light in the interface of a wavelength conversion member and an output edge part can be reduced, and the fall of the irradiation efficiency of the excitation light with respect to a wavelength conversion member can be suppressed.

本発明の態様4に係る発光装置は、上記態様1〜3のいずれかにおいて、上記波長変換部材の母材と、上記導光部の母材とが同じ材料であっても良い。   In the light emitting device according to aspect 4 of the present invention, in any one of the above aspects 1 to 3, the base material of the wavelength conversion member and the base material of the light guide section may be the same material.

上記構成によれば、波長変換部材と出射端部との界面での光のロスを低減させることができ、波長変換部材に対する励起光の照射効率の低下を抑制することができる。   According to the said structure, the loss of the light in the interface of a wavelength conversion member and an output edge part can be reduced, and the fall of the irradiation efficiency of the excitation light with respect to a wavelength conversion member can be suppressed.

本発明の態様5に係る発光装置は、上記態様1〜4のいずれかにおいて、光反射性を有し、上記導光部を被覆する被覆部を備えていても良い。   The light-emitting device which concerns on aspect 5 of this invention in any one of the said aspects 1-4 may have the coating | coated part which has light reflectivity and coat | covers the said light guide part.

上記構成によれば、被覆部と導光部との界面が鏡の役割を果たし、上記のように、出射端部は、光の進行方向に垂直な断面の直径が波長変換部材の側に近づくにつれて単調に増加する構造を有しているため、波長変換部材からの戻り光(励起光または波長変換光)を再度波長変換部材へ入射させ易くなる。このため、発光装置としての発光効率および光の取り出し効率を向上させることができる。   According to the said structure, the interface of a coating | coated part and a light guide part plays the role of a mirror, and as above-mentioned, the exit end part has the diameter of the cross section perpendicular | vertical to the advancing direction of light, and approaches the wavelength conversion member side. Therefore, the return light (excitation light or wavelength converted light) from the wavelength conversion member can easily enter the wavelength conversion member again. For this reason, the light emission efficiency as a light-emitting device and the light extraction efficiency can be improved.

本発明の態様6に係る発光装置は、上記態様1〜5のいずれかにおいて、上記導光部の上記出射端部の側の端面は、上記波長変換部材の側に突出する凸面で構成されていても良い。   The light emitting device according to aspect 6 of the present invention is the light emitting device according to any one of aspects 1 to 5, wherein the end surface of the light guide portion on the emission end portion side is configured by a convex surface protruding toward the wavelength conversion member. May be.

上記構成によれば、導光部の出射端部の側の端面が平面であるときよりも波長変換部材との接触面積を増加させることができる。このため、波長変換部材に照射される励起光の密度が低減され、波長変換部材の放熱性が改善され、波長変換部材に対する励起光の照射効率より向上させることができる。   According to the said structure, a contact area with a wavelength conversion member can be increased rather than when the end surface at the side of the output end part of a light guide part is a plane. For this reason, the density of the excitation light irradiated to the wavelength conversion member is reduced, the heat dissipation of the wavelength conversion member is improved, and the irradiation efficiency of the excitation light to the wavelength conversion member can be improved.

本発明の態様7に係る発光装置は、上記態様1において、上記導光部の出射端部の側の端面に透光性を有する熱伝導性部材が設けられていても良い。   In the light emitting device according to aspect 7 of the present invention, in the aspect 1, a heat conductive member having translucency may be provided on an end surface of the light guide portion on the emission end portion side.

上記構成によれば、導光部の出射端部の側の端面と波長変換部材とを熱的に接続し、波長変換部材で生じた熱を逃がすことができるので波長変換部材の放熱性を高めることができる。このため、励起光の光出力を大きくしても波長変換部材の劣化を抑制することができる。   According to the above configuration, the wavelength conversion member can be thermally connected to the end face of the light guide portion on the emission end side, and the heat generated in the wavelength conversion member can be released, so the heat dissipation of the wavelength conversion member is improved. be able to. For this reason, deterioration of the wavelength conversion member can be suppressed even if the optical output of the excitation light is increased.

本発明の態様8に係る照明装置は、上記態様1〜7のいずれかの発光装置と、波長変換部材から出射される光を反射する光反射凹面を有する反射鏡と、を備えており、上記波長変換部材の光が照射される光照射側の面は、上記光反射凹面の焦点付近の底部に接合されていても良い。   An illuminating device according to aspect 8 of the present invention includes the light-emitting device according to any one of aspects 1 to 7, and a reflecting mirror having a light reflecting concave surface that reflects light emitted from the wavelength conversion member. The surface on the light irradiation side where the light of the wavelength conversion member is irradiated may be bonded to the bottom near the focal point of the light reflecting concave surface.

上記構成によれば、波長変換部材と、光反射凹面の焦点付近の底部と、が一体化されているため、波長変換部材からの光の取り出し効率を高めることができる。   According to the above configuration, since the wavelength conversion member and the bottom near the focal point of the light reflecting concave surface are integrated, the light extraction efficiency from the wavelength conversion member can be increased.

〔付記事項〕
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
[Additional Notes]
The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.

本発明は、発光装置や照明装置、特にスポットライト等の照明装置に適用することができる。   The present invention can be applied to light-emitting devices and lighting devices, particularly lighting devices such as spotlights.

1 励起光源
4 被覆部
5 導光部
5a 先端部(出射端部,光伝搬部)
5b コア(光伝搬部)
6,6a 波長変換部材
7 リフレクター(反射鏡)
8 熱伝導性部材
10〜40 発光装置(照明装置)
50a 照明装置
50b 照明装置
SUF1 被覆部表面
SUF2 発光部表面
SUF3 導光部端面(凸面)
DESCRIPTION OF SYMBOLS 1 Excitation light source 4 Covering part 5 Light guide part 5a Tip part (output end part, light propagation part)
5b Core (light propagation part)
6, 6a Wavelength conversion member 7 Reflector (reflector)
8 Thermally conductive members 10 to 40 Light emitting device (lighting device)
50a Illuminating device 50b Illuminating device SUF1 Cover surface SUF2 Light emitting surface SUF3 Light guide end surface (convex surface)

Claims (8)

透光性を有する材料を母材とする材料で形成された光伝搬部を有し、当該光伝搬部を伝搬した光を出射する導光部と、
上記導光部から出射される光の波長を変換する波長変換部材と、を備え、
上記光伝搬部の光出射側の端部である出射端部は、光の進行方向に垂直な断面の直径が上記波長変換部材の側に近づくにつれて単調に増加する構造を有していることを特徴とする発光装置。
A light propagation part formed of a material having a light-transmitting material as a base material, and a light guide part that emits light propagated through the light propagation part;
A wavelength conversion member that converts the wavelength of light emitted from the light guide unit,
The exit end, which is the end on the light exit side of the light propagation part, has a structure in which the diameter of the cross section perpendicular to the light traveling direction increases monotonously as it approaches the wavelength conversion member side. A light emitting device characterized.
上記出射端部の端面は、上記波長変換部材に接触していることを特徴とする請求項1に記載の発光装置。   The light emitting device according to claim 1, wherein an end face of the emission end portion is in contact with the wavelength conversion member. 上記出射端部は、上記波長変換部材の光が照射される光照射側の面の側から上記波長変換部材の内部に向けて挿入されていることを特徴とする請求項1に記載の発光装置。   2. The light emitting device according to claim 1, wherein the emission end portion is inserted toward the inside of the wavelength conversion member from a light irradiation side surface irradiated with light of the wavelength conversion member. . 上記波長変換部材の母材と、上記導光部の母材とが同じ材料であることを特徴とする請求項1から3までのいずれか1項に記載の発光装置。   The light emitting device according to any one of claims 1 to 3, wherein the base material of the wavelength conversion member and the base material of the light guide section are the same material. 光反射性を有し、上記導光部を被覆する被覆部を備えることを特徴とする請求項1から4までのいずれか1項に記載の発光装置。   5. The light emitting device according to claim 1, further comprising a covering portion that has light reflectivity and covers the light guide portion. 上記導光部の上記出射端部の側の端面は、上記波長変換部材の側に突出する凸面で構成されていることを特徴とする請求項1から5までのいずれか1項に記載の発光装置。   6. The light emitting device according to claim 1, wherein an end surface of the light guide portion on the emission end portion side is formed by a convex surface protruding toward the wavelength conversion member. apparatus. 上記導光部の上記出射端部の側の端面に透光性を有する熱伝導性部材が設けられていることを特徴とする請求項1に記載の発光装置。   The light emitting device according to claim 1, wherein a heat conductive member having translucency is provided on an end face of the light guide portion on the emission end portion side. 請求項1から7までのいずれか1項に記載の発光装置と、
上記波長変換部材から出射される光を反射する光反射凹面を有する反射鏡と、を備えており、
上記波長変換部材の光が照射される光照射側の面は、上記光反射凹面の焦点付近の底部に接合されていることを特徴とする照明装置。
A light emitting device according to any one of claims 1 to 7,
A reflecting mirror having a light reflecting concave surface that reflects the light emitted from the wavelength conversion member, and
The illumination device, wherein a surface of the wavelength conversion member on which light is irradiated is joined to a bottom near the focal point of the light reflecting concave surface.
JP2013266091A 2013-12-24 2013-12-24 Light-emitting device and illumination device Pending JP2015122447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013266091A JP2015122447A (en) 2013-12-24 2013-12-24 Light-emitting device and illumination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013266091A JP2015122447A (en) 2013-12-24 2013-12-24 Light-emitting device and illumination device

Publications (1)

Publication Number Publication Date
JP2015122447A true JP2015122447A (en) 2015-07-02

Family

ID=53533816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013266091A Pending JP2015122447A (en) 2013-12-24 2013-12-24 Light-emitting device and illumination device

Country Status (1)

Country Link
JP (1) JP2015122447A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159268A1 (en) * 2017-03-02 2018-09-07 パナソニックIpマネジメント株式会社 Wavelength conversion member, light source and lighting device
JP2018180389A (en) * 2017-04-18 2018-11-15 市光工業株式会社 Light conversion device and vehicle lamp
US10197229B2 (en) 2016-07-12 2019-02-05 Panasonic Intellectual Property Management Co., Ltd. Light emitting apparatus
JP2019133799A (en) * 2018-01-30 2019-08-08 日亜化学工業株式会社 Illuminating device
WO2019203078A1 (en) * 2018-04-19 2019-10-24 パナソニックIpマネジメント株式会社 Light-emitting device
JPWO2018150630A1 (en) * 2017-02-20 2019-12-12 パナソニックIpマネジメント株式会社 Light emitting device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10197229B2 (en) 2016-07-12 2019-02-05 Panasonic Intellectual Property Management Co., Ltd. Light emitting apparatus
JPWO2018150630A1 (en) * 2017-02-20 2019-12-12 パナソニックIpマネジメント株式会社 Light emitting device
WO2018159268A1 (en) * 2017-03-02 2018-09-07 パナソニックIpマネジメント株式会社 Wavelength conversion member, light source and lighting device
JPWO2018159268A1 (en) * 2017-03-02 2019-12-19 パナソニックIpマネジメント株式会社 Wavelength conversion member, light source and lighting device
US10794569B2 (en) 2017-03-02 2020-10-06 Panasonic Intellectual Property Management Co., Ltd. Wavelength conversion member, light source and lighting device
JP2018180389A (en) * 2017-04-18 2018-11-15 市光工業株式会社 Light conversion device and vehicle lamp
JP2019133799A (en) * 2018-01-30 2019-08-08 日亜化学工業株式会社 Illuminating device
JP7047240B2 (en) 2018-01-30 2022-04-05 日亜化学工業株式会社 Lighting equipment
WO2019203078A1 (en) * 2018-04-19 2019-10-24 パナソニックIpマネジメント株式会社 Light-emitting device
JPWO2019203078A1 (en) * 2018-04-19 2021-06-17 パナソニックIpマネジメント株式会社 Light emitting device
JP7016034B2 (en) 2018-04-19 2022-02-04 パナソニックIpマネジメント株式会社 Luminescent device

Similar Documents

Publication Publication Date Title
JP5232815B2 (en) Vehicle headlamp
JP6061130B2 (en) Light emitting device
JP5970661B2 (en) Wavelength conversion member, light source, and automotive headlamp
JP5254418B2 (en) Lighting device and headlamp
KR102114607B1 (en) Laser Light Source
JP5172987B2 (en) Light emitting device, lighting device and headlamp
US9316372B2 (en) Light emitting device and vehicle lamp
WO2012128384A1 (en) Light-emitting device, illumination device, and headlight
US7985981B2 (en) Semiconductor light-emitting device
JP2012109400A (en) Light-emitting element, light-emitting device and method of manufacturing light-emitting element
CN102537717A (en) Light emitting device
WO2013051623A1 (en) Light-emitting body, illumination device, and headlight
JP2015122447A (en) Light-emitting device and illumination device
JP2012221634A (en) Lighting system and headlamp
JP6125666B2 (en) Light emitting device
JP2017216362A (en) Light-emitting device
JP2012193283A (en) Light-emitting body, illuminating device, and headlight
JP5059166B2 (en) Light emitting device, lighting device, and vehicle headlamp
JP6192903B2 (en) Light source device, lighting device and vehicle headlamp
JP2013079311A (en) Light-emitting body, illumination device, and headlight
US20140286037A1 (en) Solid State Lighting Device
JP6109521B2 (en) Light emitting device, vehicle headlamp, lighting device, and projector
KR20140109785A (en) Lighting device
JP2012204071A (en) Lighting device and headlight
JP2012221633A (en) Lighting device and headlamp