JP2015053146A - Fuel electrode supported solid oxide fuel cell and method of manufacturing the same - Google Patents
Fuel electrode supported solid oxide fuel cell and method of manufacturing the same Download PDFInfo
- Publication number
- JP2015053146A JP2015053146A JP2013184446A JP2013184446A JP2015053146A JP 2015053146 A JP2015053146 A JP 2015053146A JP 2013184446 A JP2013184446 A JP 2013184446A JP 2013184446 A JP2013184446 A JP 2013184446A JP 2015053146 A JP2015053146 A JP 2015053146A
- Authority
- JP
- Japan
- Prior art keywords
- solid oxide
- electrode
- porous structure
- fuel electrode
- fuel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 131
- 239000007787 solid Substances 0.000 title claims abstract description 85
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- 239000002245 particle Substances 0.000 claims abstract description 86
- 239000003792 electrolyte Substances 0.000 claims abstract description 64
- 230000003197 catalytic effect Effects 0.000 claims abstract description 4
- 239000012528 membrane Substances 0.000 claims description 53
- 239000002002 slurry Substances 0.000 claims description 34
- 239000006260 foam Substances 0.000 claims description 20
- 239000002001 electrolyte material Substances 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 7
- 230000000694 effects Effects 0.000 claims description 6
- 238000010304 firing Methods 0.000 claims description 5
- 238000007254 oxidation reaction Methods 0.000 abstract description 5
- 230000003647 oxidation Effects 0.000 abstract description 4
- 230000009467 reduction Effects 0.000 abstract description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 59
- 239000000843 powder Substances 0.000 description 24
- 229910001233 yttria-stabilized zirconia Inorganic materials 0.000 description 23
- 239000010419 fine particle Substances 0.000 description 18
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 13
- 230000001590 oxidative effect Effects 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 239000011148 porous material Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 239000011362 coarse particle Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 238000010248 power generation Methods 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 4
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 4
- 239000007772 electrode material Substances 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910000480 nickel oxide Inorganic materials 0.000 description 4
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 4
- WUOACPNHFRMFPN-SECBINFHSA-N (S)-(-)-alpha-terpineol Chemical compound CC1=CC[C@@H](C(C)(C)O)CC1 WUOACPNHFRMFPN-SECBINFHSA-N 0.000 description 3
- OVKDFILSBMEKLT-UHFFFAOYSA-N alpha-Terpineol Natural products CC(=C)C1(O)CCC(C)=CC1 OVKDFILSBMEKLT-UHFFFAOYSA-N 0.000 description 3
- 229940088601 alpha-terpineol Drugs 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 230000002427 irreversible effect Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 229910002076 stabilized zirconia Inorganic materials 0.000 description 3
- 239000011800 void material Substances 0.000 description 3
- 239000001856 Ethyl cellulose Substances 0.000 description 2
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 239000011195 cermet Substances 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000011267 electrode slurry Substances 0.000 description 2
- 229920001249 ethyl cellulose Polymers 0.000 description 2
- 235000019325 ethyl cellulose Nutrition 0.000 description 2
- 239000002737 fuel gas Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910002084 calcia-stabilized zirconia Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 235000012489 doughnuts Nutrition 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 230000037427 ion transport Effects 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 229910002085 magnesia-stabilized zirconia Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- -1 stabilized zirconia Chemical compound 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Abstract
Description
本発明は、燃料極支持型の固体酸化物型燃料電池およびその製造方法に関する。 The present invention relates to a fuel electrode-supported solid oxide fuel cell and a method for manufacturing the same.
燃料極と空気極とを固体酸化物電解質で分離し構成される燃料電池セルに水素などの可燃性ガスと酸素を含む酸化性ガスとを供給して発電を行う固体酸化物型燃料電池(以下、SOFCと称する。)が知られている。このSOFCは、高温作動であることから発電効率が高く、また、純水素以外の燃料ガスでも発電可能なことから次世代燃料電池として期待されている。 A solid oxide fuel cell (hereinafter referred to as a power source) that generates electricity by supplying a combustible gas such as hydrogen and an oxidizing gas containing oxygen to a fuel cell configured by separating a fuel electrode and an air electrode with a solid oxide electrolyte , Referred to as SOFC). This SOFC is expected to be a next-generation fuel cell because it has high power generation efficiency because of its high-temperature operation, and it can also generate power using fuel gas other than pure hydrogen.
SOFCには主に、電解質を厚くした電解質支持型セルと、燃料極を厚くした燃料極支持型セルとがあるが、電解質は発電時に大きな内部抵抗となるため、電池特性の向上の目的から電解質を薄くできる燃料極支持型セルが普及しつつある。 The SOFC mainly has an electrolyte support cell with a thick electrolyte and a fuel electrode support cell with a thick fuel electrode. Since the electrolyte has a large internal resistance during power generation, the electrolyte is used for the purpose of improving battery characteristics. A fuel electrode-supported cell that can reduce the thickness of the electrode is becoming widespread.
燃料極支持型セルの燃焼極としては、平均粒径が1μm程度の酸化ニッケル(NiO、但し燃料電池作動時には金属Ni)と、平均粒径が0.5μm程度のジルコニア(ZrO2)微粒子とを混合して得たニッケル−ジルコニアサーメットが知られている。 As the combustion electrode of the fuel electrode support type cell, nickel oxide (NiO, which is metal Ni when the fuel cell is operated) having an average particle diameter of about 1 μm and zirconia (ZrO 2 ) fine particles having an average particle diameter of about 0.5 μm are used. Nickel-zirconia cermet obtained by mixing is known.
また、特許文献1には、ジルコニア粗粒子群と、ジルコニア微粒子群と、ニッケルないし酸化ニッケル粒子群との混合物からなり、前記各粒子群の粒径がジルコニア粗粒子>ニッケルないし酸化ニッケル粒子>ジルコニア微粒子の関係を満たし、前記ジルコニア粗粒子と前記ニッケルないし酸化ニッケル粒子と前記ジルコニア微粒子との重量比が、7〜4:3〜6:1であることを特徴とする燃料極材料が記載されている。特許文献2によれば、この燃料極材料は、例えば、最初にYSZ粗粒子とNiO粒子とを48〜60時間程度混合し、次いでこの混合物にYSZ微粒子群を添加してさらに48時間程度混合することにより得ることができる。 Patent Document 1 includes a mixture of a zirconia coarse particle group, a zirconia fine particle group, and a nickel or nickel oxide particle group, and the particle size of each particle group is zirconia coarse particle> nickel or nickel oxide particle> zirconia. A fuel electrode material characterized by satisfying the relationship of fine particles, wherein a weight ratio of the zirconia coarse particles, the nickel or nickel oxide particles, and the zirconia fine particles is 7 to 4: 3 to 6: 1 is described. Yes. According to Patent Document 2, for example, in this fuel electrode material, YSZ coarse particles and NiO particles are first mixed for about 48 to 60 hours, and then the YSZ fine particle group is added to the mixture and further mixed for about 48 hours. Can be obtained.
SOFCの作動時、燃料極には水素が供給されるので、燃料極は還元雰囲気下にあるが、起動停止時には燃料極には空気が到達してしまうため、燃料極は酸化雰囲気となる。そのため、SOFCの作動と停止をくり返す使用の過程において、燃料極は、還元雰囲気/酸化雰囲気に交互にくり返し晒され、酸化雰囲気下では燃料極の電極粒子であるNiが酸化されNiOとなり、電極粒子の体積が膨張してしまう。この電極粒子の不可逆な膨張が燃料極の強度の劣化を招き、SOFCの電池特性や寿命を損なう原因となっていた。また、還元雰囲気/酸化雰囲気のくり返しの過程でNi粒子が徐々に凝集することも、SOFCの電池特性を劣化させる原因となっていた。 Since hydrogen is supplied to the fuel electrode during the operation of the SOFC, the fuel electrode is in a reducing atmosphere. However, when the engine is stopped, air reaches the fuel electrode, so that the fuel electrode has an oxidizing atmosphere. Therefore, the fuel electrode is repeatedly exposed to the reducing atmosphere / oxidizing atmosphere repeatedly in the process of use where the SOFC is repeatedly turned on and off, and in the oxidizing atmosphere, Ni that is the electrode particles of the fuel electrode is oxidized to NiO. The volume of the particles will expand. This irreversible expansion of the electrode particles causes the deterioration of the strength of the fuel electrode, which is a cause of impairing the battery characteristics and life of the SOFC. In addition, Ni particles gradually agglomerate during the repetitive process of the reducing atmosphere / oxidizing atmosphere, which is a cause of deterioration of the battery characteristics of the SOFC.
そのため、還元雰囲気/酸化雰囲気にくり返し晒されても強度が劣化しない燃料極が求められている。しかしながら、本発明者の検討によれば、従来のニッケル−ジルコニアサーメットや特許文献1の燃料極材料から作製した燃料極においては、この要求を満たしていないことが判明した。 Therefore, there is a demand for a fuel electrode that does not deteriorate in strength even when repeatedly exposed to a reducing atmosphere / oxidizing atmosphere. However, according to the study by the present inventor, it has been found that the fuel electrode made from the conventional nickel-zirconia cermet or the fuel electrode material of Patent Document 1 does not satisfy this requirement.
そこで本発明は、上記課題に鑑み、高い出力密度を有し、かつ、還元雰囲気/酸化雰囲気にくり返し晒されても強度が低下しにくく耐久性の高い燃料極支持型の固体酸化物型燃料電池およびその製造方法を提供することを目的とする。 Therefore, in view of the above problems, the present invention provides a fuel electrode-supported solid oxide fuel cell that has a high output density and is less likely to have a reduced strength even when repeatedly exposed to a reducing atmosphere / oxidizing atmosphere. And it aims at providing the manufacturing method.
上記目的を達成する本発明の要旨構成は以下のとおりである。
(1)燃料極と、該燃料極上に形成された固体酸化物電解質膜と、該固体酸化物電解質膜の一部の上に形成された空気極と、を有し、
前記燃料極は、固体酸化物からなる多孔質構造体と、該多孔質構造体の空隙内に分散された、電極触媒能を有する電極粒子の集合体と、を含み、
前記固体酸化物電解質膜の露出面から前記燃料極を見た平面視で、前記多孔質構造体と前記電極粒子の集合体とが斑状に分布し、前記平面視での前記燃料極の面積に対する前記多孔質構造体の面積が10〜50%であることを特徴とする燃料極支持型の固体酸化物型燃料電池。
The gist configuration of the present invention for achieving the above object is as follows.
(1) having a fuel electrode, a solid oxide electrolyte membrane formed on the fuel electrode, and an air electrode formed on a part of the solid oxide electrolyte membrane,
The fuel electrode includes a porous structure made of a solid oxide, and an aggregate of electrode particles having an electrode catalytic ability dispersed in voids of the porous structure,
In the plan view of the fuel electrode viewed from the exposed surface of the solid oxide electrolyte membrane, the porous structure and the aggregate of the electrode particles are distributed in spots, and the area of the fuel electrode in the plan view is An anode-supported solid oxide fuel cell, wherein the porous structure has an area of 10 to 50%.
(2)前記固体酸化物電解質膜の露出面から前記燃料極を見た平面視で、前記燃料極上に少なくとも2mmの長さに設定した線上において、前記多孔質構造体の平均長さが10〜500μmである上記(1)に記載の固体酸化物型燃料電池。 (2) In a plan view of the fuel electrode viewed from the exposed surface of the solid oxide electrolyte membrane, the average length of the porous structure is 10 to 10 on a line set to a length of at least 2 mm on the fuel electrode. The solid oxide fuel cell according to (1), which is 500 μm.
(3)前記固体酸化物電解質膜の露出面から前記燃料極を見た平面視で、前記燃料極上に少なくとも2mmの長さに設定した線上における、単位長さあたりの前記多孔質構造体の数が0.2〜50個/mmである上記(1)または(2)に記載の固体酸化物型燃料電池。 (3) The number of the porous structures per unit length on a line set to a length of at least 2 mm on the fuel electrode in a plan view of the fuel electrode viewed from the exposed surface of the solid oxide electrolyte membrane The solid oxide fuel cell according to the above (1) or (2), wherein is from 0.2 to 50 cells / mm.
(4)燃料極を形成する工程と、該燃料極上に固体酸化物電解質膜を形成する工程と、該固体酸化物電解質膜の一部の上に空気極を形成する工程と、を有し、
前記燃料極を形成する工程は、固体酸化物からなる多孔質構造体を形成する第1工程と、該多孔質構造体の空隙内に電極触媒能を有する電極粒子の集合体を分散させる第2工程と、を含み、
前記固体酸化物電解質膜の露出面から前記燃料極を見た平面視で、前記多孔質構造体と前記電極粒子の集合体とが斑状に分布し、前記平面視での前記燃料極の面積に対する前記多孔質構造体の面積が10〜50%となるようにすることを特徴とする燃料極支持型の固体酸化物型燃料電池の製造方法。
(4) a step of forming a fuel electrode, a step of forming a solid oxide electrolyte membrane on the fuel electrode, and a step of forming an air electrode on a part of the solid oxide electrolyte membrane,
The step of forming the fuel electrode includes a first step of forming a porous structure made of a solid oxide, and a second step of dispersing an aggregate of electrode particles having electrocatalytic activity in the voids of the porous structure. Including a process,
In the plan view of the fuel electrode viewed from the exposed surface of the solid oxide electrolyte membrane, the porous structure and the aggregate of the electrode particles are distributed in spots, and the area of the fuel electrode in the plan view is A method for producing a fuel electrode-supported solid oxide fuel cell, wherein the area of the porous structure is 10 to 50%.
(5)前記第1工程では、多孔質フォームに前記固体酸化物のスラリーを含浸させ、前記第2工程では、前記多孔質構造体に前記電極粒子のスラリーを含浸させ、その後焼成により前記多孔質フォームを焼失させその後再度前記多孔質構造体に前記電極粒子のスラリーを含浸させる上記(4)に記載の固体酸化物型燃料電池の製造方法。 (5) In the first step, a porous foam is impregnated with the slurry of the solid oxide, and in the second step, the porous structure is impregnated with the slurry of the electrode particles, and then the porous structure is fired. The method for producing a solid oxide fuel cell according to the above (4), wherein the foam is burned off and then the porous structure is impregnated again with the slurry of the electrode particles.
(6)前記第2工程の後、前記多孔質構造体上に電解質材料を塗布し、前記多孔質構造体および前記電解質材料をまとめて焼成することにより、前記燃料極および前記固体酸化物電解質膜を形成する上記(4)または(5)に記載の固体酸化物型燃料電池の製造方法。 (6) After the second step, by applying an electrolyte material on the porous structure and firing the porous structure and the electrolyte material together, the fuel electrode and the solid oxide electrolyte membrane The method for producing a solid oxide fuel cell according to (4) or (5), wherein
本発明の燃料極支持型の固体酸化物型燃料電池は、高い出力密度を有し、かつ、還元雰囲気/酸化雰囲気にくり返し晒されても強度が低下しにくく耐久性の高い。また、本発明の燃料極支持型の固体酸化物型燃料電池の製造方法によれば、高い出力密度を有し、かつ、還元雰囲気/酸化雰囲気にくり返し晒されても強度が低下しにくく耐久性の高い燃料極支持型の固体酸化物型燃料電池を得ることができる。 The anode-supported solid oxide fuel cell of the present invention has a high power density and is highly durable because it does not decrease in strength even when repeatedly exposed to a reducing atmosphere / oxidizing atmosphere. In addition, according to the method for producing a solid oxide fuel cell of the present invention, which is supported by a fuel electrode, it has a high power density and is resistant to a decrease in strength even when repeatedly exposed to a reducing atmosphere / oxidizing atmosphere. It is possible to obtain a fuel electrode-supported solid oxide fuel cell having a high level.
以下、本発明の燃料極支持型の固体酸化物型燃料電池(SOFC)およびその製造方法の実施形態を説明する。 Embodiments of a fuel electrode-supported solid oxide fuel cell (SOFC) and a manufacturing method thereof according to the present invention will be described below.
まず、本発明の一実施形態によるSOFCの製造方法を、図5を参照して説明する。この製造方法では、まずステップS1において、固体酸化物としてのイットリア安定化ジルコニア(YSZ)粉末と、同じく固体酸化物としてのジルコニア微粒子が分散されたジルコニアゾルとを混合して、スラリーを作製する。 First, a SOFC manufacturing method according to an embodiment of the present invention will be described with reference to FIG. In this manufacturing method, first, in step S1, yttria-stabilized zirconia (YSZ) powder as a solid oxide and zirconia sol in which zirconia fine particles are dispersed as solid oxide are mixed to prepare a slurry.
次に、ステップS2において、多孔質フォームにこのスラリーを含浸する。これにより、多孔質フォームが焼失し、YSZ粉末およびゾル中のジルコニア微粒子が一体化する一方で、内部に多量の空隙(この段階では、一部は多孔質フォームが占める)を有する多孔質構造体が形成される。 Next, in step S2, the porous foam is impregnated with this slurry. As a result, the porous foam is burned out, and the YSZ powder and the zirconia fine particles in the sol are integrated, while the porous structure has a large amount of voids (partly occupied by the porous foam at this stage). Is formed.
ステップS3では、ジルコニアゾルに、電極触媒能を有する電極粒子としてのNiO粉末と、YSZ粒子の粉末を添加して、電極粒子スラリーを作製する。そして、ステップS4では、多孔質構造体に電極粒子スラリーを含浸させる。これにより、多孔質構造体の内部で多孔質フォームが存在しない空隙部分に、電極粒子を充填する。 In step S3, NiO powder as electrode particles having electrode catalytic ability and YSZ particle powder are added to zirconia sol to prepare an electrode particle slurry. In step S4, the porous structure is impregnated with electrode particle slurry. Thereby, the electrode particles are filled in the void portion where the porous foam does not exist inside the porous structure.
ステップS5では、1100℃以下の温度で熱処理を行う。これにより、多孔質フォームが焼失する。この多孔質構造体の例を図2に示す。なお、この熱処理ではYSZ粉末およびジルコニア微粒子は焼結していない。 In step S5, heat treatment is performed at a temperature of 1100 ° C. or lower. As a result, the porous foam is burned out. An example of this porous structure is shown in FIG. In this heat treatment, the YSZ powder and the zirconia fine particles are not sintered.
ステップS6では、多孔質構造体に電極粒子スラリーを再度含浸し、適宜乾燥等を行う。これにより、多孔質フォームが焼失して新たに生じた空隙内にNiO粒子の集合体が分散される。なお、本実施形態において電極粒子は、SOFCの製造工程の段階ではNiOであるが、SOFCによる発電が行われる段階では原則としてNiとなるものである。ただし、既述のようにSOFCの使用過程でNiがNiOとなる不可逆な酸化反応による膨張が、解決すべき問題となっているのである。 In step S6, the electrode structure slurry is impregnated again into the porous structure, and drying or the like is performed as appropriate. As a result, the aggregate of NiO particles is dispersed in the voids newly generated by burning out the porous foam. In this embodiment, the electrode particles are NiO at the stage of the SOFC manufacturing process, but in principle at the stage of power generation by SOFC, the electrode particles are Ni. However, as described above, expansion due to an irreversible oxidation reaction in which Ni becomes NiO during the use of SOFC is a problem to be solved.
ステップS6では、多孔質構造体の少なくとも片面を研磨して、平坦化する。ステップS7で、多孔質構造体の研磨面上に電解質材料を塗布する。その後、ステップS8で、1400℃程度の熱処理によって、多孔質構造体および電解質材料を共焼成する。これにより、燃料極および固体酸化物電解質膜が形成される。 In step S6, at least one surface of the porous structure is polished and flattened. In step S7, an electrolyte material is applied on the polished surface of the porous structure. Thereafter, in step S8, the porous structure and the electrolyte material are co-fired by a heat treatment at about 1400 ° C. Thereby, a fuel electrode and a solid oxide electrolyte membrane are formed.
最後にステップS9で、固体酸化物電解質膜上に空気極を形成することにより、SOFCセルが完成する。このとき、燃料極と空気極との短絡を防止するため、空気極は、固体酸化物電解質膜の全面ではなく一部の面上に形成する。そのため、固体酸化物電解質膜には露出面が生じる。 Finally, in step S9, an SOFC cell is completed by forming an air electrode on the solid oxide electrolyte membrane. At this time, in order to prevent a short circuit between the fuel electrode and the air electrode, the air electrode is formed not on the entire surface of the solid oxide electrolyte membrane but on a part of the surface. Therefore, an exposed surface is generated in the solid oxide electrolyte membrane.
次に、この製造方法により得ることができる、本発明の一実施形態によるSOFCを、図1〜4を参照して説明する。図1を参照して、SOFC100は、燃料極10と、この燃料極10上に形成された固体酸化物電解質膜20と、この固体酸化物電解質膜20の一部の上に形成された空気極30と、を有する。 Next, an SOFC according to an embodiment of the present invention that can be obtained by this manufacturing method will be described with reference to FIGS. Referring to FIG. 1, SOFC 100 includes a fuel electrode 10, a solid oxide electrolyte membrane 20 formed on the fuel electrode 10, and an air electrode formed on a part of the solid oxide electrolyte membrane 20. 30.
本実施形態の特徴的構成の1つは、以下に説明する燃料極10の構造である。まず、燃料極10は、図2のような多孔質構造体を骨格とする。多孔質構造体は、YSZ粉末およびゾル中のジルコニア微粒子が一体化してなる。特に、ゾル中のナノレベルのジルコニア微粒子がゾルゲル反応の過程でYSZ粉末同士を強固に結合させる結合剤として機能する。このため、多孔質構造体は非常に高い強度を有する。しかも、多孔質構造体にはNiO粒子を含まず、NiO粒子は、多孔質構造体の空隙内に分散されている。よって、電極粒子がNiからNiOとなることにより膨張しても、それは多孔質構造体の空隙内で生じるのみであり、多孔質構造体の強度に直接的に影響を与えることはない。これらの作用に基づき、本実施形態のSOFCは、還元雰囲気/酸化雰囲気にくり返し晒されても強度が低下しにくく耐久性が高い。 One of the characteristic configurations of this embodiment is the structure of the fuel electrode 10 described below. First, the fuel electrode 10 has a porous structure as shown in FIG. The porous structure is formed by integrating the YSZ powder and the zirconia fine particles in the sol. In particular, nano-level zirconia fine particles in the sol function as a binder that firmly bonds the YSZ powders in the course of the sol-gel reaction. For this reason, the porous structure has a very high strength. Moreover, the porous structure does not contain NiO particles, and the NiO particles are dispersed in the voids of the porous structure. Therefore, even if the electrode particles expand from Ni to NiO, they only occur in the voids of the porous structure and do not directly affect the strength of the porous structure. Based on these actions, the SOFC of this embodiment has high durability that is hard to decrease in strength even when repeatedly exposed to a reducing atmosphere / oxidizing atmosphere.
また、電極粒子スラリー中にもゾル起因のジルコニア微粒子を含み、これらもゾルゲル反応の過程で、一部はNiO粒子を多孔質構造体の空隙内表面に結合させ、一部はNiO粒子の表面を部分的に覆う。電極粒子スラリー中のYSZ粉末は、一部はNiO粒子の表面を部分的に覆い、残部は図示しないが空隙内に分散されている。このため、還元雰囲気下での電極粒子の凝集を抑制できる。また、SOFCの発電時にNi粒子の酸化面積を制限することで、電極粒子の不可逆な膨張を抑制できる。 The electrode particle slurry also contains sol-derived zirconia fine particles, and these also bind NiO particles to the surface of the voids of the porous structure in the course of the sol-gel reaction, and partly the surface of the NiO particles. Cover partially. A part of the YSZ powder in the electrode particle slurry partially covers the surface of the NiO particles, and the remaining part is dispersed in the gaps (not shown). For this reason, aggregation of the electrode particles in a reducing atmosphere can be suppressed. In addition, by limiting the oxidation area of the Ni particles during SOFC power generation, irreversible expansion of the electrode particles can be suppressed.
燃料極10の厚さは、燃料極をSOFCの支持体として用いることができる程度であれば特に制限されないが、0.2〜5mmとすることが好ましい。0.2mm以上とすれば、燃料極を支持体として確実に用いることができ、5mm以下とすれば、燃料ガスを過不足なく電解質表面まで供給できるからである。 The thickness of the fuel electrode 10 is not particularly limited as long as the fuel electrode can be used as a SOFC support, but is preferably 0.2 to 5 mm. This is because if the thickness is 0.2 mm or more, the fuel electrode can be reliably used as a support, and if the thickness is 5 mm or less, the fuel gas can be supplied to the electrolyte surface without excess or deficiency.
固体酸化物電解質膜20および空気極30の厚さは、電極支持型SOFCにおいて一般的な値とすればよく、それぞれ5〜50μm程度、10〜100μm程度とすることができる。 The thicknesses of the solid oxide electrolyte membrane 20 and the air electrode 30 may be values generally used in the electrode-supported SOFC, and can be about 5 to 50 μm and about 10 to 100 μm, respectively.
ここで本実施形態は、固体酸化物電解質膜の露出面から燃料極を見た平面視の態様に大きな特徴を有する。本実施形態では上記平面視で、多孔質構造体と電極粒子の集合体とが斑状に分布している。このことは、図3から理解できる。すなわち、固体酸化物電解質膜を介して燃料極の研磨面を観察すると、研磨面のうち多孔質構造体が露出している部分は明るく(白く)見え、電極粒子の集合体が露出している部分は暗く(黒く)見える。燃料極の研磨面における多孔質構造体の部分は、電解質膜と同じ材料であることから、電解質膜が燃料極に根を張った構造となり、酸化還元時に電解質膜との界面で応力が発生しても、電解質膜の剥離や破損を抑制できる。なお、セルを酸化させることでコントラストをより強調することができるので、必要に応じてこの処理をするとよい。 Here, this embodiment has a great feature in a plan view when the fuel electrode is viewed from the exposed surface of the solid oxide electrolyte membrane. In the present embodiment, the porous structure and the aggregate of the electrode particles are distributed in a patch shape in the plan view. This can be understood from FIG. That is, when the polished surface of the fuel electrode is observed through the solid oxide electrolyte membrane, the portion of the polished surface where the porous structure is exposed appears bright (white), and the aggregate of electrode particles is exposed. The part looks dark (black). Since the porous structure on the polished surface of the fuel electrode is made of the same material as the electrolyte membrane, the electrolyte membrane has a structure rooted in the fuel electrode, and stress is generated at the interface with the electrolyte membrane during oxidation and reduction. However, peeling and breakage of the electrolyte membrane can be suppressed. Since the contrast can be further enhanced by oxidizing the cell, this treatment is preferably performed as necessary.
ここで本発明においては、固体酸化物電解質膜露出面から燃料極を見た平面視での、燃料極の面積に対する多孔質構造体の面積(以下、「面積比A」という。)が10〜50%であることが肝要である。面積比Aが10%未満の場合、多孔質構造体自体の骨格としての強度が十分ではなく、さらに電解質膜との接合強度も十分に確保できないため、酸化還元サイクルにおいてSOFCの耐久性が低下してしまう。一方、面積比Aが50%超えの場合、耐久性の観点からは問題がないが、多孔質構造体の空隙に十分な量の電極粒子を充填できず、高い出力密度を得ることができない。面積比Aを10〜50%とすることで、高い出力密度と耐久性の両立を図ることができる。 Here, in the present invention, the area of the porous structure relative to the area of the fuel electrode (hereinafter referred to as “area ratio A”) in a plan view of the fuel electrode viewed from the exposed surface of the solid oxide electrolyte membrane is 10 to 10. It is important that it is 50%. When the area ratio A is less than 10%, the strength of the porous structure itself as a skeleton is not sufficient, and furthermore, the bonding strength with the electrolyte membrane cannot be ensured sufficiently. End up. On the other hand, when the area ratio A exceeds 50%, there is no problem from the viewpoint of durability, but a sufficient amount of electrode particles cannot be filled in the voids of the porous structure, and a high output density cannot be obtained. By setting the area ratio A to 10 to 50%, both high power density and durability can be achieved.
なお、図3は空気極を形成する前の固体酸化物電解質膜の全面を示している。燃料極の研磨面は、多孔質構造体の露出部と電極粒子の集合体の露出部は均一に分散しているため、図3の平面視においても、燃料極の面積に対する多孔質構造体の面積は10〜50%になっている。 FIG. 3 shows the entire surface of the solid oxide electrolyte membrane before forming the air electrode. In the polished surface of the fuel electrode, the exposed portion of the porous structure and the exposed portion of the aggregate of electrode particles are uniformly dispersed. Therefore, even in a plan view of FIG. The area is 10-50%.
また本実施形態では、上記平面視で、燃料極上に少なくとも2mmの長さに設定した線上において、多孔質構造体の平均長さが10〜500μmとなることが好ましい。また、この線上において、単位長さあたりの多孔質構造体の数(以下、「多孔質構造体の延在密度」という。)が0.2〜50個/mmとなることが好ましい。 In the present embodiment, it is preferable that the average length of the porous structure is 10 to 500 μm on a line set to a length of at least 2 mm on the fuel electrode in the plan view. On this line, the number of porous structures per unit length (hereinafter referred to as “extension density of the porous structures”) is preferably 0.2 to 50 / mm.
このことを図4(A)〜(C)を参照して説明する。図4(A)は空気極形成前の写真であるため、円形の燃料極上で長さが最大となる直線XYを設定する。この直線XYに沿った試料の断面図が図4(B)および(C)である。図4(C)のSEM画像中、網掛け部分がジルコニアからなる部分(すなわち、燃料極中の多孔質構造体と電解質膜)である。燃料極中の非網掛け部分が、電極粒子の集合体である。図4(C)の上部には、直線XYに沿って多孔質構造体の長さをx1,x2と図示した。本実施形態では、図4(C)に図示されない部分も含めた、直線XY上での多孔質構造体の平均長さが10〜500μmとなることが好ましい。また、図4(C)では直線XY上での2つの多孔質構造体を図示しているが、直線XY上での多孔質構造体の延在密度が0.2〜50個/mmとなることが好ましい。 This will be described with reference to FIGS. Since FIG. 4A is a photograph before the air electrode is formed, a straight line XY having a maximum length on the circular fuel electrode is set. 4B and 4C are cross-sectional views of the sample along the straight line XY. In the SEM image of FIG. 4C, the shaded portion is a portion made of zirconia (that is, the porous structure and the electrolyte membrane in the fuel electrode). The non-shaded part in the fuel electrode is an aggregate of electrode particles. In the upper part of FIG. 4C, the length of the porous structure is shown as x1 and x2 along the straight line XY. In the present embodiment, it is preferable that the average length of the porous structure on the straight line XY including a portion not shown in FIG. 4C is 10 to 500 μm. 4C shows two porous structures on the straight line XY, the extension density of the porous structures on the straight line XY is 0.2 to 50 / mm. It is preferable.
なお、燃料極の研磨面は、多孔質構造体の露出部と電極粒子の集合体の露出部は均一に分散しているため、燃料極上に設定する線は特に限定されない。固体酸化物電解質膜の露出面(空気極形成後は、空気極がされていない面)の上に、少なくとも2mmの長さとなるように任意に設定する。 Since the exposed portion of the porous structure and the exposed portion of the aggregate of electrode particles are uniformly dispersed on the polished surface of the fuel electrode, the line set on the fuel electrode is not particularly limited. The length is arbitrarily set to be at least 2 mm on the exposed surface of the solid oxide electrolyte membrane (the surface on which the air electrode is not formed after the air electrode is formed).
多孔質構造体の平均長さに着目したのは、構造体が3次元網目状に分布していることを特徴付けるパラメータだからである。また、多孔質構造体の延在密度に着目したのは、構造体が3次元網目状に分布していることで、触媒性能を阻害することなく構造体の強度を特徴付けるパラメータだからである。そして、多孔質構造体の平均長さが10μm以上だと、多孔質構造体がアノード触媒の酸化還元に伴う膨張収縮に耐える強度を有しており、500μm以下だと、アノードの触媒性能を阻害しない空隙が確保できる。また、多孔質構造体の延在密度が0.2〜50個/mmだと、多孔質構造体の強度と空隙のバランスが良い。 The reason for paying attention to the average length of the porous structure is that it is a parameter characterizing that the structure is distributed in a three-dimensional network. The reason why the extension density of the porous structure is focused is that the structure is distributed in a three-dimensional network, and is a parameter that characterizes the strength of the structure without impairing the catalyst performance. When the average length of the porous structure is 10 μm or more, the porous structure has the strength to withstand the expansion and contraction associated with the oxidation / reduction of the anode catalyst, and when it is 500 μm or less, the catalyst performance of the anode is inhibited. A void that does not occur can be secured. When the extension density of the porous structure is 0.2 to 50 / mm, the balance between the strength of the porous structure and the voids is good.
ここで、面積比A、多孔質構造体の平均長さおよび延在密度という計3つの値は、固体酸化物電解質膜側からSOFCセル(空気極非形成部)を撮影した画像に基づいて求めることができる。既述のとおり、図4(A)において、研磨面のうち多孔質構造体が露出している明るい部分と、電極粒子の集合体が露出している暗い部分は、明確に区別できる。そこで、画像において明るさ(可視光による明度(コントラスト))をパラメータとして用い、この値に適切な閾値を設定し、多孔質構造体が露出している部分で閾値以上、電極粒子の集合体が露出している部分で閾値未満となるようにする。画像処理によって、閾値以上となる部位を領域A、閾値未満となる部位を領域Bと区分けする。面積比Aは、領域Aの面積/(領域A+Bの合計面積)で求められる。多孔質構造体の平均長さは、設定した線上での領域Aの平均長さとして求められる。多孔質構造体の延在密度は、設定した線上での領域Aの延在密度として求められる。 Here, a total of three values, that is, the area ratio A, the average length of the porous structure, and the extension density, are obtained based on an image obtained by photographing the SOFC cell (air electrode non-forming portion) from the solid oxide electrolyte membrane side. be able to. As described above, in FIG. 4A, the bright portion where the porous structure is exposed and the dark portion where the aggregate of electrode particles is exposed can be clearly distinguished in the polished surface. Therefore, brightness (brightness by visible light (contrast)) is used as a parameter in the image, and an appropriate threshold value is set for this value. When the porous structure is exposed, the aggregate of electrode particles exceeds the threshold value. The exposed part should be less than the threshold value. By the image processing, a region that is equal to or greater than the threshold is classified as region A, and a region that is less than the threshold is classified as region B. The area ratio A is obtained by area of area A / (total area of area A + B). The average length of the porous structure is obtained as the average length of the region A on the set line. The extension density of the porous structure is obtained as the extension density of the region A on the set line.
以下、再度図5を参照して、各工程について順に説明する。 Hereinafter, each step will be described in order with reference to FIG. 5 again.
(ステップS1)
固体酸化物の粉末は、ジルコニア、アルミナ、シリカ、およびセリアからなる群から選択された少なくとも1種を用いることができるが、ジルコニアまたはセリアであることが好ましく、特に安定化ジルコニアであることが好ましい。これは、燃料極が晒される還元雰囲気/酸化雰囲気下において安定してイオン輸率を維持できるためである。安定化ジルコニアとしては、例えばイットリア安定化ジルコニア(YSZ)、カルシア安定化ジルコニア、マグネシア安定化ジルコニアを挙げることができる。固体酸化物の粉末の平均粒径は、多孔質フォームの平均気孔径を考慮して適宜決めればよく、例えば0.1〜10μmとすればよい。
(Step S1)
The solid oxide powder may be at least one selected from the group consisting of zirconia, alumina, silica, and ceria, but is preferably zirconia or ceria, particularly preferably stabilized zirconia. . This is because the ion transport number can be stably maintained in a reducing atmosphere / oxidizing atmosphere to which the fuel electrode is exposed. Examples of the stabilized zirconia include yttria stabilized zirconia (YSZ), calcia stabilized zirconia, and magnesia stabilized zirconia. The average particle size of the solid oxide powder may be appropriately determined in consideration of the average pore size of the porous foam, for example, 0.1 to 10 μm.
ゾルに分散されている固体酸化物微粒子の材質としては、やはり安定化ジルコニアを含むジルコニア、アルミナ、シリカ、およびセリアからなる群から選択された少なくとも1種を用いることができる。固体酸化物微粒子の平均粒径は、0.1μm以下とすることが好ましい。0.1μm超えの場合、酸化物粗粒子の焼結を促進する効果が低下するためである。このようなゾルとしては、任意の市販品を用いることができ、ジルコニアゾルとしては日産化学工業株式会社製ZR−30BS、アルミナゾルとしては日産化学工業株式会社製アルミナゾル−100、シリカゾルとしては日産化学工業株式会社製スノーテックス、セリアゾルとしては日産化学工業株式会社製CZ−30B等を挙げることができる。 As the material of the solid oxide fine particles dispersed in the sol, at least one selected from the group consisting of zirconia including stabilized zirconia, alumina, silica, and ceria can be used. The average particle size of the solid oxide fine particles is preferably 0.1 μm or less. This is because when the thickness exceeds 0.1 μm, the effect of promoting the sintering of the oxide coarse particles is reduced. As such a sol, any commercially available product can be used. Zr-30BS manufactured by Nissan Chemical Industries, Ltd. as the zirconia sol, Alumina Sol-100 manufactured by Nissan Chemical Industries, Ltd. as the alumina sol, Nissan Chemical Industries as the silica sol. Examples of Snowtex Co., Ltd. and Ceriasol include CZ-30B manufactured by Nissan Chemical Industries, Ltd.
スラリーには、本発明の効果を阻害しない範囲で、界面活性剤、分散剤、粘度を調整するため増粘剤等を添加してもよい。 To the slurry, a surfactant, a dispersant, a thickener or the like may be added to adjust the viscosity within a range that does not impair the effects of the present invention.
(ステップS2)
多孔質フォームの気孔径と、気孔率を制御することで、面積比A、多孔質構造体の平均長さおよび延在密度を制御することができる。ステップS1で作製するスラリーの粘度にも依るが、粘度1000cP程度のスラリーの場合、気孔径が150〜300μm、気孔率が70〜95%であることが望ましい。気孔径が150μm未満だとスラリーが含浸せず、300μm超えだと、スラリーを保持できず、構造体の長さが短くなってしまう。気孔率についても75%より小さいとスラリーが含浸せず、95%より大きいとスラリーを保持できず構造体の長さが短くなってしまう。
(Step S2)
By controlling the pore diameter and porosity of the porous foam, the area ratio A, the average length of the porous structure, and the extension density can be controlled. Although depending on the viscosity of the slurry prepared in step S1, in the case of a slurry having a viscosity of about 1000 cP, it is desirable that the pore diameter is 150 to 300 μm and the porosity is 70 to 95%. If the pore diameter is less than 150 μm, the slurry is not impregnated, and if it exceeds 300 μm, the slurry cannot be retained, and the length of the structure is shortened. If the porosity is less than 75%, the slurry is not impregnated, and if the porosity is more than 95%, the slurry cannot be retained and the length of the structure is shortened.
(ステップS3,S4,S6)
電極粒子としては、NiO粒子を挙げることができるが、NiO粒子に銅やコバルトを添加した粒子を用いても構わない。電極粒子の平均粒径は、0.4〜4.0μmとすることが好ましい。0.4μm以上の場合、電極粒子の凝集を十分抑制して燃料極の耐久性を高めることができ、4.0μm以下の場合、電極粒子の活性サイトを十分確保でき、高い電極性能を得ることができる。
(Steps S3, S4, S6)
Examples of the electrode particles include NiO particles, but particles obtained by adding copper or cobalt to NiO particles may be used. The average particle diameter of the electrode particles is preferably 0.4 to 4.0 μm. When the thickness is 0.4 μm or more, the aggregation of the electrode particles can be sufficiently suppressed to enhance the durability of the fuel electrode. When the thickness is 4.0 μm or less, the active sites of the electrode particles can be sufficiently secured and high electrode performance can be obtained. Can do.
ゾルとしては、ステップS1と同様のものを用いることができる。なお、固体酸化物微粒子の材質はステップS1と同じでもよいし、異なっていてもよい。 As the sol, the same sol as in step S1 can be used. The material of the solid oxide fine particles may be the same as or different from that in step S1.
電極粒子スラリー中のYSZ粒子粉末の平均粒径は、0.2〜1.0μmとすることができる。また、YSZに替えて、ジルコニア、アルミナ、シリカ、およびセリアからなる群から選択された少なくとも1種としてもよい。 The average particle diameter of the YSZ particle powder in the electrode particle slurry can be 0.2 to 1.0 μm. Further, in place of YSZ, at least one selected from the group consisting of zirconia, alumina, silica, and ceria may be used.
スラリーには本発明の効果を阻害しない範囲で界面活性剤、分散剤、粘度を調整するため増粘剤等を添加してもよい。 To the slurry, a surfactant, a dispersant, a thickener or the like may be added in order to adjust the viscosity within a range that does not impair the effects of the present invention.
(ステップS5)
この熱処理は、大気中で、粉末およびゾル中の微粒子は焼結しないが、多孔質フォームが焼失する程度の温度、具体的には300〜1000℃で、0.5〜3時間程度の時間行う。この熱処理を固体酸化物の焼結温度以上としてしまうと、成形体は大きく収縮する。そして、燃料極の完成後、電解質材料を塗布し焼結すると、成形体はもう収縮しないのに対し、電解質材料は大きく収縮する。このときの、成形体と電解質材料との収縮差によって、固体酸化物電解質膜にクラックが発生するおそれがある。そこで本実施形態では、この段階では固体酸化物の焼結までは行わず、ゾルゲル反応の進行および多孔質フォームの焼失によって多孔質構造体の形成を行うことで、この段階での収縮量を低減し、後続工程での前記収縮差を小さくし、クラックの発生を抑制することができる。
(Step S5)
This heat treatment is performed in the atmosphere at a temperature at which the porous foam is burned off, specifically at 300 to 1000 ° C., for 0.5 to 3 hours, although the powder and the fine particles in the sol are not sintered. . If this heat treatment is performed at a temperature equal to or higher than the sintering temperature of the solid oxide, the compact is greatly shrunk. When the electrolyte material is applied and sintered after the fuel electrode is completed, the molded body no longer contracts, whereas the electrolyte material contracts greatly. At this time, cracks may occur in the solid oxide electrolyte membrane due to a difference in shrinkage between the molded body and the electrolyte material. Therefore, in this embodiment, the solid oxide is not sintered at this stage, and the amount of shrinkage at this stage is reduced by forming the porous structure by the progress of the sol-gel reaction and the burning of the porous foam. And the said shrinkage | contraction difference in a subsequent process can be made small and generation | occurrence | production of a crack can be suppressed.
(ステップS7)
研磨は、多孔質構造体の表面を平坦化するために行い、除去厚みは典型的には100〜1000μm程度とすればよい。多孔質構造体中の空隙の分布は、厚さ方向で均一なので、研磨量によって、面積比A、多孔質構造体の平均長さおよび延在密度が大きくばらつくことはない。
(Step S7)
Polishing is performed to flatten the surface of the porous structure, and the removal thickness may typically be about 100 to 1000 μm. Since the distribution of voids in the porous structure is uniform in the thickness direction, the area ratio A, the average length of the porous structure, and the extension density do not vary greatly depending on the polishing amount.
(ステップS8,S9)
電解質材料はYSZ等のセラミック材料とし、そのスラリーを多孔質構造体上に塗布すればよい。多孔質構造体と成形体電解質材料の焼成は、例えば大気中1300〜1500℃の温度で1〜10時間の条件で行う。これにより、多孔質構造体および成形体電解質材料中のセラミック成分が焼結し、最終的な燃料極および固体酸化物電解質膜が完成する。この結果、成形体と電解質材料との収縮差を小さくして、クラックの発生を抑制することができる。
(Steps S8 and S9)
The electrolyte material may be a ceramic material such as YSZ, and the slurry may be applied onto the porous structure. Firing of the porous structure and the molded body electrolyte material is performed, for example, in the atmosphere at a temperature of 1300 to 1500 ° C. for 1 to 10 hours. Thereby, the ceramic component in the porous structure and the molded body electrolyte material is sintered, and the final fuel electrode and the solid oxide electrolyte membrane are completed. As a result, it is possible to reduce the shrinkage difference between the molded body and the electrolyte material and suppress the occurrence of cracks.
(ステップS10)
空気極の作製は常法により行うことができる。例えばLaxSr1−xMnO3(x=0.8等)を空気極材料とし、そのスラリーを焼成後の固体酸化物電解質膜上に塗布、焼成すればよい。
(Step S10)
The air electrode can be produced by a conventional method. For example, La x Sr 1-x MnO 3 (x = 0.8 or the like) may be used as an air electrode material, and the slurry may be applied and fired on the solid oxide electrolyte membrane after firing.
なお、本明細書において「平均粒径」とは、スラリー中に含める粉末に関しては、レーザー回折・散乱法によって求めた粒度分布における積算値50%での粒径(50%累積粒径:D50)を意味し、ゾルに関しては、用いる市販品のメーカー表示に従うものとする。また、本明細書において、「燃料極、固体酸化物電解質膜、および空気極の厚さ」は、樹脂で埋めた試料の断面を研磨し、SEMで観察した際の、任意の5箇所の平均値とする。 In the present specification, the “average particle diameter” means the particle diameter at an integrated value of 50% (50% cumulative particle diameter: D50) in the particle size distribution obtained by the laser diffraction / scattering method for the powder included in the slurry. As for sol, it shall conform to the manufacturer's indication of the commercial product used. Further, in this specification, “the thickness of the fuel electrode, the solid oxide electrolyte membrane, and the air electrode” is an average of arbitrary five points when the cross section of the sample filled with the resin is polished and observed by SEM. Value.
(本発明例)
本発明に従う以下の手順で、本発明に従うSOFCを作製した。まず、ジルコニアゾル(ジルコニア濃度:30質量%、平均粒径:63nm、日産化学工業株式会社社製ZR−30BS)に、YSZ粉末(平均粒径D50:0.5μm)を65質量%となるように分散させて、スラリーを作製した。多孔質フォーム(富士ケミカル株式会社製、ベルイータF(A)、平均気孔径:200μm、気孔率90%)にスラリーを含浸させ、その後大気中105℃で1時間乾燥させた。これにより、YSZ粉末がゾル起因のジルコニア微粒子を介して結合された多孔質構造体(厚さ:1mm)が完成した。つまり、この段階でジルコニア微粒子とYSZ粉末とは、結合力は弱いものの、結合している。
(Example of the present invention)
The SOFC according to the present invention was prepared by the following procedure according to the present invention. First, YSZ powder (average particle size D50: 0.5 μm) is 65% by mass in zirconia sol (zirconia concentration: 30% by mass, average particle size: 63 nm, ZR-30BS manufactured by Nissan Chemical Industries, Ltd.). To prepare a slurry. The slurry was impregnated with a porous foam (Fuji Chemical Co., Ltd., Belita F (A), average pore size: 200 μm, porosity 90%), and then dried in the atmosphere at 105 ° C. for 1 hour. As a result, a porous structure (thickness: 1 mm) in which YSZ powder was bonded via sol-derived zirconia fine particles was completed. That is, at this stage, the zirconia fine particles and the YSZ powder are bonded although the bonding force is weak.
次に、ジルコニアゾル(ジルコニア濃度:30質量%、平均粒径:63nm、日産化学工業株式会社社製ZR−30BS)に、NiO粉末(平均粒径D50:1.0μm)とYSZ粉末(平均粒径D50:0.5μm)を質量比2:1で添加して、電極粒子スラリーを作製した。 Next, zirconia sol (zirconia concentration: 30% by mass, average particle size: 63 nm, ZR-30BS manufactured by Nissan Chemical Industries, Ltd.), NiO powder (average particle size D50: 1.0 μm) and YSZ powder (average particle size) Diameter D50: 0.5 μm) was added at a mass ratio of 2: 1 to prepare an electrode particle slurry.
乾燥後の多孔質フォームに電極粒子スラリーを含浸させた。これにより、多孔質構造体の内部で多孔質フォームが存在しない空隙部分に、電極粒子を充填する。その後、大気中500℃で1時間の熱処理を行い、多孔質フォームを焼失させた。なお、1100℃以下の熱処理では、YSZ粉末は焼結されない。その後、多孔質構造体に再度電極粒子スラリーを含浸させた。これにより、多孔質フォームが焼失して新たに生じた空隙部分にも、電極粒子を充填する。その後、多孔質構造体を大気中100℃で1時間乾燥させた。 The porous foam after drying was impregnated with the electrode particle slurry. Thereby, the electrode particles are filled in the void portion where the porous foam does not exist inside the porous structure. Thereafter, heat treatment was performed in the atmosphere at 500 ° C. for 1 hour to burn off the porous foam. Note that the YSZ powder is not sintered in the heat treatment at 1100 ° C. or lower. Thereafter, the porous structure was impregnated with the electrode particle slurry again. As a result, the voids newly generated by burning the porous foam are filled with the electrode particles. Thereafter, the porous structure was dried in the atmosphere at 100 ° C. for 1 hour.
乾燥後の多孔質構造体の表面を500μmに研磨した。αテルピネオールにエチルセルロースを5質量%溶かした溶剤に、YSZ粉末(平均粒径D50:0.5μm)を50質量%となるように分散させて、電解質スラリーを作製した。多孔質構造体の研磨面に、電解質スラリーをスクリーン印刷法で成膜した。その後、大気中で1400℃3時間の熱処理によって、多孔質構造体と電解質材料を共焼成した。これにより、燃料極と固体酸化物電解質膜が完成した。 The surface of the porous structure after drying was polished to 500 μm. An electrolyte slurry was prepared by dispersing YSZ powder (average particle diameter D50: 0.5 μm) in a solvent in which 5% by mass of ethyl cellulose was dissolved in α-terpineol so as to be 50% by mass. An electrolyte slurry was formed on the polished surface of the porous structure by a screen printing method. Thereafter, the porous structure and the electrolyte material were co-fired by heat treatment at 1400 ° C. for 3 hours in the atmosphere. Thereby, the fuel electrode and the solid oxide electrolyte membrane were completed.
αテルピネオールにエチルセルロースを5質量%溶かした溶剤に、(La0.8Sr0.2)MnO3粉末を50質量%となるように分散させて、空気極スラリーを作製した。電解質膜上に空気極スラリーを塗布した。その後、大気中で1200℃3時間の熱処理によって、空気極が完成した。 An air electrode slurry was prepared by dispersing (La 0.8 Sr 0.2 ) MnO 3 powder in a solvent in which 5% by mass of ethyl cellulose was dissolved in α-terpineol so as to be 50% by mass. An air electrode slurry was applied on the electrolyte membrane. Then, the air electrode was completed by heat treatment at 1200 ° C. for 3 hours in the atmosphere.
以上のようにして得たSOFCセルは、厚み600μm(燃料極:500μm、電解質膜:20μm、空気極:80μm)で直径200mmの円形である。ただし、燃料極と空気極との短絡を防止するため、空気極は18mmの円形(円の中心は電解質膜と一致)とした。すなわち、電解質膜の露出面は、幅2mmのドーナツ形状とした。 The SOFC cell obtained as described above has a thickness of 600 μm (fuel electrode: 500 μm, electrolyte membrane: 20 μm, air electrode: 80 μm) and a circular shape with a diameter of 200 mm. However, in order to prevent a short circuit between the fuel electrode and the air electrode, the air electrode has a circular shape of 18 mm (the center of the circle coincides with the electrolyte membrane). That is, the exposed surface of the electrolyte membrane was a donut shape with a width of 2 mm.
このサンプルを作製する過程における多孔質構造体を図2に、空気極形成前の固体酸化物電解質膜側から見た試料を図3に示す。図2から明らかなように、多孔質構造体は、YSZ粉末およびゾル起因のジルコニア微粒子が一体化する一方で、内部に多量の空隙を有し、三次元の網目構造を形成している。また、図3から明らかなように、燃料極は電解質膜側からの平面視で、多孔質構造体の部分と電極粒子の集合体の部分とが斑状に分布していた。既述の方法で、電解質膜の露出面から燃料極を見た平面視での、燃料極の面積に対する多孔質構造体の面積(面積比A)を求めたところ、30%であった。また、また、電解質の露出面上で、幅2mmの中央位置を繋いだ曲線(直径19mmの直線)を設定した。この曲線上で、多孔質構造体の延在密度は10個/mmであり、その平均長さは30μmであった。 FIG. 2 shows the porous structure in the process of producing this sample, and FIG. 3 shows the sample viewed from the solid oxide electrolyte membrane side before the air electrode is formed. As is apparent from FIG. 2, the porous structure is formed by integrating the YSZ powder and the sol-derived zirconia fine particles, while having a large amount of voids inside to form a three-dimensional network structure. Further, as apparent from FIG. 3, in the fuel electrode, the portion of the porous structure and the portion of the assembly of electrode particles were distributed in a patch shape in a plan view from the electrolyte membrane side. The area (area ratio A) of the porous structure relative to the area of the fuel electrode in a plan view of the fuel electrode viewed from the exposed surface of the electrolyte membrane was determined by the method described above and found to be 30%. In addition, a curve (straight line having a diameter of 19 mm) connecting the center positions of 2 mm in width was set on the exposed surface of the electrolyte. On this curve, the extension density of the porous structure was 10 pieces / mm, and the average length thereof was 30 μm.
(本発明例2・比較例)
多孔質フォームの平均気孔径を90〜200μmの範囲で変えることによって、面積比A、前記曲線上での多孔質構造体の延在密度および平均長さを変化させて、表1に示す種々のSOFCセルを作製した。
(Invention Example 2 / Comparative Example)
By changing the average pore diameter of the porous foam in the range of 90 to 200 μm, the area ratio A, the extension density and the average length of the porous structure on the curve were changed, An SOFC cell was produced.
(比較例2)
NiO粉末(平均粒径D50:1.0μm)45質量%と、YSZ粉末(平均粒径D50:0.5μm)45質量%と、造孔材としてのカーボン(平均粒径D50:3μm)2質量%の混合粉末を作製した。次に、αテルピネオールにポリビニルプチラールを5質量%溶かした溶剤に、前記混合粉末を67質量%混合してスラリーを作製した。得られたスラリーをドクターブレード法でシート状に成形した。こうして得られた成形体を大気中1400℃で5時間の条件で焼成して、燃料極(厚さ:2.5mm)を作製した。電解質膜と空気極は、本発明と同様に作製して、SOFCセルを得た。
(Comparative Example 2)
NiO powder (average particle size D50: 1.0 μm) 45% by mass, YSZ powder (average particle size D50: 0.5 μm) 45% by mass, and carbon (average particle size D50: 3 μm) 2 mass % Mixed powder was produced. Next, 67% by mass of the mixed powder was mixed with a solvent in which 5% by mass of polyvinyl petital was dissolved in α-terpineol to prepare a slurry. The obtained slurry was formed into a sheet by a doctor blade method. The molded body thus obtained was fired in the atmosphere at 1400 ° C. for 5 hours to produce a fuel electrode (thickness: 2.5 mm). The electrolyte membrane and the air electrode were produced in the same manner as in the present invention to obtain a SOFC cell.
<発電特性の評価>
本発明例および比較例で作製した各SOFCセルを用いて、セルの温度を800℃に保持して燃料極に水素、空気極に空気を投入して、最大出力密度を測定した。測定結果を表1に示す。比較例2の最大出力密度は0.8W/cm2であった。
<Evaluation of power generation characteristics>
Using each SOFC cell produced in the present invention example and the comparative example, the cell temperature was maintained at 800 ° C., hydrogen was introduced into the fuel electrode, and air was introduced into the air electrode, and the maximum output density was measured. The measurement results are shown in Table 1. The maximum power density of Comparative Example 2 was 0.8 W / cm 2 .
<酸化還元サイクルに対する耐久性の評価>
本発明例および比較例で作製したSOFCセル各20個に対して、それぞれ以下の酸化還元サイクル試験を行った。すなわち、各SOFCを800℃に保持した容器に入れ、容器内を99.9%H2の還元雰囲気で30分間保持し、その後、容器内雰囲気を窒素置換して、空気の酸化雰囲気で30分間保持し、この1サイクルを100回くり返した。サイクル試験の後において、燃料極にクラックがなかったセルの割合を求めた。以下の評価基準による結果を表1に示す。比較例2では、10サイクル後に全てのSOFCセルにクラックが生じていた。
(評価基準)
◎:80%以上
○:70%以上80%未満
△:60%以上70%未満
×:60%未満
<Evaluation of durability against redox cycle>
The following oxidation-reduction cycle tests were performed on each of the 20 SOFC cells produced in the inventive examples and comparative examples. That is, each SOFC is put in a container kept at 800 ° C., and the inside of the container is kept in a reducing atmosphere of 99.9% H 2 for 30 minutes, and then the atmosphere in the container is replaced with nitrogen, and then the atmosphere is oxidized in an air atmosphere for 30 minutes. This cycle was repeated 100 times. After the cycle test, the percentage of cells in which there was no crack in the fuel electrode was determined. The results based on the following evaluation criteria are shown in Table 1. In Comparative Example 2, cracks occurred in all SOFC cells after 10 cycles.
(Evaluation criteria)
◎: 80% or more ○: 70% or more and less than 80% △: 60% or more and less than 70% ×: less than 60%
表1より、面積比Aが5%ではサイクル耐久性が低く、面積比Aが70%では最大出力密度が低かった。しかし、面積比Aが10〜50%では、サイクル耐久性を維持しつつ、比較的高い最大出力密度を得ることができた。中でも、多孔質構造体の平均長さが10〜500μmの場合には、この効果がより十分に得られた。 From Table 1, when the area ratio A is 5%, the cycle durability is low, and when the area ratio A is 70%, the maximum output density is low. However, when the area ratio A is 10 to 50%, it was possible to obtain a relatively high maximum output density while maintaining cycle durability. In particular, this effect was more sufficiently obtained when the average length of the porous structure was 10 to 500 μm.
本発明は、固体酸化物型燃料電池産業およびこれを適用可能な各種産業に対して有用である。 The present invention is useful for the solid oxide fuel cell industry and various industries to which it can be applied.
10 燃料極
20 固体酸化物電解質膜
30 空気極
100 固体酸化物型燃料電池(SOFC)
DESCRIPTION OF SYMBOLS 10 Fuel electrode 20 Solid oxide electrolyte membrane 30 Air electrode 100 Solid oxide fuel cell (SOFC)
Claims (6)
前記燃料極は、固体酸化物からなる多孔質構造体と、該多孔質構造体の空隙内に分散された、電極触媒能を有する電極粒子の集合体と、を含み、
前記固体酸化物電解質膜の露出面から前記燃料極を見た平面視で、前記多孔質構造体と前記電極粒子の集合体とが斑状に分布し、前記平面視での前記燃料極の面積に対する前記多孔質構造体の面積が10〜50%であることを特徴とする燃料極支持型の固体酸化物型燃料電池。 A fuel electrode, a solid oxide electrolyte membrane formed on the fuel electrode, and an air electrode formed on a part of the solid oxide electrolyte membrane,
The fuel electrode includes a porous structure made of a solid oxide, and an aggregate of electrode particles having an electrode catalytic ability dispersed in voids of the porous structure,
In the plan view of the fuel electrode viewed from the exposed surface of the solid oxide electrolyte membrane, the porous structure and the aggregate of the electrode particles are distributed in spots, and the area of the fuel electrode in the plan view is An anode-supported solid oxide fuel cell, wherein the porous structure has an area of 10 to 50%.
前記燃料極を形成する工程は、固体酸化物からなる多孔質構造体を形成する第1工程と、該多孔質構造体の空隙内に電極触媒能を有する電極粒子の集合体を分散させる第2工程と、を含み、
前記固体酸化物電解質膜の露出面から前記燃料極を見た平面視で、前記多孔質構造体と前記電極粒子の集合体とが斑状に分布し、前記平面視での前記燃料極の面積に対する前記多孔質構造体の面積が10〜50%となるようにすることを特徴とする燃料極支持型の固体酸化物型燃料電池の製造方法。 A step of forming a fuel electrode, a step of forming a solid oxide electrolyte membrane on the fuel electrode, and a step of forming an air electrode on a part of the solid oxide electrolyte membrane,
The step of forming the fuel electrode includes a first step of forming a porous structure made of a solid oxide, and a second step of dispersing an aggregate of electrode particles having electrocatalytic activity in the voids of the porous structure. Including a process,
In the plan view of the fuel electrode viewed from the exposed surface of the solid oxide electrolyte membrane, the porous structure and the aggregate of the electrode particles are distributed in spots, and the area of the fuel electrode in the plan view is A method for producing a fuel electrode-supported solid oxide fuel cell, wherein the area of the porous structure is 10 to 50%.
After the second step, the fuel electrode and the solid oxide electrolyte membrane are formed by applying an electrolyte material on the porous structure and firing the porous structure and the electrolyte material together. A method for producing a solid oxide fuel cell according to claim 4 or 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013184446A JP2015053146A (en) | 2013-09-05 | 2013-09-05 | Fuel electrode supported solid oxide fuel cell and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013184446A JP2015053146A (en) | 2013-09-05 | 2013-09-05 | Fuel electrode supported solid oxide fuel cell and method of manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015053146A true JP2015053146A (en) | 2015-03-19 |
Family
ID=52702038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013184446A Pending JP2015053146A (en) | 2013-09-05 | 2013-09-05 | Fuel electrode supported solid oxide fuel cell and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2015053146A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020149803A (en) * | 2019-03-11 | 2020-09-17 | 住友電気工業株式会社 | Method for manufacturing fuel electrode-solid electrolyte layer composite |
-
2013
- 2013-09-05 JP JP2013184446A patent/JP2015053146A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020149803A (en) * | 2019-03-11 | 2020-09-17 | 住友電気工業株式会社 | Method for manufacturing fuel electrode-solid electrolyte layer composite |
JP7107875B2 (en) | 2019-03-11 | 2022-07-27 | 住友電気工業株式会社 | Manufacturing method of fuel electrode-solid electrolyte layer composite |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6398647B2 (en) | Method for producing anode for solid oxide fuel cell and method for producing electrolyte layer-electrode assembly for fuel cell | |
JP5858430B2 (en) | Anode support for solid oxide fuel cell, anode supported half cell, anode supported solid oxide fuel cell single cell, and method for producing anode supported half cell | |
JP6658754B2 (en) | Solid oxide fuel cell and method for producing electrolyte layer-anode assembly | |
JP2008004422A (en) | Electrode for solid oxide fuel cell, solid oxide fuel cell and method for producing the same | |
JP6121954B2 (en) | Solid oxide fuel cell | |
JP2013197036A (en) | Fuel cell and method for manufacturing laminated sintered body | |
JP4534188B2 (en) | Fuel cell electrode material and solid oxide fuel cell using the same | |
JP2013077409A (en) | Fuel battery single cell | |
WO2014027442A1 (en) | Fuel electrode which also serves as supporting body of solid oxide fuel cell, and fuel electrode-supported solid oxide fuel cell | |
KR101572477B1 (en) | Anode serving as support of solid oxide fuel cell and manufacturing method thereof | |
JP6664132B2 (en) | Porous structure, method of manufacturing the same, and electrochemical cell using the same and method of manufacturing the same | |
JP5293382B2 (en) | Fuel electrode for solid oxide fuel cell and method for producing the same | |
JP7285117B2 (en) | Materials for Forming Substrates of Solid Oxide Fuel Cells and Their Applications | |
JP4428946B2 (en) | Fuel electrode for solid oxide fuel cell | |
JP2015053146A (en) | Fuel electrode supported solid oxide fuel cell and method of manufacturing the same | |
JP5159938B1 (en) | Fuel cell | |
JP6452424B2 (en) | Electrode material and solid oxide fuel cell | |
JP2014067562A (en) | Solid oxide type fuel cell and power generating method using the same | |
KR101335063B1 (en) | Method of large powewr solid oxide fuel cell | |
JP5536271B1 (en) | Fuel electrode supported solid oxide fuel cell | |
JP5458222B1 (en) | A fuel electrode serving as a support for a solid oxide fuel cell and a solid oxide fuel cell supporting the fuel electrode | |
JP2020017408A (en) | Solid oxide fuel cell and manufacturing method thereof | |
JP2006147207A (en) | Solid oxide fuel cell and its manufacturing method |