[go: up one dir, main page]

JP2015104711A - Water quality improving apparatus - Google Patents

Water quality improving apparatus Download PDF

Info

Publication number
JP2015104711A
JP2015104711A JP2013248848A JP2013248848A JP2015104711A JP 2015104711 A JP2015104711 A JP 2015104711A JP 2013248848 A JP2013248848 A JP 2013248848A JP 2013248848 A JP2013248848 A JP 2013248848A JP 2015104711 A JP2015104711 A JP 2015104711A
Authority
JP
Japan
Prior art keywords
water
treated
introduction pipe
peripheral surface
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013248848A
Other languages
Japanese (ja)
Inventor
民厚 高井
Tamiatsu Takai
民厚 高井
湧二 野村
Yuji Nomura
湧二 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013248848A priority Critical patent/JP2015104711A/en
Priority to PCT/JP2014/005990 priority patent/WO2015083363A1/en
Publication of JP2015104711A publication Critical patent/JP2015104711A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/38Treatment of water, waste water, or sewage by centrifugal separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/24Feed or discharge mechanisms for settling tanks
    • B01D21/2405Feed mechanisms for settling tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/26Separation of sediment aided by centrifugal force or centripetal force
    • B01D21/267Separation of sediment aided by centrifugal force or centripetal force by using a cyclone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/02Construction of inlets by which the vortex flow is generated, e.g. tangential admission, the fluid flow being forced to follow a downward path by spirally wound bulkheads, or with slightly downwardly-directed tangential admission
    • B04C5/04Tangential inlets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/08Vortex chamber constructions
    • B04C5/081Shapes or dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/08Vortex chamber constructions
    • B04C5/085Vortex chamber constructions with wear-resisting arrangements
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/74Treatment of water, waste water, or sewage by oxidation with air
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Geometry (AREA)
  • Fluid Mechanics (AREA)
  • Cyclones (AREA)
  • Physical Water Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water quality improving apparatus that can improve the water quality of water to be treated by removing foreign matter, such as fine dust, contained in the water to be treated and controlling dissolved oxygen in the water to be treated.SOLUTION: A water quality improving apparatus 100 comprises: a cyclone separation part 20 that removes and separates foreign matter contained in water to be treated; a first introduction pipe 10 that leads the water to be treated into the inside of the apparatus; an upward mobilization part 30c that makes the water to be treated having led from the introduction pipe 10 flow upward along an inner wall surface of the apparatus; a second introduction pipe 40 that leads the water to be treated having flowed upward into the inside of the cyclone separation part 20; a discharge pipe 50 that leads an upward flow generated by rotational mobilization of the water to be treated to the outside of the apparatus as treated water; a foreign matter discharge pipe 60 that discharges separated foreign matter to the outside of the apparatus; and a gas supply part 70 that supplies a predetermined gas to the water to be treated before being led into the first introduction pipe 10. An inner wall part of the first introduction pipe 10 and an inner wall part of the second introduction pipe 40 are formed with collision parts that generate a rotational flow by colliding with the water to be treated.

Description

本発明は、被処理水中に含まれる微細ゴミ等の異物を除去するとともに、被処理水中に含まれる酸素濃度(溶存酸素量)を調整することにより、被処理水の水質を改質する水質改質装置に関するものである。   The present invention removes foreign matters such as fine dust contained in the for-treatment water and adjusts the oxygen concentration (dissolved oxygen amount) contained in the for-treatment water to improve the quality of the for-treatment water. Quality device.

従来から、生活排水、産業排水等の被処理水に含まれる異物をその比重差により、分離除去するサイクロン型水処理装置が知られている。   2. Description of the Related Art Conventionally, a cyclone type water treatment apparatus that separates and removes foreign matters contained in water to be treated such as domestic wastewater and industrial wastewater due to the difference in specific gravity is known.

一般的なサイクロン型水処理装置では、処理容器内周面に沿って被処理水を旋回流動させることにより発生した遠心力により異物を内周面近傍に集約して分離する。そして、被処理流体の浄化性能の向上を目的として、例えば、特許文献1には、サイクロン式処理容器の内周面と浄化後被処理流体排出管の外周面との間に形成される円筒状の被処理流体流路中に、被処理流体を内周側と外周側とに分流させるとともに、内周側と外周側とを連通させる貫通孔が形成された分離円筒を設けることで、特に微小な異物粒子や、被処理水との比重の差が小さい異物粒子であっても、被処理流体からの除去効率を大幅に向上させることが可能な異物粒子分離装置が開示されている。   In a general cyclone type water treatment apparatus, foreign substances are gathered and separated in the vicinity of the inner peripheral surface by centrifugal force generated by swirling and flowing the water to be processed along the inner peripheral surface of the processing container. For the purpose of improving the purification performance of the fluid to be treated, for example, Patent Document 1 discloses a cylindrical shape formed between the inner peripheral surface of the cyclonic processing container and the outer peripheral surface of the post-purification processed fluid discharge pipe. By providing a separation cylinder with a through-hole that divides the fluid to be treated into the inner peripheral side and the outer peripheral side and that connects the inner peripheral side and the outer peripheral side in the fluid flow path of There is disclosed a foreign particle separation apparatus capable of greatly improving the removal efficiency from a fluid to be treated even if the foreign particles are small foreign particles or foreign particles having a small specific gravity difference from the water to be treated.

特開2012−143722号公報JP 2012-143722 A

しかしながら、従来技術では、微小な異物粒子の除去といった被処理水の浄化性能を向上できたとしても、例えば、溶存酸素量といった被処理水に含まれる酸素量の調整といった、被処理水の抜本的な水質改質といった観点からは不満が残るものであった。   However, in the conventional technology, even if the purification performance of the water to be treated such as the removal of minute foreign particles can be improved, for example, drastic adjustment of the amount of oxygen contained in the water to be treated such as the amount of dissolved oxygen is drastic. Dissatisfaction remained from the viewpoint of water quality improvement.

本発明は上記実状に鑑みてなされたものであり、本発明の課題は、被処理水中に含まれる微細ゴミ等の異物を除去するとともに、被処理水中の溶存酸素量を調整することにより、被処理水の水質を改質することが可能な水質改質装置を提供することである。   The present invention has been made in view of the above circumstances, and an object of the present invention is to remove foreign matters such as fine dust contained in the water to be treated and to adjust the amount of dissolved oxygen in the water to be treated. It is an object of the present invention to provide a water quality reformer capable of modifying the quality of treated water.

上記課題を解決するために、本願の第1の発明に係る水質改質装置は、被処理水の旋回流動により発生する遠心力により当該被処理水に含まれる異物を分離除去するサイクロン分離部と、装置下部に接続され、前記被処理水を装置内部に導く第1の導入管と、装置内壁と前記サイクロン分離部との間に形成され、前記第1の導入管から導かれた前記被処理水を装置内壁面に沿って上昇流動させる上昇流動部と、前記サイクロン分離部上部に接続され、上昇流動した前記被処理水を前記サイクロン分離部内部に導く第2の導入管と、前記サイクロン分離部に挿通され、前記被処理水の旋回流動に伴い発生した上昇流を処理水として装置外部に導く排出管と、前記サイクロン分離部において分離された前記異物を装置外部に排出する異物排出管と、前記第1の導入管に導かれる前の前記被処理水に所定の気体を供給する気体供給部とを備え、前記第1の導入管の内壁部と前記第2の導入管の内壁部とには、前記被処理水が衝突することで回転流を発生させる衝突部が形成されていることを特徴としている。   In order to solve the above-described problem, a water quality reformer according to the first invention of the present application includes a cyclone separation unit that separates and removes foreign substances contained in water to be treated by centrifugal force generated by swirling flow of the water to be treated. The first treatment pipe connected to the lower part of the apparatus and guiding the treated water into the apparatus, and the treatment object formed between the inner wall of the apparatus and the cyclone separator and guided from the first introduction pipe An ascending flow part for ascending and flowing water along the inner wall surface of the apparatus; a second introduction pipe connected to the upper part of the cyclone separation part for guiding the treated water that has flowed up to the inside of the cyclone separation part; and the cyclone separation A discharge pipe that is inserted into the section and guides the upward flow generated with the swirling flow of the water to be treated to the outside of the apparatus as treated water, and a foreign substance discharge pipe that discharges the foreign matter separated in the cyclone separation section to the outside of the apparatus. A gas supply part for supplying a predetermined gas to the water to be treated before being guided to the first introduction pipe, and an inner wall part of the first introduction pipe and an inner wall part of the second introduction pipe Is characterized in that a collision part is formed which generates a rotating flow when the water to be treated collides.

第1の発明に係る水質改質装置では、装置下部に接続され、被処理水を装置内部に導く第1の導入管と、装置内壁とサイクロン分離部との間に形成され、第1の導入管から導かれた被処理水を装置内壁面に沿って上昇流動させる上昇流動部と、サイクロン分離部上部に接続され、上昇流動した被処理水をサイクロン分離部内部に導く第2の導入管とを備える。これにより、第1の導入管から導かれた被処理水は、上昇流動部において、装置内壁面に沿って上昇流動し、十分な遠心力が付与された状態でサイクロン分離部に導かれることになる。そして、第2の導入管を介して導かれた被処理水に含まれる異物には、サイクロン分離部において、分離部内壁面に沿った下降流動に伴う遠心力がさらに付与されるため、第1の発明に係る水質改質装置によれば、被処理水中に含まれる異物をその比重差に応じて分離部内壁面近傍に効率良く集約することができる。また、第1の発明に係る第1の導入管と第2の導入管には、被処理水が衝突することで回転流を発生させる衝突部が形成されている。衝突部では、被処理水の衝突に伴い発生した回転流により、気体供給部を介して供給された所定の気体の混合を促進させることができる。   In the water quality reforming apparatus according to the first aspect of the present invention, the first introduction pipe is formed between the first introduction pipe connected to the lower part of the apparatus and guiding the water to be treated to the inside of the apparatus, the inner wall of the apparatus, and the cyclone separator. An ascending fluid part for ascending and flowing the water to be treated guided from the pipe along the inner wall surface of the apparatus, and a second introduction pipe connected to the upper part of the cyclone separation part and guiding the treated water that has risen and fluidized into the cyclone separation part. Is provided. As a result, the water to be treated guided from the first introduction pipe flows upward along the inner wall surface of the apparatus in the upward flow portion, and is guided to the cyclone separation portion in a state where a sufficient centrifugal force is applied. Become. And since the centrifugal force accompanying the downward flow along the inner wall surface of the separation part is further given to the foreign matter contained in the water to be treated guided through the second introduction pipe in the cyclone separation part, the first According to the water quality reforming apparatus according to the invention, foreign substances contained in the for-treatment water can be efficiently collected in the vicinity of the inner wall surface of the separation unit according to the specific gravity difference. Further, the first introduction pipe and the second introduction pipe according to the first invention are formed with collision portions that generate a rotating flow when the water to be treated collides. In the collision part, the mixing of the predetermined gas supplied via the gas supply part can be promoted by the rotating flow generated with the collision of the water to be treated.

また、本願の第2の発明は、第1の発明において、第1の導入管の内壁部と第2の導入管の内壁部とは略円筒状に形成され、衝突部は、円筒内周面において被処理水の流れ方向に沿って形成された波形の衝突壁を有することを特徴としている。   Further, according to a second invention of the present application, in the first invention, the inner wall portion of the first introduction tube and the inner wall portion of the second introduction tube are formed in a substantially cylindrical shape, and the collision portion is a cylindrical inner peripheral surface. And the corrugated collision wall formed along the flow direction of the water to be treated.

第2の発明に係る水質改質装置では、第1の導入管の内壁部と第2の導入管の内壁部とは略円筒状に形成され、衝突部は、円筒内周面において被処理水の流れ方向に沿って形成された波形の衝突壁を有している。これにより、円筒内周面、すなわち、被処理水の流路断面の径が連続的に拡径、縮径を繰り返す構造となるため、流路断面の径が縮径から拡径に向かう領域では、被処理水の流速を速めることができるとともに(以下、本願では、当該構造を連続拡縮管構造と称する)、衝突壁において発生した回転流により気体供給部を介して供給された所定の気体を効果的に混合することができる。   In the water quality reforming apparatus according to the second aspect of the invention, the inner wall portion of the first introduction pipe and the inner wall portion of the second introduction pipe are formed in a substantially cylindrical shape, and the collision portion is treated water on the inner circumferential surface of the cylinder. The corrugated collision wall is formed along the flow direction. As a result, the inner circumferential surface of the cylinder, that is, the diameter of the channel cross section of the water to be treated is continuously increased and reduced, so that in the region where the diameter of the channel cross section decreases from the reduced diameter The flow rate of the water to be treated can be increased (hereinafter, the structure is referred to as a continuous expansion / contraction tube structure in the present application), and a predetermined gas supplied through the gas supply unit by the rotating flow generated in the collision wall Can be mixed effectively.

さらに、本願の第3の発明は、第2の発明において、円筒内周面と衝突壁とがなす角度θは、0度以上180度以下であり、本願の第4の発明は、第3の発明において、円筒内周面と衝突壁とがなす角度θは、10度以上60度以下であることを特徴としている。   Further, according to a third invention of the present application, in the second invention, the angle θ formed by the cylindrical inner peripheral surface and the collision wall is 0 degree or more and 180 degrees or less, and the fourth invention of the present application is the third invention In the present invention, the angle θ formed by the inner circumferential surface of the cylinder and the collision wall is characterized by being 10 degrees or more and 60 degrees or less.

第3の発明に係る水質改質装置では、円筒内周面と衝突壁とがなす角度θは、0度以上180度以下であり、第4の発明に係る水質改質装置では、当該角度θを10度以上60度以下とすることで、被処理水の流速を速めることができるとともに、衝突壁において気体供給部を介して供給された所定の気体を効果的に混合することができる。   In the water quality reformer according to the third aspect of the invention, the angle θ formed by the cylindrical inner peripheral surface and the collision wall is not less than 0 degrees and not more than 180 degrees. In the water quality reformer according to the fourth aspect of the invention, the angle θ By setting the angle to 10 degrees or more and 60 degrees or less, the flow rate of the water to be treated can be increased, and the predetermined gas supplied through the gas supply section can be effectively mixed in the collision wall.

さらにまた、本願の第5の発明は、第2の発明乃至第4の発明の何れかにおいて、衝突壁が形成する山部の最頂部は、円筒内周面側から円筒外周面側にかけて形成されていることを特徴としている。   Furthermore, in the fifth invention of the present application, in any one of the second to fourth inventions, the topmost part of the crest formed by the collision wall is formed from the cylindrical inner peripheral surface side to the cylindrical outer peripheral surface side. It is characterized by having.

第5の発明に係る水質改質装置では、衝突壁が形成する山部の最頂部を、円筒内周面側から円筒外周面側にかけて形成することにより、第1の導入管と第2の導入管の円筒内周面、すなわち、被処理水の流路断面積を最大径まで有効に利用することができる。   In the water quality reforming apparatus according to the fifth aspect of the present invention, the first introduction pipe and the second introduction are formed by forming the topmost part of the crest formed by the collision wall from the cylindrical inner peripheral surface side to the cylindrical outer peripheral surface side. The cylindrical inner peripheral surface of the pipe, that is, the flow path cross-sectional area of the water to be treated can be effectively used up to the maximum diameter.

また、本願の第6の発明は、第1の発明において、第1の導入管の内壁部と第2の導入管の内壁部とは略円筒状に形成され、衝突部は、円筒内周面が円筒外周面側に拡径することによって形成された衝突壁を有することを特徴としている。   According to a sixth invention of the present application, in the first invention, the inner wall portion of the first introduction tube and the inner wall portion of the second introduction tube are formed in a substantially cylindrical shape, and the collision portion is a cylindrical inner peripheral surface. Has a collision wall formed by expanding the diameter toward the outer peripheral surface of the cylinder.

第6の発明に係る水質改質装置では、第1の導入管の内壁部と第2の導入管の内壁部とは略円筒状に形成され、衝突部は、円筒内周面が円筒外周面側に拡径することによって形成された衝突壁を有している。これにより、円筒内周面、すなわち、被処理水の流路断面の径が拡径に向かう領域では、被処理水の流速を速めることができるとともに、衝突壁において発生した回転流により気体供給部を介して供給された所定の気体を効果的に混合することができる。   In the water quality reformer according to the sixth aspect of the invention, the inner wall portion of the first introduction pipe and the inner wall portion of the second introduction pipe are formed in a substantially cylindrical shape, and the collision inner portion has a cylindrical inner peripheral surface. It has a collision wall formed by expanding the diameter to the side. Thereby, in the cylindrical inner peripheral surface, that is, in the region where the diameter of the cross section of the flow path of the water to be treated is directed toward the diameter expansion, the flow rate of the water to be treated can be increased and the gas supply unit is caused by the rotating flow generated in the collision wall. The predetermined gas supplied via can be mixed effectively.

また、本願の第7の発明は、第1の発明乃至第6の発明の何れかにおいて、サイクロン分離部は、下方位置となるほど内径が縮径する逆円錐状部が上下方向に複数連設されていることを特徴としている。   Further, according to a seventh aspect of the present invention, in any one of the first to sixth aspects, the cyclone separating portion includes a plurality of inverted conical portions whose inner diameters are reduced in the vertical direction as the cyclone separating portion is in a lower position. It is characterized by having.

第7の発明に係る水質改質装置では、サイクロン分離部を下方位置となるほど内径が縮径する逆円錐状部が上下方向に複数連設した構成とすることで、単一の分離部を備えた構成と比べ、より高い異物分離能を提供することができる。   In the water quality reformer according to the seventh aspect of the present invention, the cyclone separator is configured such that a plurality of inverted conical portions whose inner diameter is reduced as the position is lowered are continuously provided in the vertical direction, so that a single separator is provided. Compared to the above configuration, it is possible to provide a higher foreign matter separation ability.

また、本願の第8の発明は、第1の発明乃至第7の発明の何れかにおいて、所定の気体は、水素、空気、酸素、オゾン、不活性ガス、一般工業用ガス又はこれらの組み合わせであることを特徴としている。   The eighth invention of the present application is any one of the first to seventh inventions, wherein the predetermined gas is hydrogen, air, oxygen, ozone, inert gas, general industrial gas, or a combination thereof. It is characterized by being.

第8の発明に係る水質改質装置では、所定の気体を、水素、空気、酸素、オゾン、不活性ガス、一般工業用ガス又はこれらの組み合わせとすることで、被処理水中の溶存酸素量を調整することができる。   In the water quality reformer according to the eighth aspect of the invention, the predetermined gas is hydrogen, air, oxygen, ozone, inert gas, general industrial gas, or a combination thereof, so that the amount of dissolved oxygen in the water to be treated is reduced. Can be adjusted.

本発明によれば、被処理水中に含まれる微細ゴミ等の異物を除去するとともに、被処理水中の溶存酸素量を調整することにより、被処理水の水質を改質することが可能な水質改質装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, while removing foreign matters, such as a fine dust contained in to-be-processed water, adjusting the amount of dissolved oxygen in to-be-processed water, the water quality improvement which can improve the water quality of to-be-processed water. A quality device can be provided.

水質改質装置100の構成を説明するための概略断面図である。1 is a schematic cross-sectional view for explaining the configuration of a water quality reformer 100. FIG. 衝突部10aの構成を説明する概略断面図である。It is a schematic sectional drawing explaining the structure of the collision part 10a. 水質改質装置100を備えた実験装置を説明する概略構成図である。It is a schematic block diagram explaining the experimental apparatus provided with the water quality reformer. 設定角度に対する被処理水の白濁発生回数(微小気泡発生頻度)を視認にて確認した結果を表すグラフである。It is a graph showing the result of having confirmed visually the white turbidity generation frequency (microbubble generation frequency) with respect to a setting angle. 円筒内周面10bと衝突壁10dとがなす角度を0度、15度、100度に設定した水質改質装置100で処理した水道水の溶存酸素量を溶存酸素計で測定した結果を示したグラフである。The result of measuring the dissolved oxygen amount of tap water treated by the water quality reformer 100 in which the angle formed between the cylindrical inner peripheral surface 10b and the collision wall 10d is set to 0 degrees, 15 degrees, and 100 degrees is shown with a dissolved oxygen meter. It is a graph. 衝突部のその他の形態を説明する概略断面図である。It is a schematic sectional drawing explaining the other form of a collision part. 衝突部のその他の形態を説明する概略断面図である。It is a schematic sectional drawing explaining the other form of a collision part.

本発明の実施形態に係る水質改質装置は、生活排水処理施設、産業排水処理施設、湖沼、河川、稲作等の農作環境、水産資源の養殖環境等の場に設置されることを想定しており、ポンプ等の吸引手段で汲み上げられた排水或いは廃水(以下、被処理水と称する)を装置内において、微細ゴミ等の異物を分離除去するとともに、溶存酸素量を調整することが可能な装置である。以下、本発明の実施形態について図面を参照して説明するが、本発明は以下の記述に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。   The water quality reforming apparatus according to the embodiment of the present invention is assumed to be installed in places such as domestic wastewater treatment facilities, industrial wastewater treatment facilities, lakes, rivers, farming environments such as rice farming, and aquaculture environments for fishery resources. A device capable of separating and removing foreign matters such as fine dust and adjusting the amount of dissolved oxygen from waste water or waste water (hereinafter referred to as treated water) pumped up by suction means such as a pump. It is. Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to the following description and can be appropriately changed without departing from the gist of the present invention.

図1(a)は、本発明の実施形態に係る水質改質装置100の構成を説明する概略断面図であり、図1(b)は、図1(a)のb−b'線における断面図である。   Fig.1 (a) is a schematic sectional drawing explaining the structure of the water quality reformer 100 which concerns on embodiment of this invention, FIG.1 (b) is a cross section in the bb 'line of Fig.1 (a). FIG.

図1(a)に示すように、水質改質装置100は、被処理水の旋回流動により発生する遠心力により当該被処理水に含まれる異物を分離除去するサイクロン分離部20と、装置下部に接続され、被処理水を装置本体部30内部に導く第1の導入管10と、装置内壁とサイクロン分離部との間に形成され、第1の導入管10から導かれた被処理水を装置内壁面に沿って上昇流動させる上昇流動部30cと、サイクロン分離部20上部に接続され、上昇流動した被処理水をサイクロン分離部20内部に導く第2の導入管40と、サイクロン分離部20に挿通され、被処理水の旋回流動に伴い発生した上昇流を処理水として装置外部に導く排出管50と、サイクロン分離部において分離された異物を装置外部に排出する異物排出管60と、第1の導入管10に導かれる前の被処理水に所定の気体を供給する気体供給部70とを備える。   As shown in FIG. 1A, a water quality reformer 100 includes a cyclone separator 20 that separates and removes foreign substances contained in the water to be treated by centrifugal force generated by the swirling flow of the water to be treated, and a lower part of the device. A first introduction pipe 10 that is connected and guides the water to be treated to the inside of the apparatus main body 30, and is formed between the inner wall of the apparatus and the cyclone separator, and the water to be treated guided from the first introduction pipe 10 is supplied to the apparatus. An ascending fluid part 30c that ascends and flows along the inner wall surface, connected to the upper part of the cyclone separating part 20, and connected to the cyclone separating part 20 with a second introduction pipe 40 that guides the treated water that has risen and fluidized into the cyclone separating part 20 A discharge pipe 50 that is inserted and guides the upward flow generated with the swirling flow of the water to be treated to the outside of the apparatus as treated water, a foreign substance discharge pipe 60 that discharges the foreign substances separated in the cyclone separation unit to the outside of the apparatus, and a first Guidance And a gas supply unit 70 for supplying a predetermined gas to the water to be treated before being introduced into the tube 10.

水質改質装置100の装置本体部30は、例えば、ステンレス鋼管、炭素鋼鋼管、亜鉛めっき鋼管といった金属管、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、ポリスチレン、ABS樹脂といった合成樹脂、又はセラミックスを略円筒形状に成形して構成されており、その内部は中空構造となっている。装置本体部30の外周面30b下方には、第1の導入管10を装置本体部30内部に挿通可能とするための外周面開口部30dが形成されている。また、天面部30eには、排出管50をサイクロン分離部20上部に挿通可能とするための天面開口部30fが形成されているとともに、底面部30gには、異物排出管60をサイクロン分離部20下部に挿通可能とするための底面開口部30hが形成されている。装置本体部30の内部には、装置内壁たる内周面30aとサイクロン分離部20との間に形成され、第1の導入管10から導かれた被処理水を装置内周面30aに沿って上昇流動させる上昇流動部30cが形成されている。   The apparatus main body 30 of the water quality reformer 100 is made of, for example, a metal pipe such as a stainless steel pipe, a carbon steel pipe, or a galvanized steel pipe, a synthetic resin such as polyvinyl chloride, polyethylene, polypropylene, polystyrene, or ABS resin, or a ceramic in a substantially cylindrical shape. The inside is a hollow structure. An outer peripheral surface opening 30 d for allowing the first introduction pipe 10 to be inserted into the apparatus main body 30 is formed below the outer peripheral surface 30 b of the apparatus main body 30. The top surface portion 30e is formed with a top surface opening 30f for allowing the discharge pipe 50 to be inserted into the upper part of the cyclone separation portion 20, and the foreign matter discharge tube 60 is disposed on the bottom surface portion 30g. 20 is formed with a bottom opening 30h that can be inserted through the lower portion. Inside the apparatus main body 30, the water to be treated is formed between the inner peripheral surface 30 a that is the inner wall of the apparatus and the cyclone separating section 20, and the treated water guided from the first introduction pipe 10 is along the inner peripheral surface 30 a of the apparatus. An ascending fluid portion 30c for ascending fluid is formed.

第1の導入管10は、例えば、ステンレス鋼管、炭素鋼鋼管、亜鉛めっき鋼管といった金属管、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、ポリスチレン、ABS樹脂といった合成樹脂、又はセラミックスを略円筒形状に成形して構成されており、装置本体部30の外周面30b下方の外周面開口部30dを介して装置本体部30と接続されている。図1(b)は、装置本体部30に対する第1の導入管10の接続形態を説明する図であり、第1の導入管10は、装置本体部30の内周面30aの接線方向に対して平行となるように接続されており、第1の導入管10を介して図中矢印lで示した流れ方向から導かれた被処理水は、後に説明する連続拡縮管構造によりその流速が速められ、上昇流動部30cにおいて図中矢印方向に上昇流動を繰り返しながら装置本体部30上部まで到達し、十分な遠心力が付与された状態で第2の導入管40を介してサイクロン分離部20に導かれる。   The first introduction pipe 10 is formed, for example, by molding a metal pipe such as a stainless steel pipe, a carbon steel pipe, a galvanized steel pipe, a synthetic resin such as polyvinyl chloride, polyethylene, polypropylene, polystyrene, or ABS resin, or a ceramic into a substantially cylindrical shape. The apparatus main body 30 is connected to the apparatus main body 30 via an outer peripheral surface opening 30 d below the outer peripheral surface 30 b of the apparatus main body 30. FIG. 1B is a view for explaining a connection form of the first introduction pipe 10 to the apparatus main body 30, and the first introduction pipe 10 is in a tangential direction of the inner peripheral surface 30 a of the apparatus main body 30. The treated water led from the flow direction indicated by the arrow l in the figure through the first introduction pipe 10 has a higher flow velocity due to the continuous expansion / contraction pipe structure described later. In the ascending flow part 30c, the ascending flow is repeated in the direction of the arrow while reaching the upper part of the apparatus main body part 30, and the cyclone separating part 20 is passed through the second introduction pipe 40 in a state where a sufficient centrifugal force is applied. Led.

サイクロン分離部20は、例えば、ステンレス鋼管、炭素鋼鋼管、亜鉛めっき鋼管といった金属管、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、ポリスチレン、ABS樹脂といった合成樹脂、又はセラミックスを略円筒形状に成形して構成され、内部にて旋回する被処理水の旋回中心が装置本体部30の軸心と一致するように配置されている。本実施形態に係るサイクロン分離部20は、第2の導入管40及び排出管50に接続された第1分離部21と、第2分離部22と、異物排出管60に接続された第3分離部23との3種の分離部が装置本体部30上方から下方にかけてタンデムに接続されて構成されている。第1分離部21、第2分離部22、及び第3分離部23のそれぞれは、上方が略円筒形状であり、下方位置となるほど内径が縮径する逆円錐状となるように構成されている。   The cyclone separator 20 is configured by molding a metal pipe such as a stainless steel pipe, a carbon steel pipe, a galvanized steel pipe, a synthetic resin such as polyvinyl chloride, polyethylene, polypropylene, polystyrene, or ABS resin, or a ceramic into a substantially cylindrical shape. The swivel center of the water to be swirled inside is arranged so as to coincide with the axis of the apparatus main body 30. The cyclone separator 20 according to this embodiment includes a first separator 21 connected to the second introduction pipe 40 and the discharge pipe 50, a second separator 22, and a third separation connected to the foreign matter discharge pipe 60. Three types of separation parts with the part 23 are configured to be connected in tandem from the upper side to the lower side of the apparatus main body part 30. Each of the 1st separation part 21, the 2nd separation part 22, and the 3rd separation part 23 is constituted so that the upper part may be a substantially cylindrical shape, and it may become an inverted cone shape in which an inner diameter contracts, so that it becomes a lower position. .

第2の導入管40を介してサイクロン分離部20の第1分離部21に導かれた被処理水は、第1分離部21、第2分離部22、第3分離部23の順で下降流動を繰り返し、第3分離部23の底面部に衝突する。被処理水中に含まれる異物は、第1分離部21、第2分離部22、及び第3分離部23における下降流動に伴い、その比重差に応じて分離部内壁面に集約され、被処理水から分離される。異物が分離された被処理水は、第3分離部23の底面部での衝突に伴い発生した上昇流により第1分離部21に接続された排出管50を介し処理水として装置外部に排出される。   The treated water led to the first separation unit 21 of the cyclone separation unit 20 through the second introduction pipe 40 descends in the order of the first separation unit 21, the second separation unit 22, and the third separation unit 23. Is repeated to collide with the bottom surface of the third separation portion 23. The foreign substances contained in the water to be treated are collected on the inner wall surface of the separation part according to the specific gravity difference in accordance with the descending flow in the first separation part 21, the second separation part 22, and the third separation part 23. To be separated. The treated water from which the foreign matter has been separated is discharged to the outside of the apparatus as treated water through the discharge pipe 50 connected to the first separation unit 21 by the upward flow generated by the collision at the bottom surface of the third separation unit 23. The

第2の導入管40は、例えば、ステンレス鋼管、炭素鋼鋼管、亜鉛めっき鋼管といった金属管、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、ポリスチレン、ABS樹脂といった合成樹脂、又はセラミックスを略円筒形状に成形して構成されており、サイクロン分離部20の第1分離部21外周面に形成された開口部21aを介してサイクロン分離部20と接続されている。第2の導入管40も、第1の導入管10と同様に、連続拡縮管構造を有しており、上昇流動部30cにおいて上昇流動を繰り返しながら装置本体部30上部まで到達した被処理水をその流速を速めながらサイクロン分離部20の第1分離部21に導くことができるように構成されている。   The second introduction pipe 40 is formed by, for example, molding a metal pipe such as a stainless steel pipe, a carbon steel pipe, a galvanized steel pipe, a synthetic resin such as polyvinyl chloride, polyethylene, polypropylene, polystyrene, or ABS resin, or a ceramic into a substantially cylindrical shape. It is comprised and is connected with the cyclone separation part 20 through the opening part 21a formed in the 1st separation part 21 outer peripheral surface of the cyclone separation part 20. As shown in FIG. Similarly to the first introduction pipe 10, the second introduction pipe 40 also has a continuous expansion / contraction pipe structure, and the treated water that has reached the upper part of the apparatus main body 30 while repeating the ascending flow in the ascending flow part 30c. It is configured such that it can be guided to the first separation part 21 of the cyclone separation part 20 while increasing the flow velocity.

排出管50は、例えば、ステンレス鋼管、炭素鋼鋼管、亜鉛めっき鋼管といった金属管、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、ポリスチレン、ABS樹脂といった合成樹脂、又はセラミックスを略円筒形状に成形して構成されており、装置本体部30の天面開口部30fを介してサイクロン分離部20上部(第1分離部21)に挿通されている。排出管50は、異物が除去された被処理水を処理水として装置外部に排出する。   The discharge pipe 50 is formed by, for example, molding a metal pipe such as a stainless steel pipe, a carbon steel pipe, a galvanized steel pipe, a synthetic resin such as polyvinyl chloride, polyethylene, polypropylene, polystyrene, or ABS resin, or a ceramic into a substantially cylindrical shape. The upper part (first separation part 21) of the cyclone separation part 20 is inserted through the top surface opening part 30 f of the apparatus main body part 30. The discharge pipe 50 discharges the treated water from which foreign substances have been removed to the outside of the apparatus as treated water.

異物排出管60は、例えば、ステンレス鋼管、炭素鋼鋼管、亜鉛めっき鋼管といった金属管、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、ポリスチレン、ABS樹脂といった合成樹脂、又はセラミックスを略円筒形状に成形して構成されており、装置本体部30の底面開口部30hを介してサイクロン分離部20下部(第3分離部23)に挿通されている。異物排出管60は、サイクロン分離部内壁面に集約された異物を装置外部に排出する。   The foreign matter discharge pipe 60 is formed, for example, by molding a metal pipe such as a stainless steel pipe, a carbon steel pipe, a galvanized steel pipe, a synthetic resin such as polyvinyl chloride, polyethylene, polypropylene, polystyrene, or ABS resin, or a ceramic into a substantially cylindrical shape. It is inserted through the bottom opening 30h of the apparatus main body 30 into the lower part of the cyclone separation part 20 (third separation part 23). The foreign matter discharge pipe 60 discharges the foreign matter collected on the inner wall surface of the cyclone separating portion to the outside of the apparatus.

気体供給部70は、例えば、図示せぬコンプレッサ、ボンベ等の所定の気体を発生・供給する供給部と、第1の導入管10に導かれる前の被処理水に対して当該気体を送出するポンプ等の送出部とを備える。なお、図1では、気体供給部70を単独の構成で例示したが、供給する気体が複数種類である場合、被処理水の流路中に複数の気体供給部を設けた構成としてもかまわない。   The gas supply unit 70 sends the gas to a supply unit that generates and supplies a predetermined gas such as a compressor and a cylinder (not shown) and the water to be treated before being guided to the first introduction pipe 10. And a delivery unit such as a pump. In addition, in FIG. 1, although the gas supply part 70 was illustrated by the single structure, when the gas to supply is multiple types, you may make it the structure which provided the several gas supply part in the flow path of to-be-processed water. .

次に、第1の導入管10及び第2の導入管40の内壁部に形成される衝突部(連続拡縮管構造)について説明する。図2は、本実施形態に係る衝突部の構成を説明する概略断面図である。なお、第1の導入管10及び第2の導入管40に形成される衝突部は同構成とすることができるため、ここでの説明は、第1の導入管10の内壁部に形成される衝突部の構成について説明する。   Next, the collision part (continuous expansion / contraction pipe structure) formed in the inner wall part of the 1st introduction pipe 10 and the 2nd introduction pipe 40 is demonstrated. FIG. 2 is a schematic cross-sectional view illustrating the configuration of the collision unit according to the present embodiment. In addition, since the collision part formed in the 1st introduction pipe 10 and the 2nd introduction pipe 40 can be set as the same structure, description here is formed in the inner wall part of the 1st introduction pipe 10. The configuration of the collision unit will be described.

前述したように、第1の導入管10は略円筒状の金属管等で構成されており、管内部に内壁部たる円筒内周面10bと、管外形を構成する外壁部たる円筒外周面10cとを備え、本実施形態における衝突部10aは、当該円筒内周面10bにおいて、図中矢印lで示した被処理水の流れ方向に沿って形成された波形の衝突壁10dを有する。隣り合う衝突壁10d同士は、山部又は谷部の何れかを形成し、山部の最頂部10eは、円筒内周面10b側から円筒外周面10c側にかけて形成されているとともに、谷部の谷底部10fは、円筒内周面10b上に形成されている。このように、第1の導入管10における円筒内周面10b、すなわち、被処理水の流路断面の径は、連続的に拡径、縮径を繰り返す連続拡縮管構造となるため、流路断面の径が縮径から拡径に向かう領域では、被処理水の流速を速めることができる。また、衝突壁10dにおける回転流の発生は、流路断面中心近傍を流れる中心流と円筒内周面近傍を流れる周囲流との間で流速に速度差を生じさせる。一定方向に流れる流体内部に速度差が生じると、ベルヌーイの定理に基づく減圧部分が流速が速い箇所で発生する。このような減圧効果は、被処理水に溶解した気体を微小気泡として析出させるキャビテーション効果を齎し、微小気泡が有する摩擦・剥離・吸着作用により、より高い浄化能を得ることが期待できる。なお、微小気泡は、10μm〜数十μmの直径を有するマイクロバブル、数百nm〜10μmの直径を有するマイクロナノバブル、数百nm以下の直径を有するナノバブルなどの概念を含む気泡を意味する。   As described above, the first introduction tube 10 is formed of a substantially cylindrical metal tube or the like, and the cylindrical inner peripheral surface 10b as an inner wall portion inside the tube and the cylindrical outer peripheral surface 10c as an outer wall portion constituting the outer shape of the tube. The collision part 10a in this embodiment has a corrugated collision wall 10d formed along the flow direction of the water to be treated indicated by an arrow 1 in the figure on the cylindrical inner peripheral surface 10b. The adjacent collision walls 10d form either a peak or a valley, and the peak 10e of the peak is formed from the cylindrical inner peripheral surface 10b side to the cylindrical outer peripheral surface 10c side, The valley bottom 10f is formed on the cylindrical inner peripheral surface 10b. As described above, the cylindrical inner peripheral surface 10b of the first introduction pipe 10, that is, the diameter of the cross section of the flow path of the water to be treated has a continuous expansion / contraction pipe structure that continuously expands and contracts. In the region where the cross-sectional diameter is from the reduced diameter to the enlarged diameter, the flow rate of the water to be treated can be increased. In addition, the generation of the rotational flow in the collision wall 10d causes a speed difference in the flow velocity between the central flow that flows near the center of the flow path cross section and the ambient flow that flows near the cylindrical inner peripheral surface. When a velocity difference occurs inside the fluid flowing in a certain direction, a decompression portion based on Bernoulli's theorem occurs at a location where the flow velocity is high. Such a pressure reduction effect can be expected to obtain a higher purifying ability due to the friction, separation, and adsorption action of the microbubbles due to the cavitation effect that precipitates the gas dissolved in the water to be treated as microbubbles. Microbubbles mean bubbles including concepts such as microbubbles having a diameter of 10 μm to several tens of μm, micronano bubbles having a diameter of several hundred nm to 10 μm, and nanobubbles having a diameter of several hundred nm or less.

次に、円筒内周面10bと衝突壁10dとがなす角度の最適化について説明する。円筒内周面10bと衝突壁10dとがなす角度を最適化する上で、図3に示す実験装置を構築し、以下の実験を行った。本実験においては、本実施形態に係る水質改質装置100を貯水槽300とポンプ200を介して接続し、貯水槽300とポンプ200との間に所定の気体としての空気を送り込む気体供給部70'を、ポンプ200と水質改質装置100との間に所定の気体としての水素を送り込む気体供給部70をそれぞれ配置した。   Next, optimization of the angle formed by the cylindrical inner peripheral surface 10b and the collision wall 10d will be described. In order to optimize the angle formed by the cylindrical inner peripheral surface 10b and the collision wall 10d, the experimental apparatus shown in FIG. 3 was constructed and the following experiment was performed. In this experiment, the water quality reformer 100 according to the present embodiment is connected to the water tank 300 via the pump 200, and a gas supply unit 70 that feeds air as a predetermined gas between the water tank 300 and the pump 200. A gas supply unit 70 for feeding hydrogen as a predetermined gas is disposed between the pump 200 and the water quality reformer 100.

そして、被処理水としては水道から採取した水道水を用い、含まれる溶存酸素量の安定化を図るため、貯水槽300に30分程度汲み置きしたものを使用した。そして、水質改質装置100としては、円筒内周面10bと衝突壁10dとがなす角度を0度、10度、20度、40度、60度、100度、180度に設定したものを使用し、水質改質装置100にて処理後の処理水400について以下の実験を行った。   And as the to-be-treated water, the tap water collected from the water supply was used, and the water stored in the water storage tank 300 for about 30 minutes was used in order to stabilize the amount of dissolved oxygen contained. As the water quality reformer 100, an apparatus in which the angle formed between the cylindrical inner peripheral surface 10b and the collision wall 10d is set to 0 degree, 10 degrees, 20 degrees, 40 degrees, 60 degrees, 100 degrees, and 180 degrees is used. Then, the following experiment was performed on the treated water 400 treated by the water quality reformer 100.

図4は、設定角度に対する被処理水の白濁発生回数(微小気泡発生頻度)を視認にて確認した結果を表すグラフである。   FIG. 4 is a graph showing the result of visually confirming the number of white turbidity occurrences (microbubble generation frequency) with respect to the set angle.

図4に示されるように、5回の実験中1回程度は設定角度0度、180度においても白濁が発生した。特に、設定角度10度以上60度以下において白濁発生は顕著であった。   As shown in FIG. 4, white turbidity occurred even at the set angles of 0 ° and 180 ° for about one out of five experiments. In particular, the occurrence of white turbidity was significant at a set angle of 10 degrees to 60 degrees.

図5は、円筒内周面10bと衝突壁10dとがなす角度を0度(点線)、15度(実線)、100度(一点鎖線)に設定した水質改質装置100で処理した水道水の溶存酸素量を溶存酸素計で測定した結果を示したグラフであり、表1は得られた結果を表にまとめたものである。なお、溶存酸素量の測定は、先ず酸素量が比較的大きく変化した時間を調べ、その時間において各2度ずつ溶存酸素量を計測しその平均値を算出した。   FIG. 5 shows tap water treated by the water quality reformer 100 in which the angle formed by the cylindrical inner peripheral surface 10b and the collision wall 10d is set to 0 degrees (dotted line), 15 degrees (solid line), and 100 degrees (dashed line). It is the graph which showed the result of having measured the amount of dissolved oxygen with the dissolved oxygen meter, and Table 1 summarizes the obtained result in a table | surface. In addition, the measurement of the amount of dissolved oxygen first investigated the time when the amount of oxygen changed relatively large, and measured the amount of dissolved oxygen twice at that time, and calculated the average value.

図5及び表1に示されるように、設定角度が15度の場合において、最も溶存酸素量は向上した。この結果は、図4で示した白濁度視認試験の結果と対応するものであり、円筒内周面10bと衝突壁10dとがなす角度を、0度以上180度以下、好ましくは、10度以上60度以下と設定することにより、被処理水中の溶存酸素量を向上させることができることが確認された。   As shown in FIG. 5 and Table 1, the amount of dissolved oxygen was most improved when the set angle was 15 degrees. This result corresponds to the result of the white turbidity visibility test shown in FIG. 4, and the angle formed between the cylindrical inner peripheral surface 10b and the collision wall 10d is 0 degree or more and 180 degrees or less, preferably 10 degrees or more. It was confirmed that the amount of dissolved oxygen in the water to be treated can be improved by setting it to 60 degrees or less.

最後に、本実施形態に係る水質改質装置100を用い、被処理水として鉄系圧延板の研磨廃液を処理した結果を表2に示す。   Finally, Table 2 shows the results of treating the polishing waste liquid of the iron-based rolled plate as the water to be treated using the water quality reformer 100 according to the present embodiment.

表中、排水原液(mg/l)は、処理前の研磨廃液原液中に含まれる浮遊物質量を表し、管径変化ノズル(mg/l)は、円筒内周面10bと衝突壁10dとがなす角度を12度に設定した第1の導入管10及び第2の導入管40を備えた水質改質装置100で処理した後の処理水に含まれる浮遊物質量を表している。そして、ストレートノズル(mg/l)は、円筒内周面10bと衝突壁10dとがなす角度が0度、すなわち、第1の導入管10及び第2の導入管40を管径に変化がないストレート管とした水質改質装置100で処理した後の処理水に含まれる浮遊物質量を表している。   In the table, the waste water stock solution (mg / l) represents the amount of suspended solids contained in the polishing waste solution stock solution before treatment, and the tube diameter changing nozzle (mg / l) has a cylindrical inner peripheral surface 10b and a collision wall 10d. It represents the amount of suspended solids contained in the treated water after being treated by the water quality reformer 100 having the first introduction pipe 10 and the second introduction pipe 40 set at an angle of 12 degrees. In the straight nozzle (mg / l), the angle formed between the cylindrical inner peripheral surface 10b and the collision wall 10d is 0 degrees, that is, the diameters of the first introduction pipe 10 and the second introduction pipe 40 are not changed. It represents the amount of suspended solids contained in the treated water after being treated by the water quality reformer 100 as a straight pipe.

sample1では、排水原液の浮遊物質量が1400mg/lであるのに対し、管径変化ノズルを用いた場合、浮遊物質量は12mg/lまで低下した。また、sample2では、排水原液の浮遊物質量が36mg/lであるのに対し、管径変化ノズルを用いた場合、浮遊物質量は8mg/lまで低下した。このように、本実施形態に係る水質改質装置100によれば、被処理水に含まれる微細ゴミ等の異物を効果的に分離除去することが可能であることが確認された。   In sample 1, the amount of suspended solids in the waste water stock solution was 1400 mg / l, whereas when the tube diameter change nozzle was used, the amount of suspended solids decreased to 12 mg / l. In sample 2, the amount of suspended solids in the waste water stock solution was 36 mg / l, whereas when the tube diameter change nozzle was used, the amount of suspended solids decreased to 8 mg / l. Thus, according to the water quality reformer 100 according to the present embodiment, it was confirmed that foreign substances such as fine dust contained in the water to be treated can be effectively separated and removed.

なお、ストレートノズルを装着した水質改質装置100も、sample1(24mg/l)、sample2(16mg/l)の両サンプルにおいて高い異物分離能を示した。これは、水質改質装置100が備えるサイクロン分離部20自体が高い異物分離能を有することを示す結果である。   The water quality reformer 100 equipped with a straight nozzle also showed a high foreign matter separation ability in both the sample 1 (24 mg / l) and sample 2 (16 mg / l) samples. This is a result indicating that the cyclone separation unit 20 itself provided in the water quality reformer 100 has a high foreign matter separation ability.

本実施形態の説明において、第1の導入管10に形成される衝突部10aの隣り合う衝突壁10d同士は、山部又は谷部の何れかを形成し、山部の最頂部10eは、円筒内周面10b側から円筒外周面10c側にかけて形成されているとともに、谷部の谷底部10fは、円筒内周面10b上に形成されている構成について説明したが、本発明はこれに限定されるものではない。例えば、図6(a)に示すその他の形態の一例である衝突部10a'のように、隣り合う衝突壁10d'同士が形成する山部の最頂部10e'が、円筒外周面10c'側から円筒内周面10b'側にかけて形成されているとともに、谷部の谷底部10f'は、円筒内周面10b'上に形成されていてもよい。また、図6(b)に示すその他の形態の一例である衝突部10a''のように、円筒内周面10b''側から円筒外周面10c''側に突出するように、衝突壁10d''をコの字型に形成してもよい。さらに、図7に示すように、衝突部11aとして、円筒内周面11bが円筒外周面11c側に拡径することによって形成された衝突壁11dを有する形態としても構わない。この場合、円筒内周面11bの径、すなわち、被処理水の流路断面の径が円筒内周面11b'で示す径にまで拡径する単一拡縮管構造となるため、発生する微小気泡は連続拡縮管構造のものと比較して若干大きくなるものの、連続拡縮管構造と略同等の性能を奏することができる。   In the description of the present embodiment, the adjacent collision walls 10d of the collision portion 10a formed in the first introduction pipe 10 form either a peak portion or a valley portion, and the topmost portion 10e of the peak portion is a cylinder. Although the configuration has been described in which the valley bottom portion 10f of the valley is formed on the cylindrical inner peripheral surface 10b while being formed from the inner peripheral surface 10b side to the cylindrical outer peripheral surface 10c side, the present invention is limited to this. It is not something. For example, like the collision part 10a 'which is an example of the other form shown to Fig.6 (a), top part 10e' of the peak part which adjacent collision wall 10d 'forms is from cylindrical outer peripheral surface 10c' side. While being formed toward the cylindrical inner peripheral surface 10b ′ side, the valley bottom portion 10f ′ of the valley may be formed on the cylindrical inner peripheral surface 10b ′. Further, like the collision part 10a '' which is an example of another form shown in FIG. 6B, the collision wall 10d is projected from the cylindrical inner peripheral surface 10b '' side to the cylindrical outer peripheral surface 10c '' side. '' May be formed in a U-shape. Further, as shown in FIG. 7, the collision part 11a may have a collision wall 11d formed by expanding the cylindrical inner peripheral surface 11b toward the cylindrical outer peripheral surface 11c. In this case, since the diameter of the cylindrical inner peripheral surface 11b, that is, the diameter of the cross section of the flow path of the water to be treated is a single expansion / contraction tube structure that expands to the diameter indicated by the cylindrical inner peripheral surface 11b ′, Although it is slightly larger than that of the continuous expansion / contraction tube structure, it can exhibit substantially the same performance as the continuous expansion / contraction tube structure.

また、本実施形態の説明において、気体供給部70から供給される所定の気体を空気若しくは水素、又はこれらの組み合わせとして説明したが、本発明はこれに限定されるものではない。例えば、著しく被処理水の溶存酸素量が低い場合には、直接酸素を気体供給部70を介して供給してもよく、また、強い酸化能力を有するオゾンを気体供給部70を介して供給し、被処理水に含まれる異物を酸化分解することで、脱臭、脱色、殺菌等の効果を得ることも可能である。また、上記気体以外にも、例えば、ヘリウム、ネオン、アルゴン等の希ガス類元素ガス又は窒素ガス等の不活性ガスや、二酸化炭素、一酸化炭素、メタン、アセチレン、アンモニア等の一般工業用ガス等も本発明に適用可能である。例えば、窒素を所定の気体として用いた場合、被処理水中に含まれる酸素を窒素に置換することで、溶存酸素量を実質的に0にすることができ、金属管の錆びの発生を抑制することが可能である。   In the description of the present embodiment, the predetermined gas supplied from the gas supply unit 70 has been described as air, hydrogen, or a combination thereof, but the present invention is not limited to this. For example, when the amount of dissolved oxygen in the water to be treated is remarkably low, oxygen may be directly supplied via the gas supply unit 70, or ozone having a strong oxidizing ability may be supplied via the gas supply unit 70. It is also possible to obtain effects such as deodorization, decolorization, and sterilization by oxidizing and decomposing foreign matters contained in the water to be treated. In addition to the above gases, for example, inert gases such as rare gas element gases such as helium, neon, and argon, or nitrogen gas, and general industrial gases such as carbon dioxide, carbon monoxide, methane, acetylene, ammonia, etc. It is applicable to the present invention. For example, when nitrogen is used as a predetermined gas, the amount of dissolved oxygen can be substantially reduced by substituting oxygen contained in the water to be treated with nitrogen, thereby suppressing the occurrence of rust in the metal tube. It is possible.

以上のように、本発明に係る水質改質装置によれば、被処理水中に含まれる微細ゴミ等の異物を除去するとともに、被処理水中の溶存酸素量を調整することにより、被処理水の水質を改質することができる。   As described above, according to the water quality reforming apparatus according to the present invention, foreign matter such as fine dust contained in the water to be treated is removed and the amount of dissolved oxygen in the water to be treated is adjusted, thereby Water quality can be improved.

10 第1の導入管
10a,10a',10a'' 衝突部
10b,10b',10b'' 円筒内周面
10c,10c',10c'' 円筒外周面
10d,10d',10d'' 衝突壁
10e,10e' 山頂部
10f,10f' 谷底部
11a 衝突部
11b,11b' 円筒内周面
11c 円筒外周面
11d 衝突壁
20 サイクロン分離部
21 第1分離部
21a 開口部
22 第2分離部
23 第3分離部
30 装置本体部
30a 内周面
30b 外周面
30c 上昇流動部
30d 外周面開口部
30e 天面部
30f 天面開口部
30g 底面部
30h 底面開口部
40 第2の導入管
50 排出管
60 異物排出管
70,70' 気体供給部
10 1st introduction pipe 10a, 10a ', 10a''Colliding part 10b, 10b', 10b '' Cylindrical inner peripheral surface 10c, 10c ', 10c''Cylindrical outer peripheral surface 10d, 10d', 10d '' Colliding wall 10e , 10e ′ Mountain top portion 10f, 10f ′ Valley bottom portion 11a Colliding portion 11b, 11b ′ Cylindrical inner peripheral surface 11c Cylindrical outer peripheral surface 11d Colliding wall 20 Cyclone separation portion 21 First separation portion 21a Opening portion 22 Second separation portion 23 Third separation Part 30 Device body part 30a Inner peripheral surface 30b Outer peripheral surface 30c Ascending flow part 30d Outer peripheral surface opening 30e Top surface part 30f Top surface opening part 30g Bottom surface part 30h Bottom surface opening part 40 Second introduction pipe 50 Discharge pipe 60 Foreign matter discharge pipe 70 , 70 'Gas supply part

Claims (8)

被処理水の旋回流動により発生する遠心力により当該被処理水に含まれる異物を分離除去するサイクロン分離部と、
装置下部に接続され、前記被処理水を装置内部に導く第1の導入管と、
装置内壁と前記サイクロン分離部との間に形成され、前記第1の導入管から導かれた前記被処理水を装置内壁面に沿って上昇流動させる上昇流動部と、
前記サイクロン分離部上部に接続され、上昇流動した前記被処理水を前記サイクロン分離部内部に導く第2の導入管と、
前記サイクロン分離部に挿通され、前記被処理水の旋回流動に伴い発生した上昇流を処理水として装置外部に導く排出管と、
前記サイクロン分離部において分離された前記異物を装置外部に排出する異物排出管と、
前記第1の導入管に導かれる前の前記被処理水に所定の気体を供給する気体供給部とを備え、
前記第1の導入管の内壁部と前記第2の導入管の内壁部とには、前記被処理水が衝突することで回転流を発生させる衝突部が形成されていること
を特徴とする水質改質装置。
A cyclone separation unit that separates and removes foreign substances contained in the water to be treated by centrifugal force generated by swirling flow of the water to be treated;
A first introduction pipe connected to the lower part of the apparatus and guiding the treated water into the apparatus;
An ascending fluid part that is formed between the inner wall of the apparatus and the cyclone separating part, and that causes the treated water guided from the first introduction pipe to ascend and flow along the inner wall surface of the apparatus;
A second introduction pipe connected to the upper part of the cyclone separator and guiding the treated water that has flowed upward into the cyclone separator;
A discharge pipe that is inserted into the cyclone separator and guides the upward flow generated with the swirling flow of the water to be treated to the outside of the apparatus as treated water;
A foreign matter discharge pipe for discharging the foreign matter separated in the cyclone separation unit to the outside of the apparatus;
A gas supply unit that supplies a predetermined gas to the water to be treated before being guided to the first introduction pipe,
The water quality is characterized in that an inner wall portion of the first introduction pipe and an inner wall portion of the second introduction pipe are formed with a collision portion that generates a rotating flow when the water to be treated collides. Reformer.
前記第1の導入管の内壁部と前記第2の導入管の内壁部とは略円筒状に形成され、
前記衝突部は、円筒内周面において前記被処理水の流れ方向に沿って形成された波形の衝突壁を有すること
を特徴とする請求項1に記載の水質改質装置。
The inner wall portion of the first introduction tube and the inner wall portion of the second introduction tube are formed in a substantially cylindrical shape,
2. The water quality reformer according to claim 1, wherein the collision portion has a corrugated collision wall formed along a flow direction of the water to be treated on an inner circumferential surface of the cylinder.
前記円筒内周面と前記衝突壁とがなす角度θは、0度以上180度以下であること
を特徴とする請求項2に記載の水質改質装置。
The water quality reformer according to claim 2, wherein an angle θ formed by the cylindrical inner peripheral surface and the collision wall is not less than 0 degrees and not more than 180 degrees.
前記円筒内周面と前記衝突壁とがなす角度θは、10度以上60度以下であること
を特徴とする請求項3に記載の水質改質装置。
The water quality reformer according to claim 3, wherein an angle θ formed by the cylindrical inner peripheral surface and the collision wall is 10 degrees or more and 60 degrees or less.
前記衝突壁が形成する山部の最頂部は、円筒内周面側から円筒外周面側にかけて形成されていること
を特徴とする請求項2乃至4の何れか1項に記載の水質改質装置。
The water quality reformer according to any one of claims 2 to 4, wherein an uppermost portion of the peak portion formed by the collision wall is formed from a cylindrical inner peripheral surface side to a cylindrical outer peripheral surface side. .
前記第1の導入管の内壁部と前記第2の導入管の内壁部とは略円筒状に形成され、
前記衝突部は、円筒内周面が円筒外周面側に拡径することによって形成された衝突壁を有すること
を特徴とする請求項1に記載の水質改質装置。
The inner wall portion of the first introduction tube and the inner wall portion of the second introduction tube are formed in a substantially cylindrical shape,
2. The water quality reformer according to claim 1, wherein the collision portion includes a collision wall formed by expanding a cylinder inner peripheral surface toward the cylinder outer peripheral surface.
前記サイクロン分離部は、下方位置となるほど内径が縮径する逆円錐状部が上下方向に複数連設されていること
を特徴とする請求項1乃至請求項6の何れか1項に記載の水質改質装置。
The water quality according to any one of claims 1 to 6, wherein the cyclone separating portion includes a plurality of inverted conical portions whose inner diameter is reduced in a lower position in a vertical direction. Reformer.
前記所定の気体は、水素、空気、酸素、オゾン、不活性ガス、一般工業用ガス又はこれらの組み合わせであること
を特徴とする請求項1乃至請求項7の何れか1項に記載の水質改善装置。
The water quality improvement according to any one of claims 1 to 7, wherein the predetermined gas is hydrogen, air, oxygen, ozone, inert gas, general industrial gas, or a combination thereof. apparatus.
JP2013248848A 2013-12-02 2013-12-02 Water quality improving apparatus Pending JP2015104711A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013248848A JP2015104711A (en) 2013-12-02 2013-12-02 Water quality improving apparatus
PCT/JP2014/005990 WO2015083363A1 (en) 2013-12-02 2014-12-01 Water-quality improvement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013248848A JP2015104711A (en) 2013-12-02 2013-12-02 Water quality improving apparatus

Publications (1)

Publication Number Publication Date
JP2015104711A true JP2015104711A (en) 2015-06-08

Family

ID=53273147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013248848A Pending JP2015104711A (en) 2013-12-02 2013-12-02 Water quality improving apparatus

Country Status (2)

Country Link
JP (1) JP2015104711A (en)
WO (1) WO2015083363A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6354924A (en) * 1986-08-20 1988-03-09 ベロイト・コ−ポレイション Hydrodynamic mixing method and device
JP2002045860A (en) * 2000-08-04 2002-02-12 Kyoshin Kogyo Co Ltd Foreign matter removing and water cleaning device
US20070151453A1 (en) * 2006-01-04 2007-07-05 Manabu Fukuma Cyclone materials treatment system and method of introducing materials to be treated into a cyclone device
JP2012143722A (en) * 2011-01-13 2012-08-02 Kobori Tekko Kk Foreign particle separator and system for clarifying fluid to be treated

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6354924A (en) * 1986-08-20 1988-03-09 ベロイト・コ−ポレイション Hydrodynamic mixing method and device
JP2002045860A (en) * 2000-08-04 2002-02-12 Kyoshin Kogyo Co Ltd Foreign matter removing and water cleaning device
US20070151453A1 (en) * 2006-01-04 2007-07-05 Manabu Fukuma Cyclone materials treatment system and method of introducing materials to be treated into a cyclone device
JP2012143722A (en) * 2011-01-13 2012-08-02 Kobori Tekko Kk Foreign particle separator and system for clarifying fluid to be treated

Also Published As

Publication number Publication date
WO2015083363A1 (en) 2015-06-11

Similar Documents

Publication Publication Date Title
JP5440151B2 (en) Microbubble concentrating device, generating device and methods thereof
CA2738014C (en) Water treatment methods
JP6334434B2 (en) Fine bubble generating apparatus and fine bubble generating method
KR101192809B1 (en) Apparatus for Generating Water Containing Micro-Nano Bubbles
JPS5912334B2 (en) Method and apparatus for mixing base liquids with other media
JP2012139646A (en) Micro nano-bubble generating apparatus, and micro nano-bubble water generating apparatus
CN103191658A (en) Gas dissolving device capable of combining pipe flow and vortex
JP5269493B2 (en) Micro bubble generator
JPH07163977A (en) Method and device for treatment of water
US20240198300A1 (en) Device and method for dispersing gases into liquids
WO2019163105A1 (en) Ozone solution generation apparatus and ozone solution generation method
JP5372585B2 (en) Gas-liquid dissolution tank
CN104884393A (en) Aeration nozzle, and blockage removal method for said aeration nozzle
JP2019048274A (en) Oxygen water production apparatus and oxygen water production method
JP2012120997A (en) Method for producing microbubble and device therefor
JP2002045667A (en) Circulating flow generator
CN113636617B (en) Method and device for quickly removing algae in water by weak cyclone coupling micro-air flotation
WO2015083363A1 (en) Water-quality improvement device
RU29248U1 (en) Hydrocyclone microflotator
JP2006043701A (en) Suspension separator
JP2006272147A (en) Ballast water treatment equipment
KR20160028170A (en) Micro-bubble generator
RU2524601C1 (en) Apparatus for reagentless purification and disinfection of water
JP2004057936A (en) Water cleaning apparatus and nozzle for cavitation reactor used therein
JP4180545B2 (en) Wastewater aeration treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180605