[go: up one dir, main page]

JP2015069990A - Semiconductor module - Google Patents

Semiconductor module Download PDF

Info

Publication number
JP2015069990A
JP2015069990A JP2013200138A JP2013200138A JP2015069990A JP 2015069990 A JP2015069990 A JP 2015069990A JP 2013200138 A JP2013200138 A JP 2013200138A JP 2013200138 A JP2013200138 A JP 2013200138A JP 2015069990 A JP2015069990 A JP 2015069990A
Authority
JP
Japan
Prior art keywords
semiconductor module
bare chip
solder
wiring pattern
joint surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013200138A
Other languages
Japanese (ja)
Inventor
崇 須永
Takashi Sunaga
崇 須永
昇 金子
Noboru Kaneko
昇 金子
修 三好
Osamu Miyoshi
修 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2013200138A priority Critical patent/JP2015069990A/en
Publication of JP2015069990A publication Critical patent/JP2015069990A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L24/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L24/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/3701Shape
    • H01L2224/37011Shape comprising apertures or cavities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/3701Shape
    • H01L2224/37012Cross-sectional shape
    • H01L2224/37013Cross-sectional shape being non uniform along the connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/37147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/4005Shape
    • H01L2224/4009Loop shape
    • H01L2224/40095Kinked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/41Structure, shape, material or disposition of the strap connectors after the connecting process of a plurality of strap connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/41Structure, shape, material or disposition of the strap connectors after the connecting process of a plurality of strap connectors
    • H01L2224/4101Structure
    • H01L2224/4103Connectors having different sizes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/84801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Power Steering Mechanism (AREA)

Abstract

【課題】製造タクトの短縮と製造コストの削減とを実現すると共に、接合部の信頼性を確保することができる半導体モジュールを提供する。【解決手段】半導体モジュール30は、金属製の基板31と、基板31の上に形成された絶縁層32と、絶縁層32上に形成された複数の配線パターン33a〜33dと、配線パターン33a上に半田34aを介して実装されるベアチップトランジスタ35と、ベアチップトランジスタ35の電極S,G上と配線パターン33b,33c上とを半田34b,34cを介して接合する、銅コネクタ36a,36bとを備える。銅コネクタ36a,36bはブリッジ形状であり、電極S,Gとの接合面36af近傍に幅狭部36agを設けると共に、電極S,Gとの接合面36afに応力緩和部36akを設ける。【選択図】図7Provided is a semiconductor module capable of realizing a reduction in manufacturing tact and a reduction in manufacturing cost and ensuring reliability of a joint. A semiconductor module includes a metal substrate, an insulating layer formed on the substrate, a plurality of wiring patterns formed on the insulating layer, and a wiring pattern on the wiring pattern. Are provided via a solder 34a, and copper connectors 36a and 36b for joining the electrodes S and G of the bare chip transistor 35 and the wiring patterns 33b and 33c via the solders 34b and 34c. . The copper connectors 36a, 36b have a bridge shape, and a narrow portion 36ag is provided in the vicinity of the joint surface 36af with the electrodes S, G, and a stress relaxation portion 36ak is provided on the joint surface 36af with the electrodes S, G. [Selection] Figure 7

Description

本発明は、自動車用電気機器に組み込まれるパワーモジュール等の半導体モジュールに関する。   The present invention relates to a semiconductor module such as a power module incorporated in an automobile electrical device.

昨今、自動車等の車両における種々の電気機器の制御に電子装置が導入されてきた。電子装置が組み込まれた電気機器の一例として電動パワーステアリング装置では、自動車の操舵に係る電動モータが収容される筐体にモータ駆動部が設けられ、このモータ駆動部に電子装置が搭載される。この電子装置は、パワーモジュールとして、モータ駆動部に組み込まれる。   Recently, electronic devices have been introduced to control various electric devices in vehicles such as automobiles. In an electric power steering apparatus as an example of an electric device in which an electronic device is incorporated, a motor driving unit is provided in a housing that houses an electric motor related to steering of an automobile, and the electronic device is mounted on the motor driving unit. This electronic device is incorporated as a power module in the motor drive unit.

パワーモジュールは、電動パワーステアリング装置のような比較的大きな電流で駆動される電気機器の制御に適した、例えば、FET(Field Effect Transistor)、IGBT(Insulated Gate
Bipolar Transistor)等のパワー素子を搭載したいわゆる半導体モジュールとして構成される。この種のパワーモジュールは、車両に搭載されることから車載モジュール(In−vehicle Module)とも呼ばれる。
The power module is suitable for controlling an electric device driven by a relatively large current such as an electric power steering device, for example, an FET (Field Effect Transistor), an IGBT (Insulated Gate).
It is configured as a so-called semiconductor module on which a power element such as a Bipolar Transistor is mounted. This type of power module is also called an in-vehicle module because it is mounted on a vehicle.

従来、この種の半導体モジュールとして、例えば、特許文献1に記載の技術がある。この技術は、金属基板上の配線パターンとベアチップトランジスタとを接合する電気的配線にワイヤを使用したものである。 また、例えば特許文献2に記載の技術のように、金属基板上に実装される半導体素子を電気的に接続するリード部品を、半導体上の電極よりも大きくすると共に、接触部の信頼性の確保のために複数の接点としたり、接点幅を広くしたりするものもある。 さらに、例えば特許文献3に記載の技術のように、コネクタ配線の応力緩和を行うために、立ち上がり曲げ部を設けたり、配線途中にヒューズ形状(波形状)を設けたりするものもある。   Conventionally, as this type of semiconductor module, for example, there is a technique described in Patent Document 1. In this technique, a wire is used for electrical wiring for joining a wiring pattern on a metal substrate and a bare chip transistor. Further, as in the technique described in Patent Document 2, for example, the lead component for electrically connecting the semiconductor element mounted on the metal substrate is made larger than the electrode on the semiconductor, and the reliability of the contact portion is ensured. For this purpose, some contact points are used and the contact width is widened. Furthermore, as in the technique described in Patent Document 3, for example, there is a case where a rising bent portion is provided or a fuse shape (wave shape) is provided in the middle of the wiring in order to relieve stress of the connector wiring.

特開2004−335725号公報JP 2004-335725 A 特開2007−95984号公報JP 2007-95984 A 特開2000−124398号公報JP 2000-124398 A

しかしながら、上記特許文献1に記載の技術にあっては、ワイヤを使用した電気的配線を採用しているため、当該電気的配線をワイヤボンディング装置による実装が必要となる。すなわち、その他の電子部品のはんだ実装とは異なり、製造工程を別で行う必要があり、製造タクトが長くなる。また、ワイヤボンディングの専用設備が必要となるため、製造コストが高くなる。   However, since the technique described in Patent Document 1 employs electrical wiring using wires, it is necessary to mount the electrical wiring using a wire bonding apparatus. That is, unlike the solder mounting of other electronic components, it is necessary to perform the manufacturing process separately, resulting in a long manufacturing tact. In addition, since dedicated equipment for wire bonding is required, the manufacturing cost increases.

また、上記特許文献2に記載の技術にあっては、大型の接点としているため、接合面が大きくなりすぎるために、捩れや熱収縮に弱くなる。そのため、接合部の信頼性を確保することが難しい。さらに、上記特許文献3に記載の技術にあっては、配線途中にヒューズ形状を設けているが、ヒューズ形状は成形が困難であり実用性に乏しい。そこで、本発明は、製造タクトの短縮と製造コストの削減とを実現すると共に、接合部の信頼性を確保することができる半導体モジュールを提供することを課題としている。   Moreover, in the technique of the said patent document 2, since it is set as a large sized contact, since a joining surface becomes large too much, it becomes weak to a twist and heat shrink. For this reason, it is difficult to ensure the reliability of the joint. Furthermore, in the technique described in Patent Document 3, a fuse shape is provided in the middle of the wiring. However, the fuse shape is difficult to form and is not practical. Therefore, an object of the present invention is to provide a semiconductor module capable of realizing reduction in manufacturing tact and reduction in manufacturing cost and ensuring the reliability of the joint.

上記課題を解決するために、本発明に係る半導体モジュールの一態様は、金属製の基板と、該基板の上に形成された絶縁層と、該絶縁層上に形成された複数の配線パターンと、該複数の配線パターンのうち一つの配線パターン上に半田を介して実装されるベアチップトランジスタと、該ベアチップトランジスタの上面に形成された電極上と前記複数の配線パターンのうち他の配線パターン上とを半田を介して接合する、銅板で構成される銅コネクタとを備え、前記銅コネクタは、前記電極上に接合される第1の脚部と、前記配線パターン上に接合される第2の脚部とを有するブリッジ形状であり、前記第1の脚部に、前記電極との接合面とは反対側の端部から前記接合面が形成された端部へ向けて幅が狭くなる幅狭部を設けると共に、前記第1の脚部の前記電極との接合面に、当該接合面に作用する応力を緩和する形状を有する応力緩和部を設けることを特徴としている。   In order to solve the above problems, an aspect of a semiconductor module according to the present invention includes a metal substrate, an insulating layer formed on the substrate, and a plurality of wiring patterns formed on the insulating layer. A bare chip transistor mounted on one of the plurality of wiring patterns via solder, an electrode formed on an upper surface of the bare chip transistor, and another wiring pattern of the plurality of wiring patterns A copper connector made of a copper plate, and the copper connector is joined to the electrode by a first leg and a second leg joined to the wiring pattern. And a narrow portion in which the width of the first leg portion becomes narrower from an end portion on the side opposite to the bonding surface to the electrode toward an end portion where the bonding surface is formed. And providing the first The junction surface between the electrode of the legs of the is characterized by providing a stress relieving portion having a shape to alleviate the stress acting on the joint surface.

すなわち、前記銅コネクタは、熱膨張率及び熱収縮率が前記基板とは異なることにより生じる上下方向、左右方向、前後方向及び捻り方向の変位を吸収可能な形状を有することを特徴としている。このように、ベアチップトランジスタの電極と基板上の配線パターンとの接合を、銅板で構成される銅コネクタを用いることにより、はんだ実装作業で行えるので、ベアチップトランジスタの電極と基板上の配線パターンとの接合をベアチップトランジスタやその他の表面実装部品を基板上の配線パターン上に実装する際に行われるはんだ実装作業と同一の工程で同時に行うことができる。このため、半導体モジュールの製造タクトを短くすることができると共に、ワイヤボンディングの専用設備が不要になり、半導体モジュールの製造コストを安価にすることができる。   That is, the copper connector is characterized in that it has a shape capable of absorbing displacement in the vertical direction, the horizontal direction, the front-rear direction, and the torsional direction caused by the difference in thermal expansion coefficient and thermal contraction rate from the substrate. In this way, the bonding of the bare chip transistor electrode and the wiring pattern on the substrate can be performed by solder mounting by using a copper connector formed of a copper plate. Bonding can be performed simultaneously in the same process as a solder mounting operation performed when mounting a bare chip transistor or other surface-mounted component on a wiring pattern on a substrate. For this reason, the manufacturing tact of the semiconductor module can be shortened, and dedicated equipment for wire bonding is not required, and the manufacturing cost of the semiconductor module can be reduced.

さらに、銅コネクタをブリッジ形状とすることで、上下左右方向の変位が吸収可能となる。また、銅コネクタのベアチップトランジスタの電極と接合する第1の脚部に幅狭部を設けることで、前後方向及び捻り方向の変位が吸収可能となる。さらにまた、第1の脚部の上記電極との接合面に応力緩和部を設けるので、接合部に生じる応力を緩和することができる。したがって、リフロー工程や作動熱により熱膨張や熱収縮が発生した場合に、銅コネクタとベアチップトランジスタの電極との半田接合を剥がれ難くすることができ、接合部の信頼性を確保することができる。   Furthermore, the displacement in the vertical and horizontal directions can be absorbed by forming the copper connector in a bridge shape. In addition, by providing a narrow portion at the first leg portion that is joined to the bare chip transistor electrode of the copper connector, the displacement in the front-rear direction and the twist direction can be absorbed. Furthermore, since the stress relaxation portion is provided on the joint surface of the first leg portion with the electrode, the stress generated in the joint portion can be relaxed. Therefore, when thermal expansion or thermal contraction occurs due to the reflow process or operating heat, the solder joint between the copper connector and the bare chip transistor electrode can be made difficult to peel, and the reliability of the joint can be ensured.

また、上記において、前記応力緩和部として、前記接合面に切り欠き部を形成したり、前記接合面を薄板で形成したり、前記接合面の角部に面取り部を形成したり、前記接合面の中央に孔を形成したりしてもよい。このように、切り欠き部を形成することで、接合部を2つにすることができると共に、各々の接合部の幅をさらに狭くすることができるため、捻りを受けても追従しやすくなる。また、接点が2つになることで所謂2重系を構成できるので、電気的信頼性が向上する。   Further, in the above, as the stress relaxation portion, a notch portion is formed on the joint surface, the joint surface is formed of a thin plate, a chamfered portion is formed at a corner of the joint surface, or the joint surface You may form a hole in the center of. In this way, by forming the notch portion, the number of joint portions can be reduced to two, and the width of each joint portion can be further narrowed. Moreover, since the so-called dual system can be configured by using two contacts, the electrical reliability is improved.

また、応力緩和部を薄板形状とした場合、板厚が薄いために捩れやすく、変位吸収しやすい。さらに、応力緩和部を先端R形状とした場合、捻りを受けたときの角部への応力集中を逃がす効果がある。さらにまた、応力緩和部に孔を形成した場合、半田が浸透ぬれ現象により接合面の上面に流れて放射状に広がるので、捻りを受けても半田が剥がれ難い。   Further, when the stress relaxation portion is formed into a thin plate shape, the plate thickness is thin, so that it is easily twisted and easily absorbs displacement. Furthermore, when the stress relaxation portion has a rounded tip shape, there is an effect of escaping the stress concentration at the corner when subjected to twisting. Furthermore, when a hole is formed in the stress relaxation portion, the solder flows to the upper surface of the joint surface due to the permeation wetting phenomenon and spreads radially, so that it is difficult for the solder to peel off even when subjected to twisting.

本発明の半導体モジュールでは、ベアチップトランジスタの電極と基板上の配線パターンとの接合を、銅板で構成される銅コネクタを用いることにより、はんだ実装作業で行えるので、ベアチップトランジスタの電極と基板上の配線パターンとの接合をベアチップトランジスタやその他の表面実装部品を基板上の配線パターン上に実装する際に行われるはんだ実装作業と同一の工程で同時に行うことができる。このため、半導体モジュールの製造タクトを短くすることができると共に、ワイヤボンディングの専用設備が不要になり、半導体モジュールの製造コストを安価にすることができる。   In the semiconductor module of the present invention, the bare chip transistor electrode and the wiring pattern on the substrate can be joined by a solder mounting operation using a copper connector formed of a copper plate. Bonding to the pattern can be performed simultaneously in the same process as the solder mounting operation performed when the bare chip transistor or other surface-mounted component is mounted on the wiring pattern on the substrate. For this reason, the manufacturing tact of the semiconductor module can be shortened, and dedicated equipment for wire bonding is not required, and the manufacturing cost of the semiconductor module can be reduced.

また、銅コネクタをブリッジ形状とすると共に、ベアチップトランジスタの電極と接合する第1の脚部に幅狭部と応力緩和部とを設けるので、あらゆる方向の変位が吸収可能となる。そのため、リフロー工程での銅コネクタの熱変形を吸収し、接合部の信頼性を確保することができる。さらに、製品使用時における温度変化による銅コネクタの破損を防止することができる。   Further, since the copper connector has a bridge shape and the narrow leg portion and the stress relaxation portion are provided on the first leg portion joined to the electrode of the bare chip transistor, the displacement in any direction can be absorbed. Therefore, the thermal deformation of the copper connector in the reflow process can be absorbed, and the reliability of the joint can be ensured. Furthermore, it is possible to prevent the copper connector from being damaged due to temperature changes during product use.

本発明に係る半導体モジュールが用いられる電動パワーステアリング装置の基本構造を示す図である。It is a figure which shows the basic structure of the electric power steering apparatus with which the semiconductor module which concerns on this invention is used. コントローラの制御系を示すブロック図であるIt is a block diagram which shows the control system of a controller 半導体モジュールを含むコントローラの分解斜視図である。It is a disassembled perspective view of the controller containing a semiconductor module. 半導体モジュールの平面図である。It is a top view of a semiconductor module. ベアチップFETの概略平面図である。It is a schematic plan view of a bare chip FET. ベアチップFETの電極と基板上の配線パターンとの接続状態を説明するための模式図である。It is a schematic diagram for demonstrating the connection state of the electrode of a bare chip FET, and the wiring pattern on a board | substrate. 銅コネクタの形状を示す斜視図である。It is a perspective view which shows the shape of a copper connector. 応力緩和部の形状を示す図である。It is a figure which shows the shape of a stress relaxation part. 応力緩和部の形状の別の例を示す図である。It is a figure which shows another example of the shape of a stress relaxation part. 応力緩和部の形状の別の例を示す図である。It is a figure which shows another example of the shape of a stress relaxation part. 応力緩和部の形状の別の例を示す図である。It is a figure which shows another example of the shape of a stress relaxation part. 半導体モジュールの製造方法を説明する図である。It is a figure explaining the manufacturing method of a semiconductor module. 応力緩和部の形状の別の例を示す図である。It is a figure which shows another example of the shape of a stress relaxation part.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本発明に係る半導体モジュールが用いられる電動パワーステアリング装置の基本構造を示す図である。図1の電動パワーステアリング装置において、操向ハンドル1のコラム軸2は、減速ギア3、ユニバーサルジョイント4A及び4B、ピニオンラック機構5を経て走行車輪のタイロッド6に連結されている。コラム軸2には、操向ハンドル1の操舵トルクを検出するトルクセンサ7が設けられており、操向ハンドル1の操舵力を補助する電動モータ8が減速ギア3を介してコラム軸2に連結されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing a basic structure of an electric power steering apparatus in which a semiconductor module according to the present invention is used. In the electric power steering apparatus of FIG. 1, the column shaft 2 of the steering handle 1 is connected to a tie rod 6 of a traveling wheel via a reduction gear 3, universal joints 4 </ b> A and 4 </ b> B, and a pinion rack mechanism 5. The column shaft 2 is provided with a torque sensor 7 that detects the steering torque of the steering handle 1, and an electric motor 8 that assists the steering force of the steering handle 1 is connected to the column shaft 2 via the reduction gear 3. Has been.

電動パワーステアリング装置を制御するコントローラ10には、バッテリー(図示せず)から電力が供給されるとともに、イグニションキー(図示せず)を経てイグニションキー信号IGN(図2参照)が入力される。コントローラ10は、トルクセンサ7で検出された操舵トルクTsと車速センサ9で検出された車速Vとに基づいて、アシスト(操舵補助)指令となる操舵補助指令値の演算を行い、演算された操舵補助指令値に基づいて電動モータ8に供給する電流を制御する。コントローラ10は、主としてマイクロコンピュータで構成されるが、その制御装置の機構及び構成を示すと図2に示すようになる。   Electric power is supplied from a battery (not shown) to the controller 10 that controls the electric power steering device, and an ignition key signal IGN (see FIG. 2) is input via an ignition key (not shown). The controller 10 calculates a steering assist command value serving as an assist (steering assist) command based on the steering torque Ts detected by the torque sensor 7 and the vehicle speed V detected by the vehicle speed sensor 9, and the calculated steering is performed. The current supplied to the electric motor 8 is controlled based on the auxiliary command value. The controller 10 is mainly composed of a microcomputer, and the mechanism and configuration of the control device are as shown in FIG.

トルクセンサ7で検出された操舵トルクTs及び車速センサ9で検出された車速Vは制御演算部としての制御演算装置11に入力され、制御演算装置11で演算された電流指令値をゲート駆動回路12に入力する。ゲート駆動回路12で、電流指令値等に基づいて形成されたゲート駆動信号はFETのブリッジ構成で成るモータ駆動部13に入力され、モータ駆動部13は非常停止用の遮断装置14を経て3相ブラシレスモータで構成される電動モータ8を駆動する。3相ブラシレスモータの各相電流は電流検出回路15で検出され、検出された3相のモータ電流ia〜icは制御演算装置11にフィードバック電流として入力される。また、3相ブラシレスモータには、ホールセンサ等の回転センサ16が取り付けられており、回転センサ16からの回転信号RTがロータ位置検出回路17に入力され、検出された回転位置θが制御演算装置11に入力される。   The steering torque Ts detected by the torque sensor 7 and the vehicle speed V detected by the vehicle speed sensor 9 are input to the control arithmetic unit 11 as a control arithmetic unit, and the current command value calculated by the control arithmetic unit 11 is used as the gate drive circuit 12. To enter. In the gate drive circuit 12, a gate drive signal formed based on a current command value or the like is input to a motor drive unit 13 having a FET bridge configuration, and the motor drive unit 13 passes through an emergency stop interrupting device 14 for three phases. An electric motor 8 composed of a brushless motor is driven. Each phase current of the three-phase brushless motor is detected by the current detection circuit 15, and the detected three-phase motor currents ia to ic are input to the control arithmetic device 11 as feedback currents. In addition, a rotation sensor 16 such as a hall sensor is attached to the three-phase brushless motor, and a rotation signal RT from the rotation sensor 16 is input to the rotor position detection circuit 17, and the detected rotation position θ is a control arithmetic unit. 11 is input.

また、イグニションキーからのイグニション信号IGNはイグニション電圧モニタ部18及び電源回路部19に入力され、電源回路部19から電源電圧Vddが制御演算装置11に入力されるとともに、装置停止用となるリセット信号RSが制御演算装置11に入力される。さらに、遮断装置14は、2相を遮断するリレー接点141及び142で構成されている。   Further, the ignition signal IGN from the ignition key is input to the ignition voltage monitor unit 18 and the power supply circuit unit 19, and the power supply voltage Vdd is input from the power supply circuit unit 19 to the control arithmetic unit 11 and a reset signal for stopping the apparatus. RS is input to the control arithmetic unit 11. Furthermore, the interruption | blocking apparatus 14 is comprised by the relay contacts 141 and 142 which interrupt | block two phases.

また、モータ駆動部13の回路構成について説明すると、電源ライン81に対し、直列に接続されたFETTr1及びTr2、FETTr3及びTr4、及びFETTr5及びTr6が直列に接続されている。そして、電源ライン81に対して、並列に接続されたFETTr1及びTr3、FETTr5及びTr2、及びFETTr4及びTr6が接地ライン82に接続されている。これにより、インバータを構成する。   The circuit configuration of the motor drive unit 13 will be described. FETTr1 and Tr2, FETTr3 and Tr4, and FETTr5 and Tr6 connected in series to the power supply line 81 are connected in series. Further, FETTr1 and Tr3, FETTr5 and Tr2, and FETTr4 and Tr6 connected in parallel to the power supply line 81 are connected to the ground line 82. This constitutes an inverter.

ここで、FETTr1及びTr2は、FETTr1のソース電極SとFETTr2のドレイン電極Dとが直列に接続され、3相モータのc相アームを構成し、c相出力ライン91cにて電流が出力される。また、FETTr3及びTr4は、FETTr3のソース電極SとFETTr4のドレイン電極Dとが直列に接続され、3相モータのa相アームを構成し、a相出力ライン91aにて電流が出力される。更に、FETTr5及びTr6は、FETTr5のソース電極SとFETTr6のドレイン電極Dとが直列に接続され、3相モータのb相アームを構成し、b相出力ライン91bにて電流が出力される。   Here, the FETTr1 and Tr2 are configured such that the source electrode S of the FETTr1 and the drain electrode D of the FETTr2 are connected in series to form a c-phase arm of a three-phase motor, and a current is output from the c-phase output line 91c. In addition, the FETTr3 and Tr4 are configured such that the source electrode S of the FETTr3 and the drain electrode D of the FETTr4 are connected in series to form an a-phase arm of a three-phase motor, and a current is output from the a-phase output line 91a. Further, the FETTr5 and Tr6 are configured such that the source electrode S of the FETTr5 and the drain electrode D of the FETTr6 are connected in series to form a b-phase arm of a three-phase motor, and a current is output from the b-phase output line 91b.

図3は、図1に示す電動パワーステアリング装置の半導体モジュールを含むコントローラ10の分解斜視図であり、コントローラ10は、ケース20と、モータ駆動部13を含むパワーモジュールとしての半導体モジュール30と、放熱用シート39と、制御演算装置11及びゲート駆動回路12を含む制御回路基板40と、電力及び信号用コネクタ50と、3相出力用コネクタ60と、カバー70とを備えている。   3 is an exploded perspective view of the controller 10 including the semiconductor module of the electric power steering apparatus shown in FIG. 1. The controller 10 includes a case 20, a semiconductor module 30 as a power module including the motor drive unit 13, and heat dissipation. Sheet 39, control circuit board 40 including control arithmetic device 11 and gate drive circuit 12, power and signal connector 50, three-phase output connector 60, and cover 70.

ここで、ケース20は、略矩形状に形成され、半導体モジュール30を載置するための平板状の半導体モジュール載置部21と、半導体モジュール載置部21の長手方向端部に設けられた、電力及び信号用コネクタ50を実装するための電力及び信号用コネクタ実装部22と、半導体モジュール載置部21の幅方向端部に設けられた、3相出力用コネクタ60を実装するための3相出力用コネクタ実装部23とを備えている。   Here, the case 20 is formed in a substantially rectangular shape, and is provided on the flat-plate-shaped semiconductor module mounting portion 21 for mounting the semiconductor module 30 and the longitudinal end portion of the semiconductor module mounting portion 21. Three-phase for mounting a power and signal connector mounting portion 22 for mounting the power and signal connector 50 and a three-phase output connector 60 provided at the end in the width direction of the semiconductor module mounting portion 21 And an output connector mounting portion 23.

そして、半導体モジュール載置部21には、半導体モジュール30を取り付けるための取付けねじ38がねじ込まれる複数のねじ孔21aが形成されている。また、半導体モジュール載置部21及び電力及び信号用コネクタ実装部22には、制御回路基板40を取り付けるための複数の取付けポスト24が立設され、各取付けポスト24には、制御回路基板40を取り付けるための取付けねじ41がねじ込まれるねじ孔24aが形成されている。更に、3相出力用コネクタ実装部23には、3相出力用コネクタ60を取り付けるための取付けねじ61がねじ込まれる複数のねじ孔23aが形成されている。   A plurality of screw holes 21 a into which mounting screws 38 for mounting the semiconductor module 30 are screwed are formed in the semiconductor module mounting portion 21. A plurality of mounting posts 24 for mounting the control circuit board 40 are erected on the semiconductor module mounting portion 21 and the power and signal connector mounting portion 22, and the control circuit board 40 is mounted on each mounting post 24. A screw hole 24a into which a mounting screw 41 for mounting is screwed is formed. Further, the three-phase output connector mounting portion 23 is formed with a plurality of screw holes 23a into which mounting screws 61 for attaching the three-phase output connector 60 are screwed.

また、半導体モジュール30は、前述したモータ駆動部13の回路構成を有し、図4に示すように、基板31に、6個のFETTr1〜Tr6、電源ライン81に接続された正極端子81a、及び接地ライン82に接続された負極端子82aが実装されている。また、基板31には、a相出力ライン91aに接続されたa相出力端子92a、b相出力ライン91bに接続されたb相出力端子92b、及びc相出力ライン91cに接続されたc相出力端子92cを含む3相出力部90が実装されている。また、基板31上には、コンデンサを含むその他の基板実装部品37が実装されている。更に、半導体モジュール30の基板31には、半導体モジュール30を取り付けるための取付けねじ38が挿通する複数の貫通孔31aが設けられている。   The semiconductor module 30 has the circuit configuration of the motor drive unit 13 described above. As shown in FIG. 4, the substrate 31 has six FETs Tr <b> 1 to Tr <b> 6, a positive terminal 81 a connected to the power supply line 81, and A negative terminal 82a connected to the ground line 82 is mounted. Further, the substrate 31 has a phase output terminal 92a connected to the phase a output line 91a, phase b output terminal 92b connected to the phase b output line 91b, and phase c output connected to the phase c output line 91c. A three-phase output unit 90 including a terminal 92c is mounted. In addition, other board mounting components 37 including a capacitor are mounted on the board 31. Further, the substrate 31 of the semiconductor module 30 is provided with a plurality of through holes 31a through which mounting screws 38 for mounting the semiconductor module 30 are inserted.

ここで、この半導体モジュール30において、6個のFETTr1〜Tr6の基板31上への実装について説明する。各FETTr1〜Tr6は、ベアチップFET(ベアチップトランジスタ)35で構成され、図5に示すように、ベアチップFET35上にソース電極Sとゲート電極Gとを備え、また、ベアチップFET35の下面には図示しないドレイン電極を備えている。半導体モジュール30は、図6に示すように、金属製の基板31を備え、基板31の上には、絶縁層32が形成されている。基板31は、アルミニウムなどの金属製である。また、この絶縁層32上には、複数の配線パターン33a〜33dが形成されている。各配線パターン33a〜33dは、銅やアルミニウムなどの金属、又はこの金属を含む合金で構成される。   Here, in the semiconductor module 30, mounting of the six FETs Tr1 to Tr6 on the substrate 31 will be described. Each of the FETs Tr1 to Tr6 is composed of a bare chip FET (bare chip transistor) 35, and includes a source electrode S and a gate electrode G on the bare chip FET 35 as shown in FIG. It has an electrode. As shown in FIG. 6, the semiconductor module 30 includes a metal substrate 31, and an insulating layer 32 is formed on the substrate 31. The substrate 31 is made of a metal such as aluminum. A plurality of wiring patterns 33 a to 33 d are formed on the insulating layer 32. Each wiring pattern 33a-33d is comprised with metals, such as copper and aluminum, or the alloy containing this metal.

そして、複数の配線パターン33a〜33dのうち一つの配線パターン33a上には半田34aを介して各FETTr1〜Tr6を構成するベアチップFET35が実装されている。ベアチップFET35の下面に形成されたドレイン電極が半田34aを介して配線パターン33aに接合される。そして、ベアチップFET35のソース電極S上と複数の配線パターン33a〜33dのうち他の配線パターン33b上とがソース電極用銅コネクタ36aでそれぞれ半田34e,34bを介して接合される。   A bare chip FET 35 constituting each of the FETs Tr1 to Tr6 is mounted on one wiring pattern 33a among the plurality of wiring patterns 33a to 33d via solder 34a. The drain electrode formed on the lower surface of the bare chip FET 35 is joined to the wiring pattern 33a via the solder 34a. Then, the source electrode S of the bare chip FET 35 and the other wiring pattern 33b among the plurality of wiring patterns 33a to 33d are joined by the source electrode copper connector 36a via solders 34e and 34b, respectively.

ソース電極用銅コネクタ36aは、銅板を打抜き及び曲げ加工することによって形成されるものであり、平板部36aaと、平板部36aaの一端から延び、半田34eを介してベアチップFET35のソース電極Sに接合される接続部36abと、平板部36aaの他端から延び、半田34bを介して配線パターン33bに接合される接続部36acとを備えている。   The source electrode copper connector 36a is formed by punching and bending a copper plate, extends from one end of the flat plate portion 36aa and the flat plate portion 36aa, and is joined to the source electrode S of the bare chip FET 35 via the solder 34e. And a connecting portion 36ac that extends from the other end of the flat plate portion 36aa and is joined to the wiring pattern 33b via the solder 34b.

また、ベアチップFET35のゲート電極G上と複数の配線パターン33a〜33dのうち更に他の配線パターン33c上とがゲート電極用銅コネクタ36bでそれぞれ半田34f,34cを介して接合される。ゲート電極用銅コネクタ36bは、銅板を打抜き及び曲げ加工することによって形成されるものであり、平板部36baと、平板部36baの一端から延び、半田34fを介してベアチップFET35のゲート電極Gに接合される接続部36bbと、平板部36baの他端から延び、半田34cを介して配線パターン33cに接合される接続部36bcとを備えている。また、絶縁層32上に形成された複数の配線パターン33a〜33dのうち更にもう一つ他の配線パターン33d上には半田34dを介してコンデンサなどの他の基板実装部品37が実装される。   Further, the gate electrode G of the bare chip FET 35 and the other wiring pattern 33c among the plurality of wiring patterns 33a to 33d are joined by the gate electrode copper connector 36b via solders 34f and 34c, respectively. The gate electrode copper connector 36b is formed by punching and bending a copper plate, extends from one end of the flat plate portion 36ba and the flat plate portion 36ba, and is joined to the gate electrode G of the bare chip FET 35 via the solder 34f. A connecting portion 36bb extending from the other end of the flat plate portion 36ba and connected to the wiring pattern 33c via the solder 34c. In addition, another board mounting component 37 such as a capacitor is mounted on another wiring pattern 33d among the plurality of wiring patterns 33a to 33d formed on the insulating layer 32 via solder 34d.

次に、ソース電極用銅コネクタの形状について説明する。
ソース電極用銅コネクタ36aは、図7に斜視図を示すように、平板部36aaと、接続部36ab(第1の脚部)と、接続部36ac(第2の脚部)とでブリッジ形状となっている。より具体的には、ソース電極用銅コネクタ36aは、平板部36aaの左右方向(図7のX軸方向)一端部に、第1屈曲部36adを介して接続部36abの一端が接続されており、接続部36abの他端は、第2屈曲部36aeを介して外向きの接合面36afが形成されている。この接合面36afの下面が半田34eを介してベアチップFET35のソース電極Sに接合される。
Next, the shape of the source electrode copper connector will be described.
As shown in the perspective view of FIG. 7, the source electrode copper connector 36a has a bridge shape with a flat plate portion 36aa, a connection portion 36ab (first leg portion), and a connection portion 36ac (second leg portion). It has become. More specifically, in the source electrode copper connector 36a, one end of the connecting portion 36ab is connected to one end of the flat plate portion 36aa in the left-right direction (X-axis direction in FIG. 7) via the first bent portion 36ad. The other end of the connecting portion 36ab is formed with an outward joint surface 36af via the second bent portion 36ae. The lower surface of the bonding surface 36af is bonded to the source electrode S of the bare chip FET 35 via the solder 34e.

また、接続部36abは、接合面36af近傍に幅狭部36agを有する。幅狭部36agは、第1屈曲部36adから第2屈曲部36aeに向けて幅が狭くなるテーパ形状となっている。平板部36aaの左右方向他端部には、第3屈曲部36ahを介して接続部36acの一端が接続されており、接続部36acの他端は、第4屈曲部36aiを介して外向きの接合面36ajが形成されている。この接合面36ajの下面が半田34bを介して配線パターン33bに接合される。   Further, the connecting portion 36ab has a narrow portion 36ag in the vicinity of the joint surface 36af. The narrow portion 36ag has a tapered shape in which the width becomes narrower from the first bent portion 36ad toward the second bent portion 36ae. One end of the connecting portion 36ac is connected to the other end portion in the left-right direction of the flat plate portion 36aa via the third bent portion 36ah, and the other end of the connecting portion 36ac is directed outward via the fourth bent portion 36ai. A joint surface 36aj is formed. The lower surface of the bonding surface 36aj is bonded to the wiring pattern 33b via the solder 34b.

さらに、接合面36afには、当該接合面36afに作用する応力を緩和する形状を有する応力緩和部36akを設ける。図8〜図11は、応力緩和部36akの形状の例を示す図である。図8、図9及び図11において、符号PはソースPADである。図8に示す応力緩和部36akは、接合面36afにスリット(切り込み)を設けたものである。なお、当該スリットは、接合面36afの先端部を2つの面に分けられるものであれば、その形状や大きさは適宜選択可能である。   Further, the joint surface 36af is provided with a stress relaxation portion 36ak having a shape that relieves stress acting on the joint surface 36af. 8-11 is a figure which shows the example of the shape of the stress relaxation part 36ak. In FIG. 8, FIG. 9 and FIG. 11, the symbol P is a source PAD. The stress relaxation part 36ak shown in FIG. 8 is provided with a slit (cut) in the joint surface 36af. In addition, if the said slit can divide the front-end | tip part of the joint surface 36af into two surfaces, the shape and magnitude | size can be selected suitably.

応力緩和部36akの別の例としては、例えば図9に示すように、接合面36afの板厚を薄くするものもある。また、応力緩和部36akとしては、図10に示すように、接合面36af先端の角に面取り部を設けるものもある。ここで、面取り部は、図10に示すR面取りに代えて、大きな円でもよく、またC面取りでもよい。さらに、応力緩和部36akとしては、図11に示すように、接合面36afの中央に孔を設けるものもある。   As another example of the stress relaxation part 36ak, as shown in FIG. 9, for example, there is one in which the thickness of the joint surface 36af is made thin. Further, as the stress relaxation part 36ak, as shown in FIG. 10, there is one in which a chamfered part is provided at a corner of the tip of the joint surface 36af. Here, the chamfered portion may be a large circle or a C chamfer instead of the R chamfer shown in FIG. Furthermore, as the stress relaxation portion 36ak, there is one in which a hole is provided in the center of the joint surface 36af as shown in FIG.

なお、ソース電極用銅コネクタ36aの形状は、ソース電極Sと配線パターン33bとを接続できるブリッジ形状であれば任意の形状をとることができる。また、応力緩和部36akの形状についても、ソース電極Sと接合できる形状であれば任意の形状をとることができる。但し、半田接合の際に後に述べるリフロー接合を行い、また、半導体モジュール30が稼働した際に発熱により高温になることから、熱応力を緩和できる形状とする。ゲート電極用銅コネクタ36bについても同様である。このように構成された半導体モジュール30は、図3に示すように、ケース20の半導体モジュール載置部21上に複数の取付けねじ38により取り付けられる。半導体モジュール30の基板31には、取付けねじ38が挿通する複数の貫通孔31aが形成されている。   The shape of the source electrode copper connector 36a can be any shape as long as it is a bridge shape capable of connecting the source electrode S and the wiring pattern 33b. Further, the shape of the stress relaxation portion 36ak can be any shape as long as it can be joined to the source electrode S. However, since reflow bonding, which will be described later, is performed at the time of solder bonding and the semiconductor module 30 is operated, the heat is generated due to heat generation, so that the thermal stress can be relieved. The same applies to the gate electrode copper connector 36b. As shown in FIG. 3, the semiconductor module 30 configured as described above is attached to the semiconductor module mounting portion 21 of the case 20 by a plurality of mounting screws 38. The substrate 31 of the semiconductor module 30 is formed with a plurality of through holes 31a through which the mounting screws 38 are inserted.

なお、半導体モジュール30を半導体モジュール載置部21上に取り付けるに際しては、放熱用シート39を半導体モジュール載置部21上に取付け、その放熱用シート39の上から半導体モジュール30を取り付ける。この放熱用シート39により、半導体モジュール30で発生した熱が放熱用シート39を介してケース20に放熱される。また、制御回路基板40は、基板上に複数の電子部品を実装して制御演算装置11及びゲート駆動回路12を含む制御回路を構成するものである。制御回路基板40は、半導体モジュール30を半導体モジュール載置部21上に取り付けた後、半導体モジュール30の上方から半導体モジュール載置部21及び電力及び信号用コネクタ実装部22に立設された複数の取付けポスト24上に複数の取付けねじ41により取り付けられる。制御回路基板40には、取付けねじ41が挿通する複数の貫通孔40aが形成されている。   When mounting the semiconductor module 30 on the semiconductor module mounting portion 21, the heat dissipation sheet 39 is mounted on the semiconductor module mounting portion 21, and the semiconductor module 30 is mounted on the heat dissipation sheet 39. The heat generated by the semiconductor module 30 is radiated to the case 20 through the heat dissipation sheet 39 by the heat dissipation sheet 39. The control circuit board 40 constitutes a control circuit including the control arithmetic device 11 and the gate drive circuit 12 by mounting a plurality of electronic components on the board. After the semiconductor module 30 is mounted on the semiconductor module mounting portion 21, the control circuit board 40 has a plurality of standing uprights on the semiconductor module mounting portion 21 and the power and signal connector mounting portion 22 from above the semiconductor module 30. A plurality of mounting screws 41 are mounted on the mounting post 24. The control circuit board 40 has a plurality of through holes 40a through which the mounting screws 41 are inserted.

また、電力及び信号用コネクタ50は、バッテリー(図示せず)からの直流電源を半導体モジュール30に、トルクセンサ12や車速センサ9からの信号を含む各種信号を制御回路基板40に入力するために用いられる。電力及び信号用コネクタ50は、半導体モジュール載置部21に設けられた電力及び信号用コネクタ実装部22に複数の取付けねじ51により取り付けられる。   Further, the power and signal connector 50 is used to input a DC power source from a battery (not shown) to the semiconductor module 30 and various signals including signals from the torque sensor 12 and the vehicle speed sensor 9 to the control circuit board 40. Used. The power and signal connector 50 is attached to the power and signal connector mounting portion 22 provided on the semiconductor module mounting portion 21 with a plurality of mounting screws 51.

そして、3相出力用コネクタ60は、a相出力端子92a、b相出力端子92b、及びc相出力端子92cからの電流を出力するために用いられる。3相出用コネクタ60は、半導体モジュール載置部21の幅方向端部に設けられた3相出力用コネクタ実装部23に複数の取付けねじ61により取り付けられる。3相出力コネクタ60には、取付けねじ61が挿通する複数の貫通孔60aが形成されている。更に、カバー70は、半導体モジュール30、制御回路基板40、電力及び信号用コネクタ50、及び3相出力用コネクタ60が取り付けられたケース20に対し、制御回路基板40の上方から当該制御回路基板40を覆うように取り付けられる。   The three-phase output connector 60 is used to output current from the a-phase output terminal 92a, the b-phase output terminal 92b, and the c-phase output terminal 92c. The three-phase output connector 60 is attached to the three-phase output connector mounting portion 23 provided at the end in the width direction of the semiconductor module mounting portion 21 by a plurality of mounting screws 61. The three-phase output connector 60 is formed with a plurality of through holes 60a through which the mounting screws 61 are inserted. Further, the cover 70 covers the case 20 to which the semiconductor module 30, the control circuit board 40, the power and signal connector 50, and the three-phase output connector 60 are attached from above the control circuit board 40. It is attached to cover.

次に、半導体モジュール30の製造方法について図12を参照して説明する。半導体モジュール30の製造に際し、先ず、図12(a)に示すように、金属製の基板31の一方の主面上に絶縁層32を形成する(絶縁層形成工程)。次いで、絶縁層32上に複数の配線パターン33a〜33dを形成する(配線パターン形成工程)。その後、図12(b)に示すように、複数の配線パターン33a〜33d上にそれぞれ半田ペースト(半田34a〜34d)を塗布する(半田ペースト塗布工程)。そして、図12(c)に示すように、複数の配線パターン33a〜33dのうち一つの配線パターン33a上に塗布された半田ペースト(半田33a)上にベアチップFET35の一つを搭載するとともに(ベアチップFET搭載工程)、他の配線パターン33d上に塗布された半田ペースト(半田34d)上にその他の基板実装部品37を搭載する。その他のベアチップFET35についても、配線パターン33aと同一あるいは別個の配線パターン上に搭載する。   Next, a method for manufacturing the semiconductor module 30 will be described with reference to FIG. When manufacturing the semiconductor module 30, first, as shown in FIG. 12A, an insulating layer 32 is formed on one main surface of a metal substrate 31 (insulating layer forming step). Next, a plurality of wiring patterns 33a to 33d are formed on the insulating layer 32 (wiring pattern forming step). Then, as shown in FIG.12 (b), solder paste (solder 34a-34d) is apply | coated on the some wiring patterns 33a-33d, respectively (solder paste application | coating process). Then, as shown in FIG. 12C, one of the bare chip FETs 35 is mounted on the solder paste (solder 33a) applied on one wiring pattern 33a among the plurality of wiring patterns 33a to 33d (bare chip). FET mounting step), another board mounting component 37 is mounted on the solder paste (solder 34d) applied on the other wiring pattern 33d. Other bare chip FETs 35 are also mounted on the same or separate wiring pattern as the wiring pattern 33a.

次いで、図12(d)に示すように、ベアチップFET35の上面に形成されたソース電極S及びゲート電極D上に半田ペースト(半田34e,34f)を塗布する(半田ペースト塗布工程)。その後、図12(e)に示すように、ベアチップFET35のソース電極S上に塗布された半田ペースト(半田34e)上及び複数の配線パターン33a〜33dのうちベアチップFET35が搭載された配線パターン33a以外の他の配線パターン33b上に塗布された半田ペースト(半田34b)上に、ソース電極用銅コネクタ36aを搭載する(ソース電極用銅コネクタ搭載工程)。   Next, as shown in FIG. 12D, a solder paste (solder 34e, 34f) is applied on the source electrode S and the gate electrode D formed on the upper surface of the bare chip FET 35 (solder paste applying step). Thereafter, as shown in FIG. 12E, on the solder paste (solder 34e) applied on the source electrode S of the bare chip FET 35 and the wiring pattern 33a other than the wiring pattern 33a on which the bare chip FET 35 is mounted among the plurality of wiring patterns 33a to 33d. The source electrode copper connector 36a is mounted on the solder paste (solder 34b) applied on the other wiring pattern 33b (source electrode copper connector mounting step).

また、ベアチップFET35のゲート電極G上に塗布された半田ペースト(半田34f)上、及び複数の配線パターン33a〜33dのうちベアチップFET35が搭載された配線パターン33a及びソース電極用銅コネクタ36aが搭載された配線パターン33b以外の更に他の配線パターン33c上に塗布された半田ペースト(半田34c)上に、ゲート電極用銅コネクタ36bを搭載する(ゲート電極用銅コネクタ搭載工程)。これにより、半導体モジュール中間組立体が構成される。   In addition, on the solder paste (solder 34f) applied on the gate electrode G of the bare chip FET 35, the wiring pattern 33a on which the bare chip FET 35 is mounted among the plurality of wiring patterns 33a to 33d, and the source electrode copper connector 36a are mounted. The gate electrode copper connector 36b is mounted on the solder paste (solder 34c) applied on the other wiring pattern 33c other than the wiring pattern 33b (gate electrode copper connector mounting step). Thereby, the semiconductor module intermediate assembly is configured.

そして、以上の工程により構成された半導体モジュール中間組立体をリフロー炉(図示せず)に入れて、複数の配線パターン33a〜33dのうち一つの配線パターン33aとベアチップFET35との半田34aを介しての接合、配線パターン33dとその他の基板実装部品37との半田34dを介しての接合、ベアチップFET35の上面に形成されたソース電極Sとソース電極用銅コネクタ36aとの半田34eを介しての接合、複数の配線パターン33a〜33dのうち他の配線パターン33bとソース電極用銅コネクタ36aとの半田34bを介しての接合、ベアチップFET35の上面に形成されたゲート電極Gとゲート電極用銅コネクタ36bとの半田34fを介しての接合、及び複数の配線パターン33a〜33dのうち更に他の配線パターン33cとゲート電極用銅コネクタ36bとの半田34cを介しての接合を一括して行う(接合工程)。これにより、半導体モジュール30は完成する。   Then, the semiconductor module intermediate assembly constituted by the above steps is put in a reflow furnace (not shown), and the solder 34a between one wiring pattern 33a and the bare chip FET 35 among the plurality of wiring patterns 33a to 33d. Bonding, wiring pattern 33d and other board mounting component 37 via solder 34d, source electrode S formed on the upper surface of bare chip FET 35 and source electrode copper connector 36a via solder 34e The other wiring pattern 33b of the plurality of wiring patterns 33a to 33d is joined to the source electrode copper connector 36a via the solder 34b, the gate electrode G formed on the upper surface of the bare chip FET 35 and the gate electrode copper connector 36b. And joining of the plurality of wiring patterns 33a to 33d via the solder 34f. Collectively performed bonded via the solder 34c of the other wiring patterns 33c and the gate electrode copper connector 36b (bonding step). Thereby, the semiconductor module 30 is completed.

ここで、ベアチップFET35のソース電極Sと基板31上の配線パターン33bとの接続にソース電極用銅コネクタ36aを用い、ベアチップFET35のゲート電極Gと基板31上の別の配線パターン33cとの接続にゲート電極用銅コネクタ36bを用いることにより、はんだ実装作業で行えるので、ベアチップFET35のソース電極Sと基板31上の配線パターン33bとの接続及びベアチップFET35のゲート電極Gと基板31上の別の配線パターン33cとの接続を、ベアチップFET35やその他の基板実装部品37を基板31上の配線パターン33a,33d上に実装する際に行われるはんだ実装作業と同一の工程で行うことができる。このため、半導体モジュール30の製造タクトを短くすることができるとともに、ワイヤボンディングの専用設備が不要になり、半導体モジュール30の製造コストを安価にすることができる。   Here, the source electrode copper connector 36a is used for connection between the source electrode S of the bare chip FET 35 and the wiring pattern 33b on the substrate 31, and the connection between the gate electrode G of the bare chip FET 35 and another wiring pattern 33c on the substrate 31 is used. Since the gate electrode copper connector 36b is used for solder mounting, the connection between the source electrode S of the bare chip FET 35 and the wiring pattern 33b on the substrate 31 and another wiring on the substrate 31 of the gate electrode G of the bare chip FET 35 and the substrate 31 are provided. The connection with the pattern 33c can be performed in the same process as the solder mounting operation performed when the bare chip FET 35 and other board mounting components 37 are mounted on the wiring patterns 33a and 33d on the board 31. For this reason, the manufacturing tact of the semiconductor module 30 can be shortened, and dedicated equipment for wire bonding is not required, and the manufacturing cost of the semiconductor module 30 can be reduced.

ところで、半導体モジュール30の基板31にはアルミニウムが用いられており、ソース電極用銅コネクタ36a及びゲート電極用銅コネクタ36bには銅材が用いられている。アルミニウムの線膨張係数は23.6×10−6/℃であり、銅材の線膨張係数は16.8×10−6/℃であり、ベアチップFET35のシリコンの線膨張係数は2.5×10−6/℃である。すなわち、基板31の方が、銅コネクタ36a及び36bよりも温度変化に対して変形しやすい。 By the way, aluminum is used for the substrate 31 of the semiconductor module 30, and a copper material is used for the copper connector 36a for the source electrode and the copper connector 36b for the gate electrode. The linear expansion coefficient of aluminum is 23.6 × 10 −6 / ° C., the linear expansion coefficient of copper material is 16.8 × 10 −6 / ° C., and the linear expansion coefficient of silicon of the bare chip FET 35 is 2.5 ×. 10 −6 / ° C. That is, the substrate 31 is more easily deformed with respect to temperature changes than the copper connectors 36a and 36b.

そのため、リフロー工程や、電動パワーステアリング(EPS)作動中の発熱により高温となると、基板31及びベアチップFET35と銅コネクタ36a,36bとの膨張率の違いにより、銅コネクタ36a,36bに応力がかかる。このとき、銅コネクタ36a,36bがこの応力を緩和できない構造となっていると、ベアチップFET35との半田接合が剥がれてしまうおそれがある。   Therefore, when the temperature becomes high due to heat generation during the reflow process or the electric power steering (EPS) operation, stress is applied to the copper connectors 36a and 36b due to the difference in expansion coefficient between the substrate 31 and the bare chip FET 35 and the copper connectors 36a and 36b. At this time, if the copper connectors 36a and 36b have a structure that cannot relieve the stress, the solder joint with the bare chip FET 35 may be peeled off.

これに対して、本実施形態では、銅コネクタ36a及び36bをブリッジ形状とし、ベアチップFET35の電極との接合面36af付近に幅狭部36agを設けると共に、ベアチップFET35の電極との接合面36afに応力緩和部36akを設ける。このように、銅コネクタ36a,36bをブリッジ形状とすることで、上下左右方向(図7のZ軸方向,X軸方向)の変位が吸収可能となる。また、幅狭部36agを設けることで、曲げの基点を細くすることができ、前後方向(図7のY軸方向)及び捻り方向の変位が吸収可能となる。   In contrast, in the present embodiment, the copper connectors 36a and 36b are formed in a bridge shape, a narrow portion 36ag is provided in the vicinity of the bonding surface 36af with the electrode of the bare chip FET 35, and stress is applied to the bonding surface 36af with the electrode of the bare chip FET 35. A relaxation part 36ak is provided. Thus, by making the copper connectors 36a and 36b into a bridge shape, it becomes possible to absorb displacement in the vertical and horizontal directions (Z-axis direction and X-axis direction in FIG. 7). In addition, by providing the narrow portion 36ag, the bending base point can be narrowed, and the displacement in the front-rear direction (Y-axis direction in FIG. 7) and the twist direction can be absorbed.

すなわち、熱膨張、熱収縮により基板31や銅コネクタ36a,36bに変形が生じた場合であっても、銅コネクタ36a,36bを曲がりやすくすることができる。また、幅狭部36agを接合面36af近傍に設けるので、銅コネクタ36a,36bが幅狭部36agを基点に曲がったときの、銅コネクタ36a,36bとベアチップFET35との半田接合が剥がれにくい。   That is, even when the substrate 31 and the copper connectors 36a and 36b are deformed due to thermal expansion and contraction, the copper connectors 36a and 36b can be easily bent. Further, since the narrow portion 36ag is provided in the vicinity of the joint surface 36af, the solder joint between the copper connectors 36a and 36b and the bare chip FET 35 is difficult to peel off when the copper connectors 36a and 36b are bent with the narrow portion 36ag as a base point.

さらに、応力緩和部36akを設けることで、捻り方向への応力を緩和することができる。特に、銅コネクタ36a,36bの応力緩和形状を、図8に示すスリット形状とした場合、ベアチップFET35との接点が2つになると共に、各々の接合部の幅がさらに狭くなるため、捻りを受けても追従しやすくなる。また、接点が2つになることで所謂2重系を構成できるので、電気的信頼性が向上する。   Furthermore, the stress in the twisting direction can be relaxed by providing the stress relaxation part 36ak. In particular, when the stress relaxation shape of the copper connectors 36a and 36b is the slit shape shown in FIG. 8, the number of contact points with the bare chip FET 35 is two and the width of each joint portion is further narrowed. Even easier to follow. Moreover, since the so-called dual system can be configured by using two contacts, the electrical reliability is improved.

また、図9に示す薄板形状とした場合、板厚が薄いために捩れやすく、変位吸収しやすい。図10に示す先端R形状とした場合、捻りを受けたときの角部への応力集中を逃がす効果がある。さらに、図11に示す孔形状とした場合にも、捩りを受けても追従しやすくなる。また、半田が接合面36afの上面に流れて放射状に広がるので、捻りを受けても半田が剥がれ難い。   Moreover, when it is set as the thin plate shape shown in FIG. 9, since plate | board thickness is thin, it is easy to twist and it is easy to absorb a displacement. The tip R shape shown in FIG. 10 has an effect of releasing stress concentration at the corner when subjected to twisting. Furthermore, even in the case of the hole shape shown in FIG. In addition, since the solder flows on the upper surface of the joint surface 36af and spreads radially, it is difficult for the solder to be peeled off even when twisted.

またさらに、応力緩和部36akのかわりに、略S字形状の接続部(第1の脚部および第2の脚部)を設けたソース電極用銅コネクタ36aの形状について説明する。図13に示すように、平板部36aaと、接続部36ab(第1の脚部)と、接続部36ac(第2の脚部)とでブリッジ形状となっている。より具体的には、ソース電極用銅コネクタ36aは、平板部36aaの左右方向(図13のX軸方向)の一端部に、第1屈曲部36adを介して接続部36abの一端が接続されており、接続部36abの他端は、第2屈曲部36aeを介して外向きの接合面36afが形成されている。この接合面36afの下面が半田34eを介してベアチップFET35のソース電極に接合される。接続部36abは、第1屈曲部36adから接合面36af近傍まで接続部36ab(第1の脚部)は略S字のヒューズ形状になっている。平板部36aaの左右方向他端部には、第4屈曲部36aiを介して外向きの接合面36ajが形成されている。接続部36acは、第3屈曲部36ahから接合面36ajまで接続部36ac(第2の脚部)は、第1の脚部と同様に略S字のヒューズ形状になっている。この接続部36ab(第1の脚部)および接続部36ac(第2の脚部)に略S字のヒューズ形状により撓みやすく、変位吸収しやすく、応力緩和の効果としては、接続部36ab(第1の脚部)および接続部36ac(第2の脚部)ヒューズ部の伸び縮みするだけでなく、ヒューズ部のS字形状部が折れる方向にも変形できるので、板バネの効果が得られ、かつ、ブリッジ形状により上下方向、左右方向への変形吸収が更に可能となる。   Further, the shape of the source electrode copper connector 36a provided with a substantially S-shaped connecting portion (first leg portion and second leg portion) instead of the stress relaxation portion 36ak will be described. As shown in FIG. 13, the flat plate portion 36aa, the connection portion 36ab (first leg portion), and the connection portion 36ac (second leg portion) form a bridge shape. More specifically, in the source electrode copper connector 36a, one end of the connection portion 36ab is connected to one end portion in the left-right direction (X-axis direction in FIG. 13) of the flat plate portion 36aa via the first bent portion 36ad. The other end of the connecting portion 36ab is formed with an outward joint surface 36af via the second bent portion 36ae. The lower surface of the bonding surface 36af is bonded to the source electrode of the bare chip FET 35 via the solder 34e. In the connection portion 36ab, the connection portion 36ab (first leg portion) has a substantially S-shaped fuse shape from the first bent portion 36ad to the vicinity of the joint surface 36af. An outward joint surface 36aj is formed on the other end in the left-right direction of the flat plate portion 36aa via a fourth bent portion 36ai. In the connection portion 36ac, the connection portion 36ac (second leg portion) from the third bent portion 36ah to the joint surface 36aj has a substantially S-shaped fuse shape like the first leg portion. The connection part 36ab (first leg part) and the connection part 36ac (second leg part) are easily bent due to the substantially S-shaped fuse shape, easily absorb displacement, and the effect of stress relaxation is as follows. 1 leg) and connection part 36ac (second leg part) not only the fuse part expands and contracts, but also can be deformed in the direction in which the S-shaped part of the fuse part breaks, so that the effect of the leaf spring is obtained, In addition, the bridge shape further enables deformation absorption in the vertical direction and the horizontal direction.

以上のように、銅コネクタ36a及び36bがリフロー工程で熱変形する場合や、電動パワーステアリング(EPS)作動中に基板31が膨張/収縮する場合でも、適切に変位吸収することができるので、銅コネクタ36a及び36bとベアチップFET35との半田接合の剥がれを防止することができ、電気的接合の信頼性を確保することができる。また、銅コネクタ36a,36b自身の破損も防止することができる。   As described above, even when the copper connectors 36a and 36b are thermally deformed in the reflow process or when the board 31 expands / shrinks during the electric power steering (EPS) operation, the displacement can be appropriately absorbed. The peeling of the solder joint between the connectors 36a and 36b and the bare chip FET 35 can be prevented, and the reliability of the electrical joint can be ensured. Further, the copper connectors 36a and 36b themselves can be prevented from being damaged.

以上、本発明の実施形態について説明してきたが、本発明はこれに限定されずに種々の変更、改良を行うことができる。例えば、半導体モジュール30においてベアチップFET35を用いているが、ベアチップFET35に限らず、ベアチップIGBTなどの他のベアチップトランジスタを用いてもよい。そして、その他のベアチップトランジスタを用いる場合には、銅コネクタにより、ベアチップトランジスタの上面に形成された電極上と複数の配線パターンのうちベアチップトランジスタが接続された配線パターン以外の他の配線パターン上とを半田を介して接合すればよい。これにより、ベアチップトランジスタの電極と基板上の配線パターンとの接合をベアチップトランジスタやその他の表面実装部品を基板上の配線パターン上に実装する際に行われるはんだ実装作業と同一の工程で行うことができる。   As mentioned above, although embodiment of this invention has been described, this invention is not limited to this, A various change and improvement can be performed. For example, although the bare chip FET 35 is used in the semiconductor module 30, other bare chip transistors such as the bare chip IGBT may be used instead of the bare chip FET 35. When other bare chip transistors are used, the copper connector is used to connect the electrodes formed on the top surface of the bare chip transistor and other wiring patterns other than the wiring pattern to which the bare chip transistor is connected among the plurality of wiring patterns. What is necessary is just to join via solder. As a result, the bonding of the bare chip transistor electrode and the wiring pattern on the substrate can be performed in the same process as the solder mounting operation performed when mounting the bare chip transistor or other surface mount components on the wiring pattern on the substrate. it can.

そして、ベアチップトランジスタとしてベアチップIGBTを用いる場合、ベアチップIGBT上に形成されたエミッタ電極及びゲート電極を、それぞれ、銅コネクタを用いて基板上の配線パターンに半田を介して接合することが好ましい。このように、ベアチップIGBTを用い、ベアチップIGBT上に形成されたエミッタ電極及びゲート電極を、それぞれ、銅コネクタを用いて基板上の配線パターンに半田を介して接合する場合には、ベアチップIGBTのエミッタ電極と基板上の配線パターンとの接続及びベアチップIGBTのゲート電極と基板上の別の配線パターンとの接合をベアチップIGBTやその他の表面実装部品を基板上の配線パターン上に実装する際に行われるはんだ実装作業と同一の工程で行うことができる。   And when using bare chip IGBT as a bare chip transistor, it is preferable to join the emitter electrode and gate electrode which were formed on bare chip IGBT to the wiring pattern on a board | substrate via solder, respectively using a copper connector. As described above, when the bare chip IGBT is used and the emitter electrode and the gate electrode formed on the bare chip IGBT are respectively joined to the wiring pattern on the substrate using the copper connector via the solder, the emitter of the bare chip IGBT is used. The connection between the electrode and the wiring pattern on the substrate and the bonding between the gate electrode of the bare chip IGBT and another wiring pattern on the substrate are performed when the bare chip IGBT or other surface-mounted component is mounted on the wiring pattern on the substrate. It can be performed in the same process as the solder mounting operation.

1…操向ハンドル、2…コラム軸、3…減速ギア、4A,4B…ユニバーサルジョイント、5…ピニオンラック機構、6…タイロッド、7…トルクセンサ、8…電動モータ、9…車速センサ、10…コントローラ、11…制御演算装置、12…ゲート駆動回路、13…モータ駆動部、14…非常停止用の遮断装置、15…電流検出回路、16…回転センサ、17…ロータ位置検出回路、18…IGN電圧モニタ部、19…電源回路部、20…ケース、21…半導体モジュール載置部、21a…ねじ孔、22…電力及び信号用コネクタ実装部、23…3相出力用コネクタ実装部、23a…ねじ孔、24…取付けポスト、24a…ねじ孔、30…半導体モジュール、31…基板、31a…貫通孔、32…絶縁層、33a〜33d…配線パターン、34a〜34d…半田、35…ベアチップFET(ベアチップトランジスタ)、36a…ソース電極用銅コネクタ、36aa…平板部、36ab…接続部(第1の脚部)、36ac…接続部(第2の脚部)、36ad…第1屈曲部、36ae…第2屈曲部、36af…接合面、36ag…幅狭部、36ah…第3屈曲部、36ai…第4屈曲部、36aj…接合面、36ak…応力緩和部、36b…ゲート電極用銅コネクタ、36ba…平板部、36bb…接続部、36bc…接続部、37…基板実装部品、38…取付けねじ、39…放熱用シート、40…制御回路基板、40a…貫通孔、41…取付けねじ、50…電力及び信号用コネクタ、51…取付けねじ、60…3相出力用コネクタ、60a…貫通孔、61…取付けねじ、70…カバー、81…電源ライン、81a…正極端子、82…接地ライン、82a…負極端子、90…3相出力部、91a…a相出力ライン、91b…b相出力ライン、91c…c相出力ライン、G…ゲート電極(電極)、S…ソース電極(電極)   DESCRIPTION OF SYMBOLS 1 ... Steering handle, 2 ... Column shaft, 3 ... Reduction gear, 4A, 4B ... Universal joint, 5 ... Pinion rack mechanism, 6 ... Tie rod, 7 ... Torque sensor, 8 ... Electric motor, 9 ... Vehicle speed sensor, 10 ... Controller 11, control arithmetic device 12, gate drive circuit 13, motor drive unit 14, interruption device for emergency stop 15, current detection circuit 16, rotation sensor 17, rotor position detection circuit 18, IGN Voltage monitor unit, 19 ... Power supply circuit unit, 20 ... Case, 21 ... Semiconductor module mounting unit, 21a ... Screw hole, 22 ... Power and signal connector mounting unit, 23 ... 3-phase output connector mounting unit, 23a ... Screw Holes, 24 ... mounting posts, 24a ... screw holes, 30 ... semiconductor modules, 31 ... substrates, 31a ... through holes, 32 ... insulating layers, 33a-33d ... wiring patterns, 4a to 34d ... solder, 35 ... bare chip FET (bare chip transistor), 36a ... copper connector for source electrode, 36aa ... flat plate part, 36ab ... connecting part (first leg part), 36ac ... connecting part (second leg part) ), 36ad ... first bent portion, 36ae ... second bent portion, 36af ... joint surface, 36ag ... narrow portion, 36ah ... third bent portion, 36ai ... fourth bent portion, 36aj ... joint surface, 36ak ... stress relaxation Part, 36b ... copper connector for gate electrode, 36ba ... flat plate part, 36bb ... connection part, 36bc ... connection part, 37 ... board mounting component, 38 ... mounting screw, 39 ... heat dissipation sheet, 40 ... control circuit board, 40a ... Through hole, 41 ... Mounting screw, 50 ... Power and signal connector, 51 ... Mounting screw, 60 ... 3-phase output connector, 60a ... Through hole, 61 ... Mounting screw, 70 ... Cover , 81 ... power line, 81a ... positive terminal, 82 ... ground line, 82a ... negative terminal, 90 ... three-phase output section, 91a ... a-phase output line, 91b ... b-phase output line, 91c ... c-phase output line, G ... Gate electrode (electrode), S ... Source electrode (electrode)

Claims (6)

金属製の基板と、該基板の上に形成された絶縁層と、該絶縁層上に形成された複数の配線パターンと、該複数の配線パターンのうち一つの配線パターン上に半田を介して実装されるベアチップトランジスタと、該ベアチップトランジスタの上面に形成された電極上と前記複数の配線パターンのうち他の配線パターン上とを半田を介して接合する、銅板で構成される銅コネクタとを備え、
前記銅コネクタは、前記電極上に接続される第1の脚部と、前記配線パターン上に接続される第2の脚部とを有するブリッジ形状であり、
前記第1の脚部の前記電極との接合面近傍に、前記第1の脚部の他の部分と比較して幅の狭い幅狭部を設けると共に、前記第1の脚部の前記電極との接合面に、当該接合面に作用する応力を緩和する形状を有する応力緩和部を設けることを特徴とする半導体モジュール。
A metal substrate, an insulating layer formed on the substrate, a plurality of wiring patterns formed on the insulating layer, and solder mounted on one wiring pattern among the plurality of wiring patterns A bare chip transistor, and a copper connector composed of a copper plate that joins the electrode formed on the top surface of the bare chip transistor and another wiring pattern among the plurality of wiring patterns via solder,
The copper connector has a bridge shape having a first leg connected to the electrode and a second leg connected to the wiring pattern;
In the vicinity of the joint surface of the first leg with the electrode, a narrower portion having a narrower width than the other part of the first leg is provided, and the electrode of the first leg A semiconductor module, wherein a stress relaxation portion having a shape that relieves stress acting on the joint surface is provided on the joint surface.
前記応力緩和部として、前記接合面に切り欠き部を形成したことを特徴とする請求項1に記載の半導体モジュール。   The semiconductor module according to claim 1, wherein a notch portion is formed in the joint surface as the stress relaxation portion. 前記応力緩和部として、前記接合面を薄板で形成したことを特徴とする請求項1又は2に記載の半導体モジュール。   The semiconductor module according to claim 1, wherein the joining surface is formed of a thin plate as the stress relaxation portion. 前記応力緩和部として、前記接合面の角部に面取り部を形成したことを特徴とする請求項1〜3の何れか1項に記載の半導体モジュール。   The semiconductor module according to claim 1, wherein a chamfered portion is formed at a corner portion of the joint surface as the stress relaxation portion. 前記応力緩和部として、前記接合面の中央に孔を形成したことを特徴とする請求項1〜4の何れか1項に記載の半導体モジュール。   The semiconductor module according to claim 1, wherein a hole is formed in the center of the joint surface as the stress relaxation portion. 前記応力緩和部として、前記第1の脚部と前記第2の脚部にそれぞれS字のヒューズ形状を形成したことを特徴とする請求項1に記載の半導体モジュール。   The semiconductor module according to claim 1, wherein an S-shaped fuse shape is formed on each of the first leg portion and the second leg portion as the stress relaxation portion.
JP2013200138A 2013-09-26 2013-09-26 Semiconductor module Pending JP2015069990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013200138A JP2015069990A (en) 2013-09-26 2013-09-26 Semiconductor module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013200138A JP2015069990A (en) 2013-09-26 2013-09-26 Semiconductor module

Publications (1)

Publication Number Publication Date
JP2015069990A true JP2015069990A (en) 2015-04-13

Family

ID=52836425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013200138A Pending JP2015069990A (en) 2013-09-26 2013-09-26 Semiconductor module

Country Status (1)

Country Link
JP (1) JP2015069990A (en)

Similar Documents

Publication Publication Date Title
JP5807721B2 (en) Semiconductor module
JP5741772B2 (en) Semiconductor module
JP6083461B2 (en) Semiconductor module
JP5874869B2 (en) Semiconductor module
JP5892250B2 (en) Semiconductor module
JP2017152727A (en) Power semiconductor module and electric power steering apparatus using the same.
JP2015080383A (en) Semiconductor module
JP2015069990A (en) Semiconductor module
JP2018098008A (en) Electronic control unit for electric power steering device