[go: up one dir, main page]

JP2015088981A - Visible light communication system and visible light communication method - Google Patents

Visible light communication system and visible light communication method Download PDF

Info

Publication number
JP2015088981A
JP2015088981A JP2013226811A JP2013226811A JP2015088981A JP 2015088981 A JP2015088981 A JP 2015088981A JP 2013226811 A JP2013226811 A JP 2013226811A JP 2013226811 A JP2013226811 A JP 2013226811A JP 2015088981 A JP2015088981 A JP 2015088981A
Authority
JP
Japan
Prior art keywords
sequence
signal points
chromaticity coordinate
visible light
coordinate values
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013226811A
Other languages
Japanese (ja)
Inventor
敦也 横井
Atsuya Yokoi
敦也 横井
相彦 崔
Sang-On Choi
相彦 崔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP2013226811A priority Critical patent/JP2015088981A/en
Publication of JP2015088981A publication Critical patent/JP2015088981A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a visible light communication system and a visible light communication method, reduced in the generation of transmission errors.SOLUTION: A transmission device 100 includes: a light emitting part 106; a color coordinate modulation part 102 that converts each bit stream of transmission data into an order of signal points on a color coordinate on the basis of a predetermined regulation, and converts the order of signal points into an order of color coordinate values; and a transmission coordinate system conversion part 104 that converts the order of color coordinate values into an order of light emitting intensities at the light emitting part 106. A reception device 130 includes: a light receiving part 132; a reception coordinate system conversion part 134 that converts an order of light receiving intensities at the light receiving part 132 into an order of color coordinate values; and a color coordinate demodulation part 136 that converts the order of color coordinate values into an order of signal points on a color coordinate, and converts the order of signal points into each bit stream of reception data on the basis of the predetermined regulation.

Description

本発明は可視光通信システム及び可視光通信方法に関する。   The present invention relates to a visible light communication system and a visible light communication method.

近年、LEDの普及に伴い、信号機や照明などのLED光源を利用した可視光通信が注目されている。特許文献1、2には可視光通信の変調方式の1つであるCSK(Color Shift Keying)が開示されている。CSKは、(1)光源の波長に直接影響されない色度座標によって通信の接続性が保証される、(2)輝度変化によるフリッカがなく、総合発光強度が一定である、(3)色度座標上の信号点数を増やすことにより通信速度を上げることができる、等の利点を有している。   In recent years, with the widespread use of LEDs, visible light communication using LED light sources such as traffic lights and lighting has attracted attention. Patent Documents 1 and 2 disclose CSK (Color Shift Keying), which is one of the modulation methods of visible light communication. In CSK, (1) communication connectivity is ensured by chromaticity coordinates that are not directly influenced by the wavelength of the light source, (2) there is no flicker due to luminance changes, and the total emission intensity is constant, (3) chromaticity coordinates There is an advantage that the communication speed can be increased by increasing the number of the upper signal points.

特開2008−252570号公報JP 2008-252570 A 特開2010−098574号公報JP 2010-098574 A

CSKは上記のような利点を有する一方で、外乱光の影響、光学素子の波長バラツキ、送受信間のアナログ回路の非線形性などによって、送信側の色度座標と受信した信号の色度座標とに差が生じ、伝送誤りが発生する場合があった。特に、信号点数を増やした場合や、信号点数が少なくても特定色で通信を行うために色度座標でのRGB三角形を故意に小さくして、ある色に偏らせた場合に、各信号点間の距離が小さくなり、伝送誤りが発生し易いという問題点があった。   While CSK has the advantages as described above, the chromaticity coordinates on the transmission side and the chromaticity coordinates of the received signal are affected by the influence of disturbance light, wavelength variation of optical elements, nonlinearity of analog circuits between transmission and reception, and the like. There was a case where a transmission error occurred due to a difference. In particular, when the number of signal points is increased, or when the RGB triangles in the chromaticity coordinates are intentionally reduced and biased to a certain color in order to communicate with a specific color even if the number of signal points is small, each signal point There is a problem in that the distance between them becomes small and transmission errors are likely to occur.

本発明は、このような問題点を解決するためになされたものであり、伝送誤りの発生が少ない可視光通信システム及び可視光通信方法を提供することを目的とする。   The present invention has been made to solve such problems, and an object of the present invention is to provide a visible light communication system and a visible light communication method with less transmission errors.

本発明に係る可視光通信システムは、送信装置と受信装置とを備え、前記送信装置は、発光部と、送信データの各ビット列を所定の規則に基づいて色度座標上の信号点の並びに変換し、前記信号点の並びを色度座標値の並びに変換する色度座標変調部と、前記色度座標値の並びを前記発光部の発光強度の並びに変換する送信座標系変換部とを有し、前記受信装置は、受光部と、前記受光部の受光強度の並びを色度座標値の並びに変換する受信座標系変換部と、前記色度座標値の並びを色度座標上の信号点の並びに変換し、前記信号点の並びを前記所定の規則に基づいて受信データの各ビット列に変換する色度座標復調部とを有するものである。   The visible light communication system according to the present invention includes a transmission device and a reception device, and the transmission device converts a sequence of signal points on chromaticity coordinates based on a predetermined rule for each bit string of transmission data and a transmission unit. A chromaticity coordinate modulation unit that converts the sequence of the signal points into a sequence of chromaticity coordinate values; and a transmission coordinate system conversion unit that converts the sequence of the chromaticity coordinate values into a sequence of emission intensity of the light emitting unit. The receiving apparatus includes: a light receiving unit; a receiving coordinate system converting unit that converts a sequence of received light intensities of the light receiving unit into a sequence of chromaticity coordinate values; and a sequence of the chromaticity coordinate values of signal points on the chromaticity coordinates. And a chromaticity coordinate demodulator that converts the sequence of the signal points into each bit string of the received data based on the predetermined rule.

本発明に係る可視光通信方法は、送信装置と受信装置とを備えた可視光通信システムにおける可視光通信方法であって、前記送信装置が、送信データの各ビット列を所定の規則に基づいて色度座標上の信号点の並びに変換するステップと、前記信号点の並びを色度座標値の並びに変換するステップと、前記色度座標値の並びを発光強度の並びに変換するステップと、前記発光強度の並びに従って可視光を発光するステップと、前記受信装置が、受光した前記可視光から受光強度の並びを生成するステップと、前記受光強度の並びを色度座標値の並びに変換するステップと、前記色度座標値の並びを色度座標上の信号点の並びに変換するステップと、前記信号点の並びを前記所定の規則に基づいて受信データの各ビット列に変換するステップとを有するものである。   A visible light communication method according to the present invention is a visible light communication method in a visible light communication system including a transmission device and a reception device, wherein the transmission device colors each bit string of transmission data based on a predetermined rule. A step of converting a sequence of signal points on a chromaticity coordinate; a step of converting a sequence of the signal points into a sequence of chromaticity coordinate values; a step of converting a sequence of chromaticity coordinate values into a sequence of luminescence intensity; and the luminescence intensity. A step of emitting visible light according to the sequence of: the receiving device generating a sequence of received light intensity from the received visible light; a step of converting the sequence of received light intensity into a sequence of chromaticity coordinate values; Converting a sequence of chromaticity coordinate values to a sequence of signal points on the chromaticity coordinate; converting the sequence of signal points to each bit string of received data based on the predetermined rule; Those having.

本発明により、伝送誤りの発生が少ない可視光通信システム及び可視光通信方法を提供することができる。   According to the present invention, it is possible to provide a visible light communication system and a visible light communication method with less occurrence of transmission errors.

色度座標上に4つの信号点を配置した4CSKを説明するための図である。It is a figure for demonstrating 4CSK which has arrange | positioned four signal points on chromaticity coordinates. 4CSKの信号点の具体的な配置を示す図である。It is a figure which shows the specific arrangement | positioning of the signal point of 4CSK. 実施の形態1に係る可視光通信システム10のシステム構成を示す図である。1 is a diagram showing a system configuration of a visible light communication system 10 according to a first embodiment. 実施の形態1に係る送信装置100における信号の流れを示す図である。6 is a diagram showing a signal flow in transmitting apparatus 100 according to Embodiment 1. FIG. 実施の形態1に係る受信装置130における信号の流れを示す図である。6 is a diagram showing a signal flow in receiving apparatus 130 according to Embodiment 1. FIG. 実施の形態2に係る可視光通信システムの入力データのビット列と、各信号点に対応する可視光の送受信方向と交差する面での2次元配置との関係を示す図である。It is a figure which shows the relationship between the bit string of the input data of the visible light communication system which concerns on Embodiment 2, and the two-dimensional arrangement | positioning in the surface which cross | intersects the transmission / reception direction of the visible light corresponding to each signal point.

以下、図面を参照して本発明の実施の形態について説明する。
発明の実施の形態1
まず、本実施の形態1に係る可視光通信システムの伝送データの変調方式及び復調方式について説明する。
Embodiments of the present invention will be described below with reference to the drawings.
Embodiment 1 of the Invention
First, the transmission data modulation method and demodulation method of the visible light communication system according to the first embodiment will be described.

図1は、色度座標上に4つの信号点C1、C2、C3、C4を配置した4CSKを説明するための図である。CSKでは送信データを多値色変調により可視光の色情報に変換して通信を行う。送信データは所定の表色系の色度座標(xy color coordinate)のxy座標値によって定義される。本実施の形態1に係る可視光通信システムでは、所定の表色系の色度座標として、XYZ表色系の色相と彩度とで表現される色平面の色度座標を用いる。   FIG. 1 is a diagram for explaining 4CSK in which four signal points C1, C2, C3, and C4 are arranged on chromaticity coordinates. In CSK, transmission data is converted into color information of visible light by multi-value color modulation, and communication is performed. The transmission data is defined by xy coordinate values of chromaticity coordinates (xy color coordinate) of a predetermined color system. In the visible light communication system according to the first embodiment, the chromaticity coordinates of the color plane expressed by the hue and saturation of the XYZ color system are used as the chromaticity coordinates of the predetermined color system.

xy座標値は、次の(1)式に従って、3色のLED光源の発光強度を表す値R、G、Bに変換される。3色の光源の光が混合された結果が色度座標で示された色となる。

=R・x+G・x+B・x
=R・y+G・y+B・y ・・・(1)
R+G+B=1
The xy coordinate values are converted into values R, G, and B representing the light emission intensities of the three color LED light sources according to the following equation (1). The result of mixing the light of the three color light sources is the color indicated by the chromaticity coordinates.

x i = R · x R + G · x G + B · x B
y i = R · y R + G · y G + B · y B (1)
R + G + B = 1

つまり、CSKシンボルは3色の光源が作る可視光の色によって定義される。そして、送信データは3色の光源の発光強度の比によって伝送される。CSKは、色度座標上で自由に情報点である信号点を設定できるため、発光色や伝送速度の設定に自由度があり、かつ、光伝搬路における減衰や外乱の影響に強い。   That is, the CSK symbol is defined by the color of visible light generated by the three color light sources. The transmission data is transmitted according to the ratio of the emission intensity of the three color light sources. Since CSK can freely set signal points as information points on the chromaticity coordinates, it has a degree of freedom in setting the emission color and transmission speed, and is resistant to the influence of attenuation and disturbance in the light propagation path.

図2は、4CSKの信号点の具体的な配置を示す図である。信号点を正三角形の3頂点とその重心の位置とに配置しており、それぞれの信号点の色をC1、C2、C3、C4で表している。   FIG. 2 is a diagram showing a specific arrangement of 4CSK signal points. Signal points are arranged at three vertices of an equilateral triangle and the position of the center of gravity thereof, and the colors of the respective signal points are represented by C1, C2, C3, and C4.

従来の4CSKでは、各色(各信号点)が2ビットのデータを伝送する。例えば、C1ならばビット列[00]を伝送する。この時、伝送路の各種雑音に対する耐性を決定するのは、各信号点間の距離、すなわち、信号間距離である。図2に示した信号点の配置では最小信号間距離はC2(又は、C1、C3)とC4との間の距離dであり、この距離dの半分のd/2よりも雑音が大きいときに、受信側で伝送誤りが生じる。   In the conventional 4CSK, each color (each signal point) transmits 2-bit data. For example, if it is C1, bit string [00] is transmitted. At this time, it is the distance between the signal points, that is, the distance between the signals, that determines the resistance to various noises in the transmission path. In the signal point arrangement shown in FIG. 2, the minimum distance between signals is the distance d between C2 (or C1, C3) and C4, and when the noise is larger than d / 2 which is half the distance d. A transmission error occurs on the receiving side.

そこで、本実施の形態1に係る可視光通信システムでは、送信装置が、色度座標上に定義した信号点を、予め定めた順序、すなわち、所定の規則に基づいて送信する。データのビット列又はデジタル値と、信号点の時間的な順序、すなわち信号点の並びとを所定の規則によって対応付ける。送信データについて、所定ビット数のビット列毎に信号点の並びを対応付け、送信データは信号点の並びの形式で符号化される。ここで、所定ビット数のビット列に対応する信号点の並びを送信する一区間をフレームと呼ぶことにする。   Therefore, in the visible light communication system according to the first embodiment, the transmission apparatus transmits the signal points defined on the chromaticity coordinates based on a predetermined order, that is, a predetermined rule. A bit string or digital value of data is associated with a temporal order of signal points, that is, a sequence of signal points according to a predetermined rule. For transmission data, a sequence of signal points is associated with each bit string having a predetermined number of bits, and the transmission data is encoded in the format of the sequence of signal points. Here, one section in which a sequence of signal points corresponding to a bit string having a predetermined number of bits is transmitted is called a frame.

本実施の形態1に係る可視光通信システムでは、所定の規則として、次のように、送信信号に応じて4つの信号点を下記の順序で送信する。2ビットの入力信号に対して、1組みの信号点の並びであるフレームが与えられる。

入力データビット列 フレーム記号 信号点送信順序(送信フレーム)
[0 0] A [C1 C2 C3 C4]
[0 1] B [C2 C1 C4 C3]
[1 0] C [C3 C4 C1 C2]
[1 1] D [C4 C3 C2 C1]
In the visible light communication system according to the first embodiment, as a predetermined rule, four signal points are transmitted in the following order according to a transmission signal as follows. For a 2-bit input signal, a frame that is an array of a set of signal points is given.

Input data bit string Frame symbol Signal point transmission order (transmission frame)
[0 0] A [C1 C2 C3 C4]
[0 1] B [C2 C1 C4 C3]
[1 0] C [C3 C4 C1 C2]
[1 1] D [C4 C3 C2 C1]

上記の所定の規則における送信順序では、各送信点のフレーム内での順序がフレーム間で同じになることはない。例えば、信号点C1の送信順序は、フレームAでは1番目、フレームBでは2番目、フレームCでは3番目、フレームDでは4番目となる。また、フレームA、B、C、Dの送信順序が1番の信号点はC1、C2、C3、C4となり、各フレームで送信順序が1番となる信号点が異なる。このため、フレーム間の相互相関を低くすることができる。この送信順序では、相互相関が0になり、受信の利得を大きくすることができる。   In the transmission order according to the predetermined rule, the order of each transmission point within a frame is not the same between frames. For example, the transmission order of the signal point C1 is first in frame A, second in frame B, third in frame C, and fourth in frame D. The signal points with the first transmission order of frames A, B, C, and D are C1, C2, C3, and C4, and the signal points with the first transmission order are different for each frame. For this reason, the cross correlation between frames can be lowered. In this transmission order, the cross-correlation becomes 0, and the reception gain can be increased.

フレーム中での信号点の切り換えスピードは光源を組み込む製品、例えば、照明、看板、TV等に応じて設定する。
また、本実施の形態1に係る可視光通信システムでは、受信装置が、受光強度値R、G、Bを(1)式に従って色度座標のxy座標値に逆変換したものが受信信号点となる。そして、色変化の順序、すなわち、受信信号点の順序と上記の所定の規則とから受信したフレームの種類を特定し、データを復号し、復調する。
The switching speed of signal points in the frame is set according to the product incorporating the light source, for example, lighting, signboard, TV, etc.
Further, in the visible light communication system according to the first embodiment, the reception device is obtained by inversely converting the received light intensity values R, G, and B into xy coordinate values of chromaticity coordinates according to the equation (1). Become. Then, the type of the received frame is specified from the color change order, that is, the order of the received signal points and the predetermined rule, and the data is decoded and demodulated.

次に、本実施の形態1に係る可視光通信システム10の構成について説明する。
図3は、本実施の形態1に係る可視光通信システムのシステム構成を示す図である。可視光通信システム10は、送信装置100と受信装置130とを備える。送信装置100は、色度座標変調部102、送信座標系変換部104、発光部106を備える。受信装置130は、受光部132、受信座標系変換部134、色度座標復調部136を備える。
Next, the configuration of the visible light communication system 10 according to the first embodiment will be described.
FIG. 3 is a diagram showing a system configuration of the visible light communication system according to the first embodiment. The visible light communication system 10 includes a transmission device 100 and a reception device 130. The transmission device 100 includes a chromaticity coordinate modulation unit 102, a transmission coordinate system conversion unit 104, and a light emitting unit 106. The receiving device 130 includes a light receiving unit 132, a reception coordinate system conversion unit 134, and a chromaticity coordinate demodulation unit 136.

色度座標変調部102は、送信データの各ビット列を上記の所定の規則に基づいて色度座標上の信号点の並びに変換し、この信号点の並びを色度座標値x、yの並びに変換する。送信座標系変換部104は、色度座標値x、yの並びを(1)式に従って発光強度R、G、Bの並びに変換する。発光部106は、発光強度R、G、Bの並びに従って、光強度変調を受けて可視光を発光する。発光部106は、R、G、Bの3色のLEDを有する。   The chromaticity coordinate modulation unit 102 converts the sequence of signal points on the chromaticity coordinates based on the above-mentioned predetermined rule for each bit string of the transmission data, and converts the sequence of the signal points into a sequence of chromaticity coordinate values x and y. To do. The transmission coordinate system conversion unit 104 converts the arrangement of the chromaticity coordinate values x and y into a sequence of the emission intensities R, G, and B according to the equation (1). The light emitting unit 106 emits visible light under light intensity modulation according to the arrangement of the light emission intensities R, G, and B. The light emitting unit 106 includes LEDs of three colors of R, G, and B.

受光部132は、可視光を受光して光電変換し、受光強度R、G、Bの並びを出力する。受光部132は、R、G、Bに対応する光感度を有するフォトダイオードを有する。受信座標系変換部134は、受光強度R、G、Bの並びを(1)式に従って色度座標値x、yの並びに逆変換する。色度座標復調部136は、色度座標値x、yの並びを信号点の並びに変換し、信号点の並びを上記の所定の規則に基づいて受信データの各ビット列に変換する。   The light receiving unit 132 receives visible light, performs photoelectric conversion, and outputs an arrangement of received light intensity R, G, and B. The light receiving unit 132 includes a photodiode having photosensitivity corresponding to R, G, and B. The reception coordinate system conversion unit 134 reversely converts the arrangement of the received light intensities R, G, and B in accordance with the chromaticity coordinate values x and y according to the equation (1). The chromaticity coordinate demodulator 136 converts the sequence of chromaticity coordinate values x and y into a sequence of signal points, and converts the sequence of signal points into each bit string of received data based on the predetermined rule.

図4は、本実施の形態1に係る送信装置100における信号の流れを示す図である。色度座標変調部102は、送信データのビット列[00]を上記の所定の規則に基づいて送信フレームAに符号化する。送信フレームAは信号点の並び[C1 C2 C3 C4]である。ここでの信号点の並びは送信の時間的な順序である。また、色度座標変調部102は、信号点の並び[C1 C2 C3 C4]を色度座標値の並び[x1 x2 x3 x4]、[y1 y2 y3 y4]に変換する。   FIG. 4 is a diagram illustrating a signal flow in the transmission device 100 according to the first embodiment. The chromaticity coordinate modulation unit 102 encodes the bit string [00] of the transmission data into the transmission frame A based on the predetermined rule. The transmission frame A is a sequence of signal points [C1 C2 C3 C4]. Here, the arrangement of signal points is the temporal order of transmission. Further, the chromaticity coordinate modulation unit 102 converts the signal point sequence [C1 C2 C3 C4] into a chromaticity coordinate value sequence [x1 x2 x3 x4], [y1 y2 y3 y4].

送信座標系変換部104は、色度座標値の並び[x1 x2 x3 x4]、[y1 y2 y3 y4]を(1)式に従って発光強度の並び[R1 R2 R3 R4]、[G1 G2 G3 G4]、[B1 B2 B3 B4]に変換する。発光強度の並び[R1 R2 R3 R4]、[G1 G2 G3 G4]、[B1 B2 B3 B4]は、発光部106の3色のLEDの発光強度を表す数値R、G、Bの時間的な変化である。この発光強度R、G、Bの時間的な変化に応じて、発光部106の各LEDは光強度変調を受ける。   The transmission coordinate system conversion unit 104 converts the chromaticity coordinate values [x1 x2 x3 x4] and [y1 y2 y3 y4] into the emission intensity sequences [R1 R2 R3 R4] and [G1 G2 G3 G4] according to the equation (1). , [B1 B2 B3 B4]. The light emission intensity sequences [R1 R2 R3 R4], [G1 G2 G3 G4], and [B1 B2 B3 B4] are temporal changes in numerical values R, G, and B representing the light emission intensities of the three colors of LEDs of the light emitting unit 106. It is. In response to temporal changes in the light emission intensities R, G, and B, each LED of the light emitting unit 106 undergoes light intensity modulation.

発光部106は、発光強度の並び[R1 R2 R3 R4]、[G1 G2 G3 G4]、[B1 B2 B3 B4]をデジタル信号からアナログ信号に変換し、LEDドライバを介して、R、G、Bの各LEDにより可視光として発光する。このR、G、BのLEDが発光した可視光が混合されて、信号点の色度座標に対応する色を有する可視光となる。   The light emitting unit 106 converts the light emission intensity sequence [R1 R2 R3 R4], [G1 G2 G3 G4], and [B1 B2 B3 B4] from a digital signal to an analog signal, and R, G, B via an LED driver. The LEDs emit light as visible light. Visible light emitted by the R, G, and B LEDs is mixed to become visible light having a color corresponding to the chromaticity coordinates of the signal point.

図5は、本実施の形態1に係る受信装置130における信号の流れを示す図である。受光部132は、送信装置100からの可視光を受光して光電変換し、増幅した後に、アナログ信号をデジタル信号に変換し、受光強度の並び[R1 R2 R3 R4]、[G1 G2 G3 G4]、[B1 B2 B3 B4]を出力する。このとき、送信装置100から予め送られる同期信号により、送信フレームの区間を認識する。同期信号としては、チャネル行列の推定に用いるプリアンブル信号の用いることができる。プリアンブル信号には、自己相関が強くタイミング同期に用いられる同期符号成分が含まれる。   FIG. 5 is a diagram showing a signal flow in receiving apparatus 130 according to the first embodiment. The light receiving unit 132 receives visible light from the transmission device 100, performs photoelectric conversion, amplifies, converts the analog signal into a digital signal, and arranges the received light intensity [R1 R2 R3 R4], [G1 G2 G3 G4]. , [B1 B2 B3 B4] are output. At this time, the section of the transmission frame is recognized based on a synchronization signal sent in advance from the transmission apparatus 100. As the synchronization signal, a preamble signal used for channel matrix estimation can be used. The preamble signal includes a synchronization code component having a strong autocorrelation and used for timing synchronization.

受信座標系変換部134は、受光強度の並び[R1 R2 R3 R4]、[G1 G2 G3 G4]、[B1 B2 B3 B4]を(1)式に従って逆変換して、色度座標値の並び[x1 x2 x3 x4]、[y1 y2 y3 y4]を得る。   The reception coordinate system conversion unit 134 inversely converts the received light intensity arrangements [R1 R2 R3 R4], [G1 G2 G3 G4], and [B1 B2 B3 B4] according to the equation (1) to obtain the arrangement of chromaticity coordinate values [ x1 x2 x3 x4], [y1 y2 y3 y4].

色度座標復調部136は、色度座標値の並び[x1 x2 x3 x4]、[y1 y2 y3 y4]を、信号点の並び[C1 C2 C3 C4]に変換する。このとき、色度座標復調部136は、符号間距離又は座標間距離を用いて変換する。   The chromaticity coordinate demodulator 136 converts the chromaticity coordinate value sequence [x1 x2 x3 x4] and [y1 y2 y3 y4] into a signal point sequence [C1 C2 C3 C4]. At this time, the chromaticity coordinate demodulation unit 136 performs conversion using the inter-code distance or the inter-coordinate distance.

色度座標復調部136は、符号間距離を用いて変換するときには、最初に、色度座標値の並び[x1 x2 x3 x4]、[y1 y2 y3 y4]を、各色度座標値(x1,y1)、(x2,y2)、(x3,y3)、(x4,y4)に最も距離が近い信号点の並び[C1 C2 C3 C4]に変換する。   When converting using the inter-code distance, the chromaticity coordinate demodulator 136 first converts the chromaticity coordinate values [x1 x2 x3 x4] and [y1 y2 y3 y4] into the chromaticity coordinate values (x1, y1). ), (X2, y2), (x3, y3), and (x4, y4) are converted into a sequence [C1 C2 C3 C4] of signal points closest to each other.

色度座標復調部136は、次に、変換後の信号点の並び[C1 C2 C3 C4]と各フレームA、B、C、Dの信号点の並びとを比較し、並びが一致するか、あるいは並びが一番近い、一致する信号点の数が一番多いフレームを選択する。この場合には、フレームAの信号点の並びと一致するので、色度座標復調部136は、色度座標値の並び[x1 x2 x3 x4]、[y1 y2 y3 y4]を、フレームAの信号点の並び[C1 C2 C3 C4]であると確定する。   Next, the chromaticity coordinate demodulator 136 compares the sequence of converted signal points [C1 C2 C3 C4] with the sequence of signal points of each of the frames A, B, C, and D to determine whether the sequences match. Alternatively, the frame with the largest number of matching signal points that is closest in sequence is selected. In this case, the chromaticity coordinate demodulation unit 136 matches the sequence of chromaticity coordinate values [x1 x2 x3 x4] and [y1 y2 y3 y4] with the sequence of signal points of frame A, so The point arrangement [C1 C2 C3 C4] is determined.

そして、色度座標復調部136は上記の所定の規則に基づいて、フレームAの信号点の並び[C1 C2 C3 C4]を受信データのビット列[00]に復号する。
なお、色度座標復調部136は、並びが一致するか、あるいは並びが一番近いフレームAを選択したときに、信号点の並び[C1 C2 C3 C4]を確定することなく、変換後の信号点の並び[C1 C2 C3 C4]をそのまま受信データのビット列[00]に復号しても良い。
Then, the chromaticity coordinate demodulation unit 136 decodes the signal point sequence [C1 C2 C3 C4] of the frame A into the bit string [00] of the received data based on the predetermined rule.
Note that the chromaticity coordinate demodulation unit 136 does not determine the signal point sequence [C1 C2 C3 C4] when the frame A that matches or is closest to the sequence is selected. The sequence of points [C1 C2 C3 C4] may be decoded as it is into the bit string [00] of the received data.

また、色度座標復調部136は、座標間距離を用いて変換するときには、最初に、色度座標値の並び[x1 x2 x3 x4]、[y1 y2 y3 y4]の各色度座標値(x1,y1)、(x2,y2)、(x3,y3)、(x4,y4)と、各フレームA、B、C、Dの信号点の並びの各色度座標値、例えば、フレームAの各色度座標値(x1,y1)、(x2,y2)、(x3,y3)、(x4,y4)とについて、対応する色度座標値間の距離の総和を算出する。   Further, when converting using the inter-coordinate distance, the chromaticity coordinate demodulator 136 firstly converts the chromaticity coordinate values (x1, x2 x3 x4) and [y1 y2 y3 y4] of the chromaticity coordinate values (x1, x2 x3 x4). y1), (x2, y2), (x3, y3), (x4, y4) and each chromaticity coordinate value of the arrangement of signal points of each frame A, B, C, D, for example, each chromaticity coordinate of frame A For the values (x1, y1), (x2, y2), (x3, y3), (x4, y4), the sum of the distances between the corresponding chromaticity coordinate values is calculated.

色度座標復調部136は、次に、色度座標値の並び[x1 x2 x3 x4]、[y1 y2 y3 y4]を、対応する色度座標値間の距離の総和が一番小さくなるフレーム、この場合はフレームAの信号点の並び[C1 C2 C3 C4]に変換する。
そして、色度座標復調部136は上記の所定の規則に基づいて、フレームAの信号点の並び[C1 C2 C3 C4]を受信データのビット列[00]に復号する。
Next, the chromaticity coordinate demodulating unit 136 uses the sequence of chromaticity coordinate values [x1 x2 x3 x4] and [y1 y2 y3 y4] as a frame in which the sum of the distances between the corresponding chromaticity coordinate values is smallest. In this case, the signal is converted into a sequence of signal points in frame A [C1 C2 C3 C4].
Then, the chromaticity coordinate demodulation unit 136 decodes the signal point sequence [C1 C2 C3 C4] of the frame A into the bit string [00] of the received data based on the predetermined rule.

なお、本実施の形態1に係る可視光通信システムでは、所定の規則として、4CSKの4点の信号点の時間的な送信順序を用いて、データの通信を行っているが、色度座標上に8点の信号点を配置した8CSKにおいて、8点の信号点のうちの4点の信号点の送信順序を用いて、データの通信を行うことや、色度座標上に16点の信号点を配置した16CSKにおいて、16点の信号点のうちの4点の信号点の送信順序を用いて、データの通信を行うこともできる。これにより、ビット列に対応する信号点の送信順序の数を増やして、伝送速度を向上させることができる。   In the visible light communication system according to the first embodiment, data communication is performed using a temporal transmission order of four signal points of 4CSK as a predetermined rule. In 8CSK in which 8 signal points are arranged, data communication is performed using the transmission order of 4 signal points out of 8 signal points, and 16 signal points on chromaticity coordinates. In the 16CSK with the arrangement, data communication can be performed using the transmission order of four signal points among the 16 signal points. As a result, the transmission rate can be improved by increasing the number of transmission orders of signal points corresponding to the bit string.

また、8CSK、16CSKの場合の4つの信号点の選び方も、特定色に偏らせたり、特定色に偏らないように分散させたりすることもできる。
また、信号点数も4点に限られるものではない。16CSKにおいて、16点の信号点のうちの8点の信号点を用いることもできる。
また、所定ビット数も2ビットに限らない。
The method of selecting the four signal points in the case of 8CSK and 16CSK can also be biased to a specific color or distributed so as not to be biased to a specific color.
Further, the number of signal points is not limited to four. In 16 CSK, 8 signal points out of 16 signal points can be used.
The predetermined number of bits is not limited to 2 bits.

以上、説明したように、本実施の形態1に係る可視光通信システムは、送信装置と受信装置とを備え、送信装置は、発光部と、送信データの各ビット列を所定の規則に基づいて色度座標上の信号点の並びに変換し、信号点の並びを色度座標値の並びに変換する色度座標変調部と、色度座標値の並びを発光部の発光強度の並びに変換する送信座標系変換部とを有し、受信装置は、受光部と、受光部の受光強度の並びを色度座標値の並びに変換する受信座標系変換部と、色度座標値の並びを色度座標上の信号点の並びに変換し、信号点の並びを所定の規則に基づいて受信データの各ビット列に変換する色度座標復調部とを有するものである。この構成により、色度座標空間に信号を拡散し、フレーム間の色変化順序の相関を低くして、拡散利得を大きくし、誤りの少ない伝送を行うことができる。   As described above, the visible light communication system according to the first embodiment includes the transmission device and the reception device, and the transmission device colors the light emitting unit and each bit string of the transmission data based on a predetermined rule. A chromaticity coordinate modulation unit that converts a sequence of signal points on a chromaticity coordinate and converts a sequence of signal points to a sequence of chromaticity coordinate values, and a transmission coordinate system that converts a sequence of chromaticity coordinate values to a sequence of luminescence intensity of a light emitting unit A receiving unit, a receiving coordinate system converting unit that converts a sequence of received light intensities of the light receiving unit into a sequence of chromaticity coordinate values, and a sequence of chromaticity coordinate values on a chromaticity coordinate. A chromaticity coordinate demodulating unit that converts the arrangement of the signal points and converts the arrangement of the signal points into each bit string of the received data based on a predetermined rule. With this configuration, it is possible to spread a signal in the chromaticity coordinate space, lower the correlation of the color change order between frames, increase the spreading gain, and perform transmission with few errors.

また、本実施の形態1に係る可視光通信システムは、発光強度の並び及び受光強度の並びが、送受信の時間的な順序である。
また、本実施の形態1に係る可視光通信システムは、色度座標復調部が、色度座標値の並びを、色度座標値の各々に最も距離が近い信号点を選択して信号点の並びに変換し、信号点の並びと所定の規則で予め定めた信号点の並びとを比較し、信号点の並びを、並びが一致するか、あるいは並びが一番近い予め定めた信号点の並びに対応するビット列に変換するものである。
Further, in the visible light communication system according to the first embodiment, the arrangement of the emission intensity and the arrangement of the received light intensity are in the temporal order of transmission and reception.
Further, in the visible light communication system according to the first embodiment, the chromaticity coordinate demodulating unit selects the signal point closest to each of the chromaticity coordinate values by selecting the sequence of chromaticity coordinate values, and A sequence of signal points is compared with a sequence of signal points determined in advance according to a predetermined rule, and the sequence of signal points is a sequence of predetermined signal points that match or are closest to each other. It converts to a corresponding bit string.

また、本実施の形態1に係る可視光通信システムは、色度座標復調部が、色度座標値の並びの各色度座標値と、所定の規則で予め定めた信号点の並びの各色度座標値とについて対応する色度座標値間の距離を算出し、色度座標値の並びを、距離の総和が一番小さくなる予め定めた信号点の並びに変換し、予め定めた信号点の並びを所定の規則に基づいてビット列に変換するものである。   Further, in the visible light communication system according to the first embodiment, the chromaticity coordinate demodulating unit is configured so that each chromaticity coordinate value in the sequence of chromaticity coordinate values and each chromaticity coordinate in the sequence of signal points predetermined by a predetermined rule. The distance between the corresponding chromaticity coordinate values is calculated with respect to the value, the sequence of chromaticity coordinate values is converted into a sequence of predetermined signal points with the smallest sum of distances, and the predetermined sequence of signal points is converted. This is converted into a bit string based on a predetermined rule.

この構成により、通信時に雑音により通信データ中の信号点の色度座標がずれることがあっても、正しくデータを復調することができる。   With this configuration, even when the chromaticity coordinates of signal points in communication data are shifted due to noise during communication, the data can be correctly demodulated.

発明の実施の形態2
実施の形態1に係る可視光通信システムは、ビット列を時間方向に予め定められた信号点の順序に変換して、データを送信した。これに対して、本実施の形態2に係る可視光通信システムは、発光部から信号点に対応する色の可視光を2次元に予め定められた配置で同時、又は、ほぼ同時に送信する。
Embodiment 2 of the Invention
The visible light communication system according to Embodiment 1 transmits data by converting a bit string into a predetermined order of signal points in the time direction. On the other hand, the visible light communication system according to the second embodiment transmits the visible light of the color corresponding to the signal point from the light emitting unit in a two-dimensionally predetermined arrangement at the same time or almost simultaneously.

すなわち、本実施の形態2に係る可視光通信システムでは、発光部はR、G、Bの3色のLEDを一組みとして、送信方向と交差する方向に縦に2組み、横に2組み備えており、それぞれのLEDの組みが、信号点に対応する色の可視光を発光する。
なお、本実施の形態2に係る可視光通信システムのシステム構成や色度座標平面での4CSKの4つの信号点の配置は、実施の形態1に係る可視光通信システムのものと同様であり、説明及び図示を省略する。
That is, in the visible light communication system according to the second embodiment, the light emitting unit includes three sets of LEDs of R, G, and B as one set, two sets in the direction intersecting the transmission direction, and two sets in the horizontal direction. Each LED set emits visible light of a color corresponding to a signal point.
The system configuration of the visible light communication system according to the second embodiment and the arrangement of four signal points of 4CSK on the chromaticity coordinate plane are the same as those of the visible light communication system according to the first embodiment. Description and illustration are omitted.

図6は、本実施の形態2に係る可視光通信システムの入力データのビット列と、各信号点に対応する可視光の送受信方向と交差する面での2次元配置との関係を示す図である。色度座標変調部は、送信データのビット列[00]を所定の規則である2次元配置に基づいて2次元フレームAに変換する。本実施の形態2に係る可視光通信システムにおいても、信号点C1、C2、C3、C4のフレームA、B、C、D中での配置がフレームA、B、C、D間で同じになることはない。   FIG. 6 is a diagram showing a relationship between a bit string of input data of the visible light communication system according to the second embodiment and a two-dimensional arrangement in a plane intersecting the visible light transmission / reception direction corresponding to each signal point. . The chromaticity coordinate modulation unit converts the bit string [00] of the transmission data into a two-dimensional frame A based on a two-dimensional arrangement that is a predetermined rule. Also in the visible light communication system according to the second embodiment, the arrangement of the signal points C1, C2, C3, and C4 in the frames A, B, C, and D is the same among the frames A, B, C, and D. There is nothing.

受光部は、2次元撮像素子を用いて可視光を受信し、色度座標復調部は、2次元の信号点配置の種類によって、データ復調を行う。具体的には、3色のLEDの複数の組みにより表示される2次元送信フレームを画像認識し、各フレームを受信する毎に、色度座標復調部は、符号間距離を用いて、受信した信号点の2次元配置が一致するか、あるいは2次元配置が一番近いフレームに対応するビット列を復調データとする。また、色度座標復調部は、座標間距離を用いて、2次元フレーム内の受信信号点の各座標値と、2次元送信フレームAからDの各信号点の各座標値との信号間距離を計算し、信号間距離の総和が一番小さい送信フレームに対応するビット列を復調データとする。   The light receiving unit receives visible light using a two-dimensional image sensor, and the chromaticity coordinate demodulation unit performs data demodulation according to the type of two-dimensional signal point arrangement. Specifically, a two-dimensional transmission frame displayed by a plurality of sets of LEDs of three colors is image-recognized, and each time each frame is received, the chromaticity coordinate demodulator receives the inter-code distance. A bit string corresponding to a frame in which the two-dimensional arrangement of signal points coincides or the closest to the two-dimensional arrangement is set as demodulated data. Further, the chromaticity coordinate demodulator uses the inter-coordinate distance to determine the inter-signal distance between each coordinate value of the received signal point in the two-dimensional frame and each coordinate value of each of the two-dimensional transmission frames A to D. And a bit string corresponding to a transmission frame having the smallest sum of distances between signals is set as demodulated data.

なお、本実施の形態2に係る可視光通信システムにおいて、3色のLEDの組みの2次元配置を4CSKの4つの信号点を用いて2組み×2組みとしたが、8CSKや16CSKの複数の信号点を用いて2組み×2組み、3組み×3組み、4組み×4組みであったり、3組み×2組み、4組み×2組みとしても良く、また、横一列、縦一列のように、直線上に並べて配置しても良い。   In the visible light communication system according to the second embodiment, the two-dimensional arrangement of the three color LED sets is set to two sets × 2 sets using four signal points of 4CSK. Using signal points, it may be 2 sets x 2 sets, 3 sets x 3 sets, 4 sets x 4 sets, or 3 sets x 2 sets, 4 sets x 2 sets. Alternatively, they may be arranged side by side on a straight line.

また、本実施の形態2に係る可視光通信システムにおいては、実施の形態1に係る信号点の時間的な順序と実施の形態2に係る信号点の空間的な順序とを組み合わせて通信しても良い。   In the visible light communication system according to the second embodiment, communication is performed by combining the temporal order of the signal points according to the first embodiment and the spatial order of the signal points according to the second embodiment. Also good.

以上、説明したように、本実施の形態2に係る可視光通信システムは、発光強度の並び及び受光強度の並びが、発光部及び受光部における送受信方向と交差する方向での可視光の2次元配置である。この構成により各種の表示装置や照明にCSK信号を表示させて、通信をすることができるようになる。   As described above, in the visible light communication system according to the second embodiment, the two-dimensional visible light in the direction in which the light emission intensity sequence and the light reception intensity sequence intersect the transmission / reception direction in the light emission unit and the light reception unit. Arrangement. With this configuration, communication can be performed by displaying CSK signals on various display devices and illuminations.

10 可視光通信システム
100 送信装置
102 色度座標変調部
104 送信座標系変換部
106 発光部
130 受信装置
132 受光部
134 受信座標系変換部
136 色度座標復調部
DESCRIPTION OF SYMBOLS 10 Visible light communication system 100 Transmission apparatus 102 Chromaticity coordinate modulation part 104 Transmission coordinate system conversion part 106 Light emission part 130 Reception apparatus 132 Light reception part 134 Reception coordinate system conversion part 136 Chromaticity coordinate demodulation part

Claims (6)

送信装置と受信装置とを備え、
前記送信装置は、
発光部と、
送信データの各ビット列を所定の規則に基づいて色度座標上の信号点の並びに変換し、前記信号点の並びを色度座標値の並びに変換する色度座標変調部と、
前記色度座標値の並びを前記発光部の発光強度の並びに変換する送信座標系変換部とを有し、
前記受信装置は、
受光部と、
前記受光部の受光強度の並びを色度座標値の並びに変換する受信座標系変換部と、
前記色度座標値の並びを信号点の並びに変換し、前記信号点の並びを前記所定の規則に基づいて受信データの各ビット列に変換する色度座標復調部と
を有する可視光通信システム。
A transmission device and a reception device;
The transmitter is
A light emitting unit;
A chromaticity coordinate modulation unit that converts a sequence of signal points on chromaticity coordinates based on a predetermined rule for each bit string of transmission data, and converts a sequence of the signal points in a sequence of chromaticity coordinate values;
A transmission coordinate system conversion unit that converts the sequence of the chromaticity coordinate values into a sequence of emission intensity of the light emitting unit;
The receiving device is:
A light receiver;
A reception coordinate system conversion unit that converts a sequence of received light intensities of the light receiving unit into a sequence of chromaticity coordinate values;
A visible light communication system comprising: a chromaticity coordinate demodulator that converts the sequence of chromaticity coordinate values into a sequence of signal points and converts the sequence of signal points into each bit string of received data based on the predetermined rule.
前記発光強度の並び及び前記受光強度の並びが、送受信の時間的な順序である請求項1記載の可視光通信システム。   The visible light communication system according to claim 1, wherein the arrangement of the light emission intensity and the arrangement of the received light intensity is a temporal order of transmission and reception. 前記発光強度の並び及び前記受光強度の並びが、前記発光部及び前記受光部における送受信方向と交差する方向での可視光の2次元配置である請求項1又は請求項2記載の可視光通信システム。   The visible light communication system according to claim 1 or 2, wherein the arrangement of the light emission intensity and the arrangement of the light reception intensity is a two-dimensional arrangement of visible light in a direction intersecting a transmission / reception direction in the light emission unit and the light reception unit. . 前記色度座標復調部は、前記色度座標値の並びを、前記色度座標値の各々に最も距離が近い信号点を選択して前記信号点の並びに変換し、前記信号点の並びと前記所定の規則で予め定めた信号点の並びとを比較し、前記信号点の並びを、並びが一致するか、あるいは並びが一番近い前記予め定めた信号点の並びに対応するビット列に変換する請求項1乃至3のいずれかに記載の可視光通信システム。   The chromaticity coordinate demodulating unit selects a signal point having the closest distance to each of the chromaticity coordinate values, converts the sequence of the signal points, and converts the sequence of the signal points and the sequence of the chromaticity coordinate values. A sequence of signal points is compared with a predetermined sequence of signal points according to a predetermined rule, and the sequence of the signal points is converted into a bit string corresponding to a sequence of the predetermined signal points that are aligned or closest to each other. Item 4. The visible light communication system according to any one of Items 1 to 3. 前記色度座標復調部は、前記色度座標値の並びの各色度座標値と、前記所定の規則で予め定めた信号点の並びの各色度座標値とについて対応する色度座標値間の距離を算出し、前記色度座標値の並びを、前記距離の総和が一番小さくなる前記予め定めた信号点の並びに変換し、前記予め定めた信号点の並びを前記所定の規則に基づいてビット列に変換する請求項1乃至3のいずれかに記載の可視光通信システム。   The chromaticity coordinate demodulating unit is a distance between chromaticity coordinate values corresponding to each chromaticity coordinate value of the sequence of chromaticity coordinate values and each chromaticity coordinate value of the sequence of signal points predetermined by the predetermined rule. The sequence of the chromaticity coordinate values is converted into a sequence of the predetermined signal points with the smallest sum of the distances, and the sequence of the predetermined signal points is converted into a bit string based on the predetermined rule. The visible light communication system according to any one of claims 1 to 3, wherein the visible light communication system is converted into a visible light. 送信装置と受信装置とを備えた可視光通信システムにおける可視光通信方法であって、
前記送信装置が、
送信データの各ビット列を所定の規則に基づいて色度座標上の信号点の並びに変換するステップと、
前記信号点の並びを色度座標値の並びに変換するステップと、
前記色度座標値の並びを発光強度の並びに変換するステップと、
前記発光強度の並びに従って可視光を発光するステップと、
前記受信装置が、
受光した前記可視光から受光強度の並びを生成するステップと、
前記受光強度の並びを色度座標値の並びに変換するステップと、
前記色度座標値の並びを信号点の並びに変換するステップと、
前記信号点の並びを前記所定の規則に基づいて受信データの各ビット列に変換するステップと
を有する可視光通信方法。
A visible light communication method in a visible light communication system comprising a transmitter and a receiver,
The transmitting device is
Converting a sequence of signal points on chromaticity coordinates based on a predetermined rule for each bit string of transmission data; and
Converting the sequence of the signal points into a sequence of chromaticity coordinate values;
Converting the sequence of chromaticity coordinate values into a sequence of emission intensities;
Emitting visible light according to the arrangement of the emission intensities;
The receiving device is
Generating an array of received light intensity from the received visible light;
Converting the sequence of the received light intensity into a sequence of chromaticity coordinate values;
Converting the sequence of chromaticity coordinate values into a sequence of signal points;
Converting the sequence of the signal points into bit strings of received data based on the predetermined rule.
JP2013226811A 2013-10-31 2013-10-31 Visible light communication system and visible light communication method Pending JP2015088981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013226811A JP2015088981A (en) 2013-10-31 2013-10-31 Visible light communication system and visible light communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013226811A JP2015088981A (en) 2013-10-31 2013-10-31 Visible light communication system and visible light communication method

Publications (1)

Publication Number Publication Date
JP2015088981A true JP2015088981A (en) 2015-05-07

Family

ID=53051332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013226811A Pending JP2015088981A (en) 2013-10-31 2013-10-31 Visible light communication system and visible light communication method

Country Status (1)

Country Link
JP (1) JP2015088981A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019093464A1 (en) * 2017-11-13 2019-05-16 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Communication device
US10522115B2 (en) 2015-11-10 2019-12-31 Samsung Electronics Co., Ltd. Display apparatus for displaying color identification code and control method thereof
JP2023533796A (en) * 2020-07-14 2023-08-04 プレイブラッシュ リミテッド toothbrush system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10522115B2 (en) 2015-11-10 2019-12-31 Samsung Electronics Co., Ltd. Display apparatus for displaying color identification code and control method thereof
WO2019093464A1 (en) * 2017-11-13 2019-05-16 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Communication device
JPWO2019093464A1 (en) * 2017-11-13 2020-11-19 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Communication device
US11546057B2 (en) 2017-11-13 2023-01-03 Panasonic Intellectual Property Corporation Of America Communication device
JP7295024B2 (en) 2017-11-13 2023-06-20 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Communication device
JP2023533796A (en) * 2020-07-14 2023-08-04 プレイブラッシュ リミテッド toothbrush system

Similar Documents

Publication Publication Date Title
Liu et al. Some practical constraints and solutions for optical camera communication
US9906298B2 (en) Visible light transmitter, visible light receiver, visible light communication system, and visible light communication method
Pathak et al. Visible light communication, networking, and sensing: A survey, potential and challenges
US8594510B2 (en) Light module, illumination system and method incorporating data in light emitted
JP5394843B2 (en) Transmitting apparatus, receiving apparatus, visible light communication system, and visible light communication method
Das et al. Color-independent VLC based on a color space without sending target color information
CN102246432A (en) Visible-light communications system and method
CN104811245B (en) It is a kind of to combine colour gamut and the visible light communication method of spatial domain modulation
JP2018511192A (en) System and method for providing optically encoded information
JP2013197849A (en) Visible light communication transmitter, visible light communication receiver, and visible light communication system
KR20120027161A (en) System and method for visible light communications
US10848242B2 (en) System and method for providing optically coding of information combining color and luminosity
Han et al. Color clustered multiple-input multiple-output visible light communication
CN105281833A (en) Visible light signal transmission method and system
KR101586938B1 (en) Color independent visual-mimo communication system and method using the color-space-based image processing
JP2015088981A (en) Visible light communication system and visible light communication method
CN106788725B (en) A color shift keying modulation method for visible light communication based on multi-pulse position
Onodera et al. Adaptive N+ 1 color shift keying for optical camera communication
CN101023607B (en) Optical transmission apparatus and optical communication system
EP3488665B1 (en) Detecting signals embedded in visible light
Das et al. Performance improvement of color space based VLC modulation schemes under color and intensity variation
Riurean et al. Application of visible light wireless communication in underground mine
JP2013229799A (en) Transmission device, reception device, transmission method and reception method for visual light communication, and program therefor
Das et al. Performance analysis of color-independent visible light communication using a color-space-based constellation diagram and modulation scheme
Ozaki et al. Variable multi-pulse PPM using new dimming control method for visible light communications