[go: up one dir, main page]

JP2015049984A - Slurry for manufacturing electrode of nonaqueous electrolyte secondary battery, electrode manufactured by using it, and nonaqueous electrolyte secondary battery using that electrode - Google Patents

Slurry for manufacturing electrode of nonaqueous electrolyte secondary battery, electrode manufactured by using it, and nonaqueous electrolyte secondary battery using that electrode Download PDF

Info

Publication number
JP2015049984A
JP2015049984A JP2013179671A JP2013179671A JP2015049984A JP 2015049984 A JP2015049984 A JP 2015049984A JP 2013179671 A JP2013179671 A JP 2013179671A JP 2013179671 A JP2013179671 A JP 2013179671A JP 2015049984 A JP2015049984 A JP 2015049984A
Authority
JP
Japan
Prior art keywords
electrode
electrolyte secondary
secondary battery
slurry
nonaqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013179671A
Other languages
Japanese (ja)
Inventor
充康 今▲崎▼
Mitsuyasu Imazaki
充康 今▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2013179671A priority Critical patent/JP2015049984A/en
Publication of JP2015049984A publication Critical patent/JP2015049984A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a slurry for manufacturing the electrode of a nonaqueous electrolyte secondary battery which can prevent formation of a recess in the surface when being applied to a collector, by adding an organic acid to a slurry where lithium titanate and a binder are dispersed into water, and adjusting the pH.SOLUTION: A slurry for manufacturing the electrode of a nonaqueous electrolyte secondary battery is produced by mixing an electrode active material composed of lithium titanate, and a water dispersed polymer binder, and contains an organic acid not containing a heteroatom other than oxygen and having pH of 8 or less. A nonaqueous electrolyte secondary battery having excellent cycle, in which generation of gas is suppressed, can be manufactured by using this electrode.

Description

本発明は、非水電解質二次電池の電極作製用スラリー、それを用いて作製した電極、及びその電極を用いた非水電解質二次電池に関するものである。   The present invention relates to a slurry for preparing an electrode of a nonaqueous electrolyte secondary battery, an electrode manufactured using the slurry, and a nonaqueous electrolyte secondary battery using the electrode.

リチウムイオン蓄電池はモバイル機器用電源として現在幅広く使用されている。またリチウムイオン蓄電池は、既存のニッケル−カドミウム蓄電池やニッケル−水素蓄電池と比較して、高エネルギー密度であるために、電気自動車や電力貯蔵などの大型電源用途としても期待されている。特に、電極活物質にチタン酸リチウム(LTO)などの遷移金属複合酸化物を用いた非水電解質二次電池は、良好なサイクル特性により長寿命が期待でき、かつ安全性が高いことから注目を浴びている(特許文献1)。   Lithium ion storage batteries are currently widely used as power sources for mobile devices. Lithium ion storage batteries are also expected to be used for large power sources such as electric vehicles and power storage because they have a higher energy density than existing nickel-cadmium storage batteries and nickel-hydrogen storage batteries. In particular, non-aqueous electrolyte secondary batteries using transition metal composite oxides such as lithium titanate (LTO) as the electrode active material are expected to have a long life due to good cycle characteristics and are highly safe. (Patent Document 1)

現行の非水電解質二次電池において、電極活物質を錬り上げ、乾燥後固めるために用いられる結着材には、主にポリフッ化ビニリデンが用いられている。この結着材は非水系の有機溶媒であるN−メチル−2−ピロリドンに分散されている。しかし有機溶媒を分散剤に使用した場合は、溶媒自体のコストに加え、溶媒を回収する必要があるため、設備的にもコストが割高である。   In current non-aqueous electrolyte secondary batteries, polyvinylidene fluoride is mainly used as a binder used to scour an electrode active material and harden it after drying. This binder is dispersed in N-methyl-2-pyrrolidone which is a non-aqueous organic solvent. However, when an organic solvent is used as the dispersant, it is necessary to recover the solvent in addition to the cost of the solvent itself, so that the cost is high in terms of equipment.

そこで、ポリフッ化ビニリデンに代わり、スチレン−ブタジエン共重合体などの水分散結着材が用いられることがある(例えば、特許文献2参照)。   Therefore, an aqueous dispersion binder such as a styrene-butadiene copolymer may be used instead of polyvinylidene fluoride (see, for example, Patent Document 2).

特開2012?129095号公報JP 2012-129095 A 特開平4−342966号公報JP-A-4-342966 特開2012−234665号公報JP 2012-234665 A

このような水分散結着材と、チタン酸リチウムとを混合し塗工する場合には、電極形状が不均一になる問題があった。すなわち、チタン酸リチウムと水分散結着材とを用いてスラリーを作り、アルミニウム箔に塗工した場合、乾燥後の電極の表面にクレーター状の窪みができる。これにより、単位面積当たりの電極の重量を調整することが困難になり、電池設計に影響を与える。   When such a water-dispersed binder and lithium titanate are mixed and applied, there is a problem that the electrode shape becomes non-uniform. That is, when a slurry is made using lithium titanate and a water-dispersed binder and applied to an aluminum foil, a crater-like depression is formed on the surface of the electrode after drying. This makes it difficult to adjust the weight of the electrode per unit area, which affects battery design.

特許文献3によれば、チタン酸リチウムと水とを含む電極用スラリーに、有機ホスホン酸化合物及びアルカリ土類金属を混合することによりこの問題を解決しようとしているが、本発明者が検討したところ、電池製造後、電極からのガスの発生が確認された。
本発明は、電極作製用スラリー、それを用いて作製した窪みの発生の少ない均一な電極、及びその電極を用いたサイクル性が良好でかつ、ガス発生が抑制された非水電解質二次電池を提供することを目的とする。
According to Patent Document 3, an attempt is made to solve this problem by mixing an organic phosphonic acid compound and an alkaline earth metal in an electrode slurry containing lithium titanate and water. After the battery was produced, gas generation from the electrode was confirmed.
The present invention provides a slurry for electrode production, a uniform electrode produced using the same, and a non-aqueous electrolyte secondary battery having good cycleability using the electrode and suppressing gas generation. The purpose is to provide.

本発明者が研究したところ、チタン酸リチウムと水を含むスラリーに酸を加えpHを調整することで、電極の表面の窪みの形成を防止できることを見出し、この知見に基づき、本発明を完成するに至った。
本発明の非水電解質二次電池の電極作製用スラリーは、チタン酸リチウムからなる電極活物質と、水分散した高分子バインダーとを混合して成るスラリーであって、酸素以外のヘテロ原子を含まない有機酸を含み、pHが8以下であることを特徴とする。
As a result of research conducted by the present inventors, it has been found that the formation of depressions on the surface of the electrode can be prevented by adjusting the pH by adding acid to a slurry containing lithium titanate and water, and the present invention is completed based on this finding. It came to.
The slurry for electrode preparation of the non-aqueous electrolyte secondary battery of the present invention is a slurry obtained by mixing an electrode active material made of lithium titanate and a water-dispersed polymer binder, and contains hetero atoms other than oxygen. It is characterized by containing no organic acid and having a pH of 8 or less.

前記スラリーのpHが7以下4以上であることが好ましい。
前記有機酸は、蟻酸、酢酸、クエン酸、シュウ酸、マレイン酸、フマル酸、リンゴ酸、酒石酸の何れか又はこれらの2種以上の混合物であることが好ましい。
前記電極活物質は、例えばスピネル型のLiTi12、である。
本発明の非水電解質二次電池用電極は、前記スラリーをアルミニウム集電体に塗工し乾燥することによって得られるものである。
The pH of the slurry is preferably 7 or less and 4 or more.
The organic acid is preferably formic acid, acetic acid, citric acid, oxalic acid, maleic acid, fumaric acid, malic acid, tartaric acid, or a mixture of two or more thereof.
The electrode active material is, for example, spinel type Li 4 Ti 5 O 12 .
The electrode for a nonaqueous electrolyte secondary battery of the present invention is obtained by coating the slurry on an aluminum current collector and drying it.

本発明の非水電解質二次電池は、正極、負極、及び前記正極と前記負極との間に介在する非水電解液を有する非水電解質二次電池であって、前記電極を前記正極又は前記負極のいずれか一方又は両方に用いたものである。
また前記非水電解質二次電池を複数個接続して組電池とすることができる。
The nonaqueous electrolyte secondary battery of the present invention is a nonaqueous electrolyte secondary battery having a positive electrode, a negative electrode, and a nonaqueous electrolyte solution interposed between the positive electrode and the negative electrode, wherein the electrode is the positive electrode or the positive electrode. It is used for either one or both of the negative electrodes.
A plurality of the nonaqueous electrolyte secondary batteries can be connected to form an assembled battery.

本発明のスラリーにより作製される非水電解質二次電池の電極は、表面に窪みが発生せず、均一な電極とすることができる。またその電極を用いた非水電解質二次電池は、集電体であるアルミニウムの腐食が抑えられるため、長寿命な電池となる。また、チタン酸リチウムに混在する不純物アルカリ成分が除去されているため、サイクル使用時にガスの発生も少ない。   The electrode of the nonaqueous electrolyte secondary battery produced by the slurry of the present invention does not generate a depression on the surface, and can be a uniform electrode. A non-aqueous electrolyte secondary battery using the electrode is a battery having a long life because corrosion of aluminum as a current collector can be suppressed. Moreover, since the impurity alkali component mixed in the lithium titanate is removed, the generation of gas is small during cycle use.

以下、本発明の実施の形態を説明する。なお、本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図されている。
<電極>
本発明の非水電解質二次電池の電極作製用スラリーは、電極活物質混合物を水に分散させたものであり、酸素以外のヘテロ原子を含まない有機酸を含み、pHが調整されたものである。この電極作製用スラリーを集電体に塗工し乾燥して固化させることで、非水電解質二次電池の電極を作製することができる。
Embodiments of the present invention will be described below. The scope of the present invention is defined by the scope of the claims, and is intended to include any modifications within the scope and meaning equivalent to the scope of the claims.
<Electrode>
The slurry for electrode preparation of the non-aqueous electrolyte secondary battery of the present invention is a mixture of an electrode active material mixture dispersed in water, containing an organic acid containing no hetero atom other than oxygen, and adjusted in pH. is there. An electrode of a non-aqueous electrolyte secondary battery can be produced by applying this electrode production slurry to a current collector and drying and solidifying it.

電極活物質として、リチウムチタン酸化物が使用される。特に、スピネル型LiTi12、又はチタンの一部を他の金属イオンで置換したものが良い。置換する金属は、特に限定されないが、例えばNb、Al、Ni、Co、Mg、V、Cr、Cu、Mnが挙げられる。
バインダーは水に分散されているものが使用される。例えば、ポリテトラフルオロエチレン(PTFE)系、スチレン−ブタジエン共重合体(SBR; Styrene-Butadiene Rubber)系、アクリル酸エステル系、ポリイミド系及びそれら誘導体からなる群から選ばれる少なくとも1種を用いることができる。これらに分散剤、増粘剤を加えても良い。
Lithium titanium oxide is used as the electrode active material. In particular, spinel-type Li 4 Ti 5 O 12 or a part of titanium substituted with another metal ion is preferable. Although the metal to substitute is not specifically limited, For example, Nb, Al, Ni, Co, Mg, V, Cr, Cu, Mn is mentioned.
A binder dispersed in water is used. For example, at least one selected from the group consisting of polytetrafluoroethylene (PTFE), styrene-butadiene copolymer (SBR), acrylate ester, polyimide, and derivatives thereof may be used. it can. You may add a dispersing agent and a thickener to these.

本発明において、電極活物質に含まれるバインダーの量は、電極活物質100重量部に対して、好ましくは1重量部以上30重量部以下、より好ましくは1重量部以上15重量部以下である。上記範囲であれば、電極活物質と導電助材との接着性が維持され、集電体との密着性を十分に得ることができる。
電極活物質には、必要に応じて導電助材を含有しても良い。導電助材としては、特に限定されないが、炭素材料又は/及び金属微粒子が好ましい。炭素材料として、例えば、天然黒鉛、人造黒鉛、気相成長炭素繊維、カーボンナノチューブ、アセチレンブラック、ケッチェンブラック、及びファーネスブラックなどが挙げられる。金属微粒子として、例えば、銅、アルミニウム、ニッケル及びこれら少なくとも1種を含む合金が挙げられる。また、無機材料の微粒子にめっきを施したものでも良い。これら炭素材料及び金属微粒子は1種類でも良いし、2種類以上用いても良い。
In the present invention, the amount of the binder contained in the electrode active material is preferably 1 part by weight or more and 30 parts by weight or less, more preferably 1 part by weight or more and 15 parts by weight or less with respect to 100 parts by weight of the electrode active material. If it is the said range, the adhesiveness of an electrode active material and a conductive support material will be maintained, and adhesiveness with a collector can fully be acquired.
The electrode active material may contain a conductive additive as necessary. Although it does not specifically limit as a conductive support material, A carbon material or / and a metal microparticle are preferable. Examples of the carbon material include natural graphite, artificial graphite, vapor-grown carbon fiber, carbon nanotube, acetylene black, ketjen black, and furnace black. Examples of the metal fine particles include copper, aluminum, nickel, and an alloy containing at least one of these. Further, the fine particles of inorganic material may be plated. These carbon materials and metal fine particles may be used alone or in combination of two or more.

電極活物質に含まれる導電助材の量は、電極活物質100重量部に対して、好ましくは1重量部以上30重量部以下、より好ましくは1重量部以上15重量部以下である。上記範囲であれば、電極の導電性が確保される。
本発明の非水電解質二次電池用電極に用いられる集電体は、アルミニウム及びアルミニウム合金といったような、アルカリ性溶液中で腐食する金属である。形状としては、箔状、メッシュ状、パンチング状、エキスパンド状、又は発泡構造体が挙げられる。
The amount of the conductive additive contained in the electrode active material is preferably 1 part by weight or more and 30 parts by weight or less, more preferably 1 part by weight or more and 15 parts by weight or less with respect to 100 parts by weight of the electrode active material. If it is the said range, the electroconductivity of an electrode will be ensured.
The current collector used in the electrode for the nonaqueous electrolyte secondary battery of the present invention is a metal that corrodes in an alkaline solution, such as aluminum and an aluminum alloy. Examples of the shape include a foil shape, a mesh shape, a punching shape, an expanded shape, and a foam structure.

本発明の電極を作製するには、例えば、電極活物質、導電助材、及びバインダーを水に分散させたスラリーを集電体に担持させる。スラリーを集電体の空孔部及びその外面に充填及び塗布した後に、水を除去することによって電極を作製する。
本発明のスラリーには、蟻酸、酢酸、クエン酸、シュウ酸、マレイン酸、フマル酸、リンゴ酸、酒石酸などの、酸素以外のヘテロ原子を含まない有機酸が所定のpHとなるように添加されている。
In order to produce the electrode of the present invention, for example, a slurry in which an electrode active material, a conductive additive, and a binder are dispersed in water is supported on a current collector. After filling and applying the slurry to the pores and the outer surface of the current collector, the electrode is produced by removing water.
To the slurry of the present invention, an organic acid containing no heteroatom other than oxygen, such as formic acid, acetic acid, citric acid, oxalic acid, maleic acid, fumaric acid, malic acid, tartaric acid, is added so as to have a predetermined pH. ing.

スラリーを作製する方法は、特に限定されないが、電極活物質、導電助材、バインダー、及び水を均一に混合できることから、撹拌造粒装置、ボールミル、プラネタリミキサ、ジェットミル、薄膜旋回型ミキサーを用いることが好ましい。電極活物質混合物の混練方法は、特に限定されないが、電極活物質、導電助材を混合した後に、水に分散させたバインダーを加えて作製しても良いし、電極活物質、導電助材、及びバインダーを混合した後に水を加えて作製しても良い。   The method for preparing the slurry is not particularly limited, but since an electrode active material, a conductive additive, a binder, and water can be uniformly mixed, a stirring granulator, a ball mill, a planetary mixer, a jet mill, and a thin film swirling mixer are used. It is preferable. The method of kneading the electrode active material mixture is not particularly limited, but after mixing the electrode active material and the conductive additive, it may be prepared by adding a binder dispersed in water, or the electrode active material, conductive additive, In addition, water may be added after mixing the binder.

集電体上へのスラリーの担持方法は、特に限定されないが、例えばスラリーを集電体上へ分散させ、加圧して電極を形成後に水を除去する方法、スラリーのみでシートを形成し、集電体へ圧着させることで電極形成し水を除去する方法、スラリーをドクターブレード、ダイコータ等により塗布した後に溶媒を除去する方法、スラリーをスプレーにより集電体に付着させた後に溶媒を除去する方法、集電体にスラリーを含浸させた後に溶媒を除去する方法が好ましい。特に、加圧・圧着等により電極を形成する方法が好ましい。水を除去する方法は、オーブンや真空オーブンを用いた乾燥が簡単であり好ましい。雰囲気としては、室温あるいは高温とした空気、不活性ガス、真空状態などが挙げられる。   The method of supporting the slurry on the current collector is not particularly limited. For example, the slurry is dispersed on the current collector and pressurized to form an electrode, and then water is removed. A method of removing water by forming an electrode by pressure bonding to an electric body, a method of removing a solvent after applying the slurry with a doctor blade, a die coater, etc., a method of removing the solvent after adhering the slurry to the current collector by spraying A method of removing the solvent after impregnating the current collector with the slurry is preferable. In particular, a method of forming an electrode by pressure, pressure bonding or the like is preferable. The method for removing water is preferable because it is easy to dry using an oven or a vacuum oven. As the atmosphere, air at room temperature or high temperature, an inert gas, a vacuum state, or the like can be given.

得られた電極は、非水電解質二次電池の負極として用いても良いし、正極として用いても良い。正極として用いる場合には、リチウムイオンをあらかじめ挿入しておいても良い。
<負極と正極の容量比及び面積比>
本発明の非水電解質二次電池用電極を用いて作製した二次電池における正極と負極の電気容量の比は、下記式(1)を満たすことが望ましい。
The obtained electrode may be used as a negative electrode of a nonaqueous electrolyte secondary battery or may be used as a positive electrode. When used as a positive electrode, lithium ions may be inserted in advance.
<Capacity ratio and area ratio of negative electrode to positive electrode>
As for the ratio of the electric capacity of the positive electrode and the negative electrode in the secondary battery produced using the electrode for nonaqueous electrolyte secondary battery of the present invention, it is desirable to satisfy the following formula (1).

0.7≦B/A≦1.3 (1)
但し、上記式(1)中、Aは正極1cmあたりの電気容量を示し、Bは負極1cmあたりの電気容量を示す。
B/Aが0.7未満である場合は、過充電時に負極の電位が負極集電体とリチウムが反応する電位又はリチウムの析出電位になる場合があり、一方、B/Aが1.3より大きい場合は電池反応に関与しない負極電極活物質多いために副反応が起こる場合がある。
0.7 ≦ B / A ≦ 1.3 (1)
In the above formula (1), A represents the electric capacity per 1 cm 2 of the positive electrode, and B represents the electric capacity per 1 cm 2 of the negative electrode.
When B / A is less than 0.7, the potential of the negative electrode may become a potential at which the negative electrode current collector reacts with lithium or a lithium deposition potential during overcharge, while B / A is 1.3. If it is larger, a side reaction may occur due to the large amount of the negative electrode active material not involved in the battery reaction.

本発明の非水電解質二次電池における正極と負極との面積比は、特に限定されないが、下記式(2)を満たすことが好ましい。
1≦D/C≦1.2 (2)
但し、Cは正極の面積、Dは負極の面積を示す。D/Cが1未満である場合は、例えば先述のB/A=1の場合、負極の容量が正極よりも小さくなるため、過充電時に負極の電位がリチウムの析出電位になる恐れがある。一方、D/Cが1.2より大きい場合は、正極と接していない部分の負極が大きいため、電池反応に関与しない負極電極活物質が副反応を起こす場合がある。正極及び負極の面積の制御は特に限定されないが、例えば、電極作製の際、塗工幅を制御することによって行うことができる。
Although the area ratio of the positive electrode to the negative electrode in the nonaqueous electrolyte secondary battery of the present invention is not particularly limited, it is preferable to satisfy the following formula (2).
1 ≦ D / C ≦ 1.2 (2)
However, C shows the area of a positive electrode, D shows the area of a negative electrode. When D / C is less than 1, for example, when B / A = 1 as described above, the capacity of the negative electrode is smaller than that of the positive electrode, so that the potential of the negative electrode may become a lithium deposition potential during overcharge. On the other hand, when D / C is larger than 1.2, since the negative electrode in the portion not in contact with the positive electrode is large, the negative electrode active material not involved in the battery reaction may cause a side reaction. Although control of the area of a positive electrode and a negative electrode is not specifically limited, For example, in the case of electrode preparation, it can carry out by controlling the coating width.

本発明の非水電解質二次電池に用いるセパレータと負極との面積比は特に限定されないが、下記式(3)を満たすことが好ましい。
1≦F/E≦1.5 (3)
但し、Eは負極の面積、Fはセパレータの面積を示す。F/Eが1未満である場合は、正極と負極とが接触し、1.5より大きい場合は外装に要する体積が大きくなり、電池の容量密度及び出力密度が低下する場合がある。
The area ratio between the separator and the negative electrode used in the nonaqueous electrolyte secondary battery of the present invention is not particularly limited, but preferably satisfies the following formula (3).
1 ≦ F / E ≦ 1.5 (3)
However, E shows the area of a negative electrode and F shows the area of a separator. When F / E is less than 1, the positive electrode and the negative electrode are in contact with each other. When F / E is greater than 1.5, the volume required for the exterior increases, and the capacity density and output density of the battery may decrease.

<セパレータ>
本発明の非水電解質二次電池に用いるセパレータとしては、多孔質材料又は不織布等が挙げられる。セパレータの材質としては、電解液を構成する有機溶媒に対して溶解しないものが好ましく、具体的にはポリエチレンやポリプロピレンのようなポリオレフィン系ポリマー、ポリエチレンテレフタレートのようなポリエステル系ポリマー、セルロース、ガラスのような無機材料が挙げられる。
<Separator>
Examples of the separator used in the nonaqueous electrolyte secondary battery of the present invention include porous materials and nonwoven fabrics. The material of the separator is preferably one that does not dissolve in the organic solvent that constitutes the electrolytic solution. Specifically, a polyolefin polymer such as polyethylene or polypropylene, a polyester polymer such as polyethylene terephthalate, cellulose, or glass. Inorganic materials.

セパレータの厚みは1〜500μmが好ましい。1μm未満であるとセパレータの機械的強度の不足により破断し、内部短絡する傾向がある。一方、500μmより厚い場合、電池の内部抵抗と、正極負極の電極間距離が増大することにより、電池の負荷特性が低下する傾向がある。より好ましい厚みは、10〜300μmである。
<非水電解質>
本発明の非水電解質二次電池に用いる非水電解質は、特に限定されないが、非水溶媒に溶質を溶解させた電解液、非水溶媒に溶質を溶解させた電解液を高分子に含浸させたゲル電解質などを用いることができる。
The thickness of the separator is preferably 1 to 500 μm. If it is less than 1 μm, it tends to break due to insufficient mechanical strength of the separator and cause an internal short circuit. On the other hand, when it is thicker than 500 μm, the load characteristics of the battery tend to be reduced due to the increase in the internal resistance of the battery and the distance between the positive and negative electrodes. A more preferable thickness is 10 to 300 μm.
<Nonaqueous electrolyte>
The non-aqueous electrolyte used in the non-aqueous electrolyte secondary battery of the present invention is not particularly limited, but a polymer is impregnated with an electrolytic solution in which a solute is dissolved in a non-aqueous solvent, or an electrolytic solution in which a solute is dissolved in a non-aqueous solvent. A gel electrolyte or the like can be used.

非水溶媒としては、環状の非プロトン性溶媒及び/又は鎖状の非プロトン性溶媒を含むことが好ましい。環状の非プロトン性溶媒としては、環状カーボネート、環状エステル、環状スルホン及び環状エーテルなどが例示される。鎖状の非プロトン性溶媒としては、鎖状カーボネート、鎖状カルボン酸エステル及び鎖状エーテルなどが例示される。また、上記に加えアセトニトリルなどの一般的に非水電解質の溶媒として用いられる溶媒を用いても良い。より具体的には、ジメチルカーボネート、メチルエチルカーボネート、ジメチルカーボネート、ジプロピルカーボネート、メチルプロピルカーボネート、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、1,2−ジメトキシエタン、スルホラン、ジオキソラン、プロピオン酸メチルなどを用いることができる。これら溶媒は1種類で用いてもよいし、2種類以上混合しても用いてもよいが、後述の溶質を溶解させやすさ、リチウムイオンの伝導性の高さから、2種類以上混合した溶媒を用いることが好ましい。また、高分子に電解液をしみこませたゲル状電解質も用いることができる。   The non-aqueous solvent preferably includes a cyclic aprotic solvent and / or a chain aprotic solvent. Examples of the cyclic aprotic solvent include cyclic carbonates, cyclic esters, cyclic sulfones and cyclic ethers. Examples of the chain aprotic solvent include chain carbonates, chain carboxylic acid esters and chain ethers. In addition to the above, a solvent generally used as a solvent for nonaqueous electrolytes such as acetonitrile may be used. More specifically, dimethyl carbonate, methyl ethyl carbonate, dimethyl carbonate, dipropyl carbonate, methyl propyl carbonate, ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, 1,2-dimethoxyethane, sulfolane, dioxolane, propionic acid Methyl and the like can be used. These solvents may be used alone or as a mixture of two or more. However, in view of the ease of dissolving the solute described below and the high conductivity of lithium ions, a mixture of two or more of these solvents. Is preferably used. A gel electrolyte in which an electrolyte is impregnated in a polymer can also be used.

溶質は、特に限定されないが、例えば、LiClO、LiBF、LiPF、LiAsF、LiCFSO、LiBOB(Lithium Bis (Oxalato) Borate)、LiN(SOCFなどは溶媒に溶解しやすいことから好ましい。電解液に含まれる溶質の濃度は、0.5mol/L以上2.0mol/L以下であることが好ましい。0.5mol/L未満では所望のリチウムイオン伝導性が発現しない場合があり、一方、2.0mol/Lより高いと、溶質がそれ以上溶解しない場合がある。非水電解質には、難燃剤、安定化剤などの添加剤が微量含まれてもよい。 The solute is not particularly limited. For example, LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiCF 3 SO 3 , LiBOB (Lithium Bis (Oxalato) Borate), LiN (SO 2 CF 3 ) 2, etc. are dissolved in the solvent. It is preferable because it is easy to do. The concentration of the solute contained in the electrolytic solution is preferably 0.5 mol / L or more and 2.0 mol / L or less. If it is less than 0.5 mol / L, the desired lithium ion conductivity may not be exhibited. On the other hand, if it is higher than 2.0 mol / L, the solute may not be dissolved any more. The non-aqueous electrolyte may contain a trace amount of additives such as a flame retardant and a stabilizer.

<非水電解質二次電池>
本発明の非水電解質二次電池の正極及び負極は、集電体の両面に同じ電極を形成させた形態であってもよく、集電体の片面に正極、一方の面に負極を形成させた形態、すなわち、バイポーラ電極であってもよいが、バイポーラ型とする場合、集電体を介した正極と負極の液絡を防止するため、導電材料及び/又は絶縁材料が正極と負極間に配置されている。また、バイポーラ電極である場合は、隣り合うバイポーラ電極の正極側と負極側との間にセパレータを配置し、各正極側と負極側とが対向した層内は、液絡を防止するため正極及び負極の周辺部に絶縁材料が配置されている。
<Nonaqueous electrolyte secondary battery>
The positive electrode and the negative electrode of the nonaqueous electrolyte secondary battery of the present invention may be in the form in which the same electrode is formed on both sides of the current collector, and the positive electrode is formed on one side of the current collector and the negative electrode is formed on one side. In other words, in the case of a bipolar type, in order to prevent a liquid junction between the positive electrode and the negative electrode through the current collector, the conductive material and / or the insulating material is interposed between the positive electrode and the negative electrode. Has been placed. In the case of a bipolar electrode, a separator is disposed between the positive electrode side and the negative electrode side of the adjacent bipolar electrode, and the positive electrode and An insulating material is disposed around the negative electrode.

本発明の非水電解質二次電池は、正極側と負極側との間にセパレータを配置したものを倦回したものであってもよいし、積層したものであってもよい。正極、負極、及びセパレータには、リチウムイオン伝導を担う非水電解質が含浸している。非水電解としてゲル状のものを使用する場合は、電解質が正極及び負極に含浸していても、正極・負極間のみにある状態でもよい。ゲル状電解質により正極・負極間が直接接触していなければ、セパレータを使用する必要はない。   The nonaqueous electrolyte secondary battery of the present invention may be one obtained by winding or laminating a separator disposed between the positive electrode side and the negative electrode side. The positive electrode, the negative electrode, and the separator are impregnated with a nonaqueous electrolyte that is responsible for lithium ion conduction. When a non-aqueous electrolysis gel is used, the electrolyte may be impregnated in the positive electrode and the negative electrode, or may be in a state only between the positive electrode and the negative electrode. If the positive electrode and the negative electrode are not in direct contact with the gel electrolyte, it is not necessary to use a separator.

本発明の非水電解質二次電池に用いる非水電解質の量は、特に限定されないが、電池容量1Ahあたり、0.1mL以上であることが好ましい。0.1mL未満の場合、電極反応に伴うリチウムイオンの伝導が追いつかず、所望の電池性能が発現しない場合がある。
非水電解質は、あらかじめ正極、負極及びセパレータに含ませてもよいし、正極側と負極側との間にセパレータを配置したものを倦回、あるいは積層した後に添加してもよい。ゲル状の非水電解質を使用する場合は、モノマーを含浸させた後ゲル状にしても、予めゲル状にした後に正極と負極の間に配置してもよい。
The amount of the nonaqueous electrolyte used in the nonaqueous electrolyte secondary battery of the present invention is not particularly limited, but is preferably 0.1 mL or more per 1 Ah of battery capacity. If it is less than 0.1 mL, the conduction of lithium ions accompanying the electrode reaction may not catch up, and the desired battery performance may not be exhibited.
The nonaqueous electrolyte may be added to the positive electrode, the negative electrode, and the separator in advance, or may be added after winding or laminating a separator disposed between the positive electrode side and the negative electrode side. When using a gel-like non-aqueous electrolyte, it may be gelled after impregnation with a monomer, or may be placed between the positive electrode and the negative electrode after gelling in advance.

本発明の非水電解質二次電池は、上記積層体を倦回、あるいは複数積層した後にラミネートフィルムで外装してもよいし、角形、楕円形、円筒形、コイン形、ボタン形、シート形の金属缶で外装してもよい。外装には発生したガス等を放出するための機構が備わっていてもよい。また、劣化した当該非水電解質二次電池の機能を回復させるための添加剤を電池外部から注入する機構が備わっていてもよい。積層体の積層数は、所望の電池容量を発現するまで積層させることができる。積層の場合は、電極の積層方向に圧力が加えられていても良い。セル内部で圧力を加えても、外装の外側から圧力を加えても良い。   The non-aqueous electrolyte secondary battery of the present invention may be wound or laminated with a laminate film after the laminate is wound, or may be rectangular, elliptical, cylindrical, coin-shaped, button-shaped, or sheet-shaped. It may be packaged with a metal can. The exterior may be provided with a mechanism for releasing the generated gas or the like. Further, a mechanism for injecting an additive for recovering the function of the deteriorated nonaqueous electrolyte secondary battery from the outside of the battery may be provided. The number of stacked layers can be stacked until a desired battery capacity is exhibited. In the case of stacking, pressure may be applied in the stacking direction of the electrodes. Pressure may be applied inside the cell or may be applied from the outside of the exterior.

本発明の非水電解質二次電池は、複数接続することによって二次電池モジュールとすることができる。本発明のモジュールは、所望の大きさ、容量、電圧によって適宜直列、並列に接続することによって作製することができる。また、各電池の充電状態の確認、安全性向上のため、前記二次電池モジュールに制御回路が付属されていても良い。   The nonaqueous electrolyte secondary battery of the present invention can be made into a secondary battery module by connecting a plurality of nonaqueous electrolyte secondary batteries. The module of the present invention can be manufactured by connecting in series or in parallel as appropriate depending on the desired size, capacity, and voltage. Further, a control circuit may be attached to the secondary battery module in order to confirm the state of charge of each battery and improve safety.

(1)負極の作製
負極活物質のLi4Ti512を、文献("Zero-Strain Insertion Material of Li [Li1/3Ti5/3] O4 for Rechargeable Lithium Cells" J. Electrochem. Soc., Volume 142, Issue 5, pp. 1431-1435 (1995))に記載されている方法で作製した。
すなわち、まず二酸化チタンと水酸化リチウムを、チタンとリチウムとのモル比が5:4となるように混合し、次にこの混合物を窒素雰囲気下800℃で12時間加熱することによって負極活物質を作製した。
(1) Fabrication of negative electrode Li 4 Ti 5 O 12 as a negative electrode active material was obtained from literature (“Zero-Strain Insertion Material of Li [Li1 / 3Ti5 / 3] O4 for Rechargeable Lithium Cells” J. Electrochem. Soc., Volume 142 , Issue 5, pp. 1431-1435 (1995)).
That is, first, titanium dioxide and lithium hydroxide are mixed so that the molar ratio of titanium and lithium is 5: 4, and then this mixture is heated at 800 ° C. for 12 hours in a nitrogen atmosphere to obtain a negative electrode active material. Produced.

負極活物質(LiTi12)を100重量部に対して、導電助材(アセチレンブラック)を6.8重量部と、SBRバインダーの固形分換算6.8重量部とを混合して水分散スラリーを作製した。さらに、このスラリーに、酢酸、マレイン酸、蟻酸、クエン酸、シュウ酸、フマル酸、リンゴ酸、酒石酸、という有機酸をそれぞれ添加しpHを調整した。このpH調整されたスラリーをアルミニウム箔に塗工した後に、80℃で真空乾燥することによって作用極のための電極を作製した。電極は30mm×30mmに切断した。 100 parts by weight of the negative electrode active material (Li 4 Ti 5 O 12 ), 6.8 parts by weight of the conductive additive (acetylene black), and 6.8 parts by weight in terms of solid content of the SBR binder were mixed. A water-dispersed slurry was prepared. Further, to this slurry, organic acids such as acetic acid, maleic acid, formic acid, citric acid, oxalic acid, fumaric acid, malic acid and tartaric acid were added to adjust the pH. This pH-adjusted slurry was applied to an aluminum foil and then vacuum-dried at 80 ° C. to produce an electrode for a working electrode. The electrode was cut into 30 mm × 30 mm.

(2)半電池の作製
リチウム金属を30mm×30mmに打ち抜き対極とした。これらの電極を用いて、作用極/セパレータ(Celgard#2500、ポリポア)/リチウム金属の順に積層しラミネートシートで包囲した。ラミネートシート内に、エチレンカーボネート/ジメチルカーボネート=30/70vol%の非水溶媒中に、LiPFを1mol/L溶解させたものを1mL入れ、半電池を作製した。
(2) Production of half-cell Lithium metal was punched into 30 mm × 30 mm as a counter electrode. Using these electrodes, a working electrode / separator (Celgard # 2500, polypore) / lithium metal was laminated in this order and surrounded by a laminate sheet. In the laminate sheet, 1 mL of 1 mol / L of LiPF 6 dissolved in a non-aqueous solvent of ethylene carbonate / dimethyl carbonate = 30/70 vol% was put into a half cell.

(3)測定
この半電池を25℃で一日放置した後、充放電試験装置(HJ1005SD8、北斗電工社製)に接続した。
サイクル特性試験は、25℃、0.5mA定電流充電、0.5mA定電流放電を200回繰り返した。このときの充電終止電圧及び放電終止電圧は、それぞれ3.0V及び1.0Vとした。1回目の放電容量は165mAh/g、単位面積当たり容量は3.1mAh/cm2であった。
(3) Measurement After this half-cell was left at 25 ° C. for one day, it was connected to a charge / discharge test apparatus (HJ1005SD8, manufactured by Hokuto Denko).
In the cycle characteristic test, 25 ° C., 0.5 mA constant current charging, and 0.5 mA constant current discharging were repeated 200 times. The charge end voltage and discharge end voltage at this time were 3.0 V and 1.0 V, respectively. The first discharge capacity was 165 mAh / g, and the capacity per unit area was 3.1 mAh / cm 2 .

1回目の放電容量を100としたときの、200回目の放電容量(容量維持率)を表1に示す。
ガス発生量は、1回目と200回目のセルを溶液に浸漬し、その体積変化を測定して推定したものである。窪みの有無は目視で確かめた。
Table 1 shows the 200th discharge capacity (capacity maintenance ratio) when the first discharge capacity is 100.
The amount of gas generated is estimated by immersing the first and 200th cells in a solution and measuring the volume change. The presence or absence of a dent was confirmed visually.

Figure 2015049984
Figure 2015049984

比較例1,2と実施例1〜4に示すように、有機酸として酢酸を用いた場合、pHが10以上では電極に窪みが観察される。pH=8以下では窪みは観察されなかった。また、pHが大きいとガス発生量が大きくなる傾向にあった。
実施例5〜8に示すように、マレイン酸を有機酸として用いても、pH=8以下では電極の窪みは観察されず、サイクル性は良好で、ガス発生も小さかった。
As shown in Comparative Examples 1 and 2 and Examples 1 to 4, when acetic acid is used as the organic acid, a depression is observed in the electrode when the pH is 10 or more. No depression was observed below pH = 8. Further, when the pH was high, the gas generation amount tended to increase.
As shown in Examples 5 to 8, even when maleic acid was used as the organic acid, no depression of the electrode was observed at pH = 8 or less, the cycleability was good, and the gas generation was small.

実施例9〜14に示すように、中性pH=7であれば各種有機酸の種類によらず電極の窪みは観察されなかった。これら電極もサイクル性は良好で、ガス発生も小さい。
比較例3、4に示すように、酸素以外のヘテロ原子が存在する有機酸を用いた場合には、pH=7にすることで電極の窪みは抑制されるものの、ガス発生に良好な結果は得られなかった。これは残存ヘテロ原子が副反応を誘発していると考えられる。
As shown in Examples 9 to 14, when the neutral pH was 7, no depression of the electrode was observed regardless of the type of various organic acids. These electrodes also have good cycle characteristics and small gas generation.
As shown in Comparative Examples 3 and 4, when an organic acid containing a heteroatom other than oxygen is used, the depression of the electrode can be suppressed by setting pH = 7, but good results in gas generation are obtained. It was not obtained. This is considered that the residual hetero atom induces a side reaction.

これらのことから、スラリーに酸素以外のヘテロ原子を含まない有機酸を混合してpHを8以下にすると、水系バインダーを使用しても電極に窪みができず、さらに良好なサイクル性とガス発生抑止効果を付与することができることが分かった。   For these reasons, if the slurry is mixed with an organic acid that does not contain heteroatoms other than oxygen and the pH is adjusted to 8 or less, the electrode will not dent even if an aqueous binder is used, and even better cycling and gas generation It was found that a deterrent effect can be imparted.

Claims (8)

チタン酸リチウムからなる電極活物質と、水分散した高分子バインダーとを混合して成る非水電解質二次電池の電極作製用スラリーであって、
酸素以外のヘテロ原子を含まない有機酸を含み、pHが8以下であることを特徴とする、非水電解質二次電池の電極作製用スラリー。
A slurry for preparing an electrode of a non-aqueous electrolyte secondary battery comprising a mixture of an electrode active material comprising lithium titanate and a water-dispersed polymer binder,
A slurry for preparing an electrode for a non-aqueous electrolyte secondary battery, comprising an organic acid containing no heteroatom other than oxygen and having a pH of 8 or less.
pHが7以下4以上である、請求項1に記載のスラリー。   The slurry according to claim 1, having a pH of 7 or less and 4 or more. 前記有機酸が蟻酸、酢酸、クエン酸、シュウ酸、マレイン酸、フマル酸、リンゴ酸、酒石酸の何れか又はこれらの2種以上の混合物である、請求項1又は請求項2に記載のスラリー。   The slurry according to claim 1 or 2, wherein the organic acid is formic acid, acetic acid, citric acid, oxalic acid, maleic acid, fumaric acid, malic acid, tartaric acid, or a mixture of two or more thereof. 前記電極活物質が、スピネル型のLiTi12、である、請求項1から請求項3のいずれかに記載のスラリー。 The slurry according to any one of claims 1 to 3, wherein the electrode active material is spinel type Li 4 Ti 5 O 12 . 請求項1から請求項4のいずれかに記載のスラリーをアルミニウム集電体に塗工し乾燥することによって得られる非水電解質二次電池用電極。   The electrode for nonaqueous electrolyte secondary batteries obtained by apply | coating the slurry in any one of Claim 1 to 4 to an aluminum electrical power collector, and drying. 正極、負極、及び前記正極と前記負極との間に介在する非水電解液を有する非水電解質二次電池であって、
請求項5に記載の電極を前記正極又は前記負極のいずれか一方又は両方に用いた非水電解質二次電池。
A non-aqueous electrolyte secondary battery having a positive electrode, a negative electrode, and a non-aqueous electrolyte interposed between the positive electrode and the negative electrode,
A non-aqueous electrolyte secondary battery using the electrode according to claim 5 for either one or both of the positive electrode and the negative electrode.
請求項6に記載の電極を前記負極に用いた非水電解質二次電池。   A nonaqueous electrolyte secondary battery using the electrode according to claim 6 as the negative electrode. 請求項7に記載の非水電解質二次電池を複数個接続してなる組電池。   An assembled battery formed by connecting a plurality of the nonaqueous electrolyte secondary batteries according to claim 7.
JP2013179671A 2013-08-30 2013-08-30 Slurry for manufacturing electrode of nonaqueous electrolyte secondary battery, electrode manufactured by using it, and nonaqueous electrolyte secondary battery using that electrode Pending JP2015049984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013179671A JP2015049984A (en) 2013-08-30 2013-08-30 Slurry for manufacturing electrode of nonaqueous electrolyte secondary battery, electrode manufactured by using it, and nonaqueous electrolyte secondary battery using that electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013179671A JP2015049984A (en) 2013-08-30 2013-08-30 Slurry for manufacturing electrode of nonaqueous electrolyte secondary battery, electrode manufactured by using it, and nonaqueous electrolyte secondary battery using that electrode

Publications (1)

Publication Number Publication Date
JP2015049984A true JP2015049984A (en) 2015-03-16

Family

ID=52699855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013179671A Pending JP2015049984A (en) 2013-08-30 2013-08-30 Slurry for manufacturing electrode of nonaqueous electrolyte secondary battery, electrode manufactured by using it, and nonaqueous electrolyte secondary battery using that electrode

Country Status (1)

Country Link
JP (1) JP2015049984A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015118920A (en) * 2013-11-12 2015-06-25 太陽インキ製造株式会社 Slurry composition, electrode, nonaqueous electrolyte secondary battery, and manufacturing method of the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010061933A (en) * 2008-09-03 2010-03-18 Toyo Ink Mfg Co Ltd Negative electrode mixture, and lithium secondary battery using the same
WO2012111425A1 (en) * 2011-02-14 2012-08-23 昭和電工株式会社 Slurries obtained using binder for cell electrodes, electrodes obtained using slurries, and lithium-ion secondary cell obtained using electrodes
JP2012160345A (en) * 2011-01-31 2012-08-23 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2013084517A (en) * 2011-10-12 2013-05-09 Taiyo Yuden Co Ltd Ceramic material, battery electrode including the same, and lithium ion secondary battery
JP2013131463A (en) * 2011-12-22 2013-07-04 Kaneka Corp Electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery including the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010061933A (en) * 2008-09-03 2010-03-18 Toyo Ink Mfg Co Ltd Negative electrode mixture, and lithium secondary battery using the same
JP2012160345A (en) * 2011-01-31 2012-08-23 Toshiba Corp Nonaqueous electrolyte secondary battery
WO2012111425A1 (en) * 2011-02-14 2012-08-23 昭和電工株式会社 Slurries obtained using binder for cell electrodes, electrodes obtained using slurries, and lithium-ion secondary cell obtained using electrodes
JP2013084517A (en) * 2011-10-12 2013-05-09 Taiyo Yuden Co Ltd Ceramic material, battery electrode including the same, and lithium ion secondary battery
JP2013131463A (en) * 2011-12-22 2013-07-04 Kaneka Corp Electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery including the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015118920A (en) * 2013-11-12 2015-06-25 太陽インキ製造株式会社 Slurry composition, electrode, nonaqueous electrolyte secondary battery, and manufacturing method of the same

Similar Documents

Publication Publication Date Title
KR101678798B1 (en) Method for producing nonaqueous electrolyte secondary battery
CN108539122A (en) A kind of positive plate and the lithium rechargeable battery comprising the positive plate
KR101749508B1 (en) Electrode active material for lithium secondary battery, electrode for lithium secondary battery including the same, and lithium secondary battery comprising the same
KR20180087162A (en) Method for preparing lithium secondary battery having high-temperature storage properties
JP6077345B2 (en) Non-aqueous secondary battery positive electrode material, non-aqueous secondary battery positive electrode and non-aqueous secondary battery
US10249874B2 (en) Composite negative active material, negative electrode including composite negative active material, and lithium secondary battery including negative electrode
WO2013176130A1 (en) Nonaqueous electrolyte secondary battery
CN115136377A (en) Lithium ion secondary battery
CN104969403A (en) Non-aqueous electrolyte solution and lithium secondary battery containing same
JP2015207419A (en) Non-aqueous electrolyte secondary battery
KR20160027088A (en) Nonaqueous electrolyte secondary cell and method for producing same
KR20190075945A (en) Battery module for power device start-up
JP2011192561A (en) Manufacturing method for nonaqueous electrolyte secondary battery
JP2013131427A (en) Laminated battery
JP2019164965A (en) Lithium ion secondary battery
KR20130029328A (en) Non-aqueous electrolyte for electrochemical device and electrochemical device
KR101675610B1 (en) Lithium secondary battery
WO2013108841A1 (en) Non-aqueous electrolyte secondary cell containing scavenger
JP7003775B2 (en) Lithium ion secondary battery
TWI600195B (en) Nonaqueous electrolyte secondary battery and battery module using the same
JP2019169392A (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2015201283A (en) Manufacturing method of cathode for nonaqueous secondary battery, and cathode for nonaqueous secondary battery
US20190260080A1 (en) Non-aqueous Electrolyte and Lithium Secondary Battery Including the Same
JP2013191484A (en) Negative electrode active material layer, manufacturing method therefor and nonaqueous electrolyte secondary cell
JP2002216768A (en) Non-aqueous secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180315