[go: up one dir, main page]

JP2015090884A - Power semiconductor device, power semiconductor module, and manufacturing method of power semiconductor device - Google Patents

Power semiconductor device, power semiconductor module, and manufacturing method of power semiconductor device Download PDF

Info

Publication number
JP2015090884A
JP2015090884A JP2013229284A JP2013229284A JP2015090884A JP 2015090884 A JP2015090884 A JP 2015090884A JP 2013229284 A JP2013229284 A JP 2013229284A JP 2013229284 A JP2013229284 A JP 2013229284A JP 2015090884 A JP2015090884 A JP 2015090884A
Authority
JP
Japan
Prior art keywords
power semiconductor
conductor layer
frame member
semiconductor element
sealing resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013229284A
Other languages
Japanese (ja)
Other versions
JP6157320B2 (en
Inventor
範之 別芝
Noriyuki Betsushiba
範之 別芝
中島 泰
Yasushi Nakajima
泰 中島
和弘 多田
Kazuhiro Tada
和弘 多田
篠原 利彰
Toshiaki Shinohara
利彰 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013229284A priority Critical patent/JP6157320B2/en
Publication of JP2015090884A publication Critical patent/JP2015090884A/en
Application granted granted Critical
Publication of JP6157320B2 publication Critical patent/JP6157320B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L24/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73221Strap and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a small power semiconductor device which deals with high-temperature operation and achieves high reliability.SOLUTION: A power semiconductor device 1 includes: a ceramic base material 2i; a conductor layer 2a provided on an upper surface of the ceramic base material; power semiconductor elements 3a, 3b which are joined to an upper surface of the conductor layer; a main terminal 6a joined to a region which is located on upper surfaces of the power semiconductor elements and exclude an end edge part; a frame member 10 which is bonded to the upper surface of the conductor layer so as to enclose the semiconductor elements; and a sealing resin 12 which fills the inner side of the frame member and seals at least a joint region between the semiconductor elements and the main terminal. A low thermal expansion material 15 having a linear expansion coefficient smaller than the sealing resin is joined to a portion of the upper surface of the conductor surface which is located between the frame member and the semiconductor elements.

Description

本発明は、セラミックを基材とする回路基板を用いた電力用半導体装置に関する。   The present invention relates to a power semiconductor device using a circuit board having a ceramic base.

近年、電力用半導体装置は、一般産業用、電鉄用のみならず車載用にも広く使用されるようになってきた。特に車載用の装置では、限られたサイズ範囲の中で各部品を小さく軽くすることが車両の軽量化、高性能化に直結することから、電力用半導体装置においてもそのサイズの低下が非常に重要な課題である。そこで、シリコン(Si)に代わる半導体材料として、大電流を流すことができ、高温動作も可能である炭化珪素(SiC)のようなワイドバンドギャップ半導体材料の開発が進められている。また、上記高性能化に対応する耐熱性、熱伝導性を有する回路基板として、セラミックを基材とし、その両面に金属からなる導体層が接合された回路基板が用いられている。   In recent years, power semiconductor devices have been widely used not only for general industrial and electric railways but also for in-vehicle use. Especially in in-vehicle devices, reducing the size and weight of each component within a limited size range directly leads to a reduction in the weight and performance of the vehicle. This is an important issue. Thus, development of a wide band gap semiconductor material such as silicon carbide (SiC) capable of flowing a large current and capable of high-temperature operation as a semiconductor material replacing silicon (Si) is underway. In addition, as a circuit board having heat resistance and thermal conductivity corresponding to the above-described high performance, a circuit board having a ceramic base material and a metal conductor layer bonded on both sides thereof is used.

このような電力用半導体素子が実装された回路基板の主面(回路面)は、配線部材などと共にシリコーンゲルで封止することが一般的である。しかし、運転温度域が高温化した場合、シリコーンゲルのような柔軟な(弾性率の低い)材料では、半導体素子の接合部に加わる応力、ワイヤなどの配線部材に加わる応力を充分に抑制できず、所望の製品寿命を満足できない場合がある。   The main surface (circuit surface) of a circuit board on which such a power semiconductor element is mounted is generally sealed with a silicone gel together with a wiring member or the like. However, when the operating temperature range becomes high, a flexible (low elastic modulus) material such as silicone gel cannot sufficiently suppress the stress applied to the joint portion of the semiconductor element and the stress applied to the wiring member such as a wire. The desired product life may not be satisfied.

それゆえ、シリコーンゲルの代わりにエポキシ樹脂のような弾性率の高い封止樹脂で電力用半導体装置を封止することで、電力用半導体素子付近の接合部および配線部材に加わる応力を下げる構成が用いられるようになってきた。   Therefore, by sealing the power semiconductor device with a sealing resin having a high elastic modulus such as an epoxy resin instead of the silicone gel, a configuration in which the stress applied to the joint portion and the wiring member near the power semiconductor element is reduced. It has come to be used.

このとき、配線部材を構成する金属とセラミック基材との線膨張係数が大きく異なることから、弾性率の高い封止樹脂を用いた場合には、封止樹脂と他の回路部材との線膨張係数の合わせ込みが難しくなり、電力用半導体装置の信頼性向上の観点では好ましくない。   At this time, since the linear expansion coefficients of the metal constituting the wiring member and the ceramic base material are greatly different, when a sealing resin having a high elastic modulus is used, the linear expansion between the sealing resin and another circuit member is performed. It is difficult to match the coefficients, which is not preferable from the viewpoint of improving the reliability of the power semiconductor device.

ここで、例えば特許文献1には、配線部材のアルミワイヤボンディング部の応力を下げるために、エポキシ封止領域とは別にシリコン封止領域が設けられ、当該シリコン封止領域に半導体素子が配置されたパワーモジュールが開示されている。   Here, for example, in Patent Document 1, in order to reduce the stress of the aluminum wire bonding portion of the wiring member, a silicon sealing region is provided separately from the epoxy sealing region, and a semiconductor element is arranged in the silicon sealing region. A power module is disclosed.

一方、特許文献2に開示されているパワーモジュールでは、半導体素子のはんだ接合材の線膨張係数に合わせ込んだエポキシ樹脂でモジュール全体が封止されている。また、基板としては安価な金属基板が用いられ、半導体素子と金属基板との間に、熱拡散機能と線膨張ミスマッチの緩和機能を有する熱拡散板が挿入されている。   On the other hand, in the power module disclosed in Patent Document 2, the entire module is sealed with an epoxy resin adjusted to the linear expansion coefficient of the solder bonding material of the semiconductor element. In addition, an inexpensive metal substrate is used as the substrate, and a thermal diffusion plate having a thermal diffusion function and a linear expansion mismatch relaxation function is inserted between the semiconductor element and the metal substrate.

特開2011−199207号公報(段落[0022]〜[0040]、図1〜3)JP 2011-199207 A (paragraphs [0022] to [0040], FIGS. 1 to 3) 特開2005−56873号公報(段落[0010]〜[0021]、図1)JP 2005-56873 A (paragraphs [0010] to [0021], FIG. 1)

しかし、特許文献1に記載された技術では、半導体素子はシリコン封止領域に設けられており、その接合部に加わる応力を充分に低減できない。また、特許文献2に記載された技術では、金属基板の放熱性はセラミック基板に劣るため、熱拡散板を挿入する必要があるなど、平面方向のサイズアップを避けることができない。   However, in the technique described in Patent Document 1, the semiconductor element is provided in the silicon sealing region, and the stress applied to the joint portion cannot be sufficiently reduced. Moreover, in the technique described in Patent Document 2, since the heat dissipation of the metal substrate is inferior to that of the ceramic substrate, an increase in the size in the planar direction cannot be avoided, such as the need to insert a heat diffusion plate.

本発明は、上記のような問題点を解決するためになされたものであり、高温動作に対応可能であって、信頼性の高い、小型の電力用半導体装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a small and reliable power semiconductor device that can cope with high-temperature operation.

上記目的を達成するために、本発明に係る電力用半導体装置は、セラミック基材と、セラミック基材の上面に設けられた導体層と、導体層の上面に接合された電力用半導体素子と、電力用半導体素子の上面であって終端部を除いた領域に接合された主端子と、電力用半導体素子の周りを囲むように導体層の上面に接着された枠部材と、枠部材の内側に充填され、少なくとも電力用半導体素子と主端子との接合領域を封止する封止樹脂とを備える。枠部材と電力用半導体素子との間であって導体層の上面には、封止樹脂より小さい線膨張係数を有する低熱膨張材が接合されている。   In order to achieve the above object, a power semiconductor device according to the present invention includes a ceramic substrate, a conductor layer provided on the upper surface of the ceramic substrate, a power semiconductor element bonded to the upper surface of the conductor layer, A main terminal joined to the upper surface of the power semiconductor element and excluding the terminal portion; a frame member bonded to the upper surface of the conductor layer so as to surround the power semiconductor element; and an inner side of the frame member A sealing resin that is filled and seals at least a joining region between the power semiconductor element and the main terminal. A low thermal expansion material having a smaller linear expansion coefficient than that of the sealing resin is bonded to the upper surface of the conductor layer between the frame member and the power semiconductor element.

また、本発明に係る電力用半導体装置の製造方法は、セラミック基材の上面に導体層を設ける工程と、導体層の上面に電力用半導体素子を接合する工程と、電力用半導体素子の上面であって終端部を除いた領域に主端子を接合する工程と、電力用半導体素子の周りを囲むように、導体層の上面に枠部材を接着する工程と、枠部材の内側に封止樹脂を充填し、少なくとも電力用半導体素子と主端子との接合領域を封止する工程と、枠部材と電力用半導体素子との間であって導体層の上面に、封止樹脂より小さい線膨張係数を有する低熱膨張材を接合する工程とを含む。低熱膨張材を接合する工程は、電力用半導体素子を接合する工程または主端子を接合する工程と同時に実施する。   The method for manufacturing a power semiconductor device according to the present invention includes a step of providing a conductor layer on the upper surface of the ceramic substrate, a step of bonding the power semiconductor element to the upper surface of the conductor layer, and an upper surface of the power semiconductor element. A step of bonding the main terminal to the region excluding the terminal portion, a step of adhering a frame member to the upper surface of the conductor layer so as to surround the power semiconductor element, and a sealing resin inside the frame member Filling and sealing at least the junction region between the power semiconductor element and the main terminal, and a linear expansion coefficient smaller than the sealing resin on the upper surface of the conductor layer between the frame member and the power semiconductor element. Joining the low thermal expansion material. The step of bonding the low thermal expansion material is performed simultaneously with the step of bonding the power semiconductor element or the step of bonding the main terminal.

本発明によれば、枠部材と封止樹脂との界面に生じる剥離進展が抑制されることなどにより、高温動作に対応可能であって、信頼性の高い、小型の電力用半導体装置が実現される。また、工程数を増加させることなく、当該電力用半導体装置を製造することが可能となる。   According to the present invention, a small and reliable power semiconductor device that can cope with a high-temperature operation is realized by suppressing the progress of peeling occurring at the interface between the frame member and the sealing resin. The In addition, the power semiconductor device can be manufactured without increasing the number of steps.

本発明の実施の形態1に係る電力用半導体装置の平面図(a)と、そのA−A線断面図(b)である。2A is a plan view of the power semiconductor device according to the first embodiment of the present invention, and FIG. 本発明の実施の形態2に係る電力用半導体装置の図1(b)に対応する断面図である。It is sectional drawing corresponding to FIG.1 (b) of the semiconductor device for electric power which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る電力用半導体装置の図1(b)に対応する断面図である。It is sectional drawing corresponding to FIG.1 (b) of the semiconductor device for electric power which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る電力用半導体装置の平面図(a)と、そのA−A線断面図(b)である。It is the top view (a) of the power semiconductor device which concerns on Embodiment 4 of this invention, and the AA sectional view (b). 本発明の実施の形態5に係る電力用半導体装置の平面図(a)と、そのA−A線断面図(b)である。It is the top view (a) of the power semiconductor device which concerns on Embodiment 5 of this invention, and its AA sectional view (b). 本発明の実施の形態6に係る電力用半導体装置の平面図(a)と、そのA−A線断面図(b)である。It is the top view (a) of the power semiconductor device which concerns on Embodiment 6 of this invention, and its AA sectional view (b). 電力用半導体装置を製造する際の樹脂の流動方向を示す図である。It is a figure which shows the flow direction of resin at the time of manufacturing the semiconductor device for electric power.

本発明の実施の形態に係る電力用半導体装置について、以下で図面を参照しながら説明する。各図において、同一または同様の構成部分には同一の符号を付している。また、方向を表す用語「上」、「下」、「上面」、「下面」などは、図面中の方向を特定するための便宜的なものであり、使用時での装置の設置方向を限定するものではない。   A power semiconductor device according to an embodiment of the present invention will be described below with reference to the drawings. In each figure, the same or similar components are denoted by the same reference numerals. In addition, the terms “upper”, “lower”, “upper surface”, “lower surface”, etc. indicating the direction are for convenience to specify the direction in the drawing, and limit the installation direction of the device in use. Not what you want.

実施の形態1.
図1(a)は、本発明の実施の形態1に係る電力用半導体装置の平面図である。図1(b)は、図1(a)のA−A線断面図である。
電力用半導体装置1は、図1に示すように、回路基板2と、電力用半導体素子(以下、単に半導体素子という)3a,3bと、電極端子6a,6b,7と、配線部材9と、枠部材10と、封止樹脂12と、低熱膨張材15などを備えている。以下、これらの構成について具体的に説明する。
Embodiment 1 FIG.
FIG. 1A is a plan view of the power semiconductor device according to the first embodiment of the present invention. FIG.1 (b) is the sectional view on the AA line of Fig.1 (a).
As shown in FIG. 1, the power semiconductor device 1 includes a circuit board 2, power semiconductor elements (hereinafter simply referred to as semiconductor elements) 3a and 3b, electrode terminals 6a, 6b and 7, a wiring member 9, The frame member 10, the sealing resin 12, and the low thermal expansion material 15 are provided. Hereinafter, these configurations will be specifically described.

回路基板2は、熱伝導性に優れたセラミック基材2iと、セラミック基材2iの両面に設けられた導体層2a,2bとから構成されている。半導体素子3a,3bが実装された回路基板2の主面(回路面)に設けられた導体層に符号2aを付し、回路面の反対側の主面(放熱面)に設けられた導体層に符号2bを付している。図1(b)に示すように、導体層2a,2bのサイズは、セラミック基材2iの全面に接合されるサイズでなく一定の領域を覆うサイズでもよい。   The circuit board 2 is composed of a ceramic base 2i having excellent thermal conductivity and conductor layers 2a and 2b provided on both sides of the ceramic base 2i. The conductor layer provided on the main surface (circuit surface) of the circuit board 2 on which the semiconductor elements 3a and 3b are mounted is denoted by reference numeral 2a, and the conductor layer provided on the main surface (heat radiation surface) opposite to the circuit surface. 2b is attached | subjected. As shown in FIG. 1 (b), the size of the conductor layers 2a and 2b may be a size covering a certain region, not a size bonded to the entire surface of the ceramic substrate 2i.

セラミック基材2iとしては、窒化アルミニウム(AlN)、窒化珪素(Si)、酸化アルミニウム(Al)など、絶縁性でかつ熱伝導性に優れた材料が好ましい。基材2iの厚さは、産業的には例えば0.3mmから1mm程度とされる。導体層2a,2bとしては、例えば銅、アルミニウム、あるいは銅とアルミニウムの積層体など、熱伝導性、導電性に優れた材料を用いることができる。導体層2a,2bは、ろう付け、拡散接合などにより基材2iに固着されている。導体層2aと導体層2bの厚さは、産業的には例えば0.2mmから1mm程度とされる。その厚さが大きいほど、半導体素子3a,3bからの放熱性が高まる一方で、基材2iに対する熱応力も高まる。装置の破壊を防止するためにはマージンを大きく確保する必要があり、実用上は0.3mm程度の厚さが用いられる。 As the ceramic substrate 2i, an insulating and excellent heat conductive material such as aluminum nitride (AlN), silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 ) is preferable. Industrially, the thickness of the base material 2i is, for example, about 0.3 mm to 1 mm. As the conductor layers 2a and 2b, for example, a material excellent in thermal conductivity and conductivity such as copper, aluminum, or a laminate of copper and aluminum can be used. The conductor layers 2a and 2b are fixed to the base material 2i by brazing, diffusion bonding or the like. Industrially, the thickness of the conductor layer 2a and the conductor layer 2b is, for example, about 0.2 mm to 1 mm. As the thickness increases, the heat dissipation from the semiconductor elements 3a and 3b increases, while the thermal stress on the substrate 2i also increases. In order to prevent destruction of the apparatus, it is necessary to ensure a large margin, and a thickness of about 0.3 mm is used in practice.

半導体素子3a,3bは、接合層8b,8dを介して導体層2aの上面に接合されている。半導体素子3a,3bは、電力用半導体装置1の用途に応じて適宜選択される。一例として、半導体素子3aはIGBT(絶縁ゲート型バイポーラトランジスタ)、MOSFET(金属酸化膜半導体電界効果トランジスタ)などであり、半導体素子3bはFWD(フリーホイールダイオード)などである。例えばIGBTの場合、その上面(表(おもて)面)には制御電極のゲート電極と主電極のエミッタ電極とが形成され、下面(裏面)には主電極のコレクタ電極が形成される。以下、回路基板に接合されない側の半導体素子の面(図1では上面)に形成される電極を表面電極と記載する。   The semiconductor elements 3a and 3b are bonded to the upper surface of the conductor layer 2a via bonding layers 8b and 8d. The semiconductor elements 3 a and 3 b are appropriately selected according to the application of the power semiconductor device 1. As an example, the semiconductor element 3a is an IGBT (Insulated Gate Bipolar Transistor), a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) or the like, and the semiconductor element 3b is an FWD (Free Wheel Diode) or the like. For example, in the case of an IGBT, the gate electrode of the control electrode and the emitter electrode of the main electrode are formed on the upper surface (front surface), and the collector electrode of the main electrode is formed on the lower surface (back surface). Hereinafter, the electrode formed on the surface (the upper surface in FIG. 1) of the semiconductor element that is not bonded to the circuit board is referred to as a surface electrode.

半導体素子3としては、シリコンが用いられるのが一般的であるが、炭化ケイ素(SiC)、窒化ガリウム(GaN)系材料、ガリウムヒ素(GaAs)、ダイヤモンドなどのワイドバンドギャップ半導体材料を主成分とする材料を用いてもよい。ワイドバンドギャップ半導体材料を用いることにより、高温動作が可能となり、更には、例えばスイッチング周波数を増加させて装置1全体を小型化することも可能となる。   Silicon is generally used as the semiconductor element 3, but a wide band gap semiconductor material such as silicon carbide (SiC), gallium nitride (GaN) -based material, gallium arsenide (GaAs), diamond, or the like is a main component. A material to be used may be used. By using a wide band gap semiconductor material, it is possible to operate at high temperature, and it is also possible to reduce the size of the entire device 1 by increasing the switching frequency, for example.

接合層8b,8dとしては、例えば、はんだ、銀(Ag)導体、銅(Cu)導体など、導電性に優れ、かつ半導体素子3a,3bを機械的に固着可能な金属系の材料が用いられる。ここで、再結晶温度以上の温度条件で金属を使用していると、結晶粒界が拡散により移動して結晶粒が粗大化し、金属疲労に対して弱くなるという性質がある。それゆえ、半導体素子3a,3bに直接に接する場所に配置された接合層8b,8dとしては、素子の動作温度が高まったときの接合層の信頼性を高める観点から、特に銀のような高融点材料を用いることが好ましい。   As the bonding layers 8b and 8d, for example, a metal material having excellent conductivity and capable of mechanically fixing the semiconductor elements 3a and 3b, such as solder, silver (Ag) conductor, or copper (Cu) conductor is used. . Here, when a metal is used under a temperature condition higher than the recrystallization temperature, there is a property that the crystal grain boundary moves due to diffusion and the crystal grains become coarse and weak against metal fatigue. Therefore, as the bonding layers 8b and 8d arranged at the positions in direct contact with the semiconductor elements 3a and 3b, a high level such as silver is particularly used from the viewpoint of increasing the reliability of the bonding layer when the operating temperature of the elements increases. It is preferable to use a melting point material.

電極端子6a,6bは、半導体素子3a,3bの主電極(図示せず)に接続される主端子であり、以下では主端子6a,6bと記載する。主端子6aは、接合層8a,8cを介して半導体素子3a,3bの上面の主電極に電気的に接続されている。後述するように、主端子6aは半導体素子3a,3bの終端部を除いた領域に接合されている。主端子6aの他端は、封止樹脂12から装置1の外部へ延出している。主端子6bの一端は、接合層8eを介して導体層2aに接合され、半導体素子3a,3bの下面の主電極に電気的に接続されている。   The electrode terminals 6a and 6b are main terminals connected to main electrodes (not shown) of the semiconductor elements 3a and 3b, and are hereinafter referred to as main terminals 6a and 6b. The main terminal 6a is electrically connected to the main electrodes on the upper surfaces of the semiconductor elements 3a and 3b via the bonding layers 8a and 8c. As will be described later, the main terminal 6a is joined to a region excluding the terminal portions of the semiconductor elements 3a and 3b. The other end of the main terminal 6 a extends from the sealing resin 12 to the outside of the device 1. One end of the main terminal 6b is bonded to the conductor layer 2a via the bonding layer 8e, and is electrically connected to the main electrodes on the lower surfaces of the semiconductor elements 3a and 3b.

接合層8a,8cとしては、産業的な観点では、接合時の加熱温度が低い点で、はんだなどの低融点材料が好ましい。しかし、上記の通り、信頼性を保証できる期間を長期化させる観点では、接合中の融点は充分に高いことが好ましい。これらの要求を満たすために、接合時には低融点でかつ接合中に融点が上昇する材料、例えば銀焼結(Agシンター)材、銅焼結材、銅−錫(CuSn)金属間化合物材などの材料を用いることが好ましい。   As the bonding layers 8a and 8c, a low melting point material such as solder is preferable from the industrial viewpoint in that the heating temperature at the time of bonding is low. However, as described above, from the viewpoint of extending the period during which reliability can be guaranteed, it is preferable that the melting point during bonding is sufficiently high. In order to satisfy these requirements, materials that have a low melting point at the time of bonding and a melting point that increases during bonding, such as a silver sintered (Ag sintering) material, a copper sintered material, a copper-tin (CuSn) intermetallic compound material, etc. It is preferable to use a material.

電極端子7は、半導体素子3aに制御信号を送信する制御端子であり、以下では制御端子7と記載する。図1(a)に示すように、制御端子7は複数個存在し、各制御端子7の一端は、配線部材9を介して、半導体素子3aの上面の制御電極(図示せず)に電気的に接続されている。   The electrode terminal 7 is a control terminal that transmits a control signal to the semiconductor element 3a, and is hereinafter referred to as a control terminal 7. As shown in FIG. 1A, there are a plurality of control terminals 7, and one end of each control terminal 7 is electrically connected to a control electrode (not shown) on the upper surface of the semiconductor element 3a via a wiring member 9. It is connected to the.

主端子6bと制御端子7は、図1(b)に示すように、インサート成形により枠部材10と一体化されている。主端子6bは、回路基板2の回路面に平行になるようにその一端が折り曲げられ、枠部材10から露出している。露出した部分のうち、回路面に対向する面が接合層8eを介して導体層2aに接合されている。制御端子7も同様に、回路基板2の回路面に平行になるようにその一端が折り曲げられているが、回路面に対向する面は枠部材10で覆われており、その反対側の枠部材10から露出した面に、上記の配線部材9が接合されている。   As shown in FIG. 1B, the main terminal 6b and the control terminal 7 are integrated with the frame member 10 by insert molding. One end of the main terminal 6 b is bent so as to be parallel to the circuit surface of the circuit board 2 and is exposed from the frame member 10. Of the exposed portion, the surface facing the circuit surface is bonded to the conductor layer 2a via the bonding layer 8e. Similarly, one end of the control terminal 7 is bent so as to be parallel to the circuit surface of the circuit board 2, but the surface facing the circuit surface is covered with the frame member 10, and the frame member on the opposite side is covered. The wiring member 9 is joined to the surface exposed from 10.

主端子6a,6b、制御端子7としては、例えば銅、銅合金など、導電性に優れ、産業的に使いやすい材料が好ましい。特に主端子6aは、半導体素子3で発生した熱を周囲の封止樹脂12に拡散させ、あるいは装置1の外部に伝達する機能を有するため、その材料として、銅のような熱伝導率が高い材料が好ましい。主端子6aの厚さを増加させると半導体素子3への熱応力が大きくなり、逆に減少させた場合には、通電時の電気抵抗による抵抗発熱が増大する。それゆえ、主端子6aについては適切な厚み選択が必要であるが、例えば0.2mmから1mm程度とされる。また、必要に応じて、主端子6aに穴を開けるなどして見かけの剛性を低下させ、熱応力を低減させる手法も有効である。また、接合材8eとしては、接合材8b,8dと同一の材料を用いることができる。   As the main terminals 6a and 6b and the control terminal 7, for example, a material excellent in conductivity and industrially easy to use such as copper or copper alloy is preferable. In particular, the main terminal 6a has a function of diffusing heat generated in the semiconductor element 3 to the surrounding sealing resin 12 or transmitting the heat to the outside of the device 1, so that the material has a high thermal conductivity such as copper. Material is preferred. When the thickness of the main terminal 6a is increased, the thermal stress on the semiconductor element 3 is increased. Conversely, when the thickness is decreased, resistance heat generation due to electric resistance during energization increases. Therefore, although it is necessary to select an appropriate thickness for the main terminal 6a, for example, it is about 0.2 mm to 1 mm. In addition, it is effective to reduce the thermal stress by reducing the apparent rigidity by making a hole in the main terminal 6a as necessary. Moreover, as the bonding material 8e, the same material as the bonding materials 8b and 8d can be used.

なお、以上で説明した主端子6a,6b、制御端子7の配線を含む回路構造は、半導体素子3a,3bを使用する態様に応じて適宜変更される。   Note that the circuit structure including the wiring of the main terminals 6a and 6b and the control terminal 7 described above is appropriately changed according to the mode in which the semiconductor elements 3a and 3b are used.

配線部材9は、半導体素子3aの制御電極と制御端子7とを電気的に接続している。配線部材9はボンディングワイヤである必要はなく、ボンディングリボンでもよいし、他の構成でもよい。配線部材9としては、アルミニウム、銅、金など、導電性に優れた材料を用いることができる。   The wiring member 9 electrically connects the control electrode of the semiconductor element 3 a and the control terminal 7. The wiring member 9 does not have to be a bonding wire, and may be a bonding ribbon or another configuration. As the wiring member 9, a material having excellent conductivity such as aluminum, copper, or gold can be used.

枠部材10は、図1(a)に示すように、半導体素子3a,3bの周りを囲むように設けられ、導体層2aの外周を覆っている。枠部材10としては、射出成形可能で成形性が良く、耐熱性に優れた樹脂材料が好ましい。当該樹脂材料としては、例えばポリフェニレンサルファイド(以下、PPSと記載する)、液晶ポリマー樹脂、フッ素系樹脂などが好ましい。枠部材10は、封止樹脂12と同様に、セラミックの基材2iよりも導体層2aに近い線膨張係数を有することが好ましい。そして、枠部材10は、回路基板2の回路面のうち、セラミック基材2iよりも枠部材10に近い線膨張係数を有する導体層2aの外周部に、接着剤11を用いて接着される。   As shown in FIG. 1A, the frame member 10 is provided so as to surround the semiconductor elements 3a and 3b, and covers the outer periphery of the conductor layer 2a. The frame member 10 is preferably a resin material that can be injection-molded, has good moldability, and is excellent in heat resistance. As the resin material, for example, polyphenylene sulfide (hereinafter referred to as PPS), liquid crystal polymer resin, fluorine resin, and the like are preferable. Like the sealing resin 12, the frame member 10 preferably has a linear expansion coefficient closer to the conductor layer 2a than to the ceramic substrate 2i. And the frame member 10 is adhere | attached using the adhesive agent 11 on the outer peripheral part of the conductor layer 2a which has a linear expansion coefficient closer to the frame member 10 than the ceramic base material 2i among the circuit surfaces of the circuit board 2. FIG.

このようにして、回路基板2の回路面のうち、回路部材が実装される部分(導体層2aの領域)の空間が、枠部材10により囲まれる。その囲まれた空間は、封止樹脂12を用いて所定高さまで充填されている。これにより、主端子6a,6b、制御端子7のうち装置1から外部へ延出した部分を除いて、半導体素子3a,3bを含む回路面の上の回路部材が封止樹脂12によって封止されることになる。なお、主端子6a,6b、制御端子7のうち装置1から外部へ延出した部分は、外部のスイッチング電源(図示せず)、他の電力用半導体素子などに接続される。   In this manner, the space of the portion where the circuit member is mounted (region of the conductor layer 2a) on the circuit surface of the circuit board 2 is surrounded by the frame member 10. The enclosed space is filled to a predetermined height using the sealing resin 12. As a result, the circuit members on the circuit surface including the semiconductor elements 3a and 3b are sealed by the sealing resin 12 except for the portions of the main terminals 6a and 6b and the control terminal 7 that extend from the device 1 to the outside. Will be. Of the main terminals 6a and 6b and the control terminal 7, portions extending from the device 1 to the outside are connected to an external switching power supply (not shown), other power semiconductor elements, and the like.

封止樹脂12は、枠部材10の内側、すなわち導体層2aと枠部材10とで囲まれた領域に充填され、半導体素子3a,3bなどの回路部材を封止している。封止樹脂12は、例えば10GPa以上の高い弾性率を有し、かつ、セラミック基材2iよりも導体層2aに近い線膨張係数を有する。封止樹脂12としては、例えばエポキシ樹脂のように、弾性率が高く、熱膨張、熱収縮を抑制する効果がある樹脂を用いることができる。   The sealing resin 12 is filled inside the frame member 10, that is, in a region surrounded by the conductor layer 2a and the frame member 10, and seals circuit members such as the semiconductor elements 3a and 3b. The sealing resin 12 has a high elastic modulus of, for example, 10 GPa or more and a linear expansion coefficient that is closer to the conductor layer 2a than the ceramic substrate 2i. As the sealing resin 12, for example, a resin having a high elastic modulus and an effect of suppressing thermal expansion and thermal contraction can be used, such as an epoxy resin.

なお、封止樹脂12として、エポキシ樹脂の他、ウレタン樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、アクリル樹脂などに、溶融シリカなどのセラミック粒子をフィラーとして混入し、線膨張係数および弾性率を調整した材料を用いることもできる。このようにして、枠部材10などの線膨張係数も同様に制御できる。   As the sealing resin 12, ceramic particles such as fused silica are mixed as fillers in urethane resin, polyimide resin, polyamide resin, polyamideimide resin, acrylic resin, etc. in addition to epoxy resin, and the linear expansion coefficient and elastic modulus are increased. Adjusted materials can also be used. In this way, the linear expansion coefficient of the frame member 10 and the like can be similarly controlled.

低熱膨張材15は、枠部材10と半導体素子3aとの間であって導体層2aの上面に、接合層16を介して接合されており、封止樹脂12と枠部材10の動きを抑制するようになっている。図1(a)に示すように、低熱膨張材15は、枠部材10と半導体素子3aとの間で、配線部材9が施された辺に対向配置されることが好ましい。図1(b)で説明すると、平面視では、低熱膨張材15と複数の配線部材9とが交差して重なることが好ましい。   The low thermal expansion material 15 is bonded between the frame member 10 and the semiconductor element 3 a and on the upper surface of the conductor layer 2 a via the bonding layer 16, and suppresses the movement of the sealing resin 12 and the frame member 10. It is like that. As shown to Fig.1 (a), it is preferable that the low thermal expansion material 15 is opposingly arranged by the edge | side in which the wiring member 9 was given between the frame member 10 and the semiconductor element 3a. Referring to FIG. 1B, it is preferable that the low thermal expansion material 15 and the plurality of wiring members 9 intersect and overlap each other in plan view.

低熱膨張材15としては、封止樹脂12より線膨張係数の小さい材料が用いられる。具体的には、FeとNiの合金であるインバー(invar)材、Cuとインバー材との複合材であるCIC(Copper-Invar-Copper)材、CuとMoとの複合材であるCuMo材、AlとSiCの複合材であるAlSiC材など、0.1ppm/Kから10.0ppm/Kの線膨張係数を実現できる材料が好ましい。低熱膨張材15が設けられることにより、高温時に枠部材10と封止樹脂12との線膨張係数の差に起因して熱応力が生じ、剥離を引き起こすことを抑制できる。これについて、詳細は後述する。   As the low thermal expansion material 15, a material having a smaller linear expansion coefficient than the sealing resin 12 is used. Specifically, an Invar material that is an alloy of Fe and Ni, a CIC (Copper-Invar-Copper) material that is a composite material of Cu and Invar material, a CuMo material that is a composite material of Cu and Mo, A material that can realize a linear expansion coefficient of 0.1 ppm / K to 10.0 ppm / K, such as an AlSiC material that is a composite material of Al and SiC, is preferable. By providing the low thermal expansion material 15, it is possible to suppress the occurrence of thermal stress due to the difference in linear expansion coefficient between the frame member 10 and the sealing resin 12 at a high temperature, thereby causing peeling. Details will be described later.

以上で説明した構成に加えて、回路基板2の吸熱面側では、導体層2bの下面に冷却部材4が接合されている。このように、電力用半導体装置は冷却部材とセットで用いられることが多い。冷却部材4の下面には、放熱フィン4aが取り付けられている。このような構造の代わりに、内部を冷媒が流通する冷却ジャケットなどを冷却部材4として用いてもよい。   In addition to the configuration described above, the cooling member 4 is bonded to the lower surface of the conductor layer 2b on the heat absorbing surface side of the circuit board 2. Thus, the power semiconductor device is often used as a set with the cooling member. Radiating fins 4 a are attached to the lower surface of the cooling member 4. Instead of such a structure, a cooling jacket or the like through which a refrigerant flows may be used as the cooling member 4.

冷却部材4としては、例えばアルミニウム、銅、銅モリブデン(CuMo)合金、SiC/Al(SiC繊維強化アルミニウム)のような熱伝導率が高い材料が用いられる。ただし、セラミック基材2iを含む回路基板2などの半導体素子3a,3bが搭載された部分と冷却部材4との線膨張係数の差が大きいと、接合層5に加わる応力が大きくなる。それゆえ、要求される信頼性が高い場合には、冷却部材4として、CuMo、SiC/Alといった線膨張係数の小さい材料を用いることが好ましい。   As the cooling member 4, for example, a material having high thermal conductivity such as aluminum, copper, copper molybdenum (CuMo) alloy, SiC / Al (SiC fiber reinforced aluminum) is used. However, if the difference in the coefficient of linear expansion between the portion on which the semiconductor elements 3a and 3b such as the circuit board 2 including the ceramic substrate 2i are mounted and the cooling member 4 is large, the stress applied to the bonding layer 5 increases. Therefore, when the required reliability is high, it is preferable to use a material having a small coefficient of linear expansion such as CuMo or SiC / Al as the cooling member 4.

接合層5としては、放熱性が高く長期劣化の少ない材料が好ましい。ただし、接合層5と半導体素子3a,3bとの間には回路基板2が介在しているため、接合層5の最大到達温度は少なくとも半導体素子3より低くなる。それゆえ、接合層5としてはんだなどを用いた場合でも、電力用半導体装置1は充分に実用に耐え得る。接合層5として、より高温動作での耐久性を達成できる他の材料、例えば銀焼結材、銅焼結材、銅錫(金属間化合物)材を用いてもよい。   The bonding layer 5 is preferably made of a material having high heat dissipation and little long-term deterioration. However, since the circuit board 2 is interposed between the bonding layer 5 and the semiconductor elements 3 a and 3 b, the maximum temperature reached by the bonding layer 5 is at least lower than that of the semiconductor element 3. Therefore, even when solder or the like is used as the bonding layer 5, the power semiconductor device 1 can sufficiently withstand practical use. As the bonding layer 5, other materials that can achieve durability at a higher temperature operation, for example, a silver sintered material, a copper sintered material, and a copper tin (intermetallic compound) material may be used.

冷却部材4の上面(吸熱面)には、回路基板2を囲む枠状体として、第2の枠部材13が接着剤(図示せず)を用いて接着されている。第2の枠部材13と冷却部材4とで囲まれた空間は、回路基板2の導体層2aに達する高さまで、第2の封止樹脂14で封止されている。これにより、セラミック基材2iと導体層2a,2bとの接合界面の端部が、絶縁性の第2の封止樹脂14で覆われ、接合界面の端部に生じる電界集中箇所に対して適切な絶縁性が維持されることになる。   A second frame member 13 is bonded to the upper surface (heat absorption surface) of the cooling member 4 as a frame surrounding the circuit board 2 using an adhesive (not shown). The space surrounded by the second frame member 13 and the cooling member 4 is sealed with the second sealing resin 14 to a height that reaches the conductor layer 2a of the circuit board 2. Thereby, the edge part of the joining interface of the ceramic base material 2i and the conductor layers 2a and 2b is covered with the insulating second sealing resin 14, and is appropriate for the electric field concentration portion generated at the edge part of the joining interface. Insulating properties are maintained.

第2の枠部材13は、例えば枠部材10と同一の材料で構成されてもよい。第2の封止樹脂14は、例えば封止樹脂12と同一の材料で構成されてもよいが、絶縁性と密着性が得られればよく、好ましくはシリコーンゲルなど流動性の高い樹脂とされる。第2の封止樹脂14として流動性の高い樹脂を用いた場合には、第2の枠部材13が設けられることが好ましいが、流動性の低い樹脂を用いた場合には、第2の枠部材13を省略してもよい。   The second frame member 13 may be made of the same material as that of the frame member 10, for example. The second sealing resin 14 may be made of, for example, the same material as that of the sealing resin 12. However, the second sealing resin 14 only needs to have insulating properties and adhesiveness, and is preferably a highly fluid resin such as silicone gel. . When a resin with high fluidity is used as the second sealing resin 14, it is preferable to provide the second frame member 13, but when a resin with low fluidity is used, the second frame member 13 is provided. The member 13 may be omitted.

次に、電力用半導体装置1の製造方法について例示的に説明する。   Next, an exemplary method for manufacturing the power semiconductor device 1 will be described.

まず、接合層8b,8dを用いて、導体層2aの上面に半導体素子3a,3bを接合する(工程S1)。次に、半導体素子3a,3bの表面電極の上の、接合層8a,8cを設ける位置と、導体層2aの上の接合層8eを設ける位置とにはんだ材を載置する(工程S2)。次に、インサート成形により主端子6bと制御端子7が内蔵された枠部材10を、導体層2aの上面に接着する(工程S3)。次に、はんだ材の上に主端子6a,6bを載置し、加熱する(工程S4)。工程S4での加熱により、主端子6aと半導体素子3a,3bとの間に介在する接合層8a,8c、主端子6bと導体層2aとの間に介在する接合層8eが形成される(工程S5)。   First, the semiconductor elements 3a and 3b are bonded to the upper surface of the conductor layer 2a using the bonding layers 8b and 8d (step S1). Next, a solder material is placed on the position where the bonding layers 8a and 8c are provided on the surface electrodes of the semiconductor elements 3a and 3b and the position where the bonding layer 8e is provided on the conductor layer 2a (step S2). Next, the frame member 10 incorporating the main terminal 6b and the control terminal 7 is bonded to the upper surface of the conductor layer 2a by insert molding (step S3). Next, the main terminals 6a and 6b are placed on the solder material and heated (step S4). By heating in step S4, bonding layers 8a and 8c interposed between the main terminal 6a and the semiconductor elements 3a and 3b, and a bonding layer 8e interposed between the main terminal 6b and the conductor layer 2a are formed (step). S5).

次に、半導体素子3aの制御電極と制御端子7に、配線部材9を例えば超音波接合して電気的に接続する(工程S6)。このようにして、回路基板2の上に必要な回路部材が実装される。   Next, the wiring member 9 is electrically connected, for example, by ultrasonic bonding to the control electrode and the control terminal 7 of the semiconductor element 3a (step S6). In this way, necessary circuit members are mounted on the circuit board 2.

最後に、導体層2aと枠部材10で囲まれた領域に、例えばエポキシ系の接着剤もしくはポッティング材を満たして硬化させ、封止樹脂12を設ける(工程S7)。このようにして、半導体素子3a,3bおよびこれらの表面電極などが、封止樹脂12によって確実に覆われ、機械的に拘束されることになる。   Finally, the region surrounded by the conductor layer 2a and the frame member 10 is filled with, for example, an epoxy-based adhesive or potting material and cured to provide the sealing resin 12 (step S7). In this way, the semiconductor elements 3a and 3b and their surface electrodes are reliably covered with the sealing resin 12 and mechanically restrained.

半導体素子3a,3bを接合する工程S1で、接合層16を用いて同時に低熱膨張材15を接合することにより、工程数を増加させることなく低熱膨張材15を設けることができる。あるいは、工程S2に合わせて低熱膨張材15と接合層16を導体層2aの上面に載置し、続いて工程S3,S4を実施することによっても、工程数を増加させることなく低熱膨張材15を設けることができる。後者の場合、工程S4の終了と同時に接合層16が形成されることになる。   In the step S1 for bonding the semiconductor elements 3a and 3b, the low thermal expansion material 15 can be provided without increasing the number of steps by simultaneously bonding the low thermal expansion material 15 using the bonding layer 16. Alternatively, the low thermal expansion material 15 and the bonding layer 16 may be placed on the upper surface of the conductor layer 2a in accordance with the step S2, and then the steps S3 and S4 may be performed without increasing the number of steps. Can be provided. In the latter case, the bonding layer 16 is formed simultaneously with the end of step S4.

なお、工程S1の前に予め冷却部材4の上に回路基板2を接合し、第2の枠部材13を接着し、第2の封止樹脂14を充填することで、図1の構成全体を製造可能である。第2の封止樹脂14として封止樹脂12を用いる場合には、第2の封止樹脂14の充填を工程S7と同時に実施することにより、工程を1つ省略できる。   Before the step S1, the circuit board 2 is bonded onto the cooling member 4 in advance, the second frame member 13 is bonded, and the second sealing resin 14 is filled, so that the entire configuration of FIG. It can be manufactured. When the sealing resin 12 is used as the second sealing resin 14, one step can be omitted by performing the filling of the second sealing resin 14 simultaneously with the step S <b> 7.

次に、電力用半導体装置1の動作および得られる効果について、一般的な電力用半導体装置の動作と比較して説明する。なお、本実施形態1に係る電力用半導体装置1と区別するために、一般的な電力用半導体装置をパワーモジュールと呼ぶ。また、パワーモジュールに備えられる電力用半導体素子をパワーチップと呼ぶ。   Next, the operation of the power semiconductor device 1 and the effects obtained will be described in comparison with the operation of a general power semiconductor device. In order to distinguish from the power semiconductor device 1 according to the first embodiment, a general power semiconductor device is referred to as a power module. The power semiconductor element provided in the power module is called a power chip.

パワーモジュールは、例えば、モータなどを駆動するインバータに用いられる。モータを駆動するとパワーチップで損失が生じる。この損失による温度上昇が、はんだのような接合材の融点を超えた場合、接合は充分に維持されずにパワーモジュールは故障してしまう。また、パワーチップが高温、例えば約370℃に達すると、絶縁性が失われてパワーチップ自体が破壊されるおそれもある。さらに、モータなどの負荷の増減に起因して温度変化が生じると、パワーモジュール内部の接合部(接着部)に熱応力が生じる。温度変化が繰り返されると接合部(接着部)が劣化し、破壊するという現象も生じうる。このようにパワーモジュールでは、長期使用に対する寿命が不可避的に存在する。それゆえ、パワーモジュールを安全に使用できる期間をユーザに保証するためには、モジュールの寿命設計を行う必要がある。   The power module is used, for example, in an inverter that drives a motor or the like. When the motor is driven, a loss occurs in the power chip. When the temperature rise due to this loss exceeds the melting point of the bonding material such as solder, the bonding is not sufficiently maintained and the power module fails. Further, when the power chip reaches a high temperature, for example, about 370 ° C., there is a possibility that the insulation is lost and the power chip itself is destroyed. Furthermore, when a temperature change occurs due to an increase or decrease of a load such as a motor, a thermal stress is generated at a joint (adhesion) inside the power module. When the temperature change is repeated, the joint (bonded portion) may deteriorate and break down. Thus, the power module inevitably has a lifetime for long-term use. Therefore, in order to guarantee to the user a period during which the power module can be used safely, it is necessary to design the lifetime of the module.

上記の通り、パワーモジュールでは、パワーチップ自体が発熱源となり、その周辺が最も高温に至る。それゆえ、パワーチップ周辺、特に接合部の寿命を最も厳しく管理する必要がある。パワーチップの表面電極には、通電経路を確保するための電極端子(本実施形態1における主端子6aに対応)が接合され、配線に用いられるボンディングワイヤ(本実施形態1における配線部材9に対応)が接合される。   As described above, in the power module, the power chip itself becomes a heat source, and the periphery thereof reaches the highest temperature. Therefore, it is necessary to strictly manage the lifetime of the power chip, particularly the joint. An electrode terminal (corresponding to the main terminal 6a in the first embodiment) for securing a current-carrying path is bonded to the surface electrode of the power chip, and a bonding wire used for wiring (corresponding to the wiring member 9 in the first embodiment). ) Are joined.

まず、パワーチップと電極端子との接合部について考察する。
パワーチップの主面の終端部には、ガードリングと呼ばれる、パワーチップの終端部に生じる電界を緩和する構造が形成され、スイッチオフ時などに絶縁性が維持されるようになっている。このガードリングの存在により、パワーチップの全面にわたって電極端子を接合することはできず、接合材を介して終端部以外の部分に接合される。それゆえ、パワーチップの表面電極には、電極端子が接合された領域と接合されない領域(終端領域)とが存在し、電極端子と接合材とは、パワーチップの表面電極に対して一定の角度で付着した状態となる。
First, the joint between the power chip and the electrode terminal will be considered.
A structure called a guard ring that relaxes the electric field generated at the terminal end of the power chip is formed at the terminal end of the main surface of the power chip so that insulation is maintained when the switch is turned off. Due to the presence of the guard ring, the electrode terminal cannot be bonded over the entire surface of the power chip, and is bonded to a portion other than the terminal portion via a bonding material. Therefore, the surface electrode of the power chip has a region where the electrode terminal is bonded and a region (terminal region) where the electrode terminal is not bonded, and the electrode terminal and the bonding material are at a certain angle with respect to the surface electrode of the power chip. It will be in the state which adhered by.

このような角度変化が生じた部分には、概して応力集中が起こりやすいことが知られている。逆に、電極端子が表面電極の全面に均一に接合された場合、応力集中は起こりにくい。それゆえ、パワーチップの表面電極の上には、電極端子との接合部に「境界部」が存在し、当該境界部で応力集中が起こることになる。このような応力集中が起こる結果、応力が塑性域に入るといわゆる低サイクル疲労のモードで劣化が進むことになる。   It is known that stress concentration is generally likely to occur in a portion where such an angle change has occurred. On the contrary, when the electrode terminal is uniformly bonded to the entire surface of the surface electrode, stress concentration hardly occurs. Therefore, on the surface electrode of the power chip, there exists a “boundary portion” at the junction with the electrode terminal, and stress concentration occurs at the boundary portion. As a result of such stress concentration, when the stress enters the plastic region, the deterioration proceeds in a so-called low cycle fatigue mode.

応力が塑性域に入ると、代表的な現象として、応力集中部で亀裂が発生する。具体的には、まず応力集中部で塑性変形が発生すると、応力集中部の表面に凹みが形成される。凹みが形成されると、さらに応力集中が大きくなり、凹みを起点として微小な裂けが生じて亀裂に至る。一旦応力集中部に亀裂が発生すると、応力サイクルに応じて生じる塑性変形により徐々に亀裂が進展し、ついには表面電極の脱落に至ることもある。一般に、このようなメカニズムにより金属疲労が進む。金属疲労を引き起こす応力集中は、上記の通り、スイッチング素子などのパワー半導体素子においては避けられない現象である。   When the stress enters the plastic region, as a typical phenomenon, cracks occur at the stress concentration portion. Specifically, when plastic deformation first occurs in the stress concentration portion, a dent is formed on the surface of the stress concentration portion. When the dent is formed, the stress concentration further increases, and a minute tear is generated starting from the dent, leading to a crack. Once a crack occurs in the stress concentration part, the crack gradually develops due to plastic deformation caused by the stress cycle, and eventually the surface electrode may fall off. In general, metal fatigue progresses by such a mechanism. As described above, stress concentration that causes metal fatigue is an unavoidable phenomenon in power semiconductor elements such as switching elements.

ただし、パワーモジュールがエポキシ樹脂のような弾性率の高い樹脂で封止された場合には、この応力集中はある程度緩和されることが判っている。   However, it is known that this stress concentration is alleviated to some extent when the power module is sealed with a resin having a high elastic modulus such as an epoxy resin.

次に、パワーチップとボンディングワイヤ(以下、ワイヤと記載する)との接合部について考察する。
円筒形のワイヤをパワーチップの表面に接合した場合、ワイヤの延長方向の接合界面端部には未接合部が生じるところ、その未接合部の断面形状において、楔形状の切欠きが生じる。このような楔形状の切欠きが生じた位置では、非常に応力集中が生じやすい。このような切欠きでの応力集中は、円筒形のワイヤに限らず、ボンディングリボンなど、配線部材を曲げて平面に接合する場合には、避けられない現象である。
Next, a joint portion between the power chip and a bonding wire (hereinafter referred to as a wire) will be considered.
When a cylindrical wire is bonded to the surface of the power chip, an unbonded portion is formed at the bonding interface end in the wire extension direction, and a wedge-shaped notch is generated in the cross-sectional shape of the unbonded portion. Stress concentration easily occurs at a position where such a wedge-shaped notch is generated. Such stress concentration at the notch is an unavoidable phenomenon when a wiring member such as a bonding ribbon is bent and joined to a flat surface, not limited to a cylindrical wire.

ただし、パワーモジュールが、エポキシ樹脂のような弾性率の高い樹脂で封止された場合には、楔形状の切欠きでの応力集中が抑制されることが判っている。例えば、パワーサイクル試験と呼ばれる通電試験によって生じる温度サイクルに対するパワーモジュールの寿命が3倍以上となった例も存在する。   However, it has been found that when the power module is sealed with a resin having a high elastic modulus such as an epoxy resin, the stress concentration at the wedge-shaped notch is suppressed. For example, there is an example in which the life of the power module with respect to a temperature cycle generated by an energization test called a power cycle test is three times or more.

シリコーンゲルなどによる封止の場合、パワーチップとワイヤとの接合部(接合界面)が長期信頼性試験による破断箇所となる。上記の通り、弾性率の高い封止樹脂を用いることにより、円筒形のワイヤが平面に押し付けられて生じる応力集中は抑制される。このとき、封止樹脂とワイヤとの線膨張係数の差に起因して、ワイヤの全長の伸縮を封止樹脂が妨げるような熱応力がワイヤの発熱に応じて発生し、今度はワイヤのループの途中またはネック部が応力集中部となる。それでも、シリコーンゲルなどによる封止の場合に比べて、ユーザに信頼性を保証できる期間を充分に長期化できる。なお、弾性率の高い封止樹脂で封止した場合、アルミワイヤを用いたワイヤボンディングでなく、銅電極をパワーチップの表面電極にはんだ付けした場合にも、はんだ層の亀裂進展を抑制できる。この場合、パワーチップの寿命がアルミワイヤの場合の10倍程度に向上した例も存在する。   In the case of sealing with silicone gel or the like, the joint portion (joint interface) between the power chip and the wire becomes a fractured portion by a long-term reliability test. As described above, by using a sealing resin having a high elastic modulus, stress concentration caused by pressing a cylindrical wire against a flat surface is suppressed. At this time, due to the difference in the coefficient of linear expansion between the sealing resin and the wire, a thermal stress that prevents the sealing resin from expanding and contracting the entire length of the wire is generated according to the heat generation of the wire. In the middle or the neck portion becomes a stress concentration portion. Nevertheless, the period during which the reliability can be guaranteed for the user can be sufficiently prolonged as compared with the case of sealing with silicone gel or the like. When sealing with a sealing resin having a high elastic modulus, crack propagation of the solder layer can be suppressed even when the copper electrode is soldered to the surface electrode of the power chip instead of wire bonding using an aluminum wire. In this case, there is an example in which the life of the power chip is improved to about 10 times that of an aluminum wire.

以上のように、パワーモジュールをエポキシ樹脂のような弾性率の高い樹脂で封止することで、パワーチップとワイヤとの接合部に生じる応力集中、パワーチップと電極端子との接合部に生じる応力集中をある程度緩和できることが判っている。このとき、パワーモジュールがシリコーンゲルなどの弾性率の低い樹脂で封止された場合、絶縁性は保たれ、パワーチップへの異物の付着は防止できるといった効果はあるものの、熱応力を緩和する効果はほとんど得られない。なお、熱膨張、熱収縮を抑制する効果を充分に発揮させるためには、封止樹脂の弾性率が金属の1/10程度であることが好ましい。本実施形態1では、封止樹脂12の弾性率を10Gpa以上に設定しており、充分な効果が期待できる。   As described above, by sealing the power module with a resin having a high elastic modulus such as an epoxy resin, stress concentration generated at the joint between the power chip and the wire, and stress generated at the joint between the power chip and the electrode terminal It has been found that concentration can be eased to some extent. At this time, when the power module is sealed with a resin having a low elastic modulus such as silicone gel, the insulation is maintained and the adhesion of foreign matter to the power chip can be prevented, but the effect of relieving thermal stress. Can hardly be obtained. In addition, in order to fully exhibit the effect which suppresses a thermal expansion and a thermal contraction, it is preferable that the elasticity modulus of sealing resin is about 1/10 of a metal. In the first embodiment, the elastic modulus of the sealing resin 12 is set to 10 Gpa or more, and a sufficient effect can be expected.

次に、弾性率の高い樹脂を用いた場合に生じる新たな課題について具体的に説明する。
回路基板の回路面には、回路基板の基材を構成するセラミック材料と電極端子を構成する金属材料とのように、線膨張係数が大きく異なる部材が存在する。このような構成においてパワーモジュールを小型化しようとする場合、樹脂の厚みが必然的に薄くなる。樹脂の厚みが薄いと、枠部材、電極端子、パワーチップなどの被封止部材が、それぞれの(近傍)領域での熱応力を支配することになる。このとき、電極端子などを拘束する高い弾性率を有する封止樹脂を用いた場合、それぞれの領域すべてに対応できるように封止樹脂の線膨張係数を合わせ込むことは困難となる。
Next, a new problem that occurs when a resin having a high elastic modulus is used will be described in detail.
On the circuit surface of the circuit board, there are members having greatly different linear expansion coefficients, such as a ceramic material constituting the base material of the circuit board and a metal material constituting the electrode terminal. When attempting to downsize the power module in such a configuration, the thickness of the resin is inevitably reduced. When the thickness of the resin is thin, the sealing members such as the frame member, the electrode terminal, and the power chip dominate the thermal stress in each (near) region. At this time, when a sealing resin having a high elastic modulus that restrains the electrode terminal or the like is used, it is difficult to adjust the linear expansion coefficient of the sealing resin so as to be able to deal with all the regions.

このように、弾性率の高い樹脂で回路面を封止した場合、封止樹脂は線膨張係数の大きく異なる材料をまたぐことになる。このとき、線膨張係数の差に起因する新たな熱応力が生じ、枠部材と封止樹脂との境界、電極端子と封止樹脂との境界、ワイヤと封止樹脂との境界、あるいは封止樹脂そのものに、亀裂等の劣化が生じるおそれがある。   As described above, when the circuit surface is sealed with a resin having a high elastic modulus, the sealing resin straddles materials having greatly different linear expansion coefficients. At this time, a new thermal stress is generated due to the difference in linear expansion coefficient, and the boundary between the frame member and the sealing resin, the boundary between the electrode terminal and the sealing resin, the boundary between the wire and the sealing resin, or the sealing There is a possibility that deterioration such as cracks may occur in the resin itself.

上記の線膨張係数の差に起因する熱応力を抑制するために、電力用半導体装置1では、回路基板2の回路面のうち、枠部材10で囲まれた導体層2aの内側の領域のみが封止樹脂12で覆われている。それゆえ、封止樹脂12は、主端子6a、導体層2aに対して線膨張係数が大きく異なるセラミック基材2iとの接触面を有しない。これにより、封止樹脂12の線膨張係数は、主端子6aおよび導体層2aとの相性を優先することができる。具体的に述べると、封止樹脂12の線膨張係数を、一般的に5ppm/K程度であるセラミック基材2iよりも、導体層2aおよび主端子6aを構成する金属(Cu:18ppm/K、Al:23ppm/K)に近い値に設定できる。   In order to suppress the thermal stress caused by the difference in the linear expansion coefficient, in the power semiconductor device 1, only the region inside the conductor layer 2 a surrounded by the frame member 10 is included in the circuit surface of the circuit board 2. Covered with a sealing resin 12. Therefore, the sealing resin 12 does not have a contact surface with the ceramic base 2 i having a significantly different linear expansion coefficient with respect to the main terminal 6 a and the conductor layer 2 a. Thereby, the linear expansion coefficient of the sealing resin 12 can give priority to the compatibility with the main terminal 6a and the conductor layer 2a. More specifically, the metal (Cu: 18 ppm / K, which constitutes the conductor layer 2a and the main terminal 6a than the ceramic base material 2i having a linear expansion coefficient of the sealing resin 12 of generally about 5 ppm / K. Al: It can be set to a value close to 23 ppm / K).

また、封止樹脂12は枠部材10の内側に充填され、枠部材10によって拡がりが制限されている。これにより、枠部材10により規定される高さ内に隙間なく封止樹脂12を充填でき、半導体素子3a,3bに接合された主端子6aおよび配線部材9に加わる熱応力を充分に抑制できる。さらに、半導体素子3a,3bの表面電極の上では、主端子6aと封止樹脂12との境界部分でも、実質的に線膨張係数を同一にすることができ、弾性率が所定値以上であって熱膨張、熱収縮を抑制する効果を有する部材が連なることになり、前述の応力集中を確実に軽減できる。   Further, the sealing resin 12 is filled inside the frame member 10, and expansion is limited by the frame member 10. Thereby, the sealing resin 12 can be filled with no gap within the height defined by the frame member 10, and the thermal stress applied to the main terminal 6a and the wiring member 9 joined to the semiconductor elements 3a and 3b can be sufficiently suppressed. Furthermore, on the surface electrodes of the semiconductor elements 3a and 3b, the linear expansion coefficient can be made substantially the same at the boundary between the main terminal 6a and the sealing resin 12, and the elastic modulus is not less than a predetermined value. Thus, the members having the effect of suppressing thermal expansion and contraction are connected, and the stress concentration described above can be reliably reduced.

ここで、樹脂製の枠部材10自体には接着性がないため、枠部材10は接着剤11を用いて導体層2aに接着されるところ、前述の通り、枠部材10を構成する樹脂の線膨張係数は、好ましくは封止樹脂12と共に金属に近い値に調整される。しかしこのとき、封止樹脂12とセラミック基材2iとの線膨張係数の差が大きくなって、接合された枠部材10とセラミック基材2iとが剥離する可能性がある。一般に、セラミック基材2iの表面には沿面絶縁距離が確保されており、上記剥離が生じると、電界によって部分放電が生じて絶縁性が低下する。すなわち界面剥離が生じると、新たに生じた剥離面において沿面放電が発生しやすくなり、それまでの非剥離時に比べて大幅に耐電圧特性が小さくなるという問題が生じる。この場合、ユーザに信頼性を保証できる期間が極端に短くなってしまう。   Here, since the resin frame member 10 itself does not have adhesiveness, the frame member 10 is bonded to the conductor layer 2a using the adhesive 11, and as described above, the resin wire constituting the frame member 10 is used. The expansion coefficient is preferably adjusted to a value close to that of the metal together with the sealing resin 12. However, at this time, the difference in linear expansion coefficient between the sealing resin 12 and the ceramic base material 2i becomes large, and the bonded frame member 10 and the ceramic base material 2i may be peeled off. In general, a creeping insulation distance is secured on the surface of the ceramic substrate 2i, and when the above-described peeling occurs, partial discharge occurs due to an electric field, resulting in a decrease in insulation. In other words, when interfacial peeling occurs, creeping discharge is likely to occur on the newly generated peeling surface, resulting in a problem that the withstand voltage characteristics are significantly reduced as compared with the previous non-peeling. In this case, the period during which the reliability can be guaranteed to the user becomes extremely short.

一方、電力用半導体装置1において、枠部材10は導体層2aの上面に直接に接合されており、セラミック基材2iとは接しない。これにより、枠部材10と導体層2aとの線膨張係数を実質的に同一にすることができるため、応力の発生を抑え、剥離を生じる可能性を低下させることができる。   On the other hand, in the power semiconductor device 1, the frame member 10 is directly bonded to the upper surface of the conductor layer 2a, and does not contact the ceramic substrate 2i. Thereby, since the linear expansion coefficient of the frame member 10 and the conductor layer 2a can be made substantially the same, generation | occurrence | production of stress can be suppressed and possibility of producing peeling can be reduced.

なお、この場合でも、導体層2aの上面から枠部材10が剥離すると、封止樹脂12も導体層2aから剥離することになる。この剥離が半導体素子3a,3bの表面を横切った場合、半導体素子3a,3bの破壊につながるおそれがあるが、本実施形態1の構成によれば、導体層2aの上面からの枠部材10の剥離も充分に抑制されることが種々の通電試験を通じて判っている。   Even in this case, when the frame member 10 is peeled from the upper surface of the conductor layer 2a, the sealing resin 12 is also peeled from the conductor layer 2a. When this peeling crosses the surfaces of the semiconductor elements 3a and 3b, the semiconductor elements 3a and 3b may be destroyed. However, according to the configuration of the first embodiment, the frame member 10 is removed from the upper surface of the conductor layer 2a. It has been found through various energization tests that peeling is sufficiently suppressed.

次に、封止樹脂12の線膨張係数の異方性に起因する熱応力について説明する。
枠部材10には、PPSなどの樹脂を用いることが好ましい。しかし、PPSなどの樹脂には、成形時の流動方向と、当該流動方向に対して垂直な方向との間で、線膨張係数に異方性が存在することが知られている。特にPPSの場合、流動方向に対して垂直な方向では、高温(約150度)での線膨張係数が50ppm/Kから100ppm/K程度となるが、この場合、導体層2aの線膨張係数に合わせ込まれた封止樹脂(エポキシ樹脂の場合、18ppm/Kから25ppm/K程度)との間に大きな差が生じてしまう。
Next, the thermal stress resulting from the anisotropy of the linear expansion coefficient of the sealing resin 12 will be described.
It is preferable to use a resin such as PPS for the frame member 10. However, it is known that a resin such as PPS has anisotropy in linear expansion coefficient between a flow direction at the time of molding and a direction perpendicular to the flow direction. Particularly in the case of PPS, in the direction perpendicular to the flow direction, the linear expansion coefficient at a high temperature (about 150 degrees) is about 50 ppm / K to 100 ppm / K. In this case, the linear expansion coefficient of the conductor layer 2a is A large difference is generated between the sealing resin and the sealing resin (in the case of epoxy resin, about 18 ppm / K to 25 ppm / K).

枠部材10の成形樹脂を側面から注入した場合の成形樹脂の流動方向を図7に示す。基本的に、成形樹脂の線膨張係数は、半導体素子3a,3bに対して(平面視で)垂直な方向(図中の鎖線矢印)で大きくなる傾向がある。一方で、封止樹脂12の線膨張係数は、封止樹脂12とこれらとの剥離を抑制する観点から、好ましくは、導体層2a、主端子6aに近い値とされる。それゆえ、異方性を考慮して、封止樹脂12の線膨張係数を、例えば50ppm/Kを超える大きい値とすることは好ましくない。   FIG. 7 shows the flow direction of the molding resin when the molding resin of the frame member 10 is injected from the side surface. Basically, the linear expansion coefficient of the molding resin tends to increase in a direction (in the drawing, a chain line arrow) perpendicular to the semiconductor elements 3a and 3b (in plan view). On the other hand, the linear expansion coefficient of the sealing resin 12 is preferably set to a value close to the conductor layer 2a and the main terminal 6a from the viewpoint of suppressing separation between the sealing resin 12 and these. Therefore, in consideration of anisotropy, it is not preferable to set the linear expansion coefficient of the sealing resin 12 to a large value exceeding 50 ppm / K, for example.

しかし、このように線膨張係数の差が生じた構成において実際のインバータ動作温度に準じた通電試験(例えば最大到達温度は40℃から150℃)を行うと、枠部材10と封止樹脂12との間に接着界面の剥離が生じた例も存在する。したがって、枠部材10と封止樹脂12との間に生じる熱応力を抑制する必要がある。   However, when an energization test according to the actual inverter operating temperature is performed in a configuration in which the difference in linear expansion coefficient occurs in this way (for example, the maximum temperature reached is 40 ° C. to 150 ° C.), There is also an example in which peeling of the adhesive interface occurs during the period. Therefore, it is necessary to suppress the thermal stress generated between the frame member 10 and the sealing resin 12.

電力用半導体装置1では、枠部材10と半導体素子3aとの間に低熱膨張材15が接合されている。それゆえ、高温動作時に枠部材10が大きく膨張しようとする方向に対する熱膨張を妨げる働きが生じる。これにより、枠部材10と封止樹脂12との間に生じる熱応力を充分に抑制できる。   In the power semiconductor device 1, the low thermal expansion material 15 is joined between the frame member 10 and the semiconductor element 3a. Therefore, there is a function that prevents thermal expansion in the direction in which the frame member 10 tends to expand greatly during high-temperature operation. Thereby, the thermal stress generated between the frame member 10 and the sealing resin 12 can be sufficiently suppressed.

ここで、枠部材10の成形時の流動方向は、平面視の外周に沿って一周する方向である。一方、前述の通り、高温時に熱膨張が大きくなる方向は流動方向に対して垂直な方向であるが、電力用半導体装置1では、枠部材10から見て半導体素子3a,3bが搭載されている方向を指す。すなわち、枠部材10と半導体素子3aとの間に低熱膨張材15が配置されることにより高温時の熱膨張が抑制され、枠部材10と封止樹脂12との間の剥離進展を抑制できる。   Here, the flow direction at the time of molding the frame member 10 is a direction that goes around the outer periphery in plan view. On the other hand, as described above, the direction in which the thermal expansion increases at a high temperature is a direction perpendicular to the flow direction. In the power semiconductor device 1, the semiconductor elements 3a and 3b are mounted as viewed from the frame member 10. Point in direction. That is, by disposing the low thermal expansion material 15 between the frame member 10 and the semiconductor element 3a, thermal expansion at a high temperature is suppressed, and peeling progress between the frame member 10 and the sealing resin 12 can be suppressed.

枠部材10と封止樹脂12との間の接着界面の剥離が進展して最も問題となる可能性が高いのは、配線部材9の断線による動作機能の喪失である。前述の通り、配線部材9としては、アルミニウム、銅、金などを主材料としたワイヤボンディングを用いてもよい。この配線部材9は接続端子7に接続されており、一般に数mA程度の小さい制御電流しか流れないため、必要な線径も小さい。例えばアルミニウムワイヤの場合、線径は100μmから400μm程度で足りる。一方、半導体素子にワイヤボンドを適正に行うためには一定の接合領域を設ける必要があるところ、この接合領域は半導体素子3aの有効通電領域とならないため、可能な限り小さい線径のワイヤを用いて有効通電面積を稼ぎたいという事情がある。   It is the loss of the operation function due to the disconnection of the wiring member 9 that the separation of the adhesive interface between the frame member 10 and the sealing resin 12 progresses and is most likely to be a problem. As described above, as the wiring member 9, wire bonding using aluminum, copper, gold or the like as a main material may be used. Since the wiring member 9 is connected to the connection terminal 7 and generally only a small control current of about several mA flows, the required wire diameter is small. For example, in the case of an aluminum wire, a wire diameter of about 100 μm to 400 μm is sufficient. On the other hand, it is necessary to provide a certain bonding region in order to properly wire bond the semiconductor element. However, since this bonding region does not become an effective energization region of the semiconductor element 3a, a wire having the smallest possible wire diameter is used. There is a reason to want to earn an effective energizing area.

それゆえ、電力用半導体装置1を構成する部材であって封止樹脂12により封止された部材の中でも、配線部材9は特に強度的に弱い部材となり、ワイヤボンド周辺部材から伝播して起こる剥離には充分な注意を払う必要がある。すなわち、封止直後には制御端子7、配線部材9および封止樹脂12が完全に密着していても、温度ストレスが繰り返し印加された場合には、最も応力が高くなる箇所から枠部材10と封止樹脂12の剥離が発生するおそれがある。   Therefore, among the members constituting the power semiconductor device 1 and sealed with the sealing resin 12, the wiring member 9 becomes a particularly weak member and peels off due to propagation from the wire bond peripheral member. It is necessary to pay sufficient attention to this. That is, even if the control terminal 7, the wiring member 9 and the sealing resin 12 are completely in contact immediately after sealing, when the temperature stress is repeatedly applied, the frame member 10 is There is a possibility that peeling of the sealing resin 12 may occur.

そして、剥離が次第に進展して配線部材9の付け根部まで到達した時に、制御端子7と配線部材9の接合界面に多大な熱ストレスが加わる。これにより、配線部材9ごと封止樹脂が持ち上げられて断線するおそれもある。   When the peeling gradually progresses and reaches the root of the wiring member 9, a great thermal stress is applied to the joint interface between the control terminal 7 and the wiring member 9. As a result, the sealing resin may be lifted together with the wiring member 9 and disconnected.

一方、本実施形態1では、低熱膨張材15が枠部材10と半導体素子3a,3bとの間で、信号配線が施されている辺に対して配置されることにより、制御端子7と配線部材9の接合界面に生じる熱ストレスを充分に抑制できる。   On the other hand, in the first embodiment, the low thermal expansion material 15 is disposed between the frame member 10 and the semiconductor elements 3a and 3b with respect to the side where the signal wiring is provided, so that the control terminal 7 and the wiring member are arranged. 9 can sufficiently suppress the thermal stress generated at the bonding interface.

以上で説明したように、電力用半導体装置1では、枠部材10と封止樹脂12との界面に生じる剥離進展が抑制されることなどにより、高温動作に対応可能とし、信頼性を向上させることが可能となる。更には、樹脂の厚みを薄くして装置1を小型化することも可能となる。さらに、工程数を増加させることなく、当該電力用半導体装置1を製造することが可能となる。   As described above, in the power semiconductor device 1, it is possible to cope with a high temperature operation and improve reliability by suppressing the progress of separation occurring at the interface between the frame member 10 and the sealing resin 12. Is possible. Furthermore, the apparatus 1 can be downsized by reducing the thickness of the resin. Furthermore, the power semiconductor device 1 can be manufactured without increasing the number of steps.

以下、本実施形態1の変形例について説明する。   Hereinafter, modifications of the first embodiment will be described.

以上の説明では、インサート成形により制御端子7および主端子6bが枠部材10と一体化された構成について説明した。枠部材10によって封止樹脂12の領域が確保されるという効果を得る観点では、必ずしも制御端子7および主端子6bが枠部材10と一体化される必要はない。ただし、ワイヤボンディング技術を用いて配線部材9を半導体素子3と制御端子7とに接続した場合には、一体化しておくことで、安定性が高い状態でワイヤボンディングを実施できる。一般にワイヤボンディング工程では、複雑な電極押さえなどの技術を用いて半導体素子を安定にする必要があるところ、これを省略できるので、生産性が向上するという効果が得られる。   In the above description, the configuration in which the control terminal 7 and the main terminal 6b are integrated with the frame member 10 by insert molding has been described. From the viewpoint of obtaining the effect that the region of the sealing resin 12 is secured by the frame member 10, the control terminal 7 and the main terminal 6 b are not necessarily integrated with the frame member 10. However, when the wiring member 9 is connected to the semiconductor element 3 and the control terminal 7 by using the wire bonding technique, the wire bonding can be performed with high stability by integrating them. In general, in the wire bonding process, it is necessary to stabilize the semiconductor element by using a technique such as complicated electrode pressing. However, since this can be omitted, an effect of improving productivity can be obtained.

特に、枠部材10に埋め込まれた主端子6bと導体層2aとの間を接合することで、枠部材10と回路基板2との一体性を向上させている。しかし、少なくとも枠部材10内の領域に、セラミック基材2iよりも導体層2aおよび主端子6a,6b、制御端子7、配線部材9などの回路部材の線膨張係数に近く、回路部材を拘束できる封止樹脂12を用いて封止することにより、より信頼性の高い電力用半導体装置1を得ることができる。   In particular, by joining the main terminal 6b embedded in the frame member 10 and the conductor layer 2a, the integrity of the frame member 10 and the circuit board 2 is improved. However, at least in the region within the frame member 10, the circuit member can be constrained closer to the linear expansion coefficient of the circuit member such as the conductor layer 2 a and the main terminals 6 a and 6 b, the control terminal 7, and the wiring member 9 than the ceramic substrate 2 i. By sealing with the sealing resin 12, a more reliable power semiconductor device 1 can be obtained.

すなわち、必ずしも枠部材10に主端子6bなどが埋め込まれている必要はなく、樹脂のみで構成されてもよい。この場合、枠部材10は回路部材と接するわけではないので、回路部材を拘束するような弾性率は必ずしも必要とされない。   That is, the main terminal 6b or the like does not necessarily have to be embedded in the frame member 10, and the frame member 10 may be made of only resin. In this case, since the frame member 10 does not contact the circuit member, an elastic modulus that restrains the circuit member is not necessarily required.

また、以上の説明および図面では、1つの冷却部材4の上に1つの回路基板2が接合された構成について説明したが、これに限定されることなく、1つの冷却部材4の上に複数の回路基板2が接合されてもよい。特許請求の範囲では、1つの冷却部材の上に複数の回路基板2が接合された構成を「電力用半導体モジュール」としている。   In the above description and drawings, the configuration in which one circuit board 2 is bonded onto one cooling member 4 has been described. However, the present invention is not limited to this, and a plurality of components are formed on one cooling member 4. The circuit board 2 may be bonded. In the claims, a configuration in which a plurality of circuit boards 2 are bonded on one cooling member is referred to as a “power semiconductor module”.

例えばインバータを構成するパワーモジュールでは、インバータなどに通電するエネルギー量に応じた複数のパワーチップ、電極端子が搭載されたセラミック基板(本実施形態1での回路基板2に対応する)を冷却部材の上に複数個並べた構成が好ましい。インバータを三相駆動させるためには、IGBTとダイオードとからなる一対のパワーチップが搭載された少なくとも6枚のセラミック基板が必要となる。通電に必要なエネルギー量に応じて並列数を増加させると、冷却部材の上のセラミック基板の数はさらに増加する。   For example, in a power module that constitutes an inverter, a ceramic substrate (corresponding to the circuit board 2 in the first embodiment) on which a plurality of power chips and electrode terminals according to the amount of energy to be supplied to the inverter or the like is mounted is used as a cooling member. A configuration in which a plurality are arranged on top is preferable. In order to drive the inverter in three phases, at least six ceramic substrates on which a pair of power chips composed of IGBTs and diodes are mounted are required. When the parallel number is increased according to the amount of energy necessary for energization, the number of ceramic substrates on the cooling member further increases.

しかし、拘束力のある封止樹脂で複数のセラミック基板にわたって封止を行うと、樹脂硬化後の硬度が高いことに起因して、パワーモジュールに必要な使用温度範囲内であっても、温度スイングにより樹脂の収縮が発生するおそれがある。この収縮は、セラミック基板の数が増加するほど増大して樹脂が割れやすくなる傾向がある。樹脂に割れが生じると、上記の通り、はんだ層に対するパワーチップ表面の応力低減効果を充分に得ることができず、したがって期待される信頼性が向上する効果を充分に得ることができない可能性がある。   However, if sealing is performed across a plurality of ceramic substrates with a sealing resin with a binding force, due to the high hardness after curing the resin, even if it is within the operating temperature range required for the power module, the temperature swing May cause shrinkage of the resin. This shrinkage increases as the number of ceramic substrates increases, and the resin tends to break easily. If cracking occurs in the resin, as described above, the effect of reducing the stress on the surface of the power chip against the solder layer cannot be obtained sufficiently, and therefore the expected improvement in reliability may not be obtained sufficiently. is there.

本実施形態1のように、回路基板2ごとに枠部材10を設けてその内部を封止樹脂12で封止すると共に、冷却部材4の上の回路基板2間の部分(枠部材10の外側部分)には、絶縁性を有しかつ拘束力を有しない第2の封止樹脂14を充填することで、上記の問題は解決する。   As in the first embodiment, a frame member 10 is provided for each circuit board 2 and the inside thereof is sealed with a sealing resin 12, and a portion between the circuit boards 2 on the cooling member 4 (outside of the frame member 10). The above problem is solved by filling the portion) with the second sealing resin 14 that has insulating properties and no binding force.

また、以上の説明および図面では、低熱膨張材15を直方体状(板状)に示しているが、必ずしも直方体状である必要はない。また、低熱膨張材15は断面が半円などである形状でもよく、この場合、配線部材9との接触のリスクを低減できることから、配線部材9のループ高さを低くして封止樹脂12の厚みを小さくすることができ、装置1全体の小型化、軽量化につながる。   Moreover, in the above description and drawings, the low thermal expansion material 15 is shown in a rectangular parallelepiped shape (plate shape), but it is not always necessary to have a rectangular parallelepiped shape. Further, the low thermal expansion material 15 may have a shape having a semicircular cross section. In this case, since the risk of contact with the wiring member 9 can be reduced, the loop height of the wiring member 9 is reduced to reduce the sealing resin 12 The thickness can be reduced, leading to a reduction in size and weight of the entire apparatus 1.

実施の形態2.
図2は、本発明の実施の形態2に係る電力用半導体装置の図1(b)に対応する断面図である。図2において、実施形態1と同一または同様の構成には同一の符号を付し、詳細な説明を省略する。
Embodiment 2. FIG.
FIG. 2 is a cross-sectional view corresponding to FIG. 1B of the power semiconductor device according to the second embodiment of the present invention. In FIG. 2, the same or similar components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図1(b)で、低熱膨張材15と配線部材9との間の封止樹脂12の厚みが大きければ、枠部材10と封止樹脂12との線膨張係数の差は依然として大きいままとなる。このとき、枠部材10が熱膨張する方向に低熱膨張材15が配置された場合、枠部材10の熱膨張を充分に抑制するためには、枠部材10に一体化された配線部材9の高さよりも低熱膨張材15の高さを高くすることが好ましい。すなわち、枠部材10の周辺には可能な限り低熱膨張材15を枠部材10の近傍の高さで配置することが好ましく、特に枠部材10の高さよりも高く配置することで、封止樹脂12と枠部材10との間に生じる熱応力を飛躍的に低減させ、剥離抑制効果を高めることが可能となる。   In FIG. 1B, if the thickness of the sealing resin 12 between the low thermal expansion material 15 and the wiring member 9 is large, the difference in linear expansion coefficient between the frame member 10 and the sealing resin 12 still remains large. . At this time, in the case where the low thermal expansion material 15 is arranged in the direction in which the frame member 10 is thermally expanded, in order to sufficiently suppress the thermal expansion of the frame member 10, the wiring member 9 integrated with the frame member 10 has a high height. It is preferable to make the height of the low thermal expansion material 15 higher than the height. That is, it is preferable to arrange the low thermal expansion material 15 as high as possible in the vicinity of the frame member 10 around the frame member 10, and in particular, by disposing it higher than the height of the frame member 10, the sealing resin 12 It is possible to drastically reduce the thermal stress generated between the frame member 10 and the frame member 10 and enhance the delamination suppressing effect.

そこで、本実施形態2において、符号25を付した低熱膨張材は、図2に符号Xを付して示す配線部材9と制御端子7との接続位置、および、符号Yを付して示す配線部材9と半導体素子3aとの接続位置よりも上側まで延びている。これにより、枠部材10の熱膨張抑制効果をさらに発揮させることができる。   Therefore, in the second embodiment, the low thermal expansion material denoted by reference numeral 25 is the connection position between the wiring member 9 and the control terminal 7 indicated by reference numeral X in FIG. It extends to the upper side of the connection position between the member 9 and the semiconductor element 3a. Thereby, the thermal expansion suppression effect of the frame member 10 can further be exhibited.

実施の形態3.
図3は、本発明の実施の形態3に係る電力用半導体装置の図1(b)に対応する断面図である。図3において、実施形態2と同一または同様の構成には同一の符号を付し、詳細な説明を省略する。
Embodiment 3 FIG.
FIG. 3 is a cross-sectional view corresponding to FIG. 1B of the power semiconductor device according to the third embodiment of the present invention. In FIG. 3, the same or similar components as those in the second embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

実施形態2で説明したように、封止樹脂12と枠部材10との間に生じる熱応力を低減させる観点では、低熱膨張材25は、枠部材10の高さよりも高く配置することが好ましい。しかし、低熱膨張材25の上には配線部材9が配置されているところ、低熱膨張材25を構成する材料は必ずしも電気絶縁性を有しないため、低熱膨張材25と導体層2aとの間の接合材が電気絶縁性を有しなければ、配線部材9と低熱膨張材25とを電気的に絶縁する必要がある。また、封止材料12は絶縁性であるが、電界強度のしきい値を超えると、内在する微小欠陥を起点にして放電破壊する事が知られており、配線部材9と導電性部材25との間には一定の距離を確保する必要がある。   As described in the second embodiment, in terms of reducing the thermal stress generated between the sealing resin 12 and the frame member 10, the low thermal expansion material 25 is preferably disposed higher than the height of the frame member 10. However, when the wiring member 9 is disposed on the low thermal expansion material 25, the material constituting the low thermal expansion material 25 does not necessarily have electrical insulation, and therefore, between the low thermal expansion material 25 and the conductor layer 2 a. If the bonding material does not have electrical insulation, it is necessary to electrically insulate the wiring member 9 and the low thermal expansion material 25 from each other. Further, although the sealing material 12 is insulative, it is known that when the threshold value of the electric field strength is exceeded, the electric discharge breakdown is caused from an inherent minute defect, and the wiring member 9, the conductive member 25, It is necessary to secure a certain distance between them.

すなわち、配線部材9のループの直下にある低熱膨張材25と導体層2aとが等電位に近い場合、配線部材9と低熱膨張材15との間で一定以上の距離を確保する必要が生じる。それゆえ、低熱膨張材15の高さを大きくしようとすると、必要な絶縁距離を加算した上でループ頂上部の高さが決定され、さらにループ頂上部から封止樹脂12の表面までの樹脂を加算して電力用半導体装置1の高さ方向のサイズが決定することになり、装置1の小型化が妨げられる。   That is, when the low thermal expansion material 25 and the conductor layer 2a immediately below the loop of the wiring member 9 are close to equipotential, it is necessary to ensure a certain distance between the wiring member 9 and the low thermal expansion material 15. Therefore, when trying to increase the height of the low thermal expansion material 15, the height of the top of the loop is determined after adding the necessary insulation distance, and the resin from the top of the loop to the surface of the sealing resin 12 is further removed. The size in the height direction of the power semiconductor device 1 is determined by the addition, which prevents the device 1 from being downsized.

そこで、本実施形態3において、低熱膨張材25は、電気絶縁性を有する接合層26を介して導体層2aの上面に固着される。これにより、配線部材9と低熱膨張材15との絶縁距離を考慮に入れる必要がなくなり、装置1の高さ方向のサイズを必要最小限まで低減できる。すなわち、本実施形態3によれば、枠部材10の熱膨張抑制効果を充分に発揮させつつ装置1を小型化できる。   Therefore, in the third embodiment, the low thermal expansion material 25 is fixed to the upper surface of the conductor layer 2a through the bonding layer 26 having electrical insulation. Thereby, it is not necessary to take into consideration the insulation distance between the wiring member 9 and the low thermal expansion material 15, and the size of the device 1 in the height direction can be reduced to the minimum necessary. That is, according to the third embodiment, the apparatus 1 can be downsized while sufficiently exhibiting the thermal expansion suppressing effect of the frame member 10.

実施の形態4.
図4は、本発明の実施の形態4に係る電力用半導体装置の平面図(a)と、そのA−A線断面図(b)である。図4において、実施形態1と同一または同様の構成には同一の符号を付し、詳細な説明を省略する。
Embodiment 4 FIG.
FIG. 4A is a plan view of a power semiconductor device according to the fourth embodiment of the present invention, and FIG. In FIG. 4, the same or similar components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図1から3では、低熱膨張材の形状を直方体状として図示した。また、説明してきた効果が最も発揮されるように、制御端子7の近傍に低熱膨張材を配置した。一方、枠部材10は導体層2aの外周を覆うように形成され、封止樹脂12は枠部材10の内側全体に充填されていることから、枠部材10と封止樹脂12との間全体にわたって低熱膨張材を設けることが考えられる。   1 to 3, the shape of the low thermal expansion material is illustrated as a rectangular parallelepiped shape. In addition, a low thermal expansion material is disposed in the vicinity of the control terminal 7 so that the effect described above is most exhibited. On the other hand, since the frame member 10 is formed so as to cover the outer periphery of the conductor layer 2 a and the sealing resin 12 is filled in the entire inside of the frame member 10, the entire area between the frame member 10 and the sealing resin 12 is covered. It is conceivable to provide a low thermal expansion material.

そこで、本実施形態4では、図4(a)に示すように、平面視で半導体素子3a,3bの周りを囲むように符号45を付した低熱膨張材が設けられている。   Therefore, in the fourth embodiment, as shown in FIG. 4A, a low thermal expansion material denoted by reference numeral 45 is provided so as to surround the semiconductor elements 3a and 3b in a plan view.

本実施形態4によれば、枠部材10と封止樹脂12との間に剥離が生じた場合でも、その剥離の進展が抑制される。これにより、当該剥離が半導体素子3a,3b側まで進展して動作不良が発生することが抑制される。更には、当該剥離が半導体素子3a,3bの上面、下面の接合層8a〜8dにまで進展し、封止樹脂12による拘束効果が無くなって接合部の信頼性が著しく低下することが防止される。その結果、ひいてはユーザに信頼性を保証できる期間を長期化させることができる。   According to the fourth embodiment, even when peeling occurs between the frame member 10 and the sealing resin 12, progress of the peeling is suppressed. Thereby, it is suppressed that the said peeling progresses to the semiconductor element 3a, 3b side and a malfunctioning occurs. Further, it is possible to prevent the peeling from progressing to the bonding layers 8a to 8d on the upper surface and the lower surface of the semiconductor elements 3a and 3b, thereby eliminating the restraining effect by the sealing resin 12 and significantly reducing the reliability of the bonded portion. . As a result, the period during which reliability can be guaranteed for the user can be extended.

図4(a)では、平面視で低熱膨張材45をリング状(四角リング状)に図示しているが、必ずしも閉じたリングである必要はない。   In FIG. 4A, the low thermal expansion material 45 is illustrated in a ring shape (square ring shape) in plan view, but it is not necessarily a closed ring.

実施の形態5.
図5は、本発明の実施の形態5に係る電力用半導体装置の平面図(a)と、そのA−A線断面図(b)である。図5において、実施形態1と同一または同様の構成には同一の符号を付し、詳細な説明を省略する。
Embodiment 5 FIG.
FIG. 5A is a plan view of a power semiconductor device according to the fifth embodiment of the present invention, and FIG. In FIG. 5, the same reference numerals are given to the same or similar components as those in the first embodiment, and detailed description thereof is omitted.

低熱膨張材による枠部材10の熱膨張抑制効果を持続させる観点では、低熱膨張材の上面と封止樹脂12との密着性が高いことが好ましい。密着性を向上させるために、例えばシランカップリング剤やポリイミドなどを用いてプライマ処理のようなコーティング処理を行うことも考えられる。しかしこの場合、工程数が増加し、それに伴って加工費が増大してしまう。   From the viewpoint of maintaining the thermal expansion suppressing effect of the frame member 10 by the low thermal expansion material, it is preferable that the adhesion between the upper surface of the low thermal expansion material and the sealing resin 12 is high. In order to improve adhesion, it is also conceivable to perform a coating treatment such as a primer treatment using, for example, a silane coupling agent or polyimide. However, in this case, the number of processes increases, and the processing cost increases accordingly.

そこで、本実施形態5では、符号55を付した低熱膨張材の上面から下面に向けて、貫通していない不連続な窪み55aが設けられている。窪み55aは特許請求の範囲の「凹部」の一例に相当する。また、図5(b)に示すように、窪み55aは、蟻溝型、蛸壺型のように、その入口(上面側)の面積が底面(下面側)の面積よりも小さい形状とされることが好ましい。   Therefore, in the fifth embodiment, a discontinuous recess 55a that does not penetrate is provided from the upper surface to the lower surface of the low thermal expansion material denoted by reference numeral 55. The recess 55a corresponds to an example of a “concave portion” in the claims. Further, as shown in FIG. 5 (b), the recess 55a has a shape in which the area of the entrance (upper surface side) is smaller than the area of the bottom surface (lower surface side), such as a dovetail shape and a bowl shape. It is preferable.

本実施形態5によれば、封止樹脂12が低熱膨張材55の窪み55aに入り込み、アンカー効果が発揮され、低熱膨張材と封止樹脂との密着性が飛躍的に向上する。すなわち、低熱膨張材55の上面と封止樹脂12との間に生じるせん断方向の応力が低減され、低熱膨張材55による枠部材10の熱膨張抑制効果を持続することが可能になる。   According to the fifth embodiment, the sealing resin 12 enters the recess 55a of the low thermal expansion material 55, the anchor effect is exhibited, and the adhesion between the low thermal expansion material and the sealing resin is dramatically improved. That is, the stress in the shear direction generated between the upper surface of the low thermal expansion material 55 and the sealing resin 12 is reduced, and the effect of suppressing the thermal expansion of the frame member 10 by the low thermal expansion material 55 can be maintained.

実施形態1で説明した装置1の製造方法において、低熱膨張材は、予め所定の金型を用いてプレス成形を用いて準備できる。本実施形態5で、低熱膨張材55に窪み55aを設ける工程は、上記低熱膨張材55をプレス成形する工程に、窪み55a用の金型を用いたプレス工程を1工程から3工程だけ追加して実施可能である。それゆえ、生産性を大きく阻害することなく、飛躍的に密着性を向上させることが可能となる。   In the method for manufacturing the device 1 described in the first embodiment, the low thermal expansion material can be prepared in advance using press molding using a predetermined mold. In the fifth embodiment, the step of providing the depression 55a in the low thermal expansion material 55 is the addition of the press process using the mold for the depression 55a to the step of press molding the low thermal expansion material 55 by 1 to 3 steps. Can be implemented. Therefore, it is possible to dramatically improve the adhesion without greatly impairing the productivity.

なお、図5(a)に示すように、窪み55aの形状は平面視で円形としているが、金型の形状に応じて適宜変更できる。   In addition, as shown to Fig.5 (a), although the shape of the hollow 55a is circular by planar view, it can change suitably according to the shape of a metal mold | die.

実施の形態6.
図6は、本発明の実施の形態6に係る電力用半導体装置の平面図(a)と、そのA−A線断面図(b)である。図6において、実施形態1と同一または同様の構成には同一の符号を付し、詳細な説明を省略する。
Embodiment 6 FIG.
FIG. 6A is a plan view of a power semiconductor device according to the sixth embodiment of the present invention, and FIG. In FIG. 6, the same or similar components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

実施形態5で説明したように、低熱膨張材による枠部材10の熱膨張抑制効果を持続させる観点では、低熱膨張材と封止樹脂12との密着性を向上させることが好ましい。   As described in the fifth embodiment, it is preferable to improve the adhesion between the low thermal expansion material and the sealing resin 12 from the viewpoint of maintaining the thermal expansion suppression effect of the frame member 10 by the low thermal expansion material.

そこで、本実施形態6では、符号65を付した低熱膨張材の上面から下面に向けて、貫通していない直線状の溝65aが設けられている。溝65aの本数は任意である。溝65aは特許請求の範囲の「凹部」の一例に相当する。これにより、封止樹脂12が低熱膨張材65の溝65aに入り込み、上記アンカー効果が発揮でき、飛躍的に密着性を向上させることが可能となる。なお、実施形態5と同様に、溝65aの入口(上面側)の幅が底面(下面側)の幅よりも小さい形状とされることにより、さらにアンカー効果が大きく発揮される。   Therefore, in the sixth embodiment, a straight groove 65a that does not penetrate is provided from the upper surface to the lower surface of the low thermal expansion material denoted by reference numeral 65. The number of grooves 65a is arbitrary. The groove 65a corresponds to an example of a “concave portion” in the claims. Thereby, the sealing resin 12 enters the groove 65a of the low thermal expansion material 65, the anchor effect can be exhibited, and the adhesiveness can be dramatically improved. As in the fifth embodiment, the anchor effect is further enhanced by making the width of the entrance (upper surface side) of the groove 65a smaller than the width of the bottom surface (lower surface side).

特に、本実施形態6では、予め押出成形などにより厚肉部と薄肉部を成形したものを所定の長さに個片化する非常に生産性の高い工法で、低熱膨張材65を成形できる。   In particular, in the sixth embodiment, the low thermal expansion material 65 can be formed by a highly productive method in which a thick portion and a thin portion formed in advance by extrusion or the like are separated into a predetermined length.

以上で説明した各実施の形態の構成は、電力用半導体装置1に要求される信頼性などに応じて、自由に組み合わせ、あるいは変形、省略されてもよい。   The configuration of each embodiment described above may be freely combined, modified, or omitted depending on the reliability required for the power semiconductor device 1.

1 電力用半導体装置、 2 回路基板、 2i セラミック基材、 2a,2b 導体層、 3a,3b 電力用半導体素子、 4 冷却部材、 4a 放熱フィン、 5 接合層、 6a,6b 主端子、 7 制御端子、 8a〜8e 接合層、 9 配線部材、 10 枠部材、 11 接着剤、 12 封止樹脂、 13 第2の枠部材、 14 第2の封止樹脂、 15,25,45,55,65 低熱膨張材、 55a 窪み、 65a 溝、 16,26 接合層。   DESCRIPTION OF SYMBOLS 1 Power semiconductor device, 2 Circuit board, 2i Ceramic base material, 2a, 2b Conductor layer, 3a, 3b Power semiconductor element, 4 Cooling member, 4a Radiation fin, 5 Junction layer, 6a, 6b Main terminal, 7 Control terminal 8a to 8e bonding layer, 9 wiring member, 10 frame member, 11 adhesive, 12 sealing resin, 13 second frame member, 14 second sealing resin, 15, 25, 45, 55, 65 low thermal expansion Material, 55a depression, 65a groove, 16, 26 bonding layer.

Claims (10)

セラミック基材と、
前記セラミック基材の上面に設けられた導体層と、
前記導体層の上面に接合された電力用半導体素子と、
前記電力用半導体素子の上面であって終端部を除いた領域に接合された主端子と、
前記電力用半導体素子の周りを囲むように前記導体層の上面に接着された枠部材と、
前記枠部材の内側に充填され、少なくとも前記電力用半導体素子と主端子との接合領域を封止する封止樹脂とを備え、
前記枠部材と電力用半導体素子との間であって前記導体層の上面には、前記封止樹脂より小さい線膨張係数を有する低熱膨張材が接合されたことを特徴とする電力用半導体装置。
A ceramic substrate;
A conductor layer provided on the upper surface of the ceramic substrate;
A power semiconductor element bonded to the upper surface of the conductor layer;
A main terminal joined to a region on the upper surface of the power semiconductor element excluding a termination portion;
A frame member bonded to the upper surface of the conductor layer so as to surround the power semiconductor element;
A sealing resin that is filled inside the frame member and seals at least a junction region between the power semiconductor element and the main terminal;
A power semiconductor device, characterized in that a low thermal expansion material having a smaller linear expansion coefficient than that of the sealing resin is bonded between the frame member and the power semiconductor element and on the upper surface of the conductor layer.
前記電力用半導体素子に制御信号を送信する制御端子と、
前記制御端子と前記電力用半導体素子とを電気的に接続する配線部材とを備え、
前記低熱膨張材は、前記導体層の上側から見て、前記配線部材と重なる位置に設けられたことを特徴とする、請求項1に記載の電力用半導体装置。
A control terminal for transmitting a control signal to the power semiconductor element;
A wiring member that electrically connects the control terminal and the power semiconductor element;
2. The power semiconductor device according to claim 1, wherein the low thermal expansion material is provided at a position overlapping the wiring member as viewed from above the conductor layer.
前記低熱膨張材は、前記配線部材と制御端子との接続位置および前記配線部材と電力用半導体素子との接続位置よりも上側まで延びることを特徴とする、請求項2に記載の電力用半導体装置。   The power semiconductor device according to claim 2, wherein the low thermal expansion material extends to a position above a connection position between the wiring member and the control terminal and a connection position between the wiring member and the power semiconductor element. . 前記低熱膨張材は、電気絶縁性の接合材を介して前記導体層に接合されたことを特徴とする、請求項1から3のいずれか1項に記載の電力用半導体装置。   4. The power semiconductor device according to claim 1, wherein the low thermal expansion material is bonded to the conductor layer via an electrically insulating bonding material. 5. 前記低熱膨張材は、前記導体層の上側から見て、前記電力用半導体素子の周りを囲むように設けられたことを特徴とする、請求項1から4のいずれか1項に記載の電力用半導体装置。   5. The electric power supply according to claim 1, wherein the low thermal expansion material is provided so as to surround the electric power semiconductor element when viewed from the upper side of the conductor layer. 6. Semiconductor device. 前記低熱膨張材は、板状であって、前記導体層に接合された第1面と、第1面に対向して前記封止樹脂に接する第2面とを有し、
前記低熱膨張材の第2面から第1面に向けて、貫通しない凹部が設けられたことを特徴とする、請求項1から5のいずれか1項に記載の電力用半導体装置。
The low thermal expansion material is plate-shaped, and has a first surface joined to the conductor layer, and a second surface that faces the first surface and contacts the sealing resin,
6. The power semiconductor device according to claim 1, wherein a concave portion that does not penetrate is provided from the second surface of the low thermal expansion material toward the first surface. 6.
前記電力用半導体素子は、ワイドバンドギャップ半導体材料から形成されたことを特徴とする、請求項1から6のいずれか1項に記載の電力用半導体装置。   7. The power semiconductor device according to claim 1, wherein the power semiconductor element is formed of a wide band gap semiconductor material. 8. 前記ワイドバンドギャップ半導体材料は、炭化ケイ素、窒化ガリウム、ガリウム砒素およびダイヤモンドからなる群から選択された材料を主成分とすることを特徴とする、請求項7に記載の電力用半導体装置。   8. The power semiconductor device according to claim 7, wherein the wide band gap semiconductor material is mainly composed of a material selected from the group consisting of silicon carbide, gallium nitride, gallium arsenide, and diamond. 請求項1から8のいずれか1項に記載の電力用半導体装置を複数個備えた電力用半導体モジュールであって、
各前記セラミック基材の下面に設けられた第2の導体層と、
各前記第2の導体層の下面に接合された1つの冷却部材と、
前記複数個の電力用半導体素子の周りを囲むように、前記冷却部材の上に接着された第2の枠部材と、
前記第2の枠部材の内側に充填された第2の封止樹脂を備えたことを特徴とする、電力用半導体モジュール。
A power semiconductor module comprising a plurality of power semiconductor devices according to any one of claims 1 to 8,
A second conductor layer provided on the lower surface of each ceramic substrate;
One cooling member joined to the lower surface of each second conductor layer;
A second frame member bonded on the cooling member so as to surround the plurality of power semiconductor elements;
A power semiconductor module comprising a second sealing resin filled inside the second frame member.
セラミック基材の上面に導体層を設ける工程と、
前記導体層の上面に電力用半導体素子を接合する工程と、
前記電力用半導体素子の上面であって終端部を除いた領域に主端子を接合する工程と、
前記電力用半導体素子の周りを囲むように、前記導体層の上面に枠部材を接着する工程と、
前記枠部材の内側に封止樹脂を充填し、少なくとも前記電力用半導体素子と主端子との接合領域を封止する工程と、
前記枠部材と電力用半導体素子との間であって前記導体層の上面に、前記封止樹脂より小さい線膨張係数を有する低熱膨張材を接合する工程とを含み、
前記低熱膨張材を接合する工程は、前記電力用半導体素子を接合する工程または前記主端子を接合する工程と同時に実施することを特徴とする、電力用半導体装置の製造方法。
Providing a conductor layer on the upper surface of the ceramic substrate;
Bonding a power semiconductor element to the upper surface of the conductor layer;
Bonding the main terminal to the upper surface of the power semiconductor element and excluding the terminal portion;
Adhering a frame member to the upper surface of the conductor layer so as to surround the power semiconductor element;
Filling a sealing resin inside the frame member, sealing at least a junction region between the power semiconductor element and the main terminal;
Bonding a low thermal expansion material having a linear expansion coefficient smaller than that of the sealing resin to the upper surface of the conductor layer between the frame member and the power semiconductor element,
The method of manufacturing a power semiconductor device, wherein the step of bonding the low thermal expansion material is performed simultaneously with the step of bonding the power semiconductor element or the step of bonding the main terminal.
JP2013229284A 2013-11-05 2013-11-05 Power semiconductor device, power semiconductor module, and method of manufacturing power semiconductor device Expired - Fee Related JP6157320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013229284A JP6157320B2 (en) 2013-11-05 2013-11-05 Power semiconductor device, power semiconductor module, and method of manufacturing power semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013229284A JP6157320B2 (en) 2013-11-05 2013-11-05 Power semiconductor device, power semiconductor module, and method of manufacturing power semiconductor device

Publications (2)

Publication Number Publication Date
JP2015090884A true JP2015090884A (en) 2015-05-11
JP6157320B2 JP6157320B2 (en) 2017-07-05

Family

ID=53194283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013229284A Expired - Fee Related JP6157320B2 (en) 2013-11-05 2013-11-05 Power semiconductor device, power semiconductor module, and method of manufacturing power semiconductor device

Country Status (1)

Country Link
JP (1) JP6157320B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017150587A1 (en) 2016-03-02 2017-09-08 Jnc株式会社 Composition for low thermal expansion members, low thermal expansion member, electronic device, and method for producing low thermal expansion member
JP2020098885A (en) * 2018-12-19 2020-06-25 富士電機株式会社 Semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02130866A (en) * 1988-11-10 1990-05-18 Fuji Electric Co Ltd semiconductor equipment
WO2013111276A1 (en) * 2012-01-25 2013-08-01 三菱電機株式会社 Power semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02130866A (en) * 1988-11-10 1990-05-18 Fuji Electric Co Ltd semiconductor equipment
WO2013111276A1 (en) * 2012-01-25 2013-08-01 三菱電機株式会社 Power semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017150587A1 (en) 2016-03-02 2017-09-08 Jnc株式会社 Composition for low thermal expansion members, low thermal expansion member, electronic device, and method for producing low thermal expansion member
JP2020098885A (en) * 2018-12-19 2020-06-25 富士電機株式会社 Semiconductor device
CN111341731A (en) * 2018-12-19 2020-06-26 富士电机株式会社 semiconductor device
JP7247574B2 (en) 2018-12-19 2023-03-29 富士電機株式会社 semiconductor equipment

Also Published As

Publication number Publication date
JP6157320B2 (en) 2017-07-05

Similar Documents

Publication Publication Date Title
JP5602077B2 (en) Semiconductor device
JP6139330B2 (en) Power semiconductor device
JP5535469B2 (en) Manufacturing method of semiconductor device
JP7419781B2 (en) semiconductor module
US9171773B2 (en) Semiconductor device
US20140264383A1 (en) Semiconductor device and manufacturing method of the same
JP6719643B2 (en) Semiconductor device and manufacturing method thereof
JP6057927B2 (en) Semiconductor device
JP6398270B2 (en) Semiconductor device
JP5071719B2 (en) Power semiconductor device
JP6057926B2 (en) Semiconductor device
US20120306086A1 (en) Semiconductor device and wiring substrate
JP2013016629A (en) Semiconductor module
JP2013219267A (en) Power module
JP2016018866A (en) Power module
JP6676079B2 (en) Semiconductor device and manufacturing method thereof
JP2005191071A (en) Semiconductor device
JP6124810B2 (en) Power module
JP2017028159A (en) Semiconductor device and method of manufacturing the same
JP2006179538A (en) Semiconductor power module
JP2012015222A (en) Semiconductor device
JP2007012831A (en) Power semiconductor device
JP6157320B2 (en) Power semiconductor device, power semiconductor module, and method of manufacturing power semiconductor device
JP2017092389A (en) Semiconductor device
JP6129090B2 (en) Power module and method for manufacturing power module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161014

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170606

R150 Certificate of patent or registration of utility model

Ref document number: 6157320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees