[go: up one dir, main page]

JP2015117902A - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
JP2015117902A
JP2015117902A JP2013262168A JP2013262168A JP2015117902A JP 2015117902 A JP2015117902 A JP 2015117902A JP 2013262168 A JP2013262168 A JP 2013262168A JP 2013262168 A JP2013262168 A JP 2013262168A JP 2015117902 A JP2015117902 A JP 2015117902A
Authority
JP
Japan
Prior art keywords
refrigerant
refrigeration cycle
gas
temperature
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013262168A
Other languages
Japanese (ja)
Other versions
JP6267952B2 (en
Inventor
貴宏 図司
Takahiro Zushi
貴宏 図司
峻 浅利
Shun Asari
峻 浅利
司 高山
Tsukasa Takayama
司 高山
田中 誠
Makoto Tanaka
田中  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carrier Japan Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2013262168A priority Critical patent/JP6267952B2/en
Publication of JP2015117902A publication Critical patent/JP2015117902A/en
Application granted granted Critical
Publication of JP6267952B2 publication Critical patent/JP6267952B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

【課題】低外気温度でも効率の良い運転が可能な冷凍サイクル装置を提供する。【解決手段】圧縮機2、凝縮器4、膨張弁5、蒸発器6aを順次冷媒配管8により接続した冷凍サイクル装置1を具備している。また、低外気温時、最大開度時の前記膨張弁5に流れる最大冷媒流量を増加させるバイパス弁12を備えている。このため、凝縮器4で放熱して凝縮した液冷媒は開弁中のバイパス弁12と膨張弁5とを介してそれぞれ流れるので、水熱交換器6の蒸発器6aへ流れる冷媒流量は、膨張弁5の最大開度時に流れる最大冷媒流量よりも増加する。これにより、所定の範囲内に圧縮機2の吸込側過熱度SHを調整可能となり、低外気温時にも、冷凍サイクル装置1内を循環する冷媒流量を確保することができる。結果として、吸込側圧力の低下を抑制することができるためCOPが向上する。【選択図】図1A refrigeration cycle apparatus capable of efficient operation even at a low outside air temperature is provided. A refrigeration cycle apparatus 1 is provided in which a compressor 2, a condenser 4, an expansion valve 5, and an evaporator 6a are sequentially connected by a refrigerant pipe 8. In addition, a bypass valve 12 is provided for increasing the maximum flow rate of refrigerant flowing through the expansion valve 5 at the maximum opening when the outside temperature is low. For this reason, the liquid refrigerant radiated and condensed by the condenser 4 flows through the opened bypass valve 12 and the expansion valve 5, respectively, so that the flow rate of refrigerant flowing to the evaporator 6a of the hydrothermal exchanger 6 is expanded. The maximum refrigerant flow rate that flows when the valve 5 is at the maximum opening degree is increased. Thereby, the suction-side superheat degree SH of the compressor 2 can be adjusted within a predetermined range, and the flow rate of the refrigerant circulating in the refrigeration cycle apparatus 1 can be ensured even at a low outside air temperature. As a result, it is possible to suppress a decrease in the suction side pressure, thereby improving COP. [Selection] Figure 1

Description

本発明の実施形態は、冷凍サイクル装置に係り、特に、低外気温時でも効率の良い運転を行うことができる冷凍サイクル装置に関する。   Embodiments described herein relate generally to a refrigeration cycle apparatus, and more particularly, to a refrigeration cycle apparatus that can perform an efficient operation even at a low outside air temperature.

従来の冷凍サイクル装置では、低外気温時に、高圧側と低圧側の圧力差を確保するために、凝縮器用のファンの回転数を低下させて高圧側圧力を上げる制御を行うものが知られている(例えば、特許文献1参照)。   In a conventional refrigeration cycle apparatus, in order to secure a pressure difference between a high pressure side and a low pressure side at a low outside air temperature, a device that performs control to increase the high pressure side pressure by reducing the rotation speed of the condenser fan is known. (For example, refer to Patent Document 1).

特許第4215543号公報Japanese Patent No. 4215543

従来の冷凍サイクル装置においては、低外気温時に、高圧側圧力が高めに保持されることになるため、成績係数(COP)が低下するという課題があった。   The conventional refrigeration cycle apparatus has a problem that the coefficient of performance (COP) decreases because the high-pressure side pressure is kept high at low outside air temperatures.

本発明が解決しようとする課題は、低外気温度でも効率が良い運転が可能な冷凍サイクル装置を提供することにある。   The problem to be solved by the present invention is to provide a refrigeration cycle apparatus capable of efficient operation even at a low outside air temperature.

実施形態に係る冷凍サイクル装置は、圧縮機、凝縮器、膨張手段、蒸発器を順次冷媒配管により接続した冷凍サイクル装置と、低外気温時、膨張手段の最大冷媒流量を増加させる手段とを備えている。   The refrigeration cycle apparatus according to the embodiment includes a refrigeration cycle apparatus in which a compressor, a condenser, an expansion unit, and an evaporator are sequentially connected by refrigerant piping, and a unit that increases the maximum refrigerant flow rate of the expansion unit at a low outside air temperature. ing.

第1の実施形態の冷凍サイクル装置の構成を示す冷凍サイクル図。The refrigeration cycle figure which shows the structure of the refrigeration cycle apparatus of 1st Embodiment. (a)は、一点鎖線で示す従来の冷凍サイクル装置における高圧側圧力を低外気温に対応させて低下させた時と、実線で示す従来の冷凍サイクル装置における高圧側圧力を低外気温時に高めに保持した時の、冷媒の圧力Pと比エンタルピーhとの相対関係を示すP−h線図、(b)は、同(a)の一点鎖線で示す運転時の水熱交換器内部における水および冷媒の温度Tと比エンタルピーhとの相対関係を示す線図。(A) increases the high-pressure side pressure in the conventional refrigeration cycle apparatus indicated by the alternate long and short dash line corresponding to the low outside air temperature, and increases the high-pressure side pressure in the conventional refrigeration cycle apparatus indicated by the solid line at the low outside temperature. (B) is a Ph diagram showing the relative relationship between the refrigerant pressure P and the specific enthalpy h, and (b) shows the water in the water heat exchanger during operation indicated by the alternate long and short dash line in FIG. And a diagram showing the relative relationship between the temperature T of the refrigerant and the specific enthalpy h. (a)は、破線で示す第1の実施形態の冷媒の圧力Pと比エンタルピーhとの相対関係を、図2(a)の実線で示す従来例のものと共に示すP−h線図、(b)は、同、第1の実施形態の水熱交換器内部と液−ガス熱交換器の内部における水および冷媒の温度Tと比エンタルピーhとの相対関係を示す図。(A) is a Ph diagram showing the relative relationship between the refrigerant pressure P and the specific enthalpy h of the first embodiment indicated by a broken line together with the conventional example indicated by the solid line in FIG. FIG. 5B is a diagram showing a relative relationship between water and refrigerant temperatures T and specific enthalpy h in the water heat exchanger and the liquid-gas heat exchanger of the first embodiment. (a)は、図1で示す第1の実施形態において、戻り水温が低くなった場合の水熱交換器と液−ガス熱交換器の内部の水および冷媒の温度Tと比エンタルピーhとの関係を示すT−h線図、(b)は、第1の実施形態において、水熱交換器内部の水の流れ方向を反対方向(パラレルフロー)にした場合の、実線で示す戻り水温が高い場合と、点線で示す戻り水温が低い場合の、水熱交換器内部と液−ガス熱交換器の内部における水および冷媒の温度Tと比エンタルピーhとの関係を示すT−h線図。(A) in the first embodiment shown in FIG. 1, the temperature T and the specific enthalpy h of the water and refrigerant in the water heat exchanger and the liquid-gas heat exchanger when the return water temperature is low. The Th diagram showing the relationship, (b) shows a high return water temperature indicated by a solid line when the flow direction of water inside the water heat exchanger is set to the opposite direction (parallel flow) in the first embodiment. And a Th diagram showing a relationship between water and refrigerant temperature T and specific enthalpy h in the water heat exchanger and in the liquid-gas heat exchanger when the return water temperature indicated by the dotted line is low. 第1の実施形態の変形例である冷凍サイクル装置の構成を示す冷凍サイクル図。The refrigeration cycle figure which shows the structure of the refrigeration cycle apparatus which is a modification of 1st Embodiment. 第1の実施形態の他の変形例である冷凍サイクル装置の構成を示す冷凍サイクル図。The refrigeration cycle figure which shows the structure of the refrigeration cycle apparatus which is another modification of 1st Embodiment. 第2の実施形態の冷凍サイクル装置の構成を示す冷凍サイクル図。The refrigeration cycle figure which shows the structure of the refrigeration cycle apparatus of 2nd Embodiment. (a)は、破線で示す第2の実施形態における冷媒の圧力Pと比エンタルピーhとの相対関係を、図2(a)の実線で示す従来例のものと共に示すP−h線図、(b)は、第2の実施形態の水熱交換器内部とガス−ガス熱交換器の内部における水および冷媒の温度Tと、比エンタルピーhとの関係を示すT−h線図。(A) is a Ph diagram showing the relative relationship between the refrigerant pressure P and the specific enthalpy h in the second embodiment indicated by a broken line together with the conventional example indicated by the solid line in FIG. b) A Th diagram showing the relationship between the water and refrigerant temperatures T and the specific enthalpy h in the water heat exchanger and the gas-gas heat exchanger of the second embodiment.

以下、実施形態の冷凍サイクル装置を図面を参照して説明する。   Hereinafter, the refrigeration cycle apparatus of the embodiment will be described with reference to the drawings.

なお、複数の図面中、同一又は相当部分には同一符号を付している。   In addition, the same code | symbol is attached | subjected to the same or an equivalent part in several drawings.

(第1の実施形態)
図1は、第1の実施形態の冷凍サイクル装置の構成を示す冷凍サイクル図である。この図1に示すように第1の実施形態の冷凍サイクル装置1は、例えば空冷式のチラーであり、密閉型ロータリ圧縮機等の圧縮機2の冷媒吐出口2a、図示省略のインバータにより回転数制御が可能な凝縮器用ファン3を備えた空気熱交換器よりなる凝縮器4、液−ガス熱交換器20の液冷媒流路20a、膨張手段の一例である膨張弁5、水熱交換器6の蒸発器6a、液−ガス熱交換器20のガス冷媒流路20b、アキュムレータ7および圧縮機2の冷媒吸込口2bをこの順に冷媒配管8により接続して冷媒を循環させる。
(First embodiment)
FIG. 1 is a refrigeration cycle diagram showing the configuration of the refrigeration cycle apparatus of the first embodiment. As shown in FIG. 1, the refrigeration cycle apparatus 1 according to the first embodiment is, for example, an air-cooled chiller, and is rotated at a rotational speed by a refrigerant discharge port 2a of a compressor 2 such as a hermetic rotary compressor and an inverter not shown. A condenser 4 comprising an air heat exchanger having a condenser fan 3 that can be controlled, a liquid refrigerant flow path 20a of the liquid-gas heat exchanger 20, an expansion valve 5 as an example of an expansion means, and a water heat exchanger 6 The refrigerant 6a, the gas refrigerant flow path 20b of the liquid-gas heat exchanger 20, the accumulator 7, and the refrigerant suction port 2b of the compressor 2 are connected in this order by the refrigerant pipe 8 to circulate the refrigerant.

圧縮機2は高圧ケース等の密閉容器を備え、図示省略のインバータにより回転数制御可能に構成されている。膨張弁5は例えばPMV(パルスモータバルブ)等により構成され、入力される開度制御用パルス信号のパルス数により開度が制御される。   The compressor 2 includes a hermetic container such as a high-pressure case, and is configured such that the rotational speed can be controlled by an inverter not shown. The expansion valve 5 is constituted by, for example, a PMV (pulse motor valve) or the like, and the opening degree is controlled by the number of pulses of the opening degree control pulse signal inputted.

水熱交換器6は、冷媒配管8に接続されて冷媒を通す蒸発器6aと、循環ポンプ9を備えた通水管10に接続されて循環水を通す水流路6bと、を熱交換可能に設け、この水流路6bを通る循環水を冷却して冷水を生成する。この冷水は冷房等に使用される。   The water heat exchanger 6 includes an evaporator 6a that is connected to the refrigerant pipe 8 and passes the refrigerant, and a water flow path 6b that is connected to the water pipe 10 provided with the circulation pump 9 and passes the circulating water so as to exchange heat. The circulating water passing through the water flow path 6b is cooled to generate cold water. This cold water is used for cooling and the like.

上記冷媒配管8は、膨張弁5の冷媒入口側と出口側とを連通させるバイパス管11を具備しており、このバイパス管11には電磁弁等の開閉弁であるバイパス弁12を介装している。   The refrigerant pipe 8 includes a bypass pipe 11 that allows the refrigerant inlet side and the outlet side of the expansion valve 5 to communicate with each other. The bypass pipe 11 is provided with a bypass valve 12 that is an open / close valve such as an electromagnetic valve. ing.

このバイパス弁12は、低外気温時、最大開度に制御される膨張弁5に流れる最大流量よりも多い冷媒流量を流すための最大冷媒流量増加手段として構成されており、膨張弁5と共に、図示省略の信号線を介して制御器15にそれぞれ電気的に接続されている。   The bypass valve 12 is configured as a maximum refrigerant flow rate increasing means for flowing a refrigerant flow rate higher than the maximum flow rate flowing through the expansion valve 5 that is controlled to the maximum opening degree at a low outside air temperature. Each is electrically connected to the controller 15 via a signal line (not shown).

液−ガス熱交換器20は、凝縮器4からの高温高圧の液冷媒を通す液冷媒流路20aと、水熱交換器6の蒸発器6aからの低温低圧の吸込ガス冷媒を通すガス冷媒流路20bとを熱交換可能に設け、凝縮器4から流出した液冷媒を冷却し、アキュムレータ7直前の吸込ガスを加熱するように構成されている。   The liquid-gas heat exchanger 20 has a liquid refrigerant flow path 20a through which high-temperature and high-pressure liquid refrigerant from the condenser 4 passes, and a gas refrigerant flow through which low-temperature and low-pressure suction gas refrigerant from the evaporator 6a of the water heat exchanger 6 passes. The passage 20b is provided so that heat can be exchanged, the liquid refrigerant flowing out of the condenser 4 is cooled, and the suction gas immediately before the accumulator 7 is heated.

そして、冷凍サイクル装置1は、圧縮機2の吐出側圧力Pdを検出する吐出圧力センサ13、圧縮機2の吸込側圧力Psを検出する吸込圧力センサ14、圧縮機2の吐出温度Tdを検出する吐出温度センサ34、圧縮機2の吸込温度Tsを検出する吸込温度センサ35を設け、これら各センサを図示省略の信号線を介して制御器15に接続している。   The refrigeration cycle apparatus 1 detects the discharge pressure sensor 13 that detects the discharge side pressure Pd of the compressor 2, the suction pressure sensor 14 that detects the suction side pressure Ps of the compressor 2, and the discharge temperature Td of the compressor 2. A discharge temperature sensor 34 and a suction temperature sensor 35 for detecting the suction temperature Ts of the compressor 2 are provided, and these sensors are connected to the controller 15 via signal lines (not shown).

制御器15は、圧縮機2、熱交換促進用の凝縮器用ファン3および循環ポンプ9の図示省略の各インバータに、図示省略の信号線を介してそれぞれ接続されている。   The controller 15 is connected to each inverter (not shown) of the compressor 2, the condenser fan 3 for promoting heat exchange, and the circulation pump 9 via a signal line (not shown).

制御器15は、例えばマイクロコンピュータ等により構成され、CPUやROM、RAM、その他のメモリを具備しており、圧縮機2の吸込側過熱度SHおよび吐出側過熱度DSHと飽和温度とをそれぞれ算出する過熱度等算出手段、膨張弁5の開度を制御する膨張弁開度制御手段、バイパス弁12の開閉を制御するバイパス弁開閉制御手段、圧縮機2と凝縮器用ファン3および循環ポンプ9の運転回転数を制御する回転数制御手段等を備えている。   The controller 15 includes, for example, a microcomputer and includes a CPU, ROM, RAM, and other memories, and calculates the suction side superheat degree SH, the discharge side superheat degree DSH, and the saturation temperature of the compressor 2, respectively. A means for calculating the degree of superheat, an expansion valve opening control means for controlling the opening of the expansion valve 5, a bypass valve opening / closing control means for controlling the opening / closing of the bypass valve 12, the compressor 2, the condenser fan 3, and the circulation pump 9. A rotation speed control means for controlling the operation rotation speed is provided.

過熱度等算出手段は、吐出圧力センサ13と吸込圧力センサ14からそれぞれ読み込んだ圧縮機2の吸込側圧力Psと吐出側圧力Pdに基づいた冷媒の飽和温度と、吐出温度センサ34と吸込温度センサ35から読み込んだ圧縮機2の吐出温度Tdと吸込温度Tsから吸込側過熱度SHおよび吐出側過熱度DSHを算出する。   The superheat degree calculation means includes a refrigerant saturation temperature based on the suction side pressure Ps and the discharge side pressure Pd of the compressor 2 read from the discharge pressure sensor 13 and the suction pressure sensor 14, respectively, a discharge temperature sensor 34, and a suction temperature sensor. The suction side superheat degree SH and the discharge side superheat degree DSH are calculated from the discharge temperature Td and the suction temperature Ts of the compressor 2 read from 35.

膨張弁開度制御手段は、PMVよりなる膨張弁5に与える制御用パスル信号のパルス数を制御することにより、膨張弁5の開度を制御する一方、この膨張弁5の最大開度のパルス数はメモリに記憶しており、膨張弁5の開度を常時監視している。   The expansion valve opening control means controls the opening of the expansion valve 5 by controlling the number of pulses of the control pulse signal given to the expansion valve 5 made of PMV, while the pulse of the maximum opening of the expansion valve 5 is controlled. The number is stored in a memory, and the opening degree of the expansion valve 5 is constantly monitored.

そして、制御器15は中間季(春・秋)や冬季等の低外気温での低圧縮運転時に、最大開度に制御される膨張弁5を流れる最大流量よりも多い冷媒流量を流すために、バイパス弁12を開弁制御する最大冷媒流量増加制御手段を具備している。   The controller 15 is configured to flow a refrigerant flow rate higher than the maximum flow rate that flows through the expansion valve 5 that is controlled to the maximum opening degree during low compression operation at low outside temperatures such as in the intermediate season (spring / autumn) or winter season. The maximum refrigerant flow rate increasing control means for controlling the opening of the bypass valve 12 is provided.

ここで低外気温とは、利用側が水を利用するチラーや冷凍機の場合は、外気温が水熱交換器6の蒸発器6aの出口水温度よりも低い場合(外気温<出口水温)をいう。また、利用側が空気を利用する空気調和機等の場合は、外気温が室内への吹出空気温度(すなわち設定温度)よりも低い場合(外気温<設定温度)をいう。   Here, the low outside air temperature refers to a case where the outside air temperature is lower than the outlet water temperature of the evaporator 6a of the water heat exchanger 6 (outside air temperature <outlet water temperature) in the case of a chiller or refrigerator that uses water on the use side. Say. In the case of an air conditioner that uses air on the use side, it means that the outside air temperature is lower than the temperature of the air blown into the room (that is, the set temperature) (outside air temperature <set temperature).

通常の冷凍サイクル装置では、吸込側過熱度SHを一定の範囲内に制御するために膨張弁5の開度を制御する。膨張弁5は、その入口側と出口側の圧力差により冷媒を流すため、外気温度の低下に伴い凝縮圧力が低下してきた場合、冷媒流量を確保して吸込側過熱度SHを一定の範囲内に制御するために、その開度が大きくなる傾向にある。   In a normal refrigeration cycle apparatus, the opening degree of the expansion valve 5 is controlled in order to control the suction side superheat degree SH within a certain range. Since the expansion valve 5 causes the refrigerant to flow due to the pressure difference between the inlet side and the outlet side, when the condensing pressure decreases as the outside air temperature decreases, the refrigerant flow rate is secured and the suction side superheat degree SH is kept within a certain range. Therefore, the opening degree tends to increase.

バイパス弁12を具備しない従来の冷凍サイクル装置では、低外気温時に膨張弁5が全開にもかかわらず冷媒流量が不足するため、吸込圧力すなわち飽和蒸発温度が低下し、COP(成績係数)が低下するという課題があった。COP低下の原因は、圧縮比増大による圧縮機2の入力(電力)増加と、圧縮機2が吸込む冷媒の密度低下による冷房能力低下を補うために圧縮機2の回転数が増加することが挙げられる。また、結果として吸込側過熱度SHは過大となる。図2(a),(b)中の一点鎖線は、この時のP−h線図とT−h線図を示している。   In the conventional refrigeration cycle apparatus that does not include the bypass valve 12, the refrigerant flow rate is insufficient even when the expansion valve 5 is fully opened at a low outside air temperature, so that the suction pressure, that is, the saturation evaporation temperature is lowered, and the COP (coefficient of performance) is lowered. There was a problem to do. The cause of the COP decrease is that the rotation speed of the compressor 2 increases to compensate for an increase in input (electric power) of the compressor 2 due to an increase in the compression ratio and a decrease in cooling capacity due to a decrease in the density of refrigerant sucked by the compressor 2. It is done. As a result, the suction side superheat degree SH becomes excessive. The dashed-dotted line in FIG. 2 (a), (b) has shown the Ph diagram and Th diagram at this time.

そこで、図2(a),(b)中、実線で示す従来例では、低外気温時に、凝縮器用ファン3の回転数を減少させて高圧側の凝縮圧力を上げることにより、膨張弁5の差圧を確保して冷媒流量を確保し、吸込側圧力と吸込側過熱度SHを一定の範囲内に制御していた。ただし、この場合でも凝縮圧力が高めに保持されることによる圧縮比の増大により、COPが低下するという課題があった。   Therefore, in the conventional example shown by the solid line in FIGS. 2A and 2B, the expansion valve 5 is increased by decreasing the rotation speed of the condenser fan 3 and increasing the condensing pressure on the high pressure side at a low outside air temperature. The refrigerant pressure was secured by securing the differential pressure, and the suction side pressure and the suction side superheat degree SH were controlled within a certain range. However, even in this case, there is a problem that the COP is lowered due to an increase in the compression ratio due to the high condensation pressure.

そこで、第1の実施形態では、低外気温時に凝縮器用ファン3の回転数を減少させて高圧側の凝縮圧力を上げることはせずに、外気温度に対応させて凝縮温度を低下させる。制御器15の最大冷媒流量増加制御手段は低外気温時、すなわち、圧縮機2の吸込側過熱度SH(算出値)が所定値(例えば3K)よりも過大であり、かつ膨張弁5の開度が最大開度であるときに、膨張弁5の冷媒流量が不足していると判断して最大冷媒流量増加手段のバイパス弁12を開弁する。同時に、圧縮機2の吸込側過熱度SHが所定の範囲内となるように膨張弁5の開度を調整する。   Therefore, in the first embodiment, the condensing temperature is lowered in accordance with the outside air temperature without increasing the condensing pressure on the high pressure side by decreasing the rotation speed of the condenser fan 3 at the low outside air temperature. The maximum refrigerant flow rate increase control means of the controller 15 is at a low outside air temperature, that is, the suction side superheat degree SH (calculated value) of the compressor 2 is larger than a predetermined value (for example, 3K), and the expansion valve 5 is opened. When the degree is the maximum opening, it is determined that the refrigerant flow rate of the expansion valve 5 is insufficient, and the bypass valve 12 of the maximum refrigerant flow rate increasing means is opened. At the same time, the opening degree of the expansion valve 5 is adjusted so that the suction side superheat degree SH of the compressor 2 is within a predetermined range.

このため、凝縮器4で放熱して凝縮した液冷媒は開弁中のバイパス弁12と膨張弁5とを介してそれぞれ流れるので、水熱交換器6の蒸発器6aへ流れる冷媒流量は、膨張弁5の最大開度時に流れる最大冷媒流量よりも増加する。これにより、所定の範囲内に圧縮機2の吸込側過熱度SHを調整可能となり、低外気温時にも、冷凍サイクル装置1内を循環する冷媒流量を確保することができる。結果として、吸込側圧力の低下を抑制することができるためCOPが向上する。   For this reason, the liquid refrigerant radiated and condensed by the condenser 4 flows through the opened bypass valve 12 and the expansion valve 5, respectively, so that the flow rate of refrigerant flowing to the evaporator 6a of the hydrothermal exchanger 6 is expanded. The maximum refrigerant flow rate that flows when the valve 5 is at the maximum opening degree is increased. Thereby, the suction-side superheat degree SH of the compressor 2 can be adjusted within a predetermined range, and the flow rate of the refrigerant circulating in the refrigeration cycle apparatus 1 can be ensured even at a low outside air temperature. As a result, it is possible to suppress a decrease in the suction side pressure, thereby improving COP.

一方、バイパス弁12を開弁して低圧縮運転を行うと、低圧縮のために吐出側過熱度DSHが大きく低下する。よって、低圧縮比になるほど、圧縮機2の密閉容器である高圧ケース内に吐出された高温高圧のガス冷媒が、この高圧ケース内で放熱した際に、過熱度が低いために液化し易くなる。このために、高圧ケース内で液化した冷媒が高圧ケース内の下底部に溜められている冷凍機油に滴下し、冷凍機油が希釈することがある。   On the other hand, when the bypass valve 12 is opened and the low compression operation is performed, the discharge-side superheat degree DSH is greatly reduced due to the low compression. Therefore, the lower the compression ratio, the easier it is to liquefy because the high-temperature and high-pressure gas refrigerant discharged into the high-pressure case, which is a sealed container of the compressor 2, radiates heat in the high-pressure case because the degree of superheat is low. . For this reason, the refrigerant liquefied in the high-pressure case may drop on the refrigerating machine oil stored in the lower bottom of the high-pressure case, and the refrigerating machine oil may be diluted.

また、通常、高圧ケースを有するロータリ圧縮機には吐出側過熱度DSHの下限値が設定されており、吸込側過熱度SHを大きく制御することで吐出側過熱度DSHを下限値よりも大きくすることは、冷凍サイクル上は可能であるが、図2(a)に示すように水熱交換器6の戻り水の温度が同一の下では蒸発温度を大きく低下させる必要があり、その場合、冷凍サイクルの効率が低下(消費電力の増加)してしまう。   In general, a rotary compressor having a high-pressure case is set with a lower limit value of the discharge side superheat degree DSH, and the discharge side superheat degree DSH is made larger than the lower limit value by largely controlling the suction side superheat degree SH. This is possible on the refrigeration cycle, but as shown in FIG. 2 (a), if the temperature of the return water of the water heat exchanger 6 is the same, it is necessary to greatly reduce the evaporation temperature. Cycle efficiency is reduced (power consumption is increased).

そこで、この第1の実施形態によれば、図3(a),(b)に示すように、液−ガス熱交換器20において、凝縮器4からの高温液冷媒によりアキュムレータ7直前の吸込ガスを加熱して温度を上げることにより、吸込側過熱度SHと吐出側過熱度DSHを共に上げることができる。   Therefore, according to the first embodiment, as shown in FIGS. 3A and 3B, in the liquid-gas heat exchanger 20, the suction gas immediately before the accumulator 7 by the high-temperature liquid refrigerant from the condenser 4. By increasing the temperature by heating the suction side, it is possible to increase both the suction side superheat degree SH and the discharge side superheat degree DSH.

吸込側過熱度SHを、水熱交換器6の戻り水の温度よりも高温の液冷媒により確保できるので、図3(a),(b)に示すように、蒸発器6aの蒸発温度を所望値に維持することが可能となる。なお、図3(a)中、破線は第1の実施形態に係る冷凍サイクル装置1の低外気温時のP−h線図である。   Since the suction side superheat degree SH can be secured by the liquid refrigerant having a temperature higher than the temperature of the return water of the water heat exchanger 6, the evaporation temperature of the evaporator 6a is desired as shown in FIGS. 3 (a) and 3 (b). The value can be maintained. In addition, in FIG. 3A, the broken line is a Ph diagram at the time of low outside air temperature of the refrigeration cycle apparatus 1 according to the first embodiment.

また、図4(a),(b)に示すように、吸込側過熱度SHは、液−ガス熱交換器20を設けることにより、液冷媒と吸込側ガス冷媒との熱交換器により確保できるので、低圧縮運転を含めた通年の全ての運転時において、利用側負荷が低下して戻り水温が低くなった場合に、所望の蒸発温度の維持が可能となる。すなわち、部分負荷時の高効率運転が可能となる。   Further, as shown in FIGS. 4A and 4B, the suction-side superheat degree SH can be ensured by the heat exchanger of the liquid refrigerant and the suction-side gas refrigerant by providing the liquid-gas heat exchanger 20. Therefore, in all the operations of the year including the low compression operation, when the use-side load decreases and the return water temperature decreases, the desired evaporation temperature can be maintained. That is, high-efficiency operation at partial load is possible.

さらに、図4(b)に示すように、水熱交換器6の水流路6bの水の流れ方向と蒸発器6aの冷媒の流れ方向を並行流(パラレルフロー)とした場合では、水出口と冷媒出口の温度差が小さくなるので、蒸発器6aの性能をフルに発揮させることも可能となり、外気条件に関わらずに高効率運転が可能である。   Further, as shown in FIG. 4 (b), when the flow direction of the water in the water flow path 6b of the water heat exchanger 6 and the flow direction of the refrigerant in the evaporator 6a are parallel flows (parallel flow), Since the temperature difference at the refrigerant outlet becomes small, the performance of the evaporator 6a can be fully exhibited, and high-efficiency operation is possible regardless of outside air conditions.

(第1の実施形態の変形例)
図5は、第1の実施形態の変形例に係る冷凍サイクル装置1Aの冷凍サイクルの構成図である。この冷凍サイクル装置1Aは、図1で示す冷凍サイクル装置1の液−ガス熱交換器20を使用するか否かを、冷凍サイクルの運転状況に応じて切り替えるための第1の開閉弁31および第2の開閉弁32を介装した点に特徴がある。さらに、液−ガス熱交換器20の液冷媒流路20aの出口側と膨張弁5との間に凝縮温度センサ36を有している。
(Modification of the first embodiment)
FIG. 5 is a configuration diagram of a refrigeration cycle of a refrigeration cycle apparatus 1A according to a modification of the first embodiment. The refrigeration cycle apparatus 1A includes a first on-off valve 31 and a first switch 31 for switching whether to use the liquid-gas heat exchanger 20 of the refrigeration cycle apparatus 1 shown in FIG. 1 according to the operating state of the refrigeration cycle. It is characterized in that two on-off valves 32 are interposed. Further, a condensation temperature sensor 36 is provided between the outlet side of the liquid refrigerant flow path 20 a of the liquid-gas heat exchanger 20 and the expansion valve 5.

第1の開閉弁31は、液−ガス熱交換器20のガス冷媒流路20bの入口側と、蒸発器6aの出口側とを接続する入口側冷媒配管部8aの途中に介装されている。第2の開閉弁32は、液−ガス熱交換器20のガス冷媒流路20bの出口側と、蒸発器6aの出口側とを接続する出口側冷媒配管部8bの途中に介装されている。これら第1,第2の開閉弁31,32は図示省略の信号線を介して制御器15に接続され、制御器15により開閉制御される。   The first on-off valve 31 is interposed in the middle of the inlet-side refrigerant pipe portion 8a that connects the inlet side of the gas refrigerant flow path 20b of the liquid-gas heat exchanger 20 and the outlet side of the evaporator 6a. . The second on-off valve 32 is interposed in the middle of the outlet side refrigerant pipe portion 8b that connects the outlet side of the gas refrigerant flow path 20b of the liquid-gas heat exchanger 20 and the outlet side of the evaporator 6a. . These first and second on-off valves 31 and 32 are connected to the controller 15 via signal lines (not shown) and are controlled to be opened and closed by the controller 15.

したがって、第1の開閉弁31が全開、第2の開閉弁32が全閉のときに、液−ガス熱交換器20のガス冷媒流路20bが導通して、液−ガス熱交換器20が冷凍サイクルに挿入される。一方、第1の開閉弁31が全閉、第2の開閉弁32が全開のときに、液−ガス熱交換器20のガス冷媒流路20bが非導通となり、液−ガス熱交換器20はバイパスされる。   Therefore, when the first on-off valve 31 is fully open and the second on-off valve 32 is fully closed, the gas refrigerant flow path 20b of the liquid-gas heat exchanger 20 is conducted, and the liquid-gas heat exchanger 20 is Inserted into the refrigeration cycle. On the other hand, when the first on-off valve 31 is fully closed and the second on-off valve 32 is fully open, the gas refrigerant flow path 20b of the liquid-gas heat exchanger 20 becomes non-conductive, and the liquid-gas heat exchanger 20 Bypassed.

外気温のさらなる低下に伴い液冷媒の温度が低下した超低圧圧運転時の場合には、凝縮液と蒸発ガスの温度が逆転する現象が発生する場合がある。   In the case of an ultra-low pressure operation in which the temperature of the liquid refrigerant has decreased with a further decrease in the outside air temperature, a phenomenon may occur in which the temperatures of the condensate and the evaporated gas are reversed.

凝縮液温度よりも蒸発ガス温度が高い場合に液−ガス熱交換器20で熱交換すると、凝縮器4で液化した冷媒が二相化する可能性がある。   If the evaporative gas temperature is higher than the condensate temperature and heat is exchanged in the liquid-gas heat exchanger 20, the refrigerant liquefied in the condenser 4 may be two-phased.

そのため、制御器15は、凝縮温度センサ36により検知される凝縮液温度と、吸込温度センサ35により検知される蒸発ガス温度とを比較し、凝縮液温度よりも蒸発ガス温度が高いときは、液−ガス熱交換器20をバイパスするように、第1の開閉弁31を全閉、第2の開閉弁32を全開とする。   Therefore, the controller 15 compares the condensate temperature detected by the condensing temperature sensor 36 with the evaporating gas temperature detected by the suction temperature sensor 35, and when the evaporating gas temperature is higher than the condensate temperature, The first on-off valve 31 is fully closed and the second on-off valve 32 is fully opened so as to bypass the gas heat exchanger 20.

(第1の実施形態の他の変形例)
図6は、第1の実施形態の他の変形例に係る冷凍サイクル装置1Bの冷凍サイクルの構成図である。この冷凍サイクル装置1Bは、図5で示す冷凍サイクル装置1Aの第1の開閉弁31及び第2の開閉弁32を一つの四方弁33に置き換えた点に特徴がある。
(Other variations of the first embodiment)
FIG. 6 is a configuration diagram of a refrigeration cycle of a refrigeration cycle apparatus 1B according to another modification of the first embodiment. This refrigeration cycle apparatus 1B is characterized in that the first on-off valve 31 and the second on-off valve 32 of the refrigeration cycle apparatus 1A shown in FIG.

四方弁33は4つの接続口33a〜33dを有し、第1接続口33aが蒸発器6aの出口側、第2接続口33bが液−ガス熱交換器20のガス冷媒流路20bの入口側、第3接続口33cが液−ガス熱交換器20のガス冷媒流路20bの出口側、第4接続口33dがアキュムレータ7の入口側にそれぞれ接続される。   The four-way valve 33 has four connection ports 33 a to 33 d, the first connection port 33 a is the outlet side of the evaporator 6 a, and the second connection port 33 b is the inlet side of the gas refrigerant flow path 20 b of the liquid-gas heat exchanger 20. The third connection port 33c is connected to the outlet side of the gas refrigerant flow path 20b of the liquid-gas heat exchanger 20, and the fourth connection port 33d is connected to the inlet side of the accumulator 7.

液−ガス熱交換器20を利用する場合、四方弁33は、第1接続口33aと第2接続口33bとが連通し、第3接続口33cと第4接続口33dとが連通するように制御器15により切換えられる(図6中の実線)。   When the liquid-gas heat exchanger 20 is used, the four-way valve 33 is configured such that the first connection port 33a and the second connection port 33b communicate with each other, and the third connection port 33c and the fourth connection port 33d communicate with each other. It is switched by the controller 15 (solid line in FIG. 6).

一方、液−ガス熱交換器20を利用しない(バイパスする)場合、四方弁33は、第1接続口33aと第4接続口33dとが連通し、第2接続口33bと第3接続口33cとが連通するよう制御器15により切換えられる(図6中の破線)。   On the other hand, when the liquid-gas heat exchanger 20 is not used (bypassed), the four-way valve 33 communicates with the first connection port 33a and the fourth connection port 33d, and the second connection port 33b and the third connection port 33c. Is switched by the controller 15 (broken line in FIG. 6).

そして、図5に示す冷凍サイクル装置1A同様に、制御器15は、凝縮温度センサ36により検知される凝縮液温度と、吸込温度センサ35により検知される蒸発ガス温度とを比較し、凝縮液温度よりも蒸発ガス温度が高いときは、液−ガス熱交換器20をバイパスするように、四方弁33を切換え制御する。   Then, similarly to the refrigeration cycle apparatus 1A shown in FIG. 5, the controller 15 compares the condensate temperature detected by the condensing temperature sensor 36 with the evaporating gas temperature detected by the suction temperature sensor 35, and the condensate temperature. When the evaporative gas temperature is higher than that, the four-way valve 33 is switched and controlled so as to bypass the liquid-gas heat exchanger 20.

(第2の実施形態)
図7は、第2の実施形態に係る冷凍サイクル装置1Cの冷凍サイクルの構成図である。この冷凍サイクル装置1Cは、図1で示す冷凍サイクル装置1の液−ガス熱交換器20を、ガス−ガス熱交換器30に置換すると共に、このガス−ガス熱交換器30を使用するか否かを、冷凍サイクルの運転状況に応じて切り替えるための第1の開閉弁31と、第2の開閉弁32を介装した点に特徴がある。
(Second Embodiment)
FIG. 7 is a configuration diagram of the refrigeration cycle of the refrigeration cycle apparatus 1C according to the second embodiment. This refrigeration cycle apparatus 1C replaces the liquid-gas heat exchanger 20 of the refrigeration cycle apparatus 1 shown in FIG. 1 with a gas-gas heat exchanger 30, and uses this gas-gas heat exchanger 30 or not. This is characterized in that a first on-off valve 31 and a second on-off valve 32 for switching according to the operating state of the refrigeration cycle are interposed.

すなわち、ガス−ガス熱交換器30は、圧縮機2から吐出された高温高圧の吐出ガスを流す吐出ガス流路30aと、圧縮機2の吸込側に吸い込まれるアキュムレータ7直前の低温低圧の吸込ガスを流す吸込ガス流路30bとを有し、これら吐出ガス流路30aを流れる高温高圧の吐出ガスと、低温低圧の吸込ガスとを熱交換可能に構成している。   That is, the gas-gas heat exchanger 30 includes a discharge gas passage 30a through which high-temperature and high-pressure discharge gas discharged from the compressor 2 flows, and a low-temperature and low-pressure suction gas immediately before the accumulator 7 sucked into the suction side of the compressor 2. The high-temperature and high-pressure discharge gas flowing through the discharge gas flow channel 30a and the low-temperature and low-pressure suction gas are configured to be capable of heat exchange.

つまり、高温高圧の吐出ガスにより、低温低圧の吸込ガスを加熱可能に構成した点に特徴がある。   That is, the high temperature and high pressure discharge gas is characterized in that the low temperature and low pressure suction gas can be heated.

また、第1の開閉弁31は、ガス−ガス熱交換器30の吸込ガス流路30bの入口側と、蒸発器6aの出口側とを接続する入口側冷媒配管部8aの途中に介装されている。第2の開閉弁32は、ガス−ガス熱交換器30の吸込ガス流路30bの出口側と、蒸発器6aの出口側とを接続する出口側冷媒配管部8bの途中に介装されている。これら第1,第2の開閉弁31,32は図示省略の信号線を介して制御器15に接続され、制御器15により開閉制御される。   The first on-off valve 31 is interposed in the middle of the inlet-side refrigerant piping portion 8a that connects the inlet side of the suction gas passage 30b of the gas-gas heat exchanger 30 and the outlet side of the evaporator 6a. ing. The 2nd on-off valve 32 is interposed in the middle of the exit side refrigerant piping part 8b which connects the exit side of the suction gas flow path 30b of the gas-gas heat exchanger 30, and the exit side of the evaporator 6a. . These first and second on-off valves 31 and 32 are connected to the controller 15 via signal lines (not shown) and are controlled to be opened and closed by the controller 15.

したがって、第1の開閉弁31が全開、第2の開閉弁32が全閉のときに、ガス−ガス熱交換器30の吸込ガス流路30bが導通して、ガス−ガス熱交換器30が冷凍サイクルに挿入される。一方、第1の開閉弁31が全閉、第2の開閉弁32が全開のときに、ガス−ガス熱交換器30の吸込ガス流路30bが非導通となり、ガス−ガス熱交換器30はバイパスされる。   Therefore, when the first on-off valve 31 is fully open and the second on-off valve 32 is fully closed, the suction gas flow path 30b of the gas-gas heat exchanger 30 is conducted, and the gas-gas heat exchanger 30 is Inserted into the refrigeration cycle. On the other hand, when the first on-off valve 31 is fully closed and the second on-off valve 32 is fully open, the suction gas passage 30b of the gas-gas heat exchanger 30 becomes non-conductive, and the gas-gas heat exchanger 30 Bypassed.

すなわち、上記第1の実施形態に係る冷凍サイクル装置1の液−ガス熱交換器20では、圧縮機の吸込温度は液冷媒の温度未満までしか加熱できないため、外気温のさらなる低下に伴い液冷媒の温度が低下した超低圧圧運転時の場合には、蒸発温度を低下させて大きめの吸込側過熱度SHを確保することによって吐出側過熱度DSHを確保する必要があった。結果的に、吐出側過熱度DSHを確保するために吸込側圧力が低下することとなり、圧縮比増加により低圧縮運転時の効率が低下してしまう。   That is, in the liquid-gas heat exchanger 20 of the refrigeration cycle apparatus 1 according to the first embodiment, the suction temperature of the compressor can be heated only to a temperature lower than the temperature of the liquid refrigerant. In the case of an ultra-low pressure operation in which the temperature is lowered, it is necessary to secure the discharge side superheat degree DSH by lowering the evaporation temperature and securing a large suction side superheat degree SH. As a result, the suction-side pressure decreases to ensure the discharge-side superheat degree DSH, and the efficiency during the low compression operation decreases due to the increase in the compression ratio.

しかし、この第2の実施形態の冷凍サイクル装置1Cによれば、ガス−ガス熱交換器30により蒸発器6aの下流側、かつアキュムレータ7の直前で低温低圧の吸込ガスを高温高圧の吐出ガスにより加熱するので、超低圧圧運転時においても、所望の蒸発温度を維持しつつ所要の吐出側過熱度DSHを確保するための大き目の吸込側過熱度SHを確保することができる。   However, according to the refrigeration cycle apparatus 1C of the second embodiment, the low-temperature and low-pressure suction gas is converted into the high-temperature and high-pressure discharge gas by the gas-gas heat exchanger 30 on the downstream side of the evaporator 6a and immediately before the accumulator 7. Since heating is performed, it is possible to secure a large suction side superheat degree SH for securing a required discharge side superheat degree DSH while maintaining a desired evaporation temperature even during an ultra-low pressure operation.

そして、制御器15は、吐出圧力センサ13により検出された圧縮機2の吐出側圧力Pdと、吸込圧力センサ14により検出されたアキュムレータ7直前の圧縮機2の吸込側圧力Psから飽和温度と吸込側過熱度SHおよび吐出側過熱度DSHを演算し、通常はこの吸込側過熱度SHが所定範囲内になるように膨張弁5の開度を制御し、同時に吐出側過熱度DSHも監視する。   Then, the controller 15 determines the saturation temperature and the suction from the discharge side pressure Pd of the compressor 2 detected by the discharge pressure sensor 13 and the suction side pressure Ps of the compressor 2 immediately before the accumulator 7 detected by the suction pressure sensor 14. The side superheat degree SH and the discharge side superheat degree DSH are calculated, and normally the opening degree of the expansion valve 5 is controlled so that the suction side superheat degree SH falls within a predetermined range, and at the same time, the discharge side superheat degree DSH is also monitored.

外気温の低下により吐出側圧力が低下し、膨張弁5が最大開度に制御されているにもかかわらず吸込側圧力が低下し始めたら、まずは最大冷媒流量を増加させるためにバイパス弁12を開弁制御する。膨張弁5の開度の制御対象は吸込側過熱度SHのままである。これにより吸込側圧力すなわち蒸発温度の低下を抑制する。その後、さらなる外気温度の低下により、吐出側過熱度DSHが所定の閾値未満に低下した場合には、制御器15は、第1の開閉弁31を全開、第2の開閉弁32を全閉に制御して吐出側過熱度DSHを制御対象とした膨張弁5の開度制御へ移行する。   If the discharge-side pressure decreases due to a decrease in the outside air temperature, and the suction-side pressure begins to decrease despite the expansion valve 5 being controlled to the maximum opening, the bypass valve 12 is first set to increase the maximum refrigerant flow rate. Control valve opening. The subject of control of the opening degree of the expansion valve 5 remains the suction side superheat degree SH. This suppresses a decrease in suction side pressure, that is, evaporation temperature. Thereafter, when the discharge side superheat degree DSH decreases below a predetermined threshold due to a further decrease in the outside air temperature, the controller 15 fully opens the first on-off valve 31 and fully closes the second on-off valve 32. Then, the control proceeds to the opening degree control of the expansion valve 5 for which the discharge side superheat degree DSH is controlled.

また、この間も吸込圧力センサ14と吸込温度センサ35により吸込側過熱度SHを監視し、この吸込側過熱度SHが所定範囲内に入った場合には、制御器15は、第1の開閉弁31を全閉、第2の開閉弁32を全開に制御して、通常の吸込側過熱度SHの制御方法へ復帰する。   During this time, the suction side superheat degree SH is monitored by the suction pressure sensor 14 and the suction temperature sensor 35. If the suction side superheat degree SH falls within a predetermined range, the controller 15 controls the first on-off valve. 31 is fully closed, and the second on-off valve 32 is controlled to be fully opened, and the control returns to the normal suction side superheat degree SH.

そして、図8(a),(b)に示すように、この冷凍サイクル装置1Cによれば、ガス−ガス熱交換器30により蒸発器6aの下流側において、高温高圧の吐出ガスにより低温低圧の吸込ガスを加熱するので、超低圧圧縮運転時においても、所望の蒸発温度を維持しつつ、所望の吐出側過熱度DSHを確保するための大き目の吸込側過熱度SHを取ることが可能となる。なお、図8(a)中、破線は第2の実施形態に係る冷凍サイクル装置1Cの低外気温時のP−h線図である。   As shown in FIGS. 8A and 8B, according to the refrigeration cycle apparatus 1C, the gas-gas heat exchanger 30 causes the low-temperature and low-pressure by the high-temperature and high-pressure discharge gas on the downstream side of the evaporator 6a. Since the suction gas is heated, it is possible to obtain a large suction side superheat degree SH for securing a desired discharge side superheat degree DSH while maintaining a desired evaporation temperature even during an ultra-low pressure compression operation. . In addition, in Fig.8 (a), a broken line is a Ph diagram at the time of the low external temperature of 1 C of refrigeration cycle apparatuses which concern on 2nd Embodiment.

そして、上記超低圧圧縮運転時以外では、ガス−ガス熱交換器30において、吐出ガスにより吸込ガスを加熱するので、吐出ガス温度が低下し、凝縮器4での放熱性能が低下する分、冷凍サイクルとしての能力を低下させることになるが、その場合は、第1,第2の開閉弁31,32の開閉制御により、ガス−ガス熱交換器30を非導通にしてこのガス−ガス熱交換器30をバイパスして使用しないので、冷凍サイクルの効率を通常の冷凍サイクルと同等に維持することができる。   In the gas-gas heat exchanger 30 except when the ultra-low pressure compression operation is performed, the suction gas is heated by the discharge gas, so that the discharge gas temperature is lowered and the heat radiation performance in the condenser 4 is reduced. In this case, the gas-gas heat exchanger 30 is made non-conductive by the open / close control of the first and second on-off valves 31 and 32, and this gas-gas heat exchange is performed. Since the device 30 is not used by bypass, the efficiency of the refrigeration cycle can be maintained equivalent to that of a normal refrigeration cycle.

すなわち、第2の実施形態に係る冷凍サイクル装置1Cによれば、上記第1の実施形態に係る冷凍サイクル装置1よりも、高効率な低圧圧縮運転が可能な外気温度範囲の拡大が可能であると共に、部分負荷時を含めた通年の冷房運転時にはガス−ガス熱交換器30をバイパスさせて使用しないことにより、効率低下を抑制することができる。   That is, according to the refrigeration cycle apparatus 1C according to the second embodiment, it is possible to expand the outside air temperature range in which the low-pressure compression operation can be performed more efficiently than the refrigeration cycle apparatus 1 according to the first embodiment. At the same time, it is possible to suppress a decrease in efficiency by bypassing the gas-gas heat exchanger 30 and not using it during the year-round cooling operation including partial load.

なお、上記実施形態では、吸込側過熱度SHが過大かつ膨張弁5の開度が最大開度であるときにバイパス弁12を開弁制御する場合について説明したが、本発明はこれに限定されるものではなく、例えば蒸発器6aの温度(すなわち蒸発温度)が所定値よりも低下したときに、バイパス弁12を開弁するように制御してもよい。   In the above-described embodiment, the case where the bypass valve 12 is controlled to open when the suction side superheat degree SH is excessive and the opening degree of the expansion valve 5 is the maximum opening degree has been described, but the present invention is not limited to this. For example, the bypass valve 12 may be controlled to open when the temperature of the evaporator 6a (that is, the evaporation temperature) falls below a predetermined value.

また、上記バイパス弁12に代えて、上記膨張弁5の容量の異なる膨張弁を設けてもよい。例えば、膨張弁5に、これよりも小容量の膨張弁を並列に接続すれば、細かい冷媒流量制御が可能であり、膨張弁5よりも大容量の膨張弁を並列に接続すれば、冷媒流量制御の幅を大きくすることができる。また、バイパス弁12に代えて流量調整可能な流量調整弁を設けてもよい。   Further, instead of the bypass valve 12, an expansion valve with a different capacity of the expansion valve 5 may be provided. For example, if an expansion valve having a smaller capacity is connected to the expansion valve 5 in parallel, fine refrigerant flow control is possible, and if an expansion valve having a larger capacity than the expansion valve 5 is connected in parallel, the refrigerant flow rate can be controlled. The range of control can be increased. Further, instead of the bypass valve 12, a flow rate adjustment valve capable of adjusting the flow rate may be provided.

また、上記実施形態では、本発明を冷房専用チラーに適用した場合について説明したが、本発明はこれに限定されるものではなく、例えば冷房と暖房を四方弁により切換えるヒートポンプチラーや水熱交換器6に代えて空気熱交換器を設けた冷凍サイクル装置でもよい。   In the above embodiment, the case where the present invention is applied to a cooling chiller has been described. However, the present invention is not limited to this. For example, a heat pump chiller or a water heat exchanger that switches between cooling and heating using a four-way valve. Instead of 6, a refrigeration cycle apparatus provided with an air heat exchanger may be used.

以上、本発明の幾つかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、本発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、本発明の要旨を逸脱しない範囲で、種々の省略、置換え、変更を行なうことができる。これら実施形態やその変形は、本発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although several embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of this invention. These novel embodiments can be implemented in various other forms, and various omissions, substitutions, and changes can be made without departing from the scope of the present invention. These embodiments and modifications thereof are included in the scope and gist of the present invention, and are included in the invention described in the claims and the equivalents thereof.

1,1A,1B,1C…冷凍サイクル装置、2…圧縮機、4…凝縮器、5…膨張弁、6…水熱交換器、6a…蒸発器、11…バイパス管、12…バイパス弁、13…吐出圧力センサ、14…吸込圧力センサ、15…制御器、20…液−ガス熱交換器、30…ガス−ガス熱交換器、31…第1の開閉弁、32…第2の開閉弁、33…四方弁、34…吐出温度センサ、35…吸込温度センサ、36…凝縮温度センサ。   DESCRIPTION OF SYMBOLS 1,1A, 1B, 1C ... Refrigeration cycle apparatus, 2 ... Compressor, 4 ... Condenser, 5 ... Expansion valve, 6 ... Hydrothermal exchanger, 6a ... Evaporator, 11 ... Bypass pipe, 12 ... Bypass valve, 13 DESCRIPTION OF SYMBOLS ... Discharge pressure sensor, 14 ... Suction pressure sensor, 15 ... Controller, 20 ... Liquid-gas heat exchanger, 30 ... Gas-gas heat exchanger, 31 ... 1st on-off valve, 32 ... 2nd on-off valve, 33 ... Four-way valve, 34 ... Discharge temperature sensor, 35 ... Suction temperature sensor, 36 ... Condensation temperature sensor.

Claims (4)

圧縮機、凝縮器、膨張手段、蒸発器を順次冷媒配管により接続した冷凍サイクル装置において、
低外気温時、前記膨張手段の最大冷媒流量を増加させる手段を設けたことを特徴とする冷凍サイクル装置。
In a refrigeration cycle apparatus in which a compressor, a condenser, expansion means, and an evaporator are sequentially connected by a refrigerant pipe,
A refrigeration cycle apparatus comprising means for increasing the maximum refrigerant flow rate of the expansion means at a low outside air temperature.
前記最大冷媒流量増加手段は、前記膨張手段の冷媒入口側と出口側とを連通させるバイパス路と、このバイパス路に介装された開閉弁または膨張弁と、により構成されていることを特徴とする請求項1記載の冷凍サイクル装置。 The maximum refrigerant flow rate increasing means is constituted by a bypass path that connects the refrigerant inlet side and the outlet side of the expansion means, and an on-off valve or an expansion valve interposed in the bypass path. The refrigeration cycle apparatus according to claim 1. 前記凝縮器からの液冷媒と前記圧縮機の吸込みガス冷媒とを熱交換する液−ガス熱交換手段を具備していることを特徴とする請求項1または2記載の冷凍サイクル装置。 3. The refrigeration cycle apparatus according to claim 1, further comprising liquid-gas heat exchange means for exchanging heat between the liquid refrigerant from the condenser and the suction gas refrigerant of the compressor. 前記圧縮機の吸込みガス冷媒と吐出ガス冷媒とを熱交換するガスーガス熱交換手段を具備していることを特徴とする請求項1または2に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 1 or 2, further comprising gas-gas heat exchange means for exchanging heat between the suction gas refrigerant and the discharge gas refrigerant of the compressor.
JP2013262168A 2013-12-19 2013-12-19 Refrigeration cycle equipment Expired - Fee Related JP6267952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013262168A JP6267952B2 (en) 2013-12-19 2013-12-19 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013262168A JP6267952B2 (en) 2013-12-19 2013-12-19 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2015117902A true JP2015117902A (en) 2015-06-25
JP6267952B2 JP6267952B2 (en) 2018-01-24

Family

ID=53530773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013262168A Expired - Fee Related JP6267952B2 (en) 2013-12-19 2013-12-19 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP6267952B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017101897A (en) * 2015-12-03 2017-06-08 東芝キヤリア株式会社 Refrigeration cycle equipment
CN109481000A (en) * 2018-12-26 2019-03-19 上海导向医疗系统有限公司 For cold therapy can pressure controlled refrigerating plant and cold therapy system
CN110030707A (en) * 2019-04-04 2019-07-19 广东美的暖通设备有限公司 Air-conditioning system adjusting method, air conditioner and computer readable storage medium
CN110296518A (en) * 2019-07-12 2019-10-01 宁波奥克斯电气股份有限公司 The multi-joint interior machine control method for electronic expansion valve of one kind, device and air conditioner
JP2020101324A (en) * 2018-12-21 2020-07-02 三星電子株式会社Samsung Electronics Co.,Ltd. Air conditioner

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49113444U (en) * 1973-01-17 1974-09-27
JPS59205558A (en) * 1983-05-09 1984-11-21 松下冷機株式会社 Refrigerator
JPH09166363A (en) * 1995-12-15 1997-06-24 Showa Alum Corp Refrigeration cycle equipment
EP1050724A2 (en) * 1999-05-05 2000-11-08 Linde Aktiengesellschaft Refrigeration system
JP2008014602A (en) * 2006-07-10 2008-01-24 Matsushita Electric Ind Co Ltd Refrigeration cycle equipment
JP2008089220A (en) * 2006-09-29 2008-04-17 Denso Corp Pressure control valve
JP2011153738A (en) * 2010-01-26 2011-08-11 Mitsubishi Electric Corp Refrigerating cycle device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49113444U (en) * 1973-01-17 1974-09-27
JPS59205558A (en) * 1983-05-09 1984-11-21 松下冷機株式会社 Refrigerator
JPH09166363A (en) * 1995-12-15 1997-06-24 Showa Alum Corp Refrigeration cycle equipment
EP1050724A2 (en) * 1999-05-05 2000-11-08 Linde Aktiengesellschaft Refrigeration system
JP2008014602A (en) * 2006-07-10 2008-01-24 Matsushita Electric Ind Co Ltd Refrigeration cycle equipment
JP2008089220A (en) * 2006-09-29 2008-04-17 Denso Corp Pressure control valve
JP2011153738A (en) * 2010-01-26 2011-08-11 Mitsubishi Electric Corp Refrigerating cycle device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017101897A (en) * 2015-12-03 2017-06-08 東芝キヤリア株式会社 Refrigeration cycle equipment
JP2020101324A (en) * 2018-12-21 2020-07-02 三星電子株式会社Samsung Electronics Co.,Ltd. Air conditioner
CN109481000A (en) * 2018-12-26 2019-03-19 上海导向医疗系统有限公司 For cold therapy can pressure controlled refrigerating plant and cold therapy system
CN109481000B (en) * 2018-12-26 2023-11-21 上海导向医疗系统有限公司 Pressure-adjustable refrigeration device for cryotherapy and cryotherapy system
CN110030707A (en) * 2019-04-04 2019-07-19 广东美的暖通设备有限公司 Air-conditioning system adjusting method, air conditioner and computer readable storage medium
CN110296518A (en) * 2019-07-12 2019-10-01 宁波奥克斯电气股份有限公司 The multi-joint interior machine control method for electronic expansion valve of one kind, device and air conditioner

Also Published As

Publication number Publication date
JP6267952B2 (en) 2018-01-24

Similar Documents

Publication Publication Date Title
JP5121922B2 (en) Air conditioning and hot water supply complex system
JP5084903B2 (en) Air conditioning and hot water supply complex system
CN1991276B (en) air conditioner
JP3925545B2 (en) Refrigeration equipment
WO2009098751A1 (en) Air-conditioning and water-heating complex system
US11384965B2 (en) Refrigeration cycle apparatus performing a refrigerant circulation operation using a liquid pump
JP6267952B2 (en) Refrigeration cycle equipment
US20160252290A1 (en) Heat-source-side unit and air-conditioning apparatus
JP6057871B2 (en) Heat pump system and heat pump type water heater
JP6715655B2 (en) Cooling system
JP2017161182A (en) Heat pump equipment
JP6528078B2 (en) Air conditioner
JP6577264B2 (en) Air conditioner
JP2007232265A (en) Refrigeration equipment
JP7063940B2 (en) Refrigeration equipment
JP7473775B2 (en) Heat source unit and refrigeration device
JP2010060181A (en) Refrigeration system
JP2015124909A (en) Hot water supply air conditioning system
JP6926460B2 (en) Refrigerator
KR101692243B1 (en) Heat pump with cascade refrigerating cycle
JP6339036B2 (en) heat pump
WO2017138243A1 (en) Refrigeration cycle device
JP4012892B2 (en) Air conditioner
JP2004293889A (en) Ice thermal storage unit, ice thermal storage type air conditioner and its operating method
JP2015148414A (en) air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171212

R150 Certificate of patent or registration of utility model

Ref document number: 6267952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees