[go: up one dir, main page]

JP2015048831A - Engine, heat pump device and heat value estimation method of fuel gas - Google Patents

Engine, heat pump device and heat value estimation method of fuel gas Download PDF

Info

Publication number
JP2015048831A
JP2015048831A JP2013183304A JP2013183304A JP2015048831A JP 2015048831 A JP2015048831 A JP 2015048831A JP 2013183304 A JP2013183304 A JP 2013183304A JP 2013183304 A JP2013183304 A JP 2013183304A JP 2015048831 A JP2015048831 A JP 2015048831A
Authority
JP
Japan
Prior art keywords
fuel
fuel gas
calorific value
engine
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013183304A
Other languages
Japanese (ja)
Other versions
JP2015048831A5 (en
JP6280711B2 (en
Inventor
則通 村井
Norimichi Murai
則通 村井
金井 弘
Hiroshi Kanai
弘 金井
庸平 安藤
Yohei Ando
庸平 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Osaka Gas Co Ltd
Original Assignee
Panasonic Corp
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Osaka Gas Co Ltd filed Critical Panasonic Corp
Priority to JP2013183304A priority Critical patent/JP6280711B2/en
Publication of JP2015048831A publication Critical patent/JP2015048831A/en
Publication of JP2015048831A5 publication Critical patent/JP2015048831A5/ja
Application granted granted Critical
Publication of JP6280711B2 publication Critical patent/JP6280711B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Testing Of Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

【課題】燃料ガスの発熱量を直接計測する手段を設けない比較的簡易な構成により、燃料ガスの発熱量を推定する。【解決手段】発熱量推定対象の燃料ガスを供給してエンジン60を運転する状態で、酸素センサ32の出力に基づいて、空燃比制御手段52にて燃料流量調整弁14の開度を調整することにより燃焼室20における燃焼状態をストイキ状態とし、当該ストイキ状態における燃料流量調整弁14の開度と、記憶部51に記憶された第1対応関係とに基づいて、発熱量推定対象の燃料ガスの発熱量を推定する発熱量推定手段53を備える。【選択図】図1A heat generation amount of a fuel gas is estimated by a relatively simple configuration without providing a means for directly measuring the heat generation amount of the fuel gas. An air-fuel ratio control means 52 adjusts the opening of a fuel flow rate adjustment valve 14 based on the output of an oxygen sensor 32 in a state where an engine 60 is operated by supplying a fuel gas whose heat generation amount is to be estimated. As a result, the combustion state in the combustion chamber 20 is changed to the stoichiometric state, and the fuel gas subject to the calorific value estimation is based on the opening degree of the fuel flow rate adjusting valve 14 in the stoichiometric state and the first correspondence relationship stored in the storage unit 51. Is provided with a heat generation amount estimation means 53 for estimating the heat generation amount. [Selection] Figure 1

Description

本発明は、燃料ガスの流量を調整する燃料流量調整弁と、燃料ガスと燃焼用空気との混合ガスを燃焼させる燃焼室と、前記燃焼室からの排ガスを通流する排気路にて排ガスの酸素濃度を測定する酸素センサと、前記酸素センサの測定結果に基づいて前記燃料流量調整弁の開度を調整することにより空燃比を制御する空燃比制御手段を備えたエンジン、当該エンジンにて圧縮機が駆動されるガスエンジン駆動式ヒートポンプ装置、及び燃料ガスの発熱量推定方法に関する。   The present invention relates to a fuel flow rate adjusting valve that adjusts the flow rate of fuel gas, a combustion chamber that burns a mixed gas of fuel gas and combustion air, and an exhaust passage through which exhaust gas flows from the combustion chamber. An engine having an oxygen sensor for measuring the oxygen concentration, and an air-fuel ratio control means for controlling the air-fuel ratio by adjusting the opening of the fuel flow rate adjustment valve based on the measurement result of the oxygen sensor, compressed by the engine TECHNICAL FIELD The present invention relates to a gas engine driven heat pump device in which a machine is driven, and a method for estimating a calorific value of fuel gas.

エンジンに供給される燃料ガスとして、メタンを主成分とし、エタン、プロパン、ブタン等の可燃性ガスを含む天然ガスが用いられることがある。このような天然ガスは、その産地が異なる場合、組成が異なることがあるため、その発熱量も異なることがある。
さらに、今日、メタン発酵等の技術を利用して製造されるバイオガスを、燃料ガスとして使用することもある。一般に、バイオガスは都市ガスに比べてその発熱量が低い。従って、エンジンに供給される燃料ガスとする場合、その発熱量が変化することがある。
上述のような理由により、組成の変動により発熱量が変化する燃料ガスを用いるガスエンジン等にあっては、燃料ガスをエンジンに供給する燃料供給路に、燃料ガスの発熱量を測定する発熱量計測手段を設け、当該発熱量計測手段の計測結果に基づいて、燃料供給弁の弁開度を調整することにより、燃料供給量を制御することも提案されている(特許文献1を参照)。
As the fuel gas supplied to the engine, natural gas containing flammable gas such as ethane, propane, butane and the like, which is mainly composed of methane, may be used. Such natural gas may have a different calorific value because its composition may be different when its production area is different.
Furthermore, today, biogas produced using technology such as methane fermentation is sometimes used as fuel gas. In general, biogas has a lower calorific value than city gas. Therefore, when the fuel gas is supplied to the engine, the amount of heat generated may change.
For a gas engine using a fuel gas whose calorific value changes due to a variation in composition for the reasons described above, the calorific value for measuring the calorific value of the fuel gas in a fuel supply path for supplying the fuel gas to the engine It has also been proposed to control the fuel supply amount by providing a measurement means and adjusting the valve opening degree of the fuel supply valve based on the measurement result of the calorific value measurement means (see Patent Document 1).

特開2003−328800号公報JP 2003-328800 A

しかしながら、特許文献1に示されるように、燃料ガスの発熱量を計測するのに設けられる発熱量計測手段は高価であるため、このような発熱量を直接計測する発熱量計測手段を設けず、燃料ガスの発熱量を推定する方法、及び装置の開発が望まれていた。   However, as shown in Patent Document 1, since the calorific value measuring means provided for measuring the calorific value of the fuel gas is expensive, no calorific value measuring means for directly measuring such calorific value is provided, Development of a method and apparatus for estimating the calorific value of fuel gas has been desired.

本発明は、上述の課題に鑑みてなされたものであり、その目的は、燃料ガスの発熱量を直接計測する手段を設けない比較的簡易な構成でも、燃料ガスの発熱量を推定することが可能なエンジン、エンジン駆動式ヒートポンプ装置、及び発熱量推定方法を提供すると共に、推定された発熱量に基づいて、発熱量の変動に追従して運転可能なエンジン、及びエンジン駆動式ヒートポンプ装置を提供することにある。   The present invention has been made in view of the above-described problems, and an object of the present invention is to estimate the calorific value of the fuel gas even with a relatively simple configuration in which a means for directly measuring the calorific value of the fuel gas is not provided. A possible engine, an engine-driven heat pump device, and a calorific value estimation method are provided, and an engine that can be operated following fluctuation of the calorific value based on the estimated calorific value and an engine-driven heat pump device are provided. There is to do.

上記目的を達成するための本発明のエンジンは、
燃料ガスの流量を調整する燃料流量調整弁と、
燃料ガスと燃焼用空気との混合ガスを燃焼させる燃焼室からの排ガスを通流する排気路にて排ガスの酸素濃度を測定する酸素センサと、
前記酸素センサの測定結果に基づいて前記燃料流量調整弁の開度を調整することにより空燃比を制御する空燃比制御手段を備えたエンジンであって、その特徴構成は、
発熱量が判明している燃料ガスを供給してストイキ状態でエンジンを運転した場合における前記燃料流量調整弁の開度と前記燃料ガスの発熱量との関係である第1対応関係を記憶する記憶部を備え、
発熱量推定対象の燃料ガスを供給してエンジンを運転する状態で、前記酸素センサの出力に基づいて、前記空燃比制御手段にて前記燃料流量調整弁の開度を調整することにより前記燃焼室における燃焼状態をストイキ状態とし、当該ストイキ状態における前記燃料流量調整弁の開度と、前記記憶部に記憶された前記第1対応関係とに基づいて、発熱量推定対象の燃料ガスの発熱量を推定する発熱量推定手段を備える点にある。
In order to achieve the above object, an engine of the present invention provides:
A fuel flow control valve for adjusting the flow rate of the fuel gas;
An oxygen sensor that measures the oxygen concentration of the exhaust gas in an exhaust passage through which the exhaust gas from the combustion chamber that burns the mixed gas of fuel gas and combustion air flows;
An engine comprising air-fuel ratio control means for controlling the air-fuel ratio by adjusting the opening of the fuel flow rate adjustment valve based on the measurement result of the oxygen sensor, the characteristic configuration of which is
A memory for storing a first correspondence relationship between the degree of opening of the fuel flow rate adjustment valve and the amount of heat generated by the fuel gas when an engine is operated in a stoichiometric state by supplying fuel gas with a known amount of heat generated Part
The combustion chamber is adjusted by adjusting the opening of the fuel flow rate adjustment valve by the air-fuel ratio control means on the basis of the output of the oxygen sensor in a state where the fuel gas to be subjected to heat generation estimation is supplied and the engine is operated. The combustion state at is a stoichiometric state, and based on the opening degree of the fuel flow rate adjustment valve in the stoichiometric state and the first correspondence stored in the storage unit, It is in the point provided with the calorific value estimating means to estimate.

上記目的を達成するための本発明の発熱量推定方法は、
燃料ガスの流量を調整する燃料流量調整弁と、
燃料ガスと燃焼用空気との混合ガスを燃焼させる燃焼室からの排ガスを通流する排気路にて排ガスの酸素濃度を測定する酸素センサとを備え、
前記酸素センサの測定結果に基づいて前記燃料流量調整弁の開度を調整することにより空燃比を制御するように構成されたエンジンによる燃料ガスの発熱量推定方法であって、その特徴構成は、
発熱量が判明している燃料ガスを供給してストイキ状態でエンジンを運転した場合における前記燃料流量調整弁の開度と前記燃料ガスの発熱量との関係である第1対応関係を記憶する記憶部を備え、
発熱量推定対象の燃料ガスを供給してエンジンを運転する状態で、前記酸素センサの出力に基づいて、前記空燃比制御手段にて前記燃料流量調整弁の開度を調整することにより、前記燃焼室における燃焼状態をストイキ状態とし、当該ストイキ状態における前記燃料流量調整弁の開度と、前記記憶部に記憶された前記第1対応関係とに基づいて、発熱量推定対象の燃料ガスの発熱量を推定する発熱量推定工程を有する点にある。
The calorific value estimation method of the present invention for achieving the above object is as follows.
A fuel flow control valve for adjusting the flow rate of the fuel gas;
An oxygen sensor that measures the oxygen concentration of the exhaust gas in an exhaust passage through which the exhaust gas from the combustion chamber that burns the mixed gas of fuel gas and combustion air flows,
A method for estimating the calorific value of fuel gas by an engine configured to control the air-fuel ratio by adjusting the opening of the fuel flow rate adjustment valve based on the measurement result of the oxygen sensor, the characteristic configuration is:
A memory for storing a first correspondence relationship between the degree of opening of the fuel flow rate adjustment valve and the amount of heat generated by the fuel gas when an engine is operated in a stoichiometric state by supplying fuel gas with a known amount of heat generated Part
The combustion is performed by adjusting the opening of the fuel flow rate adjustment valve by the air-fuel ratio control means based on the output of the oxygen sensor in a state where the fuel gas to be subjected to heat generation estimation is supplied and the engine is operated. The combustion state in the chamber is a stoichiometric state, and based on the opening degree of the fuel flow rate adjustment valve in the stoichiometric state and the first correspondence stored in the storage unit, the calorific value of the fuel gas that is the calorific value estimation target It is in the point which has the calorific value estimation process which presumes.

上記特徴構成によれば、酸素センサの出力に基づいて、空燃比制御手段により燃料流量調整弁の開度を調整し、エンジンの燃焼状態をストイキ状態に調整する。ここで、記憶部には、発熱量が判明している燃料ガスを供給してストイキ状態でエンジンを運転した場合における燃料流量調整弁の開度に対応する燃料ガスの発熱量の第1対応関係が記憶されているから、当該第1対応関係と調整された燃料流量調整弁の開度とに基づいて、現状の燃料ガス(発熱量推定対象の燃料ガス)の発熱量を推定できる。
即ち、本発明によれば、燃料ガスの発熱量を計測するための高価な熱量計を備えることなく、一般的なエンジンの基本構成で、エンジンをストイキ状態で運転するという簡単な構成で、その状態での弁開度から燃料ガスの発熱量を推定することができ、当該推定結果に基づいて、現在供給されている燃料ガスの発熱量に応じて運転状態を適切なものにできるエンジンを実現できる。
According to the above characteristic configuration, the opening of the fuel flow rate adjustment valve is adjusted by the air-fuel ratio control means based on the output of the oxygen sensor, and the combustion state of the engine is adjusted to the stoichiometric state. Here, the first correspondence relationship of the calorific value of the fuel gas corresponding to the opening degree of the fuel flow rate adjustment valve when the engine is operated in the stoichiometric state by supplying the fuel gas whose calorific value is known to the storage unit Is stored, based on the first correspondence relationship and the adjusted opening of the fuel flow rate adjustment valve, it is possible to estimate the heat value of the current fuel gas (the fuel gas that is the target of heat value estimation).
That is, according to the present invention, the basic configuration of a general engine without the need for an expensive calorimeter for measuring the calorific value of fuel gas, and the simple configuration of operating the engine in a stoichiometric state, The amount of heat generated by the fuel gas can be estimated from the valve opening in the state, and based on the estimated result, an engine that can achieve an appropriate operating state according to the amount of heat generated by the currently supplied fuel gas is realized. it can.

本発明のエンジンの更なる特徴構成は、
前記発熱量推定手段にて推定された燃料ガスの発熱量が、これまで供給されてきた燃料ガスの原発熱量よりも小さい場合、前記燃料流量調整弁の開度を大きい側に調整し、
前記原発熱量よりも大きい場合、前記燃料流量調整弁の開度を小さい側に調整する第1開度調整手段を備えることにある。
Further features of the engine of the present invention are as follows:
When the calorific value of the fuel gas estimated by the calorific value estimation means is smaller than the original calorific value of the fuel gas supplied so far, the opening of the fuel flow rate adjustment valve is adjusted to the larger side,
When it is larger than the original heating value, there is provided a first opening degree adjusting means for adjusting the opening degree of the fuel flow rate adjusting valve to a smaller side.

上記特徴構成によれば、第1開度調整手段が、燃料流量調整弁の開度を調整するから、シンプルな制御で、発熱量推定の実行後、燃料流量調整弁の開度を、現状の燃料ガス(発熱量推定対象の燃料ガス)に追従させることができる。   According to the above characteristic configuration, since the first opening degree adjusting means adjusts the opening degree of the fuel flow rate adjustment valve, after performing the heat generation amount estimation with simple control, the opening degree of the fuel flow rate adjustment valve is set to the current level. It is possible to follow the fuel gas (the fuel gas whose calorific value is to be estimated).

本発明のエンジンの更なる特徴構成は、
前記記憶部は、発熱量が判明している燃料ガスの発熱量毎に、エンジンを適正運転できる空燃比と前記燃料流量調整弁の開度との関係である第2対応関係を記憶し、
前記発熱量推定手段にて推定された燃料ガスの発熱量と、別途決定される目標空燃比とに基づいて、前記第2対応関係から、エンジンを適正運転状態に維持する燃料流量調整弁の開度を導出し、燃料流量調整弁の開度を調整する第2開度調整手段を備えることにある。
Further features of the engine of the present invention are as follows:
The storage unit stores a second correspondence relationship that is a relationship between an air-fuel ratio at which the engine can be properly operated and an opening degree of the fuel flow rate adjustment valve, for each calorific value of the fuel gas whose calorific value is known,
Based on the calorific value of the fuel gas estimated by the calorific value estimation means and a separately determined target air-fuel ratio, an opening of a fuel flow rate adjustment valve for maintaining the engine in an appropriate operating state is determined from the second correspondence relationship. The second opening degree adjusting means for deriving the degree and adjusting the opening degree of the fuel flow rate adjustment valve.

上記特徴構成によれば、記憶部は、発熱量毎に、エンジンを適正運転できる空燃比と燃料流量調整弁の開度との第2対応関係を記憶しているから、推定された発熱量と、別途エンジンの使用等の条件から決定される目標空燃比とに基づいて、第2対応関係から、エンジンを適正運転状態に維持する燃料流量調整弁の開度を導出し、第2開度調整手段にて燃料流量調整弁の開度を調整し、エンジンを適正状態に維持できる。
つまり、発熱量が変動するような場合であっても、変動する発熱量に追従する形態で、燃料流量調整弁の開度制御を実行できる。
According to the above characteristic configuration, the storage unit stores the second correspondence relationship between the air-fuel ratio at which the engine can be properly operated and the opening of the fuel flow rate adjustment valve for each heat generation amount. Further, based on the target air-fuel ratio determined separately from conditions such as the use of the engine, the opening degree of the fuel flow rate adjustment valve for maintaining the engine in an appropriate operating state is derived from the second correspondence relationship, and the second opening degree adjustment is performed. By adjusting the opening of the fuel flow control valve by means, the engine can be maintained in an appropriate state.
That is, even when the heat generation amount fluctuates, the opening degree control of the fuel flow control valve can be executed in a form that follows the fluctuating heat generation amount.

本発明のエンジン駆動式ヒートポンプ装置の特徴構成は、
エンジンの軸出力にて駆動する圧縮機を備えている点にある。
The characteristic configuration of the engine-driven heat pump device of the present invention is:
The compressor is driven by the shaft output of the engine.

上記特徴構成によれば、エンジン駆動ヒートポンプ装置は、燃料ガスの発熱量の変化に追従した適切な運転を行うガスエンジンの軸出力にて駆動される圧縮機を備えているから、燃料ガスの発熱量の変化に基づいた適切な運転を実行できる。   According to the above characteristic configuration, the engine-driven heat pump device includes the compressor driven by the shaft output of the gas engine that performs an appropriate operation following the change in the calorific value of the fuel gas. Appropriate operation based on the change in quantity can be executed.

本発明に係るエンジン駆動ヒートポンプ装置の概略構成図Schematic configuration diagram of an engine-driven heat pump device according to the present invention 異なった発熱量の燃料ガスをストイキ状態近傍で運転した場合の燃料流量調整弁の開度と酸素センサの出力(空燃比)との関係を示すグラフ図The graph which shows the relationship between the opening degree of a fuel flow control valve and the output (air-fuel ratio) of an oxygen sensor at the time of operating the fuel gas of different calorific value near the stoichiometric state 燃料ガスの発熱量の推定及び推定された発熱量に基づく運転に係る制御フロー図Control flow diagram related to operation based on estimation of calorific value of fuel gas and estimated calorific value

本発明のエンジン60、当該エンジン60を駆動源とするエンジン駆動式ヒートポンプ装置100、及びエンジン60による燃料ガスの発熱量推定方法は、高価な熱量計を用いることなく、燃料ガスGの発熱量を推定することができ、推定した発熱量に基づいてエンジン60の運転状態を適切なものに調整自在なものに関する。
以下、それらの構成につき、順に説明する。
The engine 60 of the present invention, the engine-driven heat pump apparatus 100 using the engine 60 as a drive source, and the fuel gas calorific value estimation method by the engine 60 can calculate the calorific value of the fuel gas G without using an expensive calorimeter. The present invention relates to an engine that can be estimated and that can freely adjust the operation state of the engine 60 to an appropriate one based on the estimated calorific value.
Hereinafter, those configurations will be described in order.

本発明のエンジン60は、図1に示すように、燃料流路13から導かれる燃料ガスGと給気路10から導かれる燃焼用空気Aとの混合気を燃焼する燃焼室20と、当該燃焼室20にて混合ガスが燃焼した後の排ガスEを外部へ導く排気路31とが設けられている。   As shown in FIG. 1, the engine 60 of the present invention includes a combustion chamber 20 that burns an air-fuel mixture of a fuel gas G guided from a fuel flow path 13 and combustion air A guided from an air supply path 10, and the combustion An exhaust passage 31 is provided for guiding the exhaust gas E after the mixed gas is combusted in the chamber 20 to the outside.

給気路10には、燃料ガスGを通流すると共に燃料ガスGの流量を調整する燃料流量調整弁14が設けられた燃料流路13が、給気路10を通流する燃焼用空気Aの流量に対して一定の流量比を保つ状態で燃料流路13を通流する燃料ガスGを給気路10の燃焼用空気Aへ混合するベンチュリーミキサ11を介して、接続されている。
給気路10は、ベンチュリーミキサ11の下流側で混合気の流量を調整するスロットル弁12を備え、当該スロットル弁12の下流側において、給気バルブ15を介して燃焼室20に接続されている。
A fuel flow path 13 provided with a fuel flow rate adjusting valve 14 that allows the fuel gas G to flow and adjusts the flow rate of the fuel gas G through the supply air path 10 is a combustion air A that flows through the air supply path 10. The fuel gas G flowing through the fuel flow path 13 in a state of maintaining a constant flow rate ratio with respect to the flow rate is connected via a venturi mixer 11 that mixes the combustion air A in the air supply path 10.
The air supply path 10 includes a throttle valve 12 that adjusts the flow rate of the air-fuel mixture on the downstream side of the venturi mixer 11, and is connected to the combustion chamber 20 via the air supply valve 15 on the downstream side of the throttle valve 12. .

燃焼室20は、中空円筒状のシリンダ25と、当該シリンダ25の内部を摺動自在なピストン22の上面とから構成されている。ピストン22には、そのシリンダ25内における摺動移動を、エンジン60のクランク軸24へ伝達する連結棒23が設けられている。
シリンダ25の上面であるシリンダヘッドには、燃焼室20に供給された燃料ガスGと燃焼用空気Aとの混合気に点火する点火プラグ21が設けられており、当該点火プラグ21が、圧縮された混合気に点火する形態で、混合気を燃焼・膨張させて、ピストン22をシリンダ25内で摺動移動させる。
The combustion chamber 20 includes a hollow cylindrical cylinder 25 and an upper surface of a piston 22 that can slide inside the cylinder 25. The piston 22 is provided with a connecting rod 23 that transmits the sliding movement in the cylinder 25 to the crankshaft 24 of the engine 60.
A cylinder head that is an upper surface of the cylinder 25 is provided with an ignition plug 21 that ignites an air-fuel mixture of the fuel gas G supplied to the combustion chamber 20 and the combustion air A, and the ignition plug 21 is compressed. The air-fuel mixture is combusted and expanded in such a manner that the air-fuel mixture is ignited, and the piston 22 is slid and moved in the cylinder 25.

燃焼室20に排気バルブ30を介して接続される排気路31は、当該排気路31を通流する排ガスEの酸素濃度を検知する酸素センサ32が設けられている。
通常、酸素センサは、燃料ガスGと燃焼用空気Aとの比を制御する目的で、排気路31に設けられる三元触媒(図示せず)の上流側に設けられるものと、触媒の劣化検知等の目的で、三元触媒の下流側に設けられるものとがある。
本発明の酸素センサ32は、燃料ガスGと燃焼用空気Aとの比を制御することを目的とするものである。
当該酸素センサ32の出力は、図2に示すように、燃料流量調整弁14の開度を調整すること、即ち、燃料ガスGの供給量を調整することにより、ストイキ燃焼状態(空気過剰率=実空燃比/理論空燃比=1.0)の近傍において、急峻な変化(図2では、0.2V〜0.7V間の変化)をする。
そこで、制御装置50は、酸素センサ32の出力が、急峻な変化をする値、即ち、図2で0.2V〜0.7V間の値となるように、燃料流量調整弁14の開度を制御することで、エンジン60をストイキ燃焼状態(空気過剰率=実空燃比/理論空燃比=1.0)に維持することができるのである。
尚、排気路31に三元触媒(図示せず)を設ける場合にあっては、エンジン60をストイキ燃焼状態に維持することにより、排ガスEに含まれるHC、CO、NOxを良好に除去することができる。
The exhaust passage 31 connected to the combustion chamber 20 via the exhaust valve 30 is provided with an oxygen sensor 32 that detects the oxygen concentration of the exhaust gas E flowing through the exhaust passage 31.
Usually, the oxygen sensor is provided upstream of a three-way catalyst (not shown) provided in the exhaust passage 31 for the purpose of controlling the ratio between the fuel gas G and the combustion air A, and the deterioration detection of the catalyst. For the purpose of, etc., there are those provided downstream of the three-way catalyst.
The oxygen sensor 32 of the present invention is intended to control the ratio between the fuel gas G and the combustion air A.
As shown in FIG. 2, the output of the oxygen sensor 32 is obtained by adjusting the opening of the fuel flow rate adjusting valve 14, that is, adjusting the supply amount of the fuel gas G, so that the stoichiometric combustion state (excess air ratio = In the vicinity of the actual air-fuel ratio / theoretical air-fuel ratio = 1.0), a steep change (change between 0.2 V and 0.7 V in FIG. 2) occurs.
Therefore, the control device 50 sets the opening of the fuel flow rate adjustment valve 14 so that the output of the oxygen sensor 32 has a value that changes sharply, that is, a value between 0.2V and 0.7V in FIG. By controlling, the engine 60 can be maintained in the stoichiometric combustion state (the excess air ratio = the actual air / fuel ratio / theoretical air / fuel ratio = 1.0).
In the case where a three-way catalyst (not shown) is provided in the exhaust passage 31, it is possible to satisfactorily remove HC, CO, and NOx contained in the exhaust gas E by maintaining the engine 60 in a stoichiometric combustion state. Can do.

また、本発明にあっては、空燃比制御手段52が、酸素センサ32にて検出された酸素濃度に基づいて、燃料流量調整弁14の開度を調整することにより、空燃比を調整するように構成されており、希薄燃焼状態で運転を行うリーン運転、理論空燃比となるストイキ状態で運転を行うストイキ運転、過濃燃焼状態で運転を行うリッチ運転の夫々を、切り換えて実行可能になっている。   In the present invention, the air-fuel ratio control means 52 adjusts the air-fuel ratio by adjusting the opening of the fuel flow rate adjustment valve 14 based on the oxygen concentration detected by the oxygen sensor 32. It is possible to switch between a lean operation that operates in a lean combustion state, a stoichiometric operation that operates in a stoichiometric state with a stoichiometric air-fuel ratio, and a rich operation that operates in a rich combustion state. ing.

エンジン60のクランク軸24は、ヒートポンプ装置100の圧縮機40の回転軸と図示しない連結部材にて連結され、圧縮機40がエンジン60の軸出力により駆動されるように構成されている。
エンジン60を駆動源とするエンジン駆動式ヒートポンプ装置100は、冷媒Lを循環する冷媒循環路Cに、冷媒を圧縮する圧縮機40、当該圧縮機40にて圧縮され昇温した冷媒Lを放熱させる凝縮器41、凝縮器41を通過した後の冷媒Lを膨張させる膨張弁42、当該膨張弁42にて膨張されて降温した冷媒Lに吸熱させる蒸発器43を、記載順に設けて構成されている。
The crankshaft 24 of the engine 60 is connected to the rotating shaft of the compressor 40 of the heat pump apparatus 100 by a connecting member (not shown), and the compressor 40 is driven by the shaft output of the engine 60.
The engine-driven heat pump apparatus 100 using the engine 60 as a drive source dissipates heat in the refrigerant circuit C that circulates the refrigerant L, the compressor 40 that compresses the refrigerant, and the refrigerant L that is compressed and heated by the compressor 40. The condenser 41, the expansion valve 42 that expands the refrigerant L after passing through the condenser 41, and the evaporator 43 that absorbs heat by the refrigerant L that has been expanded by the expansion valve 42 and cooled down are provided in the order of description. .

本発明のエンジン60、及びエンジン駆動式ヒートポンプ装置100は、上述の如く構成されているのであるが、燃料として供給される燃料ガスGは、メタン、エタン、ブタン、プロパン等の炭化水素ガスを含む天然ガスであり、当該天然ガスは、産地が異なる等の理由により、含まれる炭化水素ガスの組成が変動するため、その発熱量が、所定の範囲で変動する。本例では、当該燃料ガスの発熱量の変動範囲は、最低発熱量である40MJ/Nm3から、最高発熱量である46MJ/Nm3までの比較的大きい変動幅で変動する場合を予想している。このため、エンジン60は、燃料ガスGの発熱量の変動幅が大きくなる場合であっても、その発熱量の変動に追従して、適切に運転するものであることが望まれる。
そこで、本発明のエンジン60、及びエンジン駆動式ヒートポンプ装置100にあっては、以下の方法により、燃料ガスGの発熱量を推定する。
The engine 60 and the engine-driven heat pump apparatus 100 of the present invention are configured as described above, but the fuel gas G supplied as fuel includes hydrocarbon gases such as methane, ethane, butane, propane, and the like. Since it is a natural gas, the composition of the hydrocarbon gas contained in the natural gas varies for reasons such as different production areas, so the calorific value varies within a predetermined range. In this example, the variation range of the calorific value of the fuel gas, from 40 MJ / Nm 3 is the lowest heating value, in anticipation of the case that varies in a relatively large change width of up to 46 mJ / Nm 3 is the highest heating value Yes. For this reason, even if the fluctuation range of the calorific value of the fuel gas G becomes large, it is desirable that the engine 60 appropriately operates following the fluctuation of the calorific value.
Therefore, in the engine 60 and the engine driven heat pump apparatus 100 of the present invention, the heat generation amount of the fuel gas G is estimated by the following method.

〔燃料ガスの発熱量の推定〕
本発明のエンジン60、及びエンジン駆動式ヒートポンプ装置100にあっては、燃料ガスGの発熱量の変動を推定すべく、発熱量が判明している燃料ガスを供給してストイキ状態(空気過剰率=実空燃比/理論空燃比=1.0)でエンジンを運転した場合における燃料流量調整弁14の開度と燃料ガスGの発熱量との関係である第1対応関係を記憶する記憶部51を備えている。更に、発熱量推定対象の燃料ガスGを供給してエンジン60を運転する状態で、酸素センサ32の出力に基づいて、空燃比制御手段52にて燃料流量調整弁14の開度を調整することにより、燃焼室20における燃焼状態をストイキ状態とし、当該ストイキ状態における燃料流量調整弁14の開度と、記憶部51に記憶された第1対応関係とに基づいて、発熱量推定対象の燃料ガスGの発熱量を推定する発熱量推定手段53を備えている。
[Estimation of calorific value of fuel gas]
In the engine 60 and the engine-driven heat pump apparatus 100 of the present invention, in order to estimate the fluctuation of the calorific value of the fuel gas G, the fuel gas whose calorific value is known is supplied and the stoichiometric state (the excess air ratio) = Actual air / fuel ratio / theoretical air / fuel ratio = 1.0) A storage unit 51 that stores the first correspondence relationship that is the relationship between the opening of the fuel flow rate adjustment valve 14 and the amount of heat generated by the fuel gas G when the engine is operated. It has. Further, the opening degree of the fuel flow rate adjustment valve 14 is adjusted by the air-fuel ratio control means 52 based on the output of the oxygen sensor 32 in a state where the fuel gas G to be subjected to heat generation estimation is supplied and the engine 60 is operated. Thus, the combustion state in the combustion chamber 20 is changed to the stoichiometric state, and the fuel gas to be subjected to the calorific value estimation is based on the opening degree of the fuel flow rate adjusting valve 14 in the stoichiometric state and the first correspondence relationship stored in the storage unit 51. A calorific value estimation means 53 for estimating the calorific value of G is provided.

即ち、本発明にあっては、発熱量が判明している燃料ガスGの発熱量毎に、発熱量が判明している燃料ガスGを供給してストイキ状態(空気過剰率=実空燃比/理論空燃比=1.0)でエンジンを運転した場合の燃料流量調整弁14の開度を第1対応関係として記憶部51に記憶しているので、供給される燃料ガスGの発熱量が不明の場合であっても、ストイキ状態に調整したときの燃料流量調整弁14の開度から、燃料ガスGの発熱量を推定できるのである。   That is, in the present invention, for every calorific value of the fuel gas G whose calorific value is known, the fuel gas G whose calorific value is known is supplied and stoichiometric (excess air ratio = actual air fuel ratio / Since the opening degree of the fuel flow rate adjustment valve 14 when the engine is operated at the theoretical air-fuel ratio = 1.0) is stored in the storage unit 51 as the first correspondence relationship, the heat generation amount of the supplied fuel gas G is unknown. Even in this case, the calorific value of the fuel gas G can be estimated from the opening degree of the fuel flow rate adjustment valve 14 when the stoichiometric state is adjusted.

燃料ガスGの発熱量、燃料流量調整弁14の開度、及び空燃比の関係を、図2のグラフ図に基づいて説明する。
図2に示すグラフは、横軸が、燃料流量調整弁14の開度(燃料ガスGの供給量に対応)を示しており、ステップ数が多くなるほど、燃料流量調整弁14の開度が開き側(燃料ガスGの供給量が増加する側)に移行することを示している。縦軸は、酸素センサ32の出力を示しており、出力が高くなるほど、排ガスEの酸素濃度が低い(空燃比が低い)ことを示している。
尚、酸素センサ32の出力が、急峻に変化しているとき(図2では、0.2V〜0.7V間で変化しているとき)、空燃比は理論空燃比となっており、空気過剰率=実空燃比/理論空燃比=1.0となっている。
また、図2には、異なる2つの発熱量の燃料ガスGを用いた場合のグラフが示されており、右側のグラフが、燃料ガスGの発熱量が40MJ/Nm3である場合を示しており、左側のグラフが、燃料ガスGの発熱量が46MJ/Nm3である場合を示している。
The relationship between the calorific value of the fuel gas G, the opening of the fuel flow rate adjustment valve 14, and the air-fuel ratio will be described with reference to the graph of FIG.
In the graph shown in FIG. 2, the horizontal axis indicates the opening degree of the fuel flow rate adjustment valve 14 (corresponding to the supply amount of the fuel gas G), and the opening degree of the fuel flow rate adjustment valve 14 increases as the number of steps increases. It shows that the fuel gas G shifts to the side (the side where the supply amount of the fuel gas G increases). The vertical axis indicates the output of the oxygen sensor 32, and the higher the output, the lower the oxygen concentration of the exhaust gas E (the air-fuel ratio is low).
When the output of the oxygen sensor 32 changes sharply (when it changes between 0.2V and 0.7V in FIG. 2), the air-fuel ratio is the stoichiometric air-fuel ratio, and excess air Rate = actual air / fuel ratio / theoretical air / fuel ratio = 1.0.
FIG. 2 shows a graph when two different calorific values of the fuel gas G are used, and the graph on the right side shows the case where the calorific value of the fuel gas G is 40 MJ / Nm 3. The graph on the left shows the case where the calorific value of the fuel gas G is 46 MJ / Nm 3 .

当該グラフに示す関係から、ストイキ運転に於ける燃料流量調整弁14の開度が552ステップ程度である場合、燃料ガスGの発熱量は、40MJ/Nm3であり、ストイキ運転に於ける燃料流量調整弁14の開度が500ステップ程度である場合、燃料ガスGの発熱量は、46MJ/Nm3であることが推定できる。これらの中間の発熱量に関しては、ステップ数の増加に伴って、発熱量は低下する。従って、この例を取って説明すると、先に説明した第1対応関係は、開度(498〜500)に対して燃料ガスの発熱量は46MJ/Nm3であり、開度(550〜552)に対して燃料ガスの発熱量は40MJ/Nm3であり、これらの中間の値では、開度と発熱量との関係は線形な関係にある。
即ち、上述した記憶部51に記憶されている第1対応関係は、例えば、当該図2にて示される関係を、燃料ガスGの発熱量毎にマップ状に数値化され記憶されたものであり、これに基づいて、実際にエンジン60をストイキ状態で運転した場合の弁開度から燃料ガスGの発熱量が適切に推定できる。
From the relationship shown in the graph, when the opening degree of the fuel flow rate adjustment valve 14 in the stoichiometric operation is about 552 steps, the calorific value of the fuel gas G is 40 MJ / Nm 3 and the fuel flow rate in the stoichiometric operation. When the opening degree of the regulating valve 14 is about 500 steps, it can be estimated that the calorific value of the fuel gas G is 46 MJ / Nm 3 . Regarding these intermediate heat generation amounts, the heat generation amount decreases as the number of steps increases. Therefore, taking this example, the first correspondence described above is that the heating value of the fuel gas is 46 MJ / Nm 3 with respect to the opening (498 to 500), and the opening (550 to 552). On the other hand, the calorific value of the fuel gas is 40 MJ / Nm 3 , and the relationship between the opening degree and the calorific value is a linear relationship between these values.
That is, the first correspondence relationship stored in the storage unit 51 is, for example, the relationship shown in FIG. 2 quantified and stored in a map for each calorific value of the fuel gas G. Based on this, the calorific value of the fuel gas G can be appropriately estimated from the valve opening when the engine 60 is actually operated in the stoichiometric state.

そして、本発明のエンジンにあっては、上述の如く、燃料ガスGの発熱量の推定を、燃料の燃焼状態をストイキ状態とするのみの操作で、燃料ガスの発熱量を推定することが可能であるため、この操作を、エンジンの運転を維持しながら、単一のエンジンで、一定の期間毎に実行できる。換言すると、発熱量の推定を行っていないときには、通常の負荷運転を実行可能に構成されている。   In the engine of the present invention, as described above, it is possible to estimate the calorific value of the fuel gas only by setting the calorific value of the fuel gas G to the stoichiometric state. Therefore, this operation can be performed at regular intervals with a single engine while maintaining engine operation. In other words, the normal load operation can be executed when the calorific value is not estimated.

〔推定された発熱量に基づく燃料流量調整弁の開度の調整〕
以上で説明したように、変動する燃料ガスGの発熱量は、適切に推定されるのであるが、本発明にあっては、このように推定した燃料ガスGの発熱量に基づいて、燃料流量調整弁14の開度の調整を行い、燃料ガスGの発熱量の変化に追従して、供給される燃料流量を調整するように構成されている。
説明を追加すると、記憶部51には、これまでエンジンに供給されてきた燃料ガスGの発熱量を原発熱量として記憶している。
そして、推定された現在供給されている燃料ガスGの発熱量が、原発熱量よりも小さい場合、燃料ガスGの発熱量が小さくなったと判定し、これまで通りの燃焼状態を維持するために(空気過剰率を保つために)、燃料流量調整弁14の開度を、原発熱量の燃料ガスが供給されて運転が継続されていた場合の燃料流量調整弁14の開度より、大きい側に調整する。一方、推定された現在供給されている燃料ガスGの発熱量が、原発熱量よりも大きい場合、燃料ガスGの発熱量が大きくなったと判定し、これまで通りの燃焼状態を維持するために(空気過剰率を保つために)、燃料流量調整弁14の開度を、原発熱量の燃料ガスが供給されて運転が継続されていた場合の燃料流量調整弁14の開度より、小さい側に調整する第1開度調整手段54が設けられている。
これにより、本発明のエンジン60は、燃料ガスGの発熱量の変動に追従する状態で、運転することが可能となる。
[Adjustment of fuel flow adjustment valve opening based on estimated heat generation]
As described above, the calorific value of the fluctuating fuel gas G is appropriately estimated. However, in the present invention, the fuel flow rate is determined based on the calorific value of the fuel gas G thus estimated. The opening degree of the adjusting valve 14 is adjusted, and the flow rate of the supplied fuel is adjusted so as to follow the change in the calorific value of the fuel gas G.
When the explanation is added, the storage unit 51 stores the heat generation amount of the fuel gas G that has been supplied to the engine so far as the original heat generation amount.
When the estimated heat value of the currently supplied fuel gas G is smaller than the original heat value, it is determined that the heat value of the fuel gas G has decreased, and the conventional combustion state is maintained ( In order to maintain the excess air ratio), the opening degree of the fuel flow rate adjustment valve 14 is adjusted to be larger than the opening degree of the fuel flow rate adjustment valve 14 when the fuel gas of the original calorific value is supplied and the operation is continued. To do. On the other hand, if the estimated calorific value of the currently supplied fuel gas G is larger than the original calorific value, it is determined that the calorific value of the fuel gas G has increased, and in order to maintain the conventional combustion state ( In order to maintain the excess air ratio), the opening of the fuel flow rate adjustment valve 14 is adjusted to a smaller side than the opening amount of the fuel flow rate adjustment valve 14 when the fuel gas of the original calorific value is supplied and the operation is continued. First opening degree adjusting means 54 is provided.
As a result, the engine 60 of the present invention can be operated in a state of following the change in the calorific value of the fuel gas G.

〔制御フロー〕
次に、本発明における燃料ガスGの発熱量の推定、及び推定された発熱量に追従するように燃料流量調整弁14の開度の制御に係るフローを、図3に基づいて説明する。
エンジン60を起動する(♯01)。ここで、エンジン60の起動時には、例えば、燃料ガスGの発熱量が、標準的な発熱量であると仮定する。
[Control flow]
Next, the flow relating to the estimation of the calorific value of the fuel gas G in the present invention and the control of the opening of the fuel flow control valve 14 so as to follow the estimated calorific value will be described based on FIG.
The engine 60 is started (# 01). Here, when the engine 60 is started, for example, it is assumed that the heat value of the fuel gas G is a standard heat value.

次に、燃料ガスGの発熱量の推定に際しては、空燃比制御手段52が、酸素センサ32の測定結果に基づいて、燃料流量調整弁14の開度を、エンジン60の燃焼状態がストイキ状態(空気過剰率=実空燃比/理論空燃比=1.0)となるように制御する(♯02)。   Next, when estimating the calorific value of the fuel gas G, the air-fuel ratio control means 52 determines the opening of the fuel flow rate adjustment valve 14 based on the measurement result of the oxygen sensor 32, and the combustion state of the engine 60 is stoichiometric ( Control is performed so that the excess air ratio = actual air / fuel ratio / theoretical air / fuel ratio = 1.0) (# 02).

この状態で、発熱量推定手段53は、空燃比制御手段52にて、ストイキ状態(空気過剰率=実空燃比/理論空燃比=1.0)となるように制御された燃料流量調整弁14の開度と、記憶部51に記憶された第1対応関係とから、現状の燃料ガスGの発熱量を推定する発熱量推定工程を実行する(♯03)。   In this state, the calorific value estimation means 53 is controlled by the air / fuel ratio control means 52 so that the stoichiometric state (excess air ratio = actual air / fuel ratio / theoretical air / fuel ratio = 1.0). And a first correspondence relationship stored in the storage unit 51, a heat generation amount estimation step for estimating the current heat generation amount of the fuel gas G is executed (# 03).

推定された燃料ガスGの発熱量が、標準的な発熱量と異なる場合(♯04)、第1開度調整手段54は、燃料流量調整弁14の開度を調整する(♯05)。
具体的には、推定された燃料ガスGの発熱量が、先に説明した、発熱量推定以前の運転において供給されていた燃料ガスの原発熱量(標準的な発熱量の一例)よりも小さい場合、燃料流量調整弁14の開度を、その時点で採用していた開度より大きい側に調整すると共に、原発熱量よりも大きい場合、燃料流量調整弁14の開度を小さい側に調整する。
一方、推定された燃料ガスGの発熱量が、原発熱量と等しい場合(♯04)、燃料流量調整弁14の開度を、現状に維持する。
When the estimated heating value of the fuel gas G is different from the standard heating value (# 04), the first opening degree adjusting means 54 adjusts the opening degree of the fuel flow rate adjusting valve 14 (# 05).
Specifically, the estimated calorific value of the fuel gas G is smaller than the original calorific value (an example of a standard calorific value) of the fuel gas supplied in the operation described before the calorific value estimation described above. The opening degree of the fuel flow rate adjustment valve 14 is adjusted to the side larger than the opening degree employed at that time, and when it is larger than the original heating value, the opening degree of the fuel flow rate adjustment valve 14 is adjusted to the smaller side.
On the other hand, when the estimated calorific value of the fuel gas G is equal to the original calorific value (# 04), the opening of the fuel flow rate adjusting valve 14 is maintained at the current level.

〔別実施形態〕
(1)上記実施形態では、推定された燃料ガスGの発熱量に基づいて、燃料流量調整弁14の開度を調整する場合、第1開度調整手段54が、推定された燃料ガスGの発熱量と原発熱量を比較する形態で、燃料流量調整弁14の開度を調整した。
しかしながら、推定された燃料ガスGの発熱量に基づく、燃料流量調整弁14の開度の調整は、以下のような構成及び方法にて、調整されても構わない。
即ち、記憶部51が、燃料ガスGの発熱量毎に、エンジン60を適正運転できる空燃比と燃料流量調整弁14との開度との関係である第2対応関係を記憶すると共に、発熱量推定手段53にて推定された燃料ガスGの発熱量と、別途決定される目標空燃比に基づいて、前記第2対応関係から、燃料流量調整弁14の開度を調整する第2開度調整手段(図示せず)を備えるように構成しても構わない。
当該構成によれば、記憶部51は、発熱量毎に、エンジン60を適正運転できる空燃比と燃料流量調整弁14の開度との第2対応関係を記憶しているから、推定された燃料ガスGの発熱量と、別途エンジンの使用等の条件から決定される目標空燃比とに基づいて、第2対応関係から、エンジン60を適正運転状態に維持する燃料流量調整弁14の開度を導出し、第2開度調整手段にて燃料流量調整弁の開度を調整し、エンジン60を適正状態に維持できる。
[Another embodiment]
(1) In the above embodiment, when the opening degree of the fuel flow rate adjustment valve 14 is adjusted based on the estimated heat generation amount of the fuel gas G, the first opening degree adjusting means 54 The opening degree of the fuel flow rate adjustment valve 14 was adjusted in a form in which the calorific value and the original calorific value were compared.
However, the adjustment of the opening degree of the fuel flow rate adjustment valve 14 based on the estimated calorific value of the fuel gas G may be adjusted by the following configuration and method.
That is, the storage unit 51 stores, for each calorific value of the fuel gas G, the second correspondence relationship that is the relationship between the air-fuel ratio at which the engine 60 can be properly operated and the opening of the fuel flow rate adjustment valve 14, and the calorific value. Based on the calorific value of the fuel gas G estimated by the estimating means 53 and a separately determined target air-fuel ratio, a second opening degree adjustment for adjusting the opening degree of the fuel flow rate adjustment valve 14 from the second correspondence relationship. You may comprise so that a means (not shown) may be provided.
According to the said structure, since the memory | storage part 51 has memorize | stored the 2nd correspondence of the air fuel ratio which can operate the engine 60 appropriately for every calorific value, and the opening degree of the fuel flow control valve 14, the estimated fuel Based on the calorific value of the gas G and the target air-fuel ratio separately determined from conditions such as the use of the engine, the opening degree of the fuel flow rate adjustment valve 14 that maintains the engine 60 in the proper operating state is determined from the second correspondence relationship. Thus, the opening of the fuel flow rate adjustment valve is adjusted by the second opening adjustment means, and the engine 60 can be maintained in an appropriate state.

本発明のエンジン、エンジン駆動式ヒートポンプ装置、及びそれらによる燃料ガスの発熱量推定方法は、燃料ガスの発熱量を直接計測する熱量計測手段を設けない比較的簡易な構成により、燃料ガスの発熱量を推定することが可能で、推定された発熱量に追従する状態で運転可能なエンジン、エンジン駆動式ヒートポンプ装置として、有効に利用可能である。   The engine, engine-driven heat pump device, and fuel gas calorific value estimation method according to the present invention have a relatively simple configuration that does not include a calorific value measuring means for directly measuring the calorific value of the fuel gas, and thus the calorific value of the fuel gas. Therefore, the engine can be effectively used as an engine that can be operated in a state of following the estimated calorific value and an engine-driven heat pump device.

14 :燃料流量調整弁
20 :燃焼室
31 :排気路
32 :酸素センサ
40 :圧縮機
50 :エンジン
51 :記憶部
52 :空燃比制御手段
53 :発熱量推定手段
54 :第1開度調整手段
100 :エンジン駆動式ヒートポンプ装置
A :燃焼用空気
C :冷媒循環路
E :排ガス
G :燃料ガス
L :冷媒
14: Fuel flow rate adjustment valve 20: Combustion chamber 31: Exhaust passage 32: Oxygen sensor 40: Compressor 50: Engine 51: Storage unit 52: Air-fuel ratio control means 53: Heat generation amount estimation means 54: First opening degree adjustment means 100 : Engine-driven heat pump device A: Combustion air C: Refrigerant circuit E: Exhaust gas G: Fuel gas L: Refrigerant

Claims (5)

燃料ガスの流量を調整する燃料流量調整弁と、
燃料ガスと燃焼用空気との混合ガスを燃焼させる燃焼室からの排ガスを通流する排気路にて排ガスの酸素濃度を測定する酸素センサと、
前記酸素センサの測定結果に基づいて前記燃料流量調整弁の開度を調整することにより空燃比を制御する空燃比制御手段を備えたエンジンであって、
発熱量が判明している燃料ガスを供給してストイキ状態でエンジンを運転した場合における前記燃料流量調整弁の開度と前記燃料ガスの発熱量との関係である第1対応関係を記憶する記憶部を備え、
発熱量推定対象の燃料ガスを供給してエンジンを運転する状態で、前記酸素センサの出力に基づいて、前記空燃比制御手段にて前記燃料流量調整弁の開度を調整することにより前記燃焼室における燃焼状態をストイキ状態とし、当該ストイキ状態における前記燃料流量調整弁の開度と、前記記憶部に記憶された前記第1対応関係とに基づいて、発熱量推定対象の燃料ガスの発熱量を推定する発熱量推定手段を備えるエンジン。
A fuel flow control valve for adjusting the flow rate of the fuel gas;
An oxygen sensor that measures the oxygen concentration of the exhaust gas in an exhaust passage through which the exhaust gas from the combustion chamber that burns the mixed gas of fuel gas and combustion air flows;
An engine comprising air-fuel ratio control means for controlling the air-fuel ratio by adjusting the opening of the fuel flow rate adjustment valve based on the measurement result of the oxygen sensor;
A memory for storing a first correspondence relationship between the degree of opening of the fuel flow rate adjustment valve and the amount of heat generated by the fuel gas when an engine is operated in a stoichiometric state by supplying fuel gas with a known amount of heat generated Part
The combustion chamber is adjusted by adjusting the opening of the fuel flow rate adjustment valve by the air-fuel ratio control means on the basis of the output of the oxygen sensor in a state where the fuel gas to be subjected to heat generation estimation is supplied and the engine is operated. The combustion state at is a stoichiometric state, and based on the opening degree of the fuel flow rate adjustment valve in the stoichiometric state and the first correspondence stored in the storage unit, An engine having a calorific value estimating means for estimating.
前記発熱量推定手段にて推定された燃料ガスの発熱量が、これまで供給されてきた燃料ガスの発熱量である原発熱量よりも小さい場合、前記燃料流量調整弁の開度を大きい側に調整し、
前記原発熱量よりも大きい場合、前記燃料流量調整弁の開度を小さい側に調整する第1開度調整手段を備える請求項1に記載のエンジン。
When the calorific value of the fuel gas estimated by the calorific value estimation means is smaller than the original calorific value, which is the calorific value of the fuel gas supplied so far, the opening of the fuel flow rate adjustment valve is adjusted to the larger side. And
2. The engine according to claim 1, further comprising: a first opening degree adjusting unit that adjusts an opening degree of the fuel flow rate adjusting valve to a smaller side when the amount of heat generation is larger than the original heat generation amount.
前記記憶部は、発熱量が判明している燃料ガスの発熱量毎に、エンジンを適正運転できる空燃比と前記燃料流量調整弁の開度との関係である第2対応関係を記憶し、
前記発熱量推定手段にて推定された燃料ガスの発熱量と、別途決定される目標空燃比とに基づいて、前記第2対応関係から、エンジンを適正運転状態に維持する燃料流量調整弁の開度を導出し、燃料流量調整弁の開度を調整する第2開度調整手段を備える請求項1に記載のエンジン。
The storage unit stores a second correspondence relationship that is a relationship between an air-fuel ratio at which the engine can be properly operated and an opening degree of the fuel flow rate adjustment valve, for each calorific value of the fuel gas whose calorific value is known,
Based on the calorific value of the fuel gas estimated by the calorific value estimation means and a separately determined target air-fuel ratio, an opening of a fuel flow rate adjustment valve for maintaining the engine in an appropriate operating state is determined from the second correspondence relationship. The engine according to claim 1, further comprising second opening degree adjusting means for deriving a degree and adjusting an opening degree of the fuel flow rate adjusting valve.
請求項1〜3に記載のエンジンの軸出力にて駆動する圧縮機を備えているエンジン駆動式ヒートポンプ装置。   An engine-driven heat pump apparatus comprising a compressor driven by the engine shaft output according to claim 1. 燃料ガスの流量を調整する燃料流量調整弁と、
燃料ガスと燃焼用空気との混合ガスを燃焼させる燃焼室からの排ガスを通流する排気路にて排ガスの酸素濃度を測定する酸素センサとを備え、
前記酸素センサの測定結果に基づいて前記燃料流量調整弁の開度を調整することにより空燃比を制御するように構成されたエンジンによる燃料ガスの発熱量推定方法であって、
発熱量が判明している燃料ガスを供給してストイキ状態でエンジンを運転した場合における前記燃料流量調整弁の開度と前記燃料ガスの発熱量との関係である第1対応関係を記憶する記憶部を備え、
発熱量推定対象の燃料ガスを供給してエンジンを運転する状態で、前記酸素センサの出力に基づいて、前記空燃比制御手段にて前記燃料流量調整弁の開度を調整することにより、前記燃焼室における燃焼状態をストイキ状態とし、当該ストイキ状態における前記燃料流量調整弁の開度と、前記記憶部に記憶された前記第1対応関係とに基づいて、発熱量推定対象の燃料ガスの発熱量を推定する発熱量推定工程を有する燃料ガスの発熱量推定方法。
A fuel flow control valve for adjusting the flow rate of the fuel gas;
An oxygen sensor that measures the oxygen concentration of the exhaust gas in an exhaust passage through which the exhaust gas from the combustion chamber that burns the mixed gas of fuel gas and combustion air flows,
A method for estimating a calorific value of fuel gas by an engine configured to control an air-fuel ratio by adjusting an opening of the fuel flow rate adjustment valve based on a measurement result of the oxygen sensor,
A memory for storing a first correspondence relationship between the degree of opening of the fuel flow rate adjustment valve and the amount of heat generated by the fuel gas when an engine is operated in a stoichiometric state by supplying fuel gas with a known amount of heat generated Part
The combustion is performed by adjusting the opening of the fuel flow rate adjustment valve by the air-fuel ratio control means based on the output of the oxygen sensor in a state where the fuel gas to be subjected to heat generation estimation is supplied and the engine is operated. The combustion state in the chamber is a stoichiometric state, and based on the opening degree of the fuel flow rate adjustment valve in the stoichiometric state and the first correspondence stored in the storage unit, the calorific value of the fuel gas that is the calorific value estimation target A method for estimating the calorific value of a fuel gas, comprising a calorific value estimating step of estimating the fuel gas.
JP2013183304A 2013-09-04 2013-09-04 Engine, heat pump device, and method of estimating calorific value of fuel gas Active JP6280711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013183304A JP6280711B2 (en) 2013-09-04 2013-09-04 Engine, heat pump device, and method of estimating calorific value of fuel gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013183304A JP6280711B2 (en) 2013-09-04 2013-09-04 Engine, heat pump device, and method of estimating calorific value of fuel gas

Publications (3)

Publication Number Publication Date
JP2015048831A true JP2015048831A (en) 2015-03-16
JP2015048831A5 JP2015048831A5 (en) 2016-08-04
JP6280711B2 JP6280711B2 (en) 2018-02-14

Family

ID=52699033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013183304A Active JP6280711B2 (en) 2013-09-04 2013-09-04 Engine, heat pump device, and method of estimating calorific value of fuel gas

Country Status (1)

Country Link
JP (1) JP6280711B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015048834A (en) * 2013-09-04 2015-03-16 大阪瓦斯株式会社 Engine drive type heat pump device and heat value fluctuation tendency estimation method
JP2019100311A (en) * 2017-12-07 2019-06-24 アイシン精機株式会社 Gas engine system
CN111911296A (en) * 2020-08-24 2020-11-10 一汽解放汽车有限公司 Fuel calorific value determination method and device, vehicle and storage medium
CN114458458A (en) * 2022-03-10 2022-05-10 潍柴动力股份有限公司 Engine control method and device
JP2022073643A (en) * 2020-11-02 2022-05-17 スズキ株式会社 Controller of internal combustion engine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6488153A (en) * 1987-09-29 1989-04-03 Mitsubishi Electric Corp Fuel property detecting device for internal combustion engine
JP2003227415A (en) * 2002-02-01 2003-08-15 Mitsubishi Heavy Ind Ltd Operation control method for gas engine
JP2003328800A (en) * 2002-05-13 2003-11-19 Tokyo Gas Co Ltd Gas engine and control method thereof
JP2006009603A (en) * 2004-06-23 2006-01-12 Aisin Seiki Co Ltd Gas engine equipment
JP2007100581A (en) * 2005-10-04 2007-04-19 Nishishiba Electric Co Ltd Engine drive working device
JP2008002271A (en) * 2006-06-20 2008-01-10 Tokyo Gas Co Ltd Gas engine and control method
JP2012007620A (en) * 2011-09-05 2012-01-12 Toyota Motor Corp Control apparatus of internal combustion engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6488153A (en) * 1987-09-29 1989-04-03 Mitsubishi Electric Corp Fuel property detecting device for internal combustion engine
JP2003227415A (en) * 2002-02-01 2003-08-15 Mitsubishi Heavy Ind Ltd Operation control method for gas engine
JP2003328800A (en) * 2002-05-13 2003-11-19 Tokyo Gas Co Ltd Gas engine and control method thereof
JP2006009603A (en) * 2004-06-23 2006-01-12 Aisin Seiki Co Ltd Gas engine equipment
JP2007100581A (en) * 2005-10-04 2007-04-19 Nishishiba Electric Co Ltd Engine drive working device
JP2008002271A (en) * 2006-06-20 2008-01-10 Tokyo Gas Co Ltd Gas engine and control method
JP2012007620A (en) * 2011-09-05 2012-01-12 Toyota Motor Corp Control apparatus of internal combustion engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015048834A (en) * 2013-09-04 2015-03-16 大阪瓦斯株式会社 Engine drive type heat pump device and heat value fluctuation tendency estimation method
JP2019100311A (en) * 2017-12-07 2019-06-24 アイシン精機株式会社 Gas engine system
CN111911296A (en) * 2020-08-24 2020-11-10 一汽解放汽车有限公司 Fuel calorific value determination method and device, vehicle and storage medium
CN111911296B (en) * 2020-08-24 2022-07-12 一汽解放汽车有限公司 Fuel calorific value determination method and device, vehicle and storage medium
JP2022073643A (en) * 2020-11-02 2022-05-17 スズキ株式会社 Controller of internal combustion engine
CN114458458A (en) * 2022-03-10 2022-05-10 潍柴动力股份有限公司 Engine control method and device
CN114458458B (en) * 2022-03-10 2023-01-24 潍柴动力股份有限公司 Method and device for controlling an engine

Also Published As

Publication number Publication date
JP6280711B2 (en) 2018-02-14

Similar Documents

Publication Publication Date Title
JP6280711B2 (en) Engine, heat pump device, and method of estimating calorific value of fuel gas
JP4281610B2 (en) Operation method of premixed compression self-ignition engine and premixed compression self-ignition engine
JP5357957B2 (en) Control method for sub-chamber gas engine
JP4457272B2 (en) Method for controlling an internal combustion engine
US20060218929A1 (en) Gas turbine engine control system
JP2005307759A (en) Operation method for premixing compression self-igniting engine and premixing compression self-igniting engine
AU2015207836A1 (en) Gaseous fuel engine charge density control system
JP6397367B2 (en) Internal combustion engine and method for operating the same
US10815912B2 (en) Natural gas fuel reformer control for lean burn gas engines
JP5826095B2 (en) Sub-chamber gas engine operating method and sub-chamber gas engine
JP6002234B2 (en) Combustion stabilization device for sub-chamber gas engine
EP3009645B1 (en) Gas engine
EP2993334B1 (en) Gas engine
US10260460B2 (en) Feedback control of fuel reformer-engine system
JP2007224807A (en) Engine
JP2015048831A5 (en)
JP6308740B2 (en) Engine, engine-driven heat pump device, and calorific value estimation method
JP4660500B2 (en) Fuel supply mechanism for internal combustion engine
JP2005220917A (en) Method and device for controlling internal combustion engine and internal combustion engine using the method and the device
JP2005220916A (en) Method and device for controlling internal combustion engine and internal combustion engine using the method and the device
JP6304976B2 (en) ENGINE, ENGINE-DRIVEN HEAT PUMP DEVICE, AND ENGINE OPERATION METHOD
JP5033029B2 (en) Gas engine control device
JP6399682B2 (en) Engine-driven heat pump device and calorific value estimation method
JP5074255B2 (en) Gas engine control device
JP6768581B2 (en) Premixed compression ignition engine system and its control method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160615

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180122

R150 Certificate of patent or registration of utility model

Ref document number: 6280711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250