[go: up one dir, main page]

JP2015117891A - Beam-condensing unit - Google Patents

Beam-condensing unit Download PDF

Info

Publication number
JP2015117891A
JP2015117891A JP2013261946A JP2013261946A JP2015117891A JP 2015117891 A JP2015117891 A JP 2015117891A JP 2013261946 A JP2013261946 A JP 2013261946A JP 2013261946 A JP2013261946 A JP 2013261946A JP 2015117891 A JP2015117891 A JP 2015117891A
Authority
JP
Japan
Prior art keywords
sunlight
reaction
condensing
light collecting
reflecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013261946A
Other languages
Japanese (ja)
Other versions
JP6330313B2 (en
Inventor
知哉 村本
Tomoya Muramoto
知哉 村本
大塚 裕之
Hiroyuki Otsuka
裕之 大塚
博幸 木村
Hiroyuki Kimura
博幸 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2013261946A priority Critical patent/JP6330313B2/en
Publication of JP2015117891A publication Critical patent/JP2015117891A/en
Application granted granted Critical
Publication of JP6330313B2 publication Critical patent/JP6330313B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/87Reflectors layout
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

【課題】設置面積当たりの最大加熱量を向上させる。
【解決手段】集光装置100は、太陽光を反射する反射面110aの向きが可変である複数の反射鏡110と、互いに位置が異なり、反射面で反射された太陽光が集光される複数の集光部114と、それぞれの集光部に対応して設けられ、原料が投入されるとともに、集光部に集光された太陽光の熱によって原料が加熱されて、生成物が生成される複数の反応部116と、複数の反射鏡の反射面それぞれの向きを制御する制御部と、を備え、制御部は、反射鏡と、反射鏡が反射した太陽光を集光する集光部の組み合わせを変更可能である。
【選択図】図5
A maximum heating amount per installation area is improved.
A condensing device is different from a plurality of reflecting mirrors 110 in which the direction of a reflecting surface 110a that reflects sunlight is variable, and a plurality of pieces of sunlight that are reflected from the reflecting surface are condensed. The light collecting portions 114 and the light collecting portions 114 are provided corresponding to the respective light collecting portions, and the raw materials are charged, and the raw materials are heated by the heat of sunlight condensed on the light collecting portions to generate products. A plurality of reaction units 116 and a control unit that controls the orientations of the reflecting surfaces of the plurality of reflecting mirrors, and the control unit collects the reflecting mirrors and sunlight reflected by the reflecting mirrors. The combination of can be changed.
[Selection] Figure 5

Description

本発明は、太陽光を集光して原料を加熱する集光装置に関する。   The present invention relates to a condensing device that condenses sunlight to heat a raw material.

従来、太陽光を集光しその熱を利用して化学反応を起こす化学反応炉や、タービンを回して発電する発電装置が開発されている。これらの設備に設置される集光装置は、太陽光を集光させる形態によって、幾つかの方式がある。そのうち、タワー式の集光装置は、複数の反射鏡で反射した太陽光を、集光塔に設置した集光部に集光して、集光された太陽光の熱で、反応部に投入された原料を加熱する(例えば、特許文献1)。   2. Description of the Related Art Conventionally, a chemical reactor that collects sunlight and uses the heat to cause a chemical reaction and a power generation device that generates power by turning a turbine have been developed. There are several types of light collecting devices installed in these facilities depending on the form of collecting sunlight. Among them, the tower-type condensing device condenses the sunlight reflected by multiple reflecting mirrors onto the condensing part installed in the condensing tower and throws it into the reaction part with the heat of the condensed sunlight. The prepared raw material is heated (for example, Patent Document 1).

太陽光の強度は気象条件に大きく左右されることから、太陽光の強度が強いときに合わせて設計すると、太陽光が不足して稼働できない期間が長くなってしまう。そこで、反射鏡を余剰させて設置しておき、太陽光の強度が強いときには、余剰分を除いた一部の反射鏡のみで集光部に集光する。一方、太陽光の強度が弱いときには、余剰分も含めた全ての反射鏡を用いて集光部に集光する。こうすることで、太陽光の強度に拘わらず、反応部に供給された原料を十分に加熱して、稼働可能な期間を長く確保することが可能となる。   Since the intensity of sunlight greatly depends on the weather conditions, if it is designed for when the intensity of sunlight is strong, the period during which operation is not possible due to insufficient sunlight will become longer. Therefore, the reflecting mirrors are installed in excess, and when the intensity of sunlight is strong, the light is condensed on the condensing unit only by a part of the reflecting mirrors excluding the excess. On the other hand, when the intensity of sunlight is weak, the light is condensed on the condensing unit using all the reflecting mirrors including the surplus. In this way, regardless of the intensity of sunlight, the raw material supplied to the reaction unit can be sufficiently heated to ensure a long operating period.

特開2012−202556号公報JP 2012-202556 A

上記のように、反射鏡を余剰させて設置する場合、太陽光の強度が強いときには、一部の反射鏡は、集光部に向かって太陽光を反射させない未使用状態となる。そのため、従来の集光装置は、太陽光の強度が強いときの未使用状態の反射鏡の分だけ、反射鏡の設置面積当たりの最大加熱量が低く抑えられてしまっていた。   As described above, when the reflecting mirrors are installed in an excessive manner, when the intensity of sunlight is strong, some of the reflecting mirrors are in an unused state in which sunlight is not reflected toward the light collecting unit. For this reason, in the conventional light collecting device, the maximum heating amount per installation area of the reflecting mirror is kept low by the amount of the unused reflecting mirror when the intensity of sunlight is strong.

本発明の目的は、設置面積当たりの最大加熱量を向上させることが可能な集光装置を提供することである。   An object of the present invention is to provide a condensing device capable of improving the maximum heating amount per installation area.

上記課題を解決するために、本発明の集光装置は、太陽光を反射する反射面の向きが可変である複数の反射鏡と、互いに位置が異なり、反射面で反射された太陽光が集光される複数の集光部と、それぞれの集光部に対応して設けられ、原料が投入されるとともに、集光部に集光された太陽光の熱によって原料が加熱される複数の反応部と、複数の反射鏡の反射面それぞれの向きを制御する制御部と、を備え、制御部は、反射鏡と、反射鏡が反射した太陽光を集光する集光部の組み合わせを変更可能であることを特徴とする。   In order to solve the above-described problems, the light collecting device of the present invention collects sunlight reflected by a reflecting surface and a plurality of reflecting mirrors whose reflecting surfaces that reflect sunlight are variable in position. A plurality of light collecting portions that are illuminated and a plurality of reactions that are provided corresponding to the respective light collecting portions and that the raw materials are charged and the raw materials are heated by the heat of sunlight condensed on the light collecting portions And a control unit that controls the orientation of each reflecting surface of the plurality of reflecting mirrors, and the control unit can change the combination of the reflecting mirror and the condensing unit that collects sunlight reflected by the reflecting mirror It is characterized by being.

複数の反応部毎に並列して設けられ、複数の反応部それぞれから原料が加熱されて生成される生成物が排出される生成物排出路をさらに備えてもよい。   You may further provide the product discharge path provided in parallel for every some reaction part, and the product produced | generated when a raw material is heated from each of a some reaction part is discharged | emitted.

複数の反応部毎に並列して設けられ、複数の反応部それぞれに原料を供給する原料供給路をさらに備えてもよい。   You may further provide the raw material supply path provided in parallel for every some reaction part, and supplying a raw material to each of several reaction part.

複数の反応部のいずれか2つは、許容される加熱量が異なってもよい。   Any two of the plurality of reaction units may have different allowable heating amounts.

太陽光の強度を測定する照度計をさらに備え、制御部は、照度計の測定値に基づいて、反射鏡と、反射鏡が反射した太陽光を集光する集光部の組み合わせを決定してもよい。   The illuminometer further measures the intensity of sunlight, and the control unit determines a combination of the reflecting mirror and the condensing unit that collects the sunlight reflected by the reflecting mirror based on the measured value of the illuminometer. Also good.

複数の集光部を複数の反射鏡よりも鉛直上方に支持し、複数の集光部の鉛直下方にそれぞれ複数の反応部を配した複数の集光塔をさらに備え、複数の集光部は、鏡で構成され、集光した光を複数の反応部に反射してもよい。   A plurality of light collecting units are further provided vertically above the plurality of reflecting mirrors, and further provided with a plurality of light collecting towers each provided with a plurality of reaction units vertically below the plurality of light collecting units. The light may be reflected by a plurality of reaction units.

本発明によれば、設置面積当たりの最大加熱量を向上させることが可能となる。   According to the present invention, the maximum heating amount per installation area can be improved.

集光装置の概略図である。It is the schematic of a condensing device. 集光装置の機能ブロック図である。It is a functional block diagram of a condensing device. 原料および生成物の流れを説明するための説明図である。It is explanatory drawing for demonstrating the flow of a raw material and a product. 比較例の集光装置の概略図である。It is the schematic of the condensing apparatus of a comparative example. 太陽光の強度が弱いときの集光装置の集光を説明するための説明図である。It is explanatory drawing for demonstrating condensing of the condensing device when the intensity | strength of sunlight is weak. 変形例における集光装置の概略図である。It is the schematic of the condensing apparatus in a modification. 変形例における原料および生成物の流れを説明するための説明図である。It is explanatory drawing for demonstrating the flow of the raw material and product in a modification.

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The dimensions, materials, and other specific numerical values shown in the embodiments are merely examples for facilitating the understanding of the invention, and do not limit the present invention unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are denoted by the same reference numerals, and redundant description is omitted, and elements not directly related to the present invention are not illustrated. To do.

(集光装置100)
図1は、集光装置100の概略図である。図1に示すように、集光装置100は、複数の反射鏡110と、集光塔112と、複数の集光部114と、複数の反応部116とを含んで構成される。
(Condenser 100)
FIG. 1 is a schematic diagram of the light collecting device 100. As shown in FIG. 1, the light collecting apparatus 100 includes a plurality of reflecting mirrors 110, a light collecting tower 112, a plurality of light collecting parts 114, and a plurality of reaction parts 116.

反射鏡110は、反射面110aを有する鏡で構成され、例えば地面などの低位置に設置されて、太陽光を受光して集光部114に反射する。   The reflecting mirror 110 is configured by a mirror having a reflecting surface 110a, is installed at a low position such as the ground, and receives sunlight and reflects it to the light collecting unit 114.

集光塔112には、反射鏡110よりも高い位置に、互いに位置が異なる複数(ここでは、3つ)の集光部114が配されている。集光部114は、反射鏡110の反射面110aで反射された太陽光が集光される部位である。   In the light collecting tower 112, a plurality of (here, three) light collecting portions 114 having different positions are arranged at a position higher than the reflecting mirror 110. The condensing part 114 is a site | part where the sunlight reflected by the reflective surface 110a of the reflective mirror 110 is condensed.

反応部116は、例えば、投入された原料に、吸熱を伴う化学反応を生じさせる炉であって、集光部114に対応して複数(ここでは、3つ)設けられる。それぞれの反応部116は、外壁に集光部114が形成されており、集光部114に集光された太陽光の熱によって反応部116内部の原料が加熱されて、化学反応の結果物としての生成物が生成される。   The reaction unit 116 is, for example, a furnace that causes a chemical reaction with endotherm to the input raw material, and a plurality of (here, three) reaction units 116 are provided corresponding to the light collecting unit 114. Each reaction part 116 has a condensing part 114 formed on the outer wall, and the raw material inside the reaction part 116 is heated by the heat of sunlight condensed on the condensing part 114, and as a result of a chemical reaction. Is produced.

なお、本実施形態では、反応部116の内部に供給される原料に化学反応が生じて、生成物が生成される場合について説明する。しかし、反応部116の内部で生じる吸熱現象は、化学反応に限らず、例えば、液体の水を原料とし、水が加熱されて沸騰し、生成物として水蒸気が生成されてもよい。このようにして生成された水蒸気は、例えば、タービンなどを介して発電処理に利用することができる。   In the present embodiment, a case will be described in which a chemical reaction occurs in the raw material supplied into the reaction unit 116 to generate a product. However, the endothermic phenomenon that occurs inside the reaction unit 116 is not limited to a chemical reaction. For example, liquid water may be used as a raw material, and the water may be heated and boiled to generate water vapor as a product. The water vapor generated in this way can be used for power generation processing via, for example, a turbine.

図2は、集光装置100の機能ブロック図である。図2に示すように、集光装置100は、照度計118と、角度調節器120と、原料供給部122と、制御部124と、を含んで構成される。   FIG. 2 is a functional block diagram of the light collecting device 100. As shown in FIG. 2, the light collecting apparatus 100 includes an illuminometer 118, an angle adjuster 120, a raw material supply unit 122, and a control unit 124.

照度計118は、例えば、反射鏡110付近の地面に、反射鏡110と重ならないように設置され、太陽光を受光して太陽光の強度を測定する。   For example, the illuminance meter 118 is installed on the ground in the vicinity of the reflecting mirror 110 so as not to overlap the reflecting mirror 110, and receives sunlight to measure the intensity of sunlight.

角度調節器120は、例えば、モータで構成され、反射鏡110の姿勢を変更可能であって、反射鏡110の反射面110aの向きを可変とする。すなわち、反射鏡110は、それぞれ、太陽光を反射する反射面110aの向き(反射方向)が可変である。   The angle adjuster 120 is constituted by, for example, a motor, can change the posture of the reflecting mirror 110, and makes the direction of the reflecting surface 110a of the reflecting mirror 110 variable. That is, in each of the reflecting mirrors 110, the direction (reflection direction) of the reflecting surface 110a that reflects sunlight is variable.

原料供給部122は、複数の反応部116へ原料を供給する機能部であって、後述する原料供給路126それぞれに設けられるバルブ122aを含んで構成される。バルブ122aは、反応部116へ供給される原料の流量を可変とする。   The raw material supply unit 122 is a functional unit that supplies raw materials to the plurality of reaction units 116, and includes a valve 122 a provided in each of the raw material supply paths 126 described later. The valve 122a makes the flow rate of the raw material supplied to the reaction unit 116 variable.

制御部124は、CPU(中央処理装置)を含む半導体集積回路で構成され、ROMからCPU自体を動作させるためのプログラムやパラメータ等を読み出し、ワークエリアとしてのRAMや他の電子回路と協働して集光装置100全体を管理および制御する。制御部124は、照度計118の測定値を取得し、測定値が示す太陽光の強度、および、日付と時刻から計算される太陽の位置などに基づいて、角度調節器120を動作させる。こうして、制御部124は、太陽光の受光および集光部114への反射が適切に行われるように、複数の反射鏡110の反射面110aそれぞれの向きを制御する。   The control unit 124 is composed of a semiconductor integrated circuit including a CPU (Central Processing Unit), reads programs and parameters for operating the CPU itself from the ROM, and cooperates with the RAM as a work area and other electronic circuits. To manage and control the entire condenser 100. The control unit 124 acquires the measurement value of the illuminometer 118 and operates the angle adjuster 120 based on the intensity of sunlight indicated by the measurement value, the position of the sun calculated from the date and time, and the like. Thus, the control unit 124 controls the orientation of each of the reflecting surfaces 110a of the plurality of reflecting mirrors 110 so that sunlight is received and reflected to the light collecting unit 114 appropriately.

また、制御部124は、反応部116それぞれの太陽光による加熱量に応じ、その反応部116へ原料を供給する原料供給路126に配されたバルブ122aの開度を調整する。例えば、制御部124は、稼働を停止している反応部116へ原料を供給する原料供給路126に配されたバルブ122aを閉じる。反応部116の稼働の停止については後に詳述する。   Moreover, the control part 124 adjusts the opening degree of the valve | bulb 122a distribute | arranged to the raw material supply path 126 which supplies a raw material to the reaction part 116 according to the heating amount by each sunlight of the reaction part 116. FIG. For example, the control unit 124 closes the valve 122a disposed in the raw material supply path 126 that supplies the raw material to the reaction unit 116 that has stopped operating. The stoppage of the operation of the reaction unit 116 will be described in detail later.

図3は、原料および生成物の流れを説明するための説明図である。図3に示すように、集光装置100には、集光塔112に設けられた3つの反応部116それぞれに対して、並列に、原料供給路126および生成物排出路128が設けられている。   FIG. 3 is an explanatory diagram for explaining the flow of raw materials and products. As shown in FIG. 3, the concentrator 100 is provided with a raw material supply path 126 and a product discharge path 128 in parallel with each of the three reaction units 116 provided in the condensing tower 112. .

すなわち、原料供給路126および生成物排出路128は、複数の反応部116毎に並列して設けられている。そして、原料供給路126は、複数の反応部116それぞれに原料を供給する流路となり、生成物排出路128は、複数の反応部116それぞれから生成物が排出される流路となっている。   That is, the raw material supply path 126 and the product discharge path 128 are provided in parallel for each of the plurality of reaction units 116. The raw material supply path 126 is a flow path for supplying a raw material to each of the plurality of reaction sections 116, and the product discharge path 128 is a flow path for discharging a product from each of the plurality of reaction sections 116.

以下、複数の反応部116を、集光塔112の塔頂側から順に、反応部116a、反応部116b、反応部116cとする。また、反応部116aの外壁に形成された集光部114を集光部114a、反応部116bの外壁に形成された集光部114を集光部114b、反応部116cの外壁に形成された集光部114を集光部114cとする。   Hereinafter, the plurality of reaction units 116 are referred to as a reaction unit 116a, a reaction unit 116b, and a reaction unit 116c in order from the top of the light collecting column 112. Further, the condensing part 114 formed on the outer wall of the reaction part 116a is the condensing part 114a, and the condensing part 114 formed on the outer wall of the reaction part 116b is the condensing part 114b and the collecting part formed on the outer wall of the reaction part 116c. The light unit 114 is referred to as a light collecting unit 114c.

本実施形態において、反応部116a、反応部116b、反応部116cは、それぞれ、許容される加熱量が異なる。ここで、許容される加熱量は、例えば、単位時間当たりに受熱可能な熱量などであるとともに、それぞれの反応部116が、単位時間当たりに化学反応によって吸熱させることが可能な熱量である。すなわち、許容される加熱量は、反応部116それぞれの化学反応における吸熱量の定格容量である。   In the present embodiment, the reaction unit 116a, the reaction unit 116b, and the reaction unit 116c have different allowable heating amounts. Here, the allowable amount of heating is, for example, the amount of heat that can be received per unit time, and the amount of heat that each reaction unit 116 can absorb by a chemical reaction per unit time. That is, the allowable amount of heating is the rated capacity of the endothermic amount in each chemical reaction of the reaction unit 116.

例えば、太陽光の強度が想定範囲のうちで最も強い気象条件下において、すべての反射鏡110によって太陽光を集光部114に集光し、反応部116に伝熱可能な太陽光のエネルギーを100%とする。このとき、定格容量は、反応部116aが50%、反応部116bが30%、反応部116cが20%となっている。すべての反応部116が定格容量で稼働しているとき、集光装置100はフル稼働していることとなる。   For example, under the weather condition in which the intensity of sunlight is the strongest in the assumed range, sunlight is condensed on the condensing unit 114 by all the reflecting mirrors 110 and the energy of the sunlight that can be transferred to the reaction unit 116 is 100%. At this time, the rated capacity is 50% for the reaction part 116a, 30% for the reaction part 116b, and 20% for the reaction part 116c. When all the reaction units 116 are operating at the rated capacity, the light collecting device 100 is fully operating.

ただし、雨天や冬季など、太陽光の強度が弱く、すべての反射鏡110によって集光部114に集光しても、太陽光のエネルギーが100%未満しか反応部116に伝熱できない場合がある。   However, there is a case where the intensity of sunlight is weak, such as rainy weather or winter, and even if all the reflecting mirrors 110 concentrate the light on the light collecting unit 114, the energy of the solar light can be transferred to the reaction unit 116 by less than 100%. .

図4は、比較例の集光装置10の概略図である。例えば、反応部16に伝熱可能な太陽光のエネルギーが80%の場合、比較例の集光装置10のように、集光部14や反応部16が1つしかないと、反応部16においては、定格容量の80%しか、化学反応の吸熱に充てることができない。このように太陽光の強度が不足しているときは、反応部16に供給する原料の流量を抑え、時間当たりの化学反応の反応量を抑制することで、ある程度は対応可能である。   FIG. 4 is a schematic diagram of the light collecting apparatus 10 of the comparative example. For example, when the energy of sunlight that can be transferred to the reaction unit 16 is 80%, there is only one light collecting unit 14 or one reaction unit 16 as in the light collecting device 10 of the comparative example. Only 80% of the rated capacity can be devoted to the endothermic reaction of the chemical reaction. As described above, when the intensity of sunlight is insufficient, it is possible to some extent by suppressing the flow rate of the raw material supplied to the reaction unit 16 and suppressing the reaction amount of the chemical reaction per hour.

しかし、例えば、反応部16に伝熱可能な太陽光のエネルギーが、30%といったように不足し過ぎると、原料の流量調整だけでは対応できなくなり、化学反応を継続できず、反応部16の稼働状態を維持できなくなってしまう。   However, for example, if the energy of sunlight that can be transferred to the reaction unit 16 is too short, such as 30%, it cannot be handled only by adjusting the flow rate of the raw material, and the chemical reaction cannot be continued. The state cannot be maintained.

図5は、太陽光の強度が弱いときの集光装置100の集光を説明するための説明図である。制御部124は、照度計118の測定値に基づいて、反射鏡110と、反射鏡110が反射した太陽光を集光する集光部114の組み合わせを決定する。   FIG. 5 is an explanatory diagram for explaining the light collection of the light collecting device 100 when the intensity of sunlight is weak. The control unit 124 determines a combination of the reflecting mirror 110 and the condensing unit 114 that collects the sunlight reflected by the reflecting mirror 110 based on the measurement value of the illuminometer 118.

例えば、照度計118の測定値によって、反応部116に伝熱可能な太陽光のエネルギーが80%であると判断されたとする。制御部124は、複数の反射鏡110の反射面110aそれぞれの向きを制御して、集光部114aに50%、集光部114bに30%のエネルギー分の太陽光を集光させる。集光部114cには太陽光を集光させない。   For example, it is assumed that the energy of sunlight that can be transferred to the reaction unit 116 is 80% based on the measurement value of the illuminance meter 118. The control unit 124 controls the direction of each of the reflecting surfaces 110a of the plurality of reflecting mirrors 110 so as to condense sunlight of 50% energy into the condensing unit 114a and 30% into the condensing unit 114b. Sunlight is not condensed on the condensing part 114c.

その結果、反応部116a、116bでは、それぞれ定格容量分の十分な加熱がなされ、最適な化学反応が生じることとなる。このとき、反応部116cでは、化学反応は停止している。制御部124は、反応部116cへ原料を供給する原料供給路126に配されたバルブ122aを閉じる。   As a result, in the reaction parts 116a and 116b, sufficient heating for the rated capacity is performed, and an optimum chemical reaction occurs. At this time, the chemical reaction is stopped in the reaction section 116c. The control unit 124 closes the valve 122a disposed in the raw material supply path 126 that supplies the raw material to the reaction unit 116c.

また、反応部116に伝熱可能な太陽光のエネルギーが30%の場合、制御部124は、複数の反射鏡110の反射面110aそれぞれの向きを制御して、集光部114bに30%のエネルギー分の太陽光を集光させる。集光部114aおよび集光部114cには太陽光を集光させない。   When the energy of sunlight that can be transferred to the reaction unit 116 is 30%, the control unit 124 controls the direction of each of the reflecting surfaces 110a of the plurality of reflecting mirrors 110, so that the condensing unit 114b has 30% of energy. Concentrate sunlight for energy. Sunlight is not condensed on the condensing part 114a and the condensing part 114c.

その結果、反応部116bでは、定格容量分の十分な加熱がなされ、最適な化学反応が生じることとなる。このとき、反応部116aおよび反応部116cでは、化学反応は停止している。制御部124は、反応部116aおよび反応部116cに原料を供給する原料供給路126に配された各バルブ122aを閉じる。   As a result, in the reaction part 116b, sufficient heating for the rated capacity is performed, and an optimum chemical reaction occurs. At this time, the chemical reaction is stopped in the reaction part 116a and the reaction part 116c. The control unit 124 closes each valve 122a disposed in the raw material supply path 126 that supplies the raw material to the reaction unit 116a and the reaction unit 116c.

上述したように、集光装置100は、集光部114および反応部116を複数備えており、制御部124は、反射鏡110と、反射鏡110が反射した太陽光を集光する集光部114の組み合わせを変更可能である。そのため、太陽光の強度に応じて、稼働させる集光部114の数を増減させることで、稼働可能な太陽光の強度の範囲を拡大することが可能となる。   As described above, the light collecting device 100 includes a plurality of light collecting units 114 and reaction units 116, and the control unit 124 collects the reflecting mirror 110 and the sunlight reflected by the reflecting mirror 110. 114 combinations can be changed. Therefore, it becomes possible to expand the range of the intensity | strength of sunlight which can be operate | moved by increasing / decreasing the number of the light collection parts 114 operated according to the intensity | strength of sunlight.

また、反射鏡110を余剰させる必要がなく、すべての反射鏡110が受光した太陽光を、常にいずれかの集光部114に反射させる。そのため、反射鏡110を余剰させて設置し、太陽光の強度が強いときに一部の反射鏡110を未使用状態とする構成に比べ、設置面積当たりの最大加熱量を向上させることが可能となる。   Further, it is not necessary to make the reflecting mirror 110 redundant, and the sunlight received by all the reflecting mirrors 110 is always reflected by any one of the light collecting portions 114. Therefore, it is possible to improve the maximum heating amount per installation area as compared with a configuration in which a part of the reflecting mirrors 110 is unused when the reflecting mirrors 110 are installed in excess and the intensity of sunlight is strong. Become.

また、生成物排出路128を、反応部116毎に並列して設けていることから、例えば、反応部116cから排出される生成物は、反応部116aおよび反応部116bを通過しない。そのため、反応部116aおよび反応部116bの稼働を停止しても、反応部116cの生成物に影響を与えることがなく、効率的に生成物を生成することが可能となる。   Moreover, since the product discharge path 128 is provided in parallel for each reaction unit 116, for example, the product discharged from the reaction unit 116c does not pass through the reaction unit 116a and the reaction unit 116b. Therefore, even if the operation of the reaction unit 116a and the reaction unit 116b is stopped, the product of the reaction unit 116c is not affected, and the product can be efficiently generated.

同様に、原料供給路126を、反応部116毎に並列して設けていることから、例えば、反応部116cに供給される原料は、反応部116aおよび反応部116bを通過しない。そのため、反応部116aおよび反応部116bの稼働を停止しても、原料は反応部116aおよび反応部116bを通過することなく反応部116cに供給される。そのため、稼働停止中の反応部116aおよび反応部116bを通過することによって、原料の流量が制限されるなどといった影響を受けることなく、効率的に生成物を生成することが可能となる。   Similarly, since the raw material supply path 126 is provided in parallel for each reaction unit 116, for example, the raw material supplied to the reaction unit 116c does not pass through the reaction unit 116a and the reaction unit 116b. Therefore, even if the operation of the reaction unit 116a and the reaction unit 116b is stopped, the raw material is supplied to the reaction unit 116c without passing through the reaction unit 116a and the reaction unit 116b. For this reason, the product can be efficiently generated without being affected by the flow rate of the raw material being restricted by passing through the reaction section 116a and the reaction section 116b whose operation is stopped.

(変形例)
図6は、変形例における集光装置200の概略図である。図6に示すように、変形例においては、集光装置200は、複数(ここでは、3つ)の集光塔212を備えている。それぞれの集光塔212には、反射鏡110の高さよりも高い位置に1つずつ、集光部214が配されている。すなわち、複数の集光塔212は、複数の集光部214を複数の反射鏡110よりも鉛直上方に支持している。
(Modification)
FIG. 6 is a schematic diagram of a light collecting device 200 according to a modification. As shown in FIG. 6, in the modification, the light collecting device 200 includes a plurality (three in this case) of light collecting towers 212. Each condensing tower 212 is provided with a condensing unit 214 at a position higher than the height of the reflecting mirror 110. That is, the plurality of light collecting towers 212 support the plurality of light collecting portions 214 vertically above the plurality of reflecting mirrors 110.

集光部214は、反射鏡110の反射面110aで反射された太陽光が集光される部位であって、例えば鏡を含んで構成され、集光部214に集光された太陽光を、鉛直下方に向かって反射する。   The condensing unit 214 is a part where the sunlight reflected by the reflecting surface 110a of the reflecting mirror 110 is collected, and includes, for example, a mirror, and the sunlight collected by the condensing unit 214 is Reflects vertically downward.

図7は、変形例における原料および生成物の流れを説明するための説明図である。図7に示すように、変形例の集光装置200においては、複数の反応部216は、各集光塔212において、集光部214の鉛直下方にそれぞれ配されている。集光部214は、集光された太陽光を、鉛直下方に配された反応部216に向かって反射する。   FIG. 7 is an explanatory diagram for explaining the flow of raw materials and products in a modified example. As shown in FIG. 7, in the light collecting apparatus 200 of the modified example, the plurality of reaction units 216 are respectively arranged below the light collecting unit 214 in each light collecting tower 212. The condensing part 214 reflects the condensed sunlight toward the reaction part 216 arranged vertically downward.

このように、集光装置200は、所謂ビームダウン方式となっており、集光塔212の上部に集光した太陽光を、集光塔212の下部に配された反応部216に向かって反射し、反応部216において、反射された太陽光の熱で化学反応を生じさせる。   As described above, the light collecting device 200 is a so-called beam-down method, and reflects the sunlight collected on the upper part of the light collecting tower 212 toward the reaction unit 216 arranged on the lower part of the light collecting tower 212. In the reaction unit 216, a chemical reaction is caused by the heat of the reflected sunlight.

このように、ビームダウン方式の集光装置200は、原料が投入され重くなり易い反応部216を、集光塔212の上部に配する必要がなく、集光塔212の耐荷重が小さくて済む。そのため、集光装置200のように、複数の集光部214および反応部216を設けるために、複数の集光塔212を設置しても、集光塔212それぞれの設置コストが低いことから、集光装置200全体の設置コストの増加は抑えられる。そのうえ、反応部216が低い位置にあることから、反応部216のメンテナンス性がよい利点がある。   As described above, the beam-down type condensing apparatus 200 does not require the reaction unit 216 that is likely to be heavy due to the input of raw materials to be disposed on the upper part of the condensing tower 212, and the load resistance of the condensing tower 212 can be small. . Therefore, even if a plurality of light collecting towers 212 are installed to provide a plurality of light collecting parts 214 and reaction parts 216 as in the light collecting device 200, the installation cost of each light collecting tower 212 is low. An increase in the installation cost of the entire light collecting device 200 can be suppressed. In addition, since the reaction part 216 is at a low position, there is an advantage that the maintainability of the reaction part 216 is good.

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to this embodiment. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Is done.

例えば、上述した実施形態および変形例では、生成物排出路128を、反応部116、216毎に並列して設ける場合について説明した。しかし、生成物排出路は、複数の反応部116、216を直列につなぐ経路となっていてもよい。   For example, in the embodiment and the modification described above, the case where the product discharge path 128 is provided in parallel for each of the reaction units 116 and 216 has been described. However, the product discharge path may be a path connecting the plurality of reaction units 116 and 216 in series.

同様に、上述した実施形態および変形例では、原料供給路126を、反応部116、216毎に並列して設ける場合について説明した。しかし、原料供給路は、複数の反応部116、216を直列につなぐ経路となっていてもよい。   Similarly, in the embodiment and the modification described above, the case where the raw material supply path 126 is provided in parallel for each of the reaction units 116 and 216 has been described. However, the raw material supply path may be a path connecting a plurality of reaction units 116 and 216 in series.

また、上述した実施形態および変形例では、3つの反応部116、216すべてが、許容される加熱量(定格容量)が異なる場合について説明した。しかし、複数の反応部116、216の定格容量は全て等しくてもよい。ただし、少なくとも、複数の反応部116、216のいずれか2つは、定格容量が異なれば、いずれの反応部116、216を稼働させるかの組み合わせが多様となり、稼働可能な太陽光の強度の範囲をさらに広げることが可能となる。   In the above-described embodiment and modification, the case where all the three reaction units 116 and 216 have different allowable heating amounts (rated capacities) has been described. However, the rated capacities of the plurality of reaction units 116 and 216 may all be equal. However, at least any two of the plurality of reaction units 116 and 216 have various combinations of which reaction units 116 and 216 are operated if the rated capacities are different, and the range of the intensity of sunlight that can be operated. Can be further expanded.

また、上述した実施形態では、定格容量が、反応部116aが50%、反応部116bが30%、反応部116cが20%の場合について説明した。しかし、それぞれの反応部116の定格容量は、任意の値であってよい。さらに、反応部116および集光部114は、複数であれば、2つであっても4つ以上であってもよい。   In the above-described embodiment, the case where the rated capacity is 50% for the reaction part 116a, 30% for the reaction part 116b, and 20% for the reaction part 116c has been described. However, the rated capacity of each reaction unit 116 may be an arbitrary value. Furthermore, as long as there are a plurality of reaction units 116 and condensing units 114, there may be two or four or more.

また、上述した実施形態および変形例では、制御部124は、照度計118の測定値に基づいて、反射鏡110が反射した太陽光を集光する集光部114、214の組み合わせを決定する場合について説明した。しかし、照度計118は必須の構成ではなく、制御部は、作業者の操作入力に応じて、反射鏡110が反射した太陽光を集光する集光部114、214の組み合わせを変更してもよい。ただし、制御部124が、照度計118の測定値に基づいて、反射鏡110が反射した太陽光を集光する集光部114、214の組み合わせを決定する構成によれば、天候の変化に迅速に対応して集光部114、214の組み合わせを決定し、効率的に生成物を生成することが可能となる。   In the embodiment and the modification described above, the control unit 124 determines a combination of the light collecting units 114 and 214 that collect the sunlight reflected by the reflecting mirror 110 based on the measurement value of the illuminance meter 118. Explained. However, the illuminance meter 118 is not an essential configuration, and the control unit may change the combination of the light collecting units 114 and 214 that collect the sunlight reflected by the reflecting mirror 110 according to the operation input of the operator. Good. However, according to the configuration in which the control unit 124 determines the combination of the light collecting units 114 and 214 that collect the sunlight reflected by the reflecting mirror 110 based on the measurement value of the illuminometer 118, the control unit 124 can quickly respond to changes in weather. It is possible to determine the combination of the light condensing units 114 and 214 correspondingly to efficiently generate a product.

本発明は、太陽光を集光して原料を加熱する集光装置に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used in a light collecting device that concentrates sunlight and heats raw materials.

100、200 集光装置
110 反射鏡
110a 反射面
112、212 集光塔
114、114a、114b、114c、214 集光部
116、116a、116b、116c、216 反応部
118 照度計
124 制御部
126 原料供給路
128 生成物排出路
100, 200 Condensing device 110 Reflecting mirror 110a Reflecting surface 112, 212 Condensing tower 114, 114a, 114b, 114c, 214 Condensing unit 116, 116a, 116b, 116c, 216 Reaction unit 118 Illuminance meter 124 Control unit 126 Raw material supply Path 128 Product discharge path

Claims (6)

太陽光を反射する反射面の向きが可変である複数の反射鏡と、
互いに位置が異なり、前記反射面で反射された太陽光が集光される複数の集光部と、
それぞれの前記集光部に対応して設けられ、原料が投入されるとともに、該集光部に集光された太陽光の熱によって該原料が加熱される複数の反応部と、
前記複数の反射鏡の反射面それぞれの向きを制御する制御部と、
を備え、
前記制御部は、前記反射鏡と、該反射鏡が反射した太陽光を集光する前記集光部の組み合わせを変更可能であることを特徴とする集光装置。
A plurality of reflecting mirrors in which the direction of the reflecting surface for reflecting sunlight is variable;
A plurality of condensing units that are different in position and collect sunlight reflected by the reflecting surface;
A plurality of reaction units that are provided corresponding to each of the light collecting units, are charged with the raw material, and are heated by the heat of sunlight collected on the light collecting unit;
A control unit that controls the orientation of each of the reflecting surfaces of the plurality of reflecting mirrors;
With
The said control part can change the combination of the said condensing part which condenses the said reflecting mirror and the sunlight which this reflecting mirror reflected.
前記複数の反応部毎に並列して設けられ、該複数の反応部それぞれから前記原料が加熱されて生成される生成物が排出される生成物排出路をさらに備えることを特徴とする請求項1に記載の集光装置。   2. The apparatus according to claim 1, further comprising a product discharge path that is provided in parallel for each of the plurality of reaction units, and that discharges a product generated by heating the raw material from each of the plurality of reaction units. The light collecting device described in 1. 前記複数の反応部毎に並列して設けられ、該複数の反応部それぞれに前記原料を供給する原料供給路をさらに備えることを特徴とする請求項1または2に記載の集光装置。   The light collecting device according to claim 1, further comprising a raw material supply path that is provided in parallel for each of the plurality of reaction units and supplies the raw material to each of the plurality of reaction units. 前記複数の反応部のいずれか2つは、許容される加熱量が異なることを特徴とする請求項1から3のいずれか1項に記載の集光装置。   The condensing device according to any one of claims 1 to 3, wherein any two of the plurality of reaction units have different allowable heating amounts. 太陽光の強度を測定する照度計をさらに備え、
前記制御部は、前記照度計の測定値に基づいて、前記反射鏡と、該反射鏡が反射した太陽光を集光する前記集光部の組み合わせを決定することを特徴とする請求項1から4のいずれか1項に記載の集光装置。
It further includes an illuminometer that measures the intensity of sunlight,
The said control part determines the combination of the said condensing part which condenses the sunlight which the said reflective mirror and this reflective mirror reflected based on the measured value of the said illumination meter. 5. The light collecting device according to any one of 4 above.
前記複数の集光部を前記複数の反射鏡よりも鉛直上方に支持し、該複数の集光部の鉛直下方にそれぞれ前記複数の反応部を配した複数の集光塔をさらに備え、
前記複数の集光部は、鏡で構成され、集光した光を該複数の反応部に反射することを特徴とする請求項1から5のいずれか1項に記載の集光装置。
The plurality of condensing units are further supported vertically above the plurality of reflecting mirrors, and further comprising a plurality of condensing towers arranged with the plurality of reaction units respectively vertically below the plurality of condensing units,
6. The condensing device according to claim 1, wherein the plurality of condensing units are configured by mirrors and reflect the collected light to the plurality of reaction units.
JP2013261946A 2013-12-19 2013-12-19 Concentrator Expired - Fee Related JP6330313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013261946A JP6330313B2 (en) 2013-12-19 2013-12-19 Concentrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013261946A JP6330313B2 (en) 2013-12-19 2013-12-19 Concentrator

Publications (2)

Publication Number Publication Date
JP2015117891A true JP2015117891A (en) 2015-06-25
JP6330313B2 JP6330313B2 (en) 2018-05-30

Family

ID=53530764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013261946A Expired - Fee Related JP6330313B2 (en) 2013-12-19 2013-12-19 Concentrator

Country Status (1)

Country Link
JP (1) JP6330313B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100861567B1 (en) * 2007-08-27 2008-10-07 인하대학교 산학협력단 Tower solar generator
JP2010144956A (en) * 2008-12-16 2010-07-01 Ihi Corp Solar furnace device
WO2012009764A1 (en) * 2010-07-23 2012-01-26 Solagen Pty Ltd Conversion of solar energy
WO2012057958A1 (en) * 2010-10-29 2012-05-03 Lightmanufacturing, Llc System, method and apparatus for solar heated manufacturing
JP2012202556A (en) * 2011-03-23 2012-10-22 Toshiba Corp Solar heat collecting apparatus and solar power generating system
WO2013018013A1 (en) * 2011-08-02 2013-02-07 Brightsource Industries (Israel) Ltd. Spillage reducing improvements for solar receivers
JP2014055716A (en) * 2012-09-12 2014-03-27 Babcock-Hitachi Co Ltd Composite boiler system
JP2014088821A (en) * 2012-10-30 2014-05-15 Mitsui Eng & Shipbuild Co Ltd Solar heat power generation plant and control method of the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100861567B1 (en) * 2007-08-27 2008-10-07 인하대학교 산학협력단 Tower solar generator
JP2010144956A (en) * 2008-12-16 2010-07-01 Ihi Corp Solar furnace device
WO2012009764A1 (en) * 2010-07-23 2012-01-26 Solagen Pty Ltd Conversion of solar energy
WO2012057958A1 (en) * 2010-10-29 2012-05-03 Lightmanufacturing, Llc System, method and apparatus for solar heated manufacturing
JP2012202556A (en) * 2011-03-23 2012-10-22 Toshiba Corp Solar heat collecting apparatus and solar power generating system
WO2013018013A1 (en) * 2011-08-02 2013-02-07 Brightsource Industries (Israel) Ltd. Spillage reducing improvements for solar receivers
JP2014055716A (en) * 2012-09-12 2014-03-27 Babcock-Hitachi Co Ltd Composite boiler system
JP2014088821A (en) * 2012-10-30 2014-05-15 Mitsui Eng & Shipbuild Co Ltd Solar heat power generation plant and control method of the same

Also Published As

Publication number Publication date
JP6330313B2 (en) 2018-05-30

Similar Documents

Publication Publication Date Title
US8327840B2 (en) Solar power tower system operation and control
US9291696B2 (en) Photovoltaic system power tracking method
US10320328B2 (en) Photovoltaic thermal hybrid systems and method of operation thereof
US20100191378A1 (en) Distributed power towers with differentiated functionalities
US11152526B2 (en) Flexible system of small-scale linear parabolic solar concentrators for power generation and dehydration
US9219183B2 (en) Photovoltaic thermal hybrid solar receivers
US20160164456A1 (en) Photovoltaic System Power Tracking Method
Kurnitski Technical definition for nearly zero energy buildings
WO2007074570A1 (en) Solar heat power generation facility and heat medium supply facility
Desai et al. Simulation of 1MWe solar thermal power plant
CN103423111A (en) Steam Rankine cycle solar plant and method for operating such plants
JP6330313B2 (en) Concentrator
KR20180042877A (en) Cooling and alarm system for solar system
KR20140138914A (en) Power regulation and/or frequency regulation in a solar thermal steam power plant
WO2013144750A1 (en) Photovoltaic module cooling devices
KR101221958B1 (en) Hybrid energy conversion apparatus utilizing solar energy
CN108151342A (en) A kind of alternate target point for tower Jing Chang determines method
KR101797393B1 (en) By heating the composite system
JP2010151980A (en) Sunlight collection system
EP3834267A1 (en) A hybrid power plant
JP5723220B2 (en) Power plant
CN207975863U (en) A kind of hybrid heat dump of tower photo-thermal power station
KR100861567B1 (en) Tower solar generator
KR101278718B1 (en) Hybrid type solar energy using system
CN109643086B (en) Method for controlling and/or regulating a solar thermal power plant and solar thermal power plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180409

R151 Written notification of patent or utility model registration

Ref document number: 6330313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees