[go: up one dir, main page]

JP2015045282A - Valve opening/closing timing control device - Google Patents

Valve opening/closing timing control device Download PDF

Info

Publication number
JP2015045282A
JP2015045282A JP2013177121A JP2013177121A JP2015045282A JP 2015045282 A JP2015045282 A JP 2015045282A JP 2013177121 A JP2013177121 A JP 2013177121A JP 2013177121 A JP2013177121 A JP 2013177121A JP 2015045282 A JP2015045282 A JP 2015045282A
Authority
JP
Japan
Prior art keywords
driven
rotating body
intermediate member
side rotating
camshaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013177121A
Other languages
Japanese (ja)
Inventor
喜裕 川井
Yoshihiro Kawai
喜裕 川井
昌樹 小林
Masaki Kobayashi
昌樹 小林
芳明 山川
Yoshiaki Yamakawa
芳明 山川
篤史 大槻
Atsushi Otsuki
篤史 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2013177121A priority Critical patent/JP2015045282A/en
Priority to US14/459,766 priority patent/US20150059670A1/en
Priority to EP14182160.3A priority patent/EP2843201A1/en
Priority to CN201410433388.4A priority patent/CN104420918A/en
Publication of JP2015045282A publication Critical patent/JP2015045282A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34426Oil control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34426Oil control valves
    • F01L2001/34433Location oil control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34483Phaser return springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2303/00Manufacturing of components used in valve arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a valve opening/closing timing control device capable of simplifying an assembling step.SOLUTION: The valve opening/closing timing control device comprises: a driving side rotation body 1 rotating synchronously with an internal combustion engine shaft; a driven side rotation body 2 rotating integrally with a valve opening/closing cam shaft 10; a fluid pressure chamber 4 between the driving side rotation body 1 and the driven side rotation body 2; a first flow passage 43 and a second flow passage 44 allowing in-flow or out-flow of working fluid to or from the fluid pressure chamber 4 for changing a relative rotation phase of the driving side rotation body 1 and the driven side rotation body 2; and an intermediate member 6 assembled between the driven side rotation body 2 and the cam shaft 10 and coupled to them. One part of the first flow passage 43 is formed between the driven side rotation body 2 and the cam shaft 10, and one part of the second flow passage 44 is formed on the intermediate member 6. The intermediate member 6 is assembled with the driven side rotation body 2 by press-fitting. The device comprises a contact part A at which the intermediate member 6 contacts the driven side rotation body 2 when the intermediate member 6 is assembled with the cam shaft 10 after the intermediate member 6 and the driven side rotation body 2 are assembled with the driving side rotation body 1.

Description

本発明は、内燃機関の駆動軸と同期回転する駆動側回転体と、前記駆動側回転体の内側で軸芯が重なる状態に配置され、前記内燃機関の弁開閉用のカムシャフトと一体回転する従動側回転体とを備えた弁開閉時期制御装置に関する。   The present invention is arranged such that a driving side rotating body that rotates synchronously with a driving shaft of an internal combustion engine, and a shaft core that overlaps inside the driving side rotating body, rotate integrally with a valve shaft cam shaft of the internal combustion engine. The present invention relates to a valve opening / closing timing control device including a driven side rotating body.

弁開閉時期制御装置においては、従動側回転体の駆動側回転体に対する相対回転位相を容易に変更できるように、従動側回転体を回転慣性が小さい軽量材料で形成してあるのが望ましく、従動側回転体は一般にアルミ材などの低強度材料で形成してある。一方、従動側回転体に連結するカムシャフトは一般に鉄材などの高強度材料が用いられている。
このために、従動側回転体とカムシャフトとの線膨張率の違いに起因して従動側回転体とカムシャフトとの界面に隙間が生じ易いと共に、高強度のカムシャフトが低強度の従動側回転体に直に接触していることに起因して従動側回転体が損傷を受け易い。
In the valve opening / closing timing control device, it is desirable that the driven-side rotating body is made of a lightweight material having a small rotational inertia so that the relative rotation phase of the driven-side rotating body with respect to the driving-side rotating body can be easily changed. The side rotating body is generally formed of a low strength material such as an aluminum material. On the other hand, the camshaft connected to the driven side rotating body is generally made of a high-strength material such as iron.
For this reason, a gap is likely to occur at the interface between the driven-side rotating body and the camshaft due to the difference in linear expansion coefficient between the driven-side rotating body and the camshaft, and the high-strength camshaft has a low-strength driven side. Due to the direct contact with the rotating body, the driven-side rotating body is easily damaged.

特に、従動側回転体の駆動側回転体に対する相対回転位相を変更するための作動流体の流路を従動側回転体とカムシャフトとに亘って形成してある場合、従動側回転体とカムシャフトとの界面に隙間が生じると、その隙間を通して作動流体が流通して、相対回転位相をタイミングよく変更できないおそれがある。   In particular, when the flow path of the working fluid for changing the relative rotation phase of the driven side rotating body with respect to the driving side rotating body is formed across the driven side rotating body and the camshaft, the driven side rotating body and the camshaft If there is a gap at the interface, the working fluid may flow through the gap and the relative rotation phase may not be changed in a timely manner.

特許文献1には、駆動側回転体(ハウジング)と従動側回転体(内部ロータ)との間に区画形成される流体圧室と、駆動側回転体に対する従動側回転体の相対回転位相を最進角位相と最遅角位相との間で変更するよう、作動流体が前記流体圧室へ流入すること又は前記流体圧室から流出することを許容する第1流路および第2流路と、前記従動側回転体の内周面と前記カムシャフトの外周面との間に組み付けられ、前記従動側回転体と前記カムシャフトとを連結する中間部材とを備え、前記第1流路の一部を構成する空間が前記従動側回転体と前記カムシャフトとの間に区画形成されていると共に、前記第2流路の一部が前記中間部材に形成され、前記第1流路と前記第2流路との間において前記中間部材が前記従動側回転体に当接する当接部を備える弁開閉時期制御装置が開示されている。従動側回転体はアルミ材で形成され、中間部材は鉄材で形成されている。   In Patent Document 1, the relative rotation phase of the driven-side rotating body relative to the driving-side rotating body and the fluid pressure chamber formed between the driving-side rotating body (housing) and the driven-side rotating body (inner rotor) are maximized. A first flow path and a second flow path that allow the working fluid to flow into or out of the fluid pressure chamber so as to change between an advance angle phase and a most retarded angle phase; A part of the first flow path, comprising: an intermediate member that is assembled between an inner peripheral surface of the driven-side rotator and an outer peripheral surface of the camshaft, and connects the driven-side rotator and the camshaft; Is formed between the driven rotary body and the camshaft, and a part of the second flow path is formed in the intermediate member, and the first flow path and the second flow path are formed. Contact between the intermediate member and the follower-side rotator between the flow path Valve timing control device provided is disclosed. The driven-side rotator is made of an aluminum material, and the intermediate member is made of an iron material.

特許文献1に開示されている弁開閉時期制御装置は、従動側回転体の内周面とカムシャフトの外周面との間に組み付けられ、従動側回転体とカムシャフトとを連結する中間部材を設けてあるので、アルミ材で形成された従動側回転体がカムシャフトに接触することがない。
このため、カムシャフトを高強度材料で製作してあっても、アルミ材で形成された従動側回転体の損傷を防止することができる。
また、線膨張率がカムシャフトを形成している高強度材料の線膨張率に近い鉄材で中間部材を形成してあるので、中間部材とカムシャフトとの界面に隙間が生じ難い。したがって、作動流体の流路を中間部材とカムシャフトとに亘って形成してあっても、作動流体が漏れ出し難い。
ところが、従動側回転体とカムシャフトとが接触しないように、従動側回転体とカムシャフトとの間で従動側回転体の内側に中間部材を設けた結果として形成された従動側回転体とカムシャフトとの間の空間が第1流路の一部として構成され、第2流路の一部が中間部材に形成されている。
このため、従動側回転体と中間部材との界面に隙間が存在すると、その隙間を介して第1流路と第2流路とが連通して作動流体が流通し、相対回転位相をタイミングよく変更できなくなるおそれがある。
そこで、相対回転位相をタイミングよく変更できるように、第1流路と第2流路との間において中間部材が従動側回転体に対して全周に亘って当接する当接部を設けて、第1流路と第2流路とに亘る作動流体の流通を防止してある。
A valve opening / closing timing control device disclosed in Patent Document 1 is assembled between an inner peripheral surface of a driven-side rotator and an outer peripheral surface of a camshaft, and includes an intermediate member that connects the driven-side rotator and the camshaft. Since it is provided, the driven-side rotating body made of aluminum does not come into contact with the camshaft.
For this reason, even if the camshaft is made of a high-strength material, it is possible to prevent the driven-side rotator that is made of an aluminum material from being damaged.
Further, since the intermediate member is formed of an iron material having a linear expansion coefficient close to that of the high-strength material forming the camshaft, a gap is hardly generated at the interface between the intermediate member and the camshaft. Therefore, even if the working fluid channel is formed across the intermediate member and the camshaft, the working fluid is difficult to leak.
However, the driven-side rotator and cam formed as a result of providing an intermediate member inside the driven-side rotator between the driven-side rotator and the camshaft so that the driven-side rotator and the camshaft do not contact each other. A space between the shaft and the shaft is configured as a part of the first flow path, and a part of the second flow path is formed in the intermediate member.
For this reason, if there is a gap at the interface between the driven rotor and the intermediate member, the working fluid flows through the gap through the first flow path and the second flow path, and the relative rotation phase is adjusted in a timely manner. There is a risk that it cannot be changed.
Therefore, in order to be able to change the relative rotational phase in a timely manner, an abutting portion is provided between the first flow path and the second flow path so that the intermediate member abuts against the driven-side rotator over the entire circumference. The working fluid is prevented from flowing through the first flow path and the second flow path.

特開2012−57578号公報JP 2012-57578 A

特許文献1に開示された弁開閉時期制御装置は、従動側回転体の内周側とカムシャフトの外周側との間に中間部材を従動側回転体の一端側から入り込ませてある。
このため、駆動側回転体に従動側回転体と中間部材とを組み付けた後、カムシャフトを組み付けるまでの工程において、中間部材が従動側回転体の内周側から脱落し易く、組み付け工程が煩雑化するおそれがある。
また、中間部材が従動側回転体に対して圧入される場合、圧入時の抵抗により、中間部材と従動側回転体との間に隙間が形成される。その隙間を介して第1及び第2流路が連通し、作動が悪化してしまう。
In the valve opening / closing timing control device disclosed in Patent Document 1, an intermediate member is inserted from one end side of the driven side rotating body between the inner peripheral side of the driven side rotating body and the outer peripheral side of the camshaft.
For this reason, in the process from assembling the driven rotor and intermediate member to the camshaft after assembling the drive rotor, the intermediate member is likely to drop off from the inner peripheral side of the driven rotor, and the assembly process is complicated. There is a risk of becoming.
In addition, when the intermediate member is press-fitted into the driven-side rotator, a gap is formed between the intermediate member and the driven-side rotator due to the resistance during press-fitting. The first and second flow paths communicate with each other through the gap, and the operation deteriorates.

本発明は上記実情に鑑みてなされたものであって、高強度材料で製作してあるカムシャフトによる従動側回転体の損傷を防止できると共に、第1流路と第2流路とに亘る作動流体の流通を防止できる構造を採用しながら、組み付け工程の簡略化を図ることができる弁開閉時期制御装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and can prevent the driven-side rotating body from being damaged by a camshaft made of a high-strength material and can operate over the first flow path and the second flow path. It is an object of the present invention to provide a valve opening / closing timing control device capable of simplifying the assembly process while adopting a structure capable of preventing fluid flow.

本発明による弁開閉時期制御装置の特徴構成は、内燃機関の駆動軸と同期回転する駆動側回転体と、前記駆動側回転体の内側で軸芯が重なる状態に配置され、前記内燃機関の弁開閉用のカムシャフトと一体回転する従動側回転体と、前記駆動側回転体と前記従動側回転体との間に区画形成される流体圧室と、前記駆動側回転体に対する前記従動側回転体の相対回転位相を最進角位相と最遅角位相との間で変更するよう、作動流体が前記流体圧室へ流入すること又は前記流体圧室から流出することを許容する第1流路および第2流路と、前記従動側回転体の内周面と前記カムシャフトの外周面との間に組み付けられ、前記従動側回転体と前記カムシャフトとを連結する中間部材と、を備え、前記第1流路の一部を構成する空間が前記従動側回転体と前記カムシャフトとの間に区画形成されていると共に、前記第2流路の一部が前記中間部材に形成され、前記中間部材が前記従動側回転体に対して圧入により組み付けられ、さらに、前記中間部材と前記従動側回転体が前記駆動側回転体に組み付けられた後、前記中間部材が前記カムシャフトに組み付けられるとき、前記第1流路と前記第2流路との間において前記中間部材が前記従動側回転体に当接する当接部を備える点にある。   The characteristic configuration of the valve opening / closing timing control device according to the present invention is arranged such that a driving side rotating body that rotates synchronously with a driving shaft of an internal combustion engine, and a shaft core that overlaps inside the driving side rotating body, the valve of the internal combustion engine A driven-side rotating body that rotates integrally with the opening / closing camshaft, a fluid pressure chamber defined between the driving-side rotating body and the driven-side rotating body, and the driven-side rotating body with respect to the driving-side rotating body A first flow path that allows working fluid to flow into or out of the fluid pressure chamber so as to change the relative rotational phase of the fluid between the most advanced angle phase and the most retarded angle phase; An intermediate member that is assembled between the second flow path and the inner peripheral surface of the driven-side rotator and the outer peripheral surface of the camshaft, and connects the driven-side rotator and the camshaft; The space constituting a part of the first flow path is the driven side rotation. And a portion of the second flow path is formed in the intermediate member, and the intermediate member is assembled by press-fitting into the driven side rotating body, When the intermediate member is assembled to the camshaft after the intermediate member and the driven-side rotator are assembled to the drive-side rotator, the intermediate member is interposed between the first flow path and the second flow path. The member is provided with an abutting portion that abuts on the driven side rotating body.

本構成の弁開閉時期制御装置が備える当接部は、前記中間部材が前記従動側回転体に対して圧入により組み付けられ、さらに、前記中間部材と前記従動側回転体が前記駆動側回転体に組み付けられた後、前記中間部材が前記カムシャフトに組み付けられるとき、前記第1流路と前記第2流路との間において前記中間部材が前記従動側回転体に当接する。
このため、従動側回転体と中間部材が駆動側回転体に組み付けられるときは、中間部材が従動側回転体に対して圧入されており、例えば従動側回転体に中間部材を接着剤で接着したり、磁石の磁力で吸着させるなどの手間を掛けることなく、従動側回転体と中間部材がカムシャフトに組み付けられる前において、従動側回転体と中間部材との間に摩擦力を作用させて、中間部材の従動側回転体からの脱落に対して抵抗を与えることができる。
したがって、駆動側回転体に従動側回転体と中間部材とを組み付けた後、カムシャフトを組み付けるまでの工程における、中間部材の従動側回転体からの脱落を防止できる。
The contact portion provided in the valve opening / closing timing control device of this configuration is configured such that the intermediate member is assembled by press-fitting into the driven-side rotator, and the intermediate member and the driven-side rotator are attached to the drive-side rotator. After the assembly, when the intermediate member is assembled to the camshaft, the intermediate member abuts on the driven side rotating body between the first flow path and the second flow path.
For this reason, when the driven-side rotator and the intermediate member are assembled to the drive-side rotator, the intermediate member is pressed into the driven-side rotator. For example, the intermediate member is bonded to the driven-side rotator with an adhesive. Or before the driven side rotating body and the intermediate member are assembled to the camshaft, without causing trouble such as adsorption by the magnetic force of the magnet, the friction force is applied between the driven side rotating body and the intermediate member, It is possible to provide resistance against dropping of the intermediate member from the driven side rotating body.
Accordingly, it is possible to prevent the intermediate member from dropping from the driven-side rotator in the process from assembling the driven-side rotator and the intermediate member to assembling the camshaft.

よって、本構成の弁開閉時期制御装置であれば、高強度材料で製作してあるカムシャフトによる従動側回転体の損傷を防止できると共に、第1流路と第2流路とに亘る作動流体の流通を防止できる構造を採用しながら、組み付け工程の簡略化を図ることができる。   Therefore, the valve opening / closing timing control device of this configuration can prevent the driven rotor from being damaged by the camshaft made of a high-strength material, and can also operate the working fluid over the first flow path and the second flow path. It is possible to simplify the assembly process while adopting a structure that can prevent the circulation.

本発明の他の特徴構成は、前記作動流体の前記流体圧室への流入および前記流体圧室からの流出を切り替える制御弁を前記中間部材の径方向内方に備えている点にある。   Another feature of the present invention lies in that a control valve that switches inflow of the working fluid into the fluid pressure chamber and outflow from the fluid pressure chamber is provided radially inward of the intermediate member.

本構成であれば、制御弁をカムシャフトの外部に設ける場合に比べて、作動流体を流体圧室に対して流入および流出させる流路の長さを短くして、制御弁をコンパクトに組み付けることができると共に、流路の加工手間を軽減できる。   With this configuration, the length of the flow path for the working fluid to flow into and out of the fluid pressure chamber can be shortened and the control valve can be assembled compactly compared to when the control valve is provided outside the camshaft. Can be reduced, and the processing time of the flow path can be reduced.

本発明の他の特徴構成は、前記中間部材が前記従動側回転体に設けられた内壁のうち一部の領域に圧入されている点にある。   Another characteristic configuration of the present invention is that the intermediate member is press-fitted into a partial region of an inner wall provided in the driven-side rotating body.

本構成であれば、中間部材を従動側回転体に圧入するに必要な加工範囲を狭くして、
加工工数の低減を図ることができる。
With this configuration, the processing range necessary for press-fitting the intermediate member into the driven side rotating body is narrowed,
The number of processing steps can be reduced.

本発明の他の特徴構成は、前記中間部材が前記従動側回転体に設けられた内壁のうち前記軸芯に対する周方向に沿った複数個所に所定間隔おきに圧入されている点にある。   Another characteristic configuration of the present invention is that the intermediate member is press-fitted at predetermined intervals at a plurality of locations along the circumferential direction with respect to the shaft core on the inner wall provided on the driven-side rotating body.

本構成であれば、中間部材を従動側回転体に圧入するに必要な加工範囲を一層狭くして、加工工数の低減を図ることができる。   With this configuration, it is possible to further narrow the processing range required for press-fitting the intermediate member into the driven-side rotating body, thereby reducing the processing man-hours.

弁開閉時期制御装置の全体構成を示す断面図である。It is sectional drawing which shows the whole structure of a valve timing control apparatus. 図1におけるII−II断面図である。It is II-II sectional drawing in FIG. 進角制御時のOCVの状態を示す詳細図である。It is detail drawing which shows the state of OCV at the time of advance angle control. 遅角制御時のOCVの状態を示す詳細図である。It is detail drawing which shows the state of OCV at the time of retard control. 弁開閉時期制御装置の構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of a valve opening / closing timing control apparatus. 第2実施形態の弁開閉時期制御装置の全体構成を示す断面図である。It is sectional drawing which shows the whole structure of the valve timing control apparatus of 2nd Embodiment. 第3実施形態を説明する斜視図である。It is a perspective view explaining 3rd Embodiment.

以下に、本発明の実施の形態を自動車用エンジンにおける吸気弁の開閉時期を制御する弁開閉時期制御装置として、図面に基づいて説明する。
〔第1実施形態〕
図1〜図5は、本発明による弁開閉時期制御装置の第1実施形態を示す。
〔全体構成〕
弁開閉時期制御装置は、図1,図2に示すように、自動車用エンジンの不図示のクランクシャフトと同期回転するアルミ合金製の駆動側回転体(ハウジング)1と、駆動側回転体1の内側で軸芯Xが重なる状態で配置され、エンジンの吸気弁開閉用のカムシャフト10と一体回転するアルミ合金製の従動側回転体(内部ロータ)2とを備えている。
Embodiments of the present invention will be described below with reference to the drawings as a valve opening / closing timing control device for controlling the opening / closing timing of an intake valve in an automobile engine.
[First Embodiment]
1 to 5 show a first embodiment of a valve timing control apparatus according to the present invention.
〔overall structure〕
As shown in FIGS. 1 and 2, the valve timing control apparatus includes an aluminum alloy driving side rotating body (housing) 1 that rotates synchronously with a crankshaft (not shown) of an automobile engine, and a driving side rotating body 1. It is arranged in a state in which the shaft core X overlaps inside, and includes a camshaft 10 for opening and closing the intake valve of the engine and a driven-side rotating body (internal rotor) 2 made of aluminum alloy that rotates integrally.

従動側回転体2は駆動側回転体1に対して相対回転可能に支持されている。
カムシャフト10は、カムシャフト本体10aと、従動側回転体2に同芯状に挿通してカムシャフト本体10aに螺着される鋼製のOCVボルト10bとで一連の軸状に構成されている。
自動車用エンジンが「内燃機関」に相当し、クランクシャフトが「内燃機関の駆動軸」に相当する。
The driven side rotator 2 is supported so as to be rotatable relative to the drive side rotator 1.
The camshaft 10 is configured in a series of shafts by a camshaft main body 10a and a steel OCV bolt 10b that is concentrically inserted into the driven-side rotating body 2 and screwed to the camshaft main body 10a. .
The automobile engine corresponds to the “internal combustion engine”, and the crankshaft corresponds to the “drive shaft of the internal combustion engine”.

従動側回転体2の内周面とOCVボルト10bの外周面との間には、カムシャフト本体10aの側から従動側回転体2の内側に対して同芯状に入り込むように圧入して組み付けられて、従動側回転体2の回転をOCVボルト10bに伝達する円筒状の鋼製の中間回転部材(中間部材)6が設けられている。
OCVボルト10bは、従動側回転体2および中間回転部材6に挿通してカムシャフト本体10aの端部に螺着されており、中間回転部材6は、従動側回転体2とカムシャフト10とを連結している。
カムシャフト本体10aは、エンジンの吸気弁の開閉を制御する不図示のカムの回転軸であり、従動側回転体2、中間回転部材6およびOCVボルト10bと一体回転する。カムシャフト本体10aは、不図示のエンジンのシリンダヘッドに回転自在に組み付けられている。
Between the inner peripheral surface of the driven-side rotator 2 and the outer peripheral surface of the OCV bolt 10b, press-fit into the concentric shape from the camshaft body 10a side to the inner side of the driven-side rotator 2, and assembled. Thus, a cylindrical steel intermediate rotating member (intermediate member) 6 for transmitting the rotation of the driven side rotating body 2 to the OCV bolt 10b is provided.
The OCV bolt 10b is inserted into the driven-side rotating body 2 and the intermediate rotating member 6 and screwed to the end of the camshaft main body 10a. The intermediate rotating member 6 connects the driven-side rotating body 2 and the camshaft 10 to each other. It is connected.
The camshaft main body 10a is a rotating shaft of a cam (not shown) that controls the opening and closing of the intake valve of the engine, and rotates integrally with the driven-side rotating body 2, the intermediate rotating member 6, and the OCV bolt 10b. The camshaft main body 10a is rotatably assembled to a cylinder head of an engine (not shown).

〔駆動側回転体及び従動側回転体〕
駆動側回転体1は、カムシャフト本体10aが接続される側とは反対側のフロントプレート11と、従動側回転体2に外装される外部ロータ12と、タイミングスプロケット15を一体的に備えたリアプレート13とを組み付けて構成される。駆動側回転体1には従動側回転体2が収容され、従動側回転体2と外部ロータ12との間には、後述のように流体圧室4が形成されている。
[Driving side rotating body and driven side rotating body]
The driving-side rotator 1 is a rear that integrally includes a front plate 11 opposite to the side to which the camshaft body 10a is connected, an external rotor 12 that is externally mounted on the driven-side rotator 2, and a timing sprocket 15. The plate 13 is assembled. A driven-side rotator 2 is accommodated in the drive-side rotator 1, and a fluid pressure chamber 4 is formed between the driven-side rotator 2 and the external rotor 12 as described later.

クランクシャフトが回転駆動すると、動力伝達部材101を介してタイミングスプロケット15にその回転動力が伝達され、駆動側回転体1が図2に示す回転方向Sに回転駆動する。駆動側回転体1の回転駆動に伴い、従動側回転体2が回転方向Sに従動回転してカムシャフト10が回転し、カムシャフト本体10aに設けられたカムがエンジンの吸気弁を押し下げて開弁させる。   When the crankshaft is rotationally driven, the rotational power is transmitted to the timing sprocket 15 via the power transmission member 101, and the drive side rotator 1 is rotationally driven in the rotational direction S shown in FIG. As the drive-side rotator 1 is driven to rotate, the driven-side rotator 2 is driven to rotate in the rotational direction S to rotate the camshaft 10, and the cam provided on the camshaft body 10a pushes down the intake valve of the engine to open it. Let me speak.

図2に示すように、径内方向に突出する複数個の突出部14を外部ロータ12の内側に回転方向Sに沿って互いに離間させて形成することにより、従動側回転体2と外部ロータ12との間に流体圧室4を区画形成してある。突出部14は、従動側回転体2の外周面に対するシューとしても機能する。従動側回転体2の外周面のうち流体圧室4に面する部分に、突出部21を形成してある。流体圧室4は、突出部21によって、回転方向Sに沿って進角室41と遅角室42とに仕切られている。尚、本実施形態においては、流体圧室4が4箇所となるよう構成してあるが、これに限られるものではない。   As shown in FIG. 2, a plurality of projecting portions 14 projecting in the radially inward direction are formed on the inner side of the outer rotor 12 so as to be spaced apart from each other along the rotational direction S. A fluid pressure chamber 4 is defined between the two. The protruding portion 14 also functions as a shoe for the outer peripheral surface of the driven side rotating body 2. A protruding portion 21 is formed on a portion of the outer peripheral surface of the driven side rotating body 2 facing the fluid pressure chamber 4. The fluid pressure chamber 4 is divided into an advance chamber 41 and a retard chamber 42 along the rotation direction S by the protrusion 21. In the present embodiment, the fluid pressure chamber 4 is configured to have four locations, but the present invention is not limited to this.

進角室41及び遅角室42に作動流体としてのオイルを供給、排出、又はその給排を遮断して、突出部21に油圧を作用させる。このようにして、相対回転位相を進角方向又は遅角方向へ変位させ、或いは、任意の位相に保持する。進角方向とは、進角室41の容積が大きくなる方向であり、図2に矢印S1で示してある。遅角方向とは、遅角室42の容積が大きくなる方向であり、図2に矢印S2で示してある。尚、進角室41の容積が最大となった時の相対回転位相が最進角位相であり、遅角室42の容積が最大となった時の相対回転位相が最遅角位相である。   Oil is supplied to or discharged from the advance chamber 41 and the retard chamber 42, or the supply and discharge of the oil is shut off, and hydraulic pressure is applied to the protrusion 21. In this way, the relative rotational phase is displaced in the advance angle direction or the retard angle direction, or held at an arbitrary phase. The advance direction is a direction in which the volume of the advance chamber 41 is increased, and is indicated by an arrow S1 in FIG. The retardation direction is a direction in which the volume of the retardation chamber 42 increases, and is indicated by an arrow S2 in FIG. The relative rotation phase when the volume of the advance chamber 41 is maximized is the most advanced phase, and the relative rotation phase when the volume of the retard chamber 42 is maximized is the most retarded phase.

〔ロック機構〕
弁開閉時期制御装置は、駆動側回転体1に対する従動側回転体2の相対回転移動を拘束することにより、駆動側回転体1に対する従動側回転体2の相対回転位相を最進角位相と最遅角位相との間の所定のロック位相に拘束可能なロック機構8を備えている。エンジン始動直後のオイルの油圧が安定しない状況において、相対回転位相をロック位相に拘束することによって、クランクシャフトの回転位相に対するカムシャフト10の回転位相を適正に維持し、エンジンの安定的な回転を実現することができる。
[Lock mechanism]
The valve opening / closing timing control device constrains the relative rotational movement of the driven-side rotator 2 with respect to the drive-side rotator 1, thereby setting the relative rotation phase of the driven-side rotator 2 relative to the drive-side rotator 1 to the most advanced angle phase. A lock mechanism 8 that can be restrained to a predetermined lock phase between the retard angle phase and the retard angle phase is provided. By restraining the relative rotational phase to the lock phase in a situation where the oil pressure of the oil immediately after engine startup is not stable, the rotational phase of the camshaft 10 with respect to the rotational phase of the crankshaft is properly maintained, and stable engine rotation is achieved. Can be realized.

図2に示すように、ロック部材81が軸方向に沿って移動可能に構成されており、不図示の付勢部材によりフロントプレート11又はリアプレート13に形成された不図示のロック溝と係合した状態で保持されることにより、ロック状態が維持される。従動側回転体2に形成されたロック油路82は、ロック機構8と後述する進角油路43とを接続しており、駆動側回転体1に対する従動側回転体2の相対回転位相を進角方向S1に変位させる進角制御が行われるとロック機構8に油圧を作用させる。その結果、ロック部材81が付勢部材による付勢力に抗してロック溝から退出し、ロック状態が解除される。   As shown in FIG. 2, the lock member 81 is configured to be movable along the axial direction, and is engaged with a lock groove (not shown) formed in the front plate 11 or the rear plate 13 by a biasing member (not shown). By being held in this state, the locked state is maintained. A lock oil passage 82 formed in the driven-side rotator 2 connects the lock mechanism 8 and an advance oil passage 43 described later, and advances the relative rotation phase of the driven-side rotator 2 with respect to the drive-side rotator 1. When the advance angle control for displacing in the angular direction S1 is performed, hydraulic pressure is applied to the lock mechanism 8. As a result, the lock member 81 moves out of the lock groove against the urging force of the urging member, and the locked state is released.

〔OCV(オイルコントロールバルブ)〕
図1に示すように、オイルの流体圧室4への流入および流体圧室4からの流出を切り替える「制御弁」としてのOCV51を、中間回転部材6の径方向内方にカムシャフト10と同軸上に備えている。OCV51は、スプール52と、スプール52を付勢するスプリング53と、スプール52を駆動する電磁ソレノイド54とを備えている。
スプール52は、OCVボルト10bの先端部に形成された収容空間5aに収容されており、収容空間5aの内部で軸芯Xに沿って摺動可能である。電磁ソレノイド54については、公知の技術であるので詳細な説明を省略する。
[OCV (oil control valve)]
As shown in FIG. 1, an OCV 51 as a “control valve” that switches between the inflow of oil into the fluid pressure chamber 4 and the outflow from the fluid pressure chamber 4 is coaxial with the camshaft 10 inward in the radial direction of the intermediate rotating member 6. Prepared above. The OCV 51 includes a spool 52, a spring 53 that biases the spool 52, and an electromagnetic solenoid 54 that drives the spool 52.
The spool 52 is accommodated in an accommodation space 5a formed at the tip of the OCV bolt 10b, and is slidable along the axis X inside the accommodation space 5a. Since the electromagnetic solenoid 54 is a known technique, a detailed description thereof will be omitted.

スプリング53は収容空間5aの奥部に配設されており、スプール52をカムシャフト本体10aの側とは反対側に常時付勢する。電磁ソレノイド54に給電すると、電磁ソレノイド54に設けられたプッシュピン54aが、スプール52に形成されたロッド部52aを押圧する。その結果、スプール52はスプリング53の付勢力に抗してカムシャフト本体10aの側に摺動する。OCV51は、電磁ソレノイド54に供給する電力のデューティ比の調節により、スプール52の位置調節ができるよう構成されている。電磁ソレノイド54への給電量は、不図示のECU(電子制御ユニット)によって制御される。   The spring 53 is disposed in the inner part of the accommodation space 5a, and always urges the spool 52 to the side opposite to the camshaft body 10a. When power is supplied to the electromagnetic solenoid 54, a push pin 54 a provided on the electromagnetic solenoid 54 presses the rod portion 52 a formed on the spool 52. As a result, the spool 52 slides toward the camshaft body 10 a against the urging force of the spring 53. The OCV 51 is configured so that the position of the spool 52 can be adjusted by adjusting the duty ratio of the power supplied to the electromagnetic solenoid 54. The amount of power supplied to the electromagnetic solenoid 54 is controlled by an ECU (electronic control unit) (not shown).

〔中間回転部材及びワッシャー部材〕
図5に示すように、中間回転部材6は円筒状に形成されており、従動側回転体2の内側のうちのカムシャフト本体10aの側(図中右側)に内装される。従動側回転体2のカムシャフト本体10aの側と反対の側(図中左側)には、ワッシャー部材7が内装される。従動側回転体2に中間回転部材6及びワッシャー部材7を内装し、さらに、図5では不図示の駆動側回転体1を従動側回転体2に外装した状態で、OCVボルト10bを各部材の中心孔に挿入しカムシャフト本体10aに螺着する。すると、図1に示すように、進角油路43と遅角油路44との間において、中間回転部材6と従動側回転体2とが軸方向で全周に亘って当接し、当接部Aが形成される。
したがって、当接部Aは、中間回転部材6と従動側回転体2が駆動側回転体1に組み付けられた後、中間回転部材6がカムシャフト10に組み付けられるとき、進角油路43と遅角油路44との間において中間回転部材6が従動側回転体2に当接する。
[Intermediate rotating member and washer member]
As shown in FIG. 5, the intermediate rotating member 6 is formed in a cylindrical shape, and is internally provided on the camshaft main body 10 a side (the right side in the drawing) inside the driven-side rotating body 2. A washer member 7 is housed on the side (left side in the figure) opposite to the camshaft main body 10a side of the driven side rotating body 2. The intermediate rotating member 6 and the washer member 7 are internally provided on the driven side rotating body 2, and the OCV bolt 10b is attached to each member in a state where the driving side rotating body 1 (not shown in FIG. 5) is externally mounted on the driven side rotating body 2. It is inserted into the center hole and screwed into the camshaft body 10a. Then, as shown in FIG. 1, between the advance oil passage 43 and the retard oil passage 44, the intermediate rotation member 6 and the driven-side rotator 2 abut on the entire circumference in the axial direction. Part A is formed.
Therefore, when the intermediate rotating member 6 is assembled to the camshaft 10 after the intermediate rotating member 6 and the driven rotating body 2 are assembled to the driving side rotating body 1, the abutting portion A is not connected to the advance oil passage 43 and the retarding oil passage 43. The intermediate rotating member 6 contacts the driven-side rotating body 2 between the square oil passage 44 and the driven oil rotating body 2.

ワッシャー部材7は、OCVボルト10bのカムシャフト本体10aに対する締結力を増大させる機能を有する。ワッシャー部材7とフロントプレート11とに亘って、従動側回転体2が駆動側回転体1に対して進角方向S1に向けて回転するように付勢するトーションスプリング9を装着してある。   The washer member 7 has a function of increasing the fastening force of the OCV bolt 10b to the camshaft main body 10a. A torsion spring 9 is mounted across the washer member 7 and the front plate 11 to urge the driven-side rotator 2 to rotate in the advance direction S1 with respect to the drive-side rotator 1.

中間回転部材6の外周面は、その外径を、軸芯Xに沿う全長に亘って、中間回転部材6を内挿するように従動側回転体2に設けた筒状内壁2aの内径よりも若干大きい外径に形成して、従動側回転体2の内周面に対して全面に亘って嵌合する嵌合部20を構成している。
したがって、中間回転部材6は、嵌合部20における従動側回転体2に対する圧入によって、従動側回転体2と一体に組み付けられる。
The outer peripheral surface of the intermediate rotating member 6 has an outer diameter that is longer than the inner diameter of the cylindrical inner wall 2a provided on the driven-side rotating body 2 so as to insert the intermediate rotating member 6 over the entire length along the axis X. A fitting portion 20 is formed which has a slightly larger outer diameter and is fitted over the entire inner peripheral surface of the driven side rotating body 2.
Therefore, the intermediate rotating member 6 is assembled integrally with the driven side rotating body 2 by press-fitting the driven side rotating body 2 in the fitting portion 20.

嵌合部20の従動側回転体2に対する嵌合圧力は、フロントプレート11の側からワッシャー部材7、従動側回転体2および中間回転部材6に亘って挿通したOCVボルト10bをカムシャフト本体10aに螺着するときに、中間回転部材6を従動側回転体2に対して当接するように強制的に移動可能な圧力に設定してある。
このため、進角油路43と遅角油路44との間において、中間回転部材6を従動側回転体2に対して全周に亘って確実に当接させて、進角油路43と遅角油路44とに亘るオイルの流通を防止することができる。
The fitting pressure with respect to the driven side rotating body 2 of the fitting part 20 is such that the OCV bolt 10b inserted through the washer member 7, the driven side rotating body 2 and the intermediate rotating member 6 from the front plate 11 side is applied to the camshaft main body 10a. The pressure is set such that the intermediate rotating member 6 can be forcibly moved so as to come into contact with the driven-side rotating body 2 when screwed.
For this reason, between the advance oil passage 43 and the retard oil passage 44, the intermediate rotation member 6 is reliably brought into contact with the driven-side rotator 2 over the entire circumference, and the advance oil passage 43 Oil flow through the retarded oil passage 44 can be prevented.

嵌合部20は、駆動側回転体1の内側に従動側回転体2と中間回転部材6とを組み付けたときに、従動側回転体2と中間回転部材6との間にある程度の摩擦力を作用させて、中間回転部材6を従動側回転体2に組み付け、その後、カムシャフト10を中間回転部材6に接続するまでの間、中間回転部材6が従動側回転体2から脱落するのを防止するように抵抗を与える。   When the driven side rotating body 2 and the intermediate rotating member 6 are assembled inside the driving side rotating body 1, the fitting portion 20 applies a certain amount of frictional force between the driven side rotating body 2 and the intermediate rotating member 6. The intermediate rotating member 6 is prevented from dropping from the driven side rotating body 2 until the intermediate rotating member 6 is assembled to the driven side rotating body 2 and then the camshaft 10 is connected to the intermediate rotating member 6. To give resistance.

〔油路構成〕
図1に示すように、オイルパン61に貯留されているオイルは、クランクシャフトの回転駆動力が伝達されることにより駆動する機械式のオイルポンプ62によって汲み上げられ、後述する供給油路45に供給される。そして、OCV51の制御により、進角油路43及び遅角油路44に対するオイルの供給、排出、及び給排の遮断が切り換えられる。
(Oil channel configuration)
As shown in FIG. 1, the oil stored in the oil pan 61 is pumped up by a mechanical oil pump 62 that is driven by transmission of the rotational driving force of the crankshaft, and is supplied to a supply oil passage 45 described later. Is done. Then, the supply of oil to the advance oil passage 43 and the retard oil passage 44, and the shutoff of supply / discharge are switched by the control of the OCV 51.

進角油路43は、駆動側回転体1と従動側回転体2との相対回転位相を進角方向S1に変更するための油路である。遅角油路44は、駆動側回転体1と従動側回転体2との相対回転位相を他方の遅角方向S2に変更するための油路である。
したがって、進角油路43、遅角油路44および供給油路45が、駆動側回転体1に対する従動側回転体2の相対回転位相を、最進角位相と最遅角位相との間で変更するよう、オイルが流体圧室4へ流入すること又は流体圧室4から流出することを択一的に許容する流路に相当し、そのうちの進角油路43が第1流路に相当し、遅角油路44が第2流路に相当する。
The advance oil passage 43 is an oil passage for changing the relative rotation phase between the drive side rotor 1 and the driven side rotor 2 to the advance direction S1. The retarding oil passage 44 is an oil passage for changing the relative rotational phase between the driving side rotating body 1 and the driven side rotating body 2 to the other retarding direction S2.
Therefore, the advance oil passage 43, the retard oil passage 44, and the supply oil passage 45 have a relative rotation phase of the driven-side rotator 2 with respect to the drive-side rotator 1 between the most advanced angle phase and the most retarded angle phase. In order to change, it corresponds to a flow path that alternatively allows oil to flow into or out of the fluid pressure chamber 4, and the advance oil passage 43 of which corresponds to the first flow path The retarded oil passage 44 corresponds to the second flow passage.

図1、図2に示すように、各進角室41に接続する進角油路43を、OCVボルト10bに形成した貫通孔43aと、OCVボルト10bと従動側回転体2との間に形成した第1環状油路43bと、従動側回転体2に形成した貫通孔43cとによって構成してある。したがって、進角油路43の一部である第1環状油路43bを構成する空間が従動側回転体2とOCVボルト10bとの間に区画形成されている。   As shown in FIGS. 1 and 2, an advance oil passage 43 connected to each advance chamber 41 is formed between a through hole 43 a formed in the OCV bolt 10 b and between the OCV bolt 10 b and the driven side rotating body 2. The first annular oil passage 43b and the through hole 43c formed in the driven side rotating body 2 are configured. Therefore, a space constituting the first annular oil passage 43b, which is a part of the advance oil passage 43, is defined between the driven-side rotating body 2 and the OCV bolt 10b.

各遅角室42に接続する遅角油路44を、OCVボルト10bに形成した貫通孔44aと、OCVボルト10bと中間回転部材6との間の中間回転部材6の内周面に形成した第2環状油路44bと、中間回転部材6に形成した貫通孔44cと、従動側回転体2に形成した貫通孔44dとによって構成してある。したがって、遅角油路44の一部を構成する第2環状油路44bおよび貫通孔44cが中間回転部材6に形成されている。   A retard oil passage 44 connected to each retard chamber 42 is formed on a through hole 44a formed in the OCV bolt 10b and on an inner peripheral surface of the intermediate rotating member 6 between the OCV bolt 10b and the intermediate rotating member 6. The two annular oil passages 44b, a through hole 44c formed in the intermediate rotating member 6, and a through hole 44d formed in the driven side rotating body 2 are configured. Therefore, a second annular oil passage 44 b and a through hole 44 c that constitute a part of the retard oil passage 44 are formed in the intermediate rotation member 6.

さらに、進角室41或いは遅角室42にオイルを供給する供給油路45を、カムシャフト本体10aに形成した通路45aと、中間回転部材6に形成した通路45bと、中間回転部材6とOCVボルト10bとの間の中間回転部材6の側に形成した第3環状通路45cと、OCVボルト10bに形成した貫通孔45dと、によって構成してある。   Furthermore, a supply oil passage 45 for supplying oil to the advance chamber 41 or the retard chamber 42 includes a passage 45a formed in the camshaft body 10a, a passage 45b formed in the intermediate rotation member 6, the intermediate rotation member 6 and the OCV. A third annular passage 45c formed on the intermediate rotating member 6 side between the bolt 10b and a through hole 45d formed in the OCV bolt 10b.

したがって、中間回転部材6には、オイルを流体圧室4に対して給排する進角油路43、遅角油路44および供給油路45のうちの、第2環状油路44b、貫通孔44c、通路45bおよび第3環状通路45cが設けられている。   Therefore, the intermediate rotating member 6 includes the second annular oil passage 44b, the through hole of the advance oil passage 43, the retard oil passage 44 and the supply oil passage 45 that supply and discharge oil to and from the fluid pressure chamber 4. 44c, a passage 45b and a third annular passage 45c are provided.

供給油路45を流通するオイルは、まずスプール52の外周面に形成された環状溝52bに流入する。図1に示すように、環状溝52bが、OCVボルト10bに形成した貫通孔43aとも貫通孔44aとも連通しない状態では、進角室41及び遅角室42にはオイルが供給されない。この状態においては、貫通孔43aがスプール52に形成した貫通孔52cと連通しないように構成してあるので、進角室41のオイルが進角油路43、貫通孔52c、収容空間5a、及び排出孔52dを経由して装置外に排出されることはない。同様に、この状態においては、貫通孔44aが収容空間5aと連通しないように構成してあるので、遅角室42のオイルが遅角油路44、収容空間5a、及び排出孔52dを経由して装置外に排出されることもない。即ち、電磁ソレノイド54に所定量の給電を行い、スプール52を図1に示す位置に保持するようにOCV51を制御すると、進角室41及び遅角室42へのオイルの給排が遮断され、相対回転位相が保持される。   The oil flowing through the supply oil passage 45 first flows into an annular groove 52 b formed on the outer peripheral surface of the spool 52. As shown in FIG. 1, when the annular groove 52b does not communicate with the through hole 43a and the through hole 44a formed in the OCV bolt 10b, no oil is supplied to the advance chamber 41 and the retard chamber 42. In this state, the through hole 43a is configured not to communicate with the through hole 52c formed in the spool 52, so that the oil in the advance chamber 41 has the advance oil passage 43, the through hole 52c, the accommodation space 5a, and It is not discharged out of the apparatus via the discharge hole 52d. Similarly, in this state, since the through hole 44a is configured not to communicate with the accommodation space 5a, the oil in the retardation chamber 42 passes through the retardation oil passage 44, the accommodation space 5a, and the discharge hole 52d. It is not discharged outside the device. That is, when a predetermined amount of power is supplied to the electromagnetic solenoid 54 and the OCV 51 is controlled so as to hold the spool 52 in the position shown in FIG. 1, the oil supply / discharge to the advance chamber 41 and the retard chamber 42 is interrupted, The relative rotational phase is maintained.

電磁ソレノイド54に給電を行わない場合には、スプリング53の付勢力によりスプール52は図3に示す位置に保持される。この状態においては、スプール52の環状溝52bは、OCVボルト10bに形成した貫通孔43aと連通し、貫通孔44aとは連通しない。同時に、貫通孔44aは収容空間5aと連通する。従って、供給油路45に供給されたオイルは進角油路43を経由して進角室41に供給され、遅角室42のオイルは遅角油路44、収容空間5a、及び排出孔52dを経由して装置外に排出される。この時、進角室41に作用する油圧により、相対回転位相が進角方向S1に変位する。   When power is not supplied to the electromagnetic solenoid 54, the spool 52 is held at the position shown in FIG. In this state, the annular groove 52b of the spool 52 communicates with the through hole 43a formed in the OCV bolt 10b and does not communicate with the through hole 44a. At the same time, the through hole 44a communicates with the accommodation space 5a. Therefore, the oil supplied to the supply oil passage 45 is supplied to the advance chamber 41 via the advance oil passage 43, and the oil in the retard chamber 42 is the retard oil passage 44, the accommodating space 5a, and the discharge hole 52d. It is discharged out of the device via At this time, the relative rotation phase is displaced in the advance direction S1 by the hydraulic pressure acting on the advance chamber 41.

電磁ソレノイド54に最大の給電を行うと、スプリング53の付勢力に抗してスプール52は図4に示す位置に保持される。この状態においては、スプール52の環状溝52bは、OCVボルト10bに形成した貫通孔44aと連通し、貫通孔43aとは連通しない。同時に、貫通孔43aはスプールに形成した貫通孔52cと連通する。従って、供給油路45に供給されたオイルは遅角油路44を経由して遅角室42に供給され、進角室41のオイルは進角油路43、貫通孔52c、収容空間5a、及び排出孔52dを経由して装置外に排出される。この時、遅角室42に作用する油圧により、相対回転位相が遅角方向S2に変位する。   When maximum power is supplied to the electromagnetic solenoid 54, the spool 52 is held at the position shown in FIG. 4 against the urging force of the spring 53. In this state, the annular groove 52b of the spool 52 communicates with the through hole 44a formed in the OCV bolt 10b and does not communicate with the through hole 43a. At the same time, the through hole 43a communicates with a through hole 52c formed in the spool. Accordingly, the oil supplied to the supply oil passage 45 is supplied to the retard chamber 42 via the retard oil passage 44, and the oil in the advance chamber 41 is the advance oil passage 43, the through hole 52c, the accommodation space 5a, And it is discharged out of the apparatus via the discharge hole 52d. At this time, the relative rotational phase is displaced in the retarding direction S2 by the hydraulic pressure acting on the retarding chamber 42.

〔第2実施形態〕
図6は、本発明の別実施形態を示す。
本実施形態では、嵌合部20を、中間回転部材6が筒状内壁2aのうちの軸芯Xに沿う方向で一部の領域、具体的には、遅角油路44の形成部分と当接部Aとの間の領域にのみ圧入されて嵌合するように構成し、中間回転部材6のうちの従動側回転体2よりもリアプレート13の側に突出する部分の外周面をリアプレート13に対して相対回転自在に密着させてある。
[Second Embodiment]
FIG. 6 shows another embodiment of the present invention.
In the present embodiment, the fitting portion 20 is in contact with a part of the intermediate rotating member 6 in the direction along the axis X of the cylindrical inner wall 2a, specifically, with the formation portion of the retarded oil passage 44. The outer peripheral surface of the portion of the intermediate rotating member 6 that protrudes closer to the rear plate 13 than the driven rotating body 2 of the intermediate rotating member 6 is configured to be press-fitted and fitted only in the region between the contact portion A and the rear plate. 13 is in close contact with the shaft 13 so as to be rotatable relative thereto.

すなわち、嵌合部20を筒状内壁2aのうちの遅角油路44の形成部分と当接部Aとの間の領域にのみ嵌合するように構成すると、中間回転部材6の従動側回転体2に対する嵌合部20における密着、および、当接部Aにおける密着により、進角油路43と遅角油路44とが中間回転部材6と従動側回転体2との界面を介して連通することを防止できる。   That is, when the fitting portion 20 is configured to be fitted only in a region between the formation portion of the retarded oil passage 44 and the contact portion A in the cylindrical inner wall 2a, the driven side rotation of the intermediate rotation member 6 is performed. The advance oil passage 43 and the retard oil passage 44 communicate with each other through the interface between the intermediate rotation member 6 and the driven side rotation body 2 by the close contact at the fitting portion 20 and the close contact at the contact portion A with respect to the body 2. Can be prevented.

一方、中間回転部材6のうちの遅角油路44の形成部分よりもリアプレート13の側に突出する部分の外周面とリアプレート13との間に隙間が形成されていると、中間回転部材6と従動側回転体2とに亘って形成された遅角油路44からオイルが外部に流出するおそれがある。このため、中間回転部材6の外周面をリアプレート13に対して相対回転自在に密着させて、遅角油路44からのオイルの流出を防止してある。
その他の構成は、第1実施形態と同様である。
On the other hand, if a gap is formed between the outer peripheral surface of the portion of the intermediate rotating member 6 that protrudes toward the rear plate 13 relative to the portion where the retarded oil passage 44 is formed, and the rear plate 13, the intermediate rotating member There is a risk that the oil may flow out from the retarded oil passage 44 formed across 6 and the driven-side rotator 2. For this reason, the outer peripheral surface of the intermediate rotating member 6 is in close contact with the rear plate 13 so as to be rotatable relative to the rear plate 13, thereby preventing oil from flowing out from the retarded oil passage 44.
Other configurations are the same as those of the first embodiment.

〔第3実施形態〕
図7は、本発明の別実施形態を示す。
本実施形態では、第2実施形態を示す図6と同様に、中間回転部材6のうちの従動側回転体2よりもリアプレート13の側に突出する部分の外周面をリアプレート13に対して相対回転自在に密着させて、遅角油路44からのオイルの流出を防止してある。
そして、従動側回転体2の筒状内壁2aに対して嵌合するように中間回転部材6の外周面に形成した嵌合部20が、中間回転部材6を筒状内壁2aのうちの軸芯Xに対する周方向に沿った所定間隔おきの複数個所に分散して圧入するように形成されている。
[Third Embodiment]
FIG. 7 shows another embodiment of the present invention.
In the present embodiment, as in FIG. 6 showing the second embodiment, the outer peripheral surface of the portion of the intermediate rotating member 6 that protrudes closer to the rear plate 13 than the driven-side rotating body 2 is located with respect to the rear plate 13. The oil is prevented from flowing out from the retarded oil passage 44 by being in close contact with each other so as to be relatively rotatable.
And the fitting part 20 formed in the outer peripheral surface of the intermediate | middle rotating member 6 so that it may fit with respect to the cylindrical inner wall 2a of the driven side rotary body 2 makes the intermediate rotating member 6 the axial center of the cylindrical inner wall 2a. It is formed so as to be dispersed and press-fitted at a plurality of predetermined intervals along the circumferential direction with respect to X.

つまり、従動側回転体2の筒状内壁2aのうちの、周方向で等間隔で離れた例えば三箇所の夫々に、筒状内壁2aの内径よりも若干小さい内径部分20aを同じ幅で形成して、中間回転部材6が筒状内壁2aに対して等間隔おきに圧入されて嵌合する嵌合部20を中間回転部材6に設けてある。   That is, an inner diameter portion 20a that is slightly smaller than the inner diameter of the cylindrical inner wall 2a is formed with the same width in each of, for example, three portions of the cylindrical inner wall 2a of the driven side rotating body 2 that are spaced apart at equal intervals in the circumferential direction. Thus, the intermediate rotating member 6 is provided with a fitting portion 20 in which the intermediate rotating member 6 is press-fitted into the cylindrical inner wall 2a at equal intervals and fitted.

本実施形態であれば、中間回転部材6に対する加工範囲を狭くしながら、三箇所の外径部分6aの夫々を筒状内壁2aに対して確実に圧接させて、中間回転部材6を従動側回転体2に対して同芯状に精度良く位置決めすることができる。
なお、嵌合部20は、周方向で不等間隔で離れた複数箇所の夫々において、筒状内壁2aの内径よりも若干小さい内径部分20aを形成して、中間回転部材6が筒状内壁2aに対して不等間隔おきに圧入されるように設けてあってもよい。
その他の構成は、第1実施形態と同様である。
According to this embodiment, while narrowing the processing range for the intermediate rotating member 6, the three outer diameter portions 6a are securely brought into pressure contact with the cylindrical inner wall 2a to rotate the intermediate rotating member 6 on the driven side. The core 2 can be accurately positioned concentrically.
The fitting portion 20 forms an inner diameter portion 20a that is slightly smaller than the inner diameter of the cylindrical inner wall 2a at each of a plurality of locations that are spaced apart at unequal intervals in the circumferential direction, and the intermediate rotating member 6 is formed into the cylindrical inner wall 2a. May be provided so as to be press-fitted at unequal intervals.
Other configurations are the same as those of the first embodiment.

〔その他の実施形態〕
1.本発明に係る弁開閉時期制御装置は、排気弁の開閉時期を制御する弁開閉時期制御装置であってもよい。
2.本発明に係る弁開閉時期制御装置は、自動車その他の内燃機関の弁開閉時期制御装置に利用することができる。
[Other Embodiments]
1. The valve opening / closing timing control device according to the present invention may be a valve opening / closing timing control device that controls the opening / closing timing of the exhaust valve.
2. The valve opening / closing timing control apparatus according to the present invention can be used in a valve opening / closing timing control apparatus for an automobile or other internal combustion engine.

1 駆動側回転体
2 従動側回転体
2a 筒状内壁
4 流体圧室
43 第1流路(進角油路)
44 第2流路(遅角油路)
6 中間部材
10 カムシャフト
20 嵌合部
51 制御弁
A 当接部
X 軸芯
DESCRIPTION OF SYMBOLS 1 Drive side rotary body 2 Driven side rotary body 2a Cylindrical inner wall 4 Fluid pressure chamber 43 1st flow path (advance oil path)
44 Second flow path (retarded oil path)
6 Intermediate member 10 Camshaft 20 Fitting part 51 Control valve A Contact part X Axle core

Claims (4)

内燃機関の駆動軸と同期回転する駆動側回転体と、
前記駆動側回転体の内側で軸芯が重なる状態に配置され、前記内燃機関の弁開閉用のカムシャフトと一体回転する従動側回転体と、
前記駆動側回転体と前記従動側回転体との間に区画形成される流体圧室と、
前記駆動側回転体に対する前記従動側回転体の相対回転位相を最進角位相と最遅角位相との間で変更するよう、作動流体が前記流体圧室へ流入すること又は前記流体圧室から流出することを許容する第1流路および第2流路と、
前記従動側回転体の内周面と前記カムシャフトの外周面との間に組み付けられ、前記従動側回転体と前記カムシャフトとを連結する中間部材と、を備え、
前記第1流路の一部を構成する空間が前記従動側回転体と前記カムシャフトとの間に区画形成されていると共に、前記第2流路の一部が前記中間部材に形成され、前記中間部材が前記従動側回転体に対して圧入により組み付けられ、さらに、前記中間部材と前記従動側回転体が前記駆動側回転体に組み付けられた後、前記中間部材が前記カムシャフトに組み付けられるとき、前記第1流路と前記第2流路との間において前記中間部材が前記従動側回転体に当接する当接部を備える弁開閉時期制御装置。
A drive-side rotating body that rotates synchronously with the drive shaft of the internal combustion engine;
A driven side rotating body that is arranged in a state where the shaft core overlaps inside the driving side rotating body, and rotates integrally with a camshaft for opening and closing the valve of the internal combustion engine;
A fluid pressure chamber defined between the driving side rotating body and the driven side rotating body;
The working fluid flows into the fluid pressure chamber or from the fluid pressure chamber so as to change the relative rotation phase of the driven side rotor with respect to the drive side rotor between the most advanced angle phase and the most retarded angle phase. A first flow path and a second flow path that allow outflow;
An intermediate member that is assembled between an inner peripheral surface of the driven-side rotator and an outer peripheral surface of the camshaft, and connects the driven-side rotator and the camshaft;
A space constituting a part of the first flow path is defined between the driven rotary body and the camshaft, and a part of the second flow path is formed in the intermediate member, When the intermediate member is assembled to the driven-side rotating body by press-fitting, and after the intermediate member and the driven-side rotating body are assembled to the driving-side rotating body, the intermediate member is assembled to the camshaft. A valve opening / closing timing control device comprising a contact portion between the first flow path and the second flow path, where the intermediate member is in contact with the driven rotating body.
前記作動流体の前記流体圧室への流入および前記流体圧室からの流出を切り替える制御弁を前記中間部材の径方向内方に備えている請求項1に記載の弁開閉時期制御装置。   2. The valve opening / closing timing control device according to claim 1, further comprising a control valve that switches between the inflow of the working fluid into the fluid pressure chamber and the outflow from the fluid pressure chamber, radially inward of the intermediate member. 前記中間部材が前記従動側回転体に設けられた内壁のうち一部の領域に圧入されている請求項1又は2に記載の弁開閉時期制御装置。   3. The valve opening / closing timing control device according to claim 1, wherein the intermediate member is press-fitted into a partial region of an inner wall provided on the driven side rotating body. 前記中間部材が前記従動側回転体に設けられた内壁のうち前記軸芯に対する周方向に沿った複数個所に所定間隔おきに圧入されている請求項3に記載の弁開閉時期制御装置。   4. The valve opening / closing timing control device according to claim 3, wherein the intermediate member is press-fitted at predetermined intervals at a plurality of locations along the circumferential direction with respect to the shaft core in an inner wall provided on the driven side rotating body.
JP2013177121A 2013-08-28 2013-08-28 Valve opening/closing timing control device Pending JP2015045282A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013177121A JP2015045282A (en) 2013-08-28 2013-08-28 Valve opening/closing timing control device
US14/459,766 US20150059670A1 (en) 2013-08-28 2014-08-14 Variable valve timing control device
EP14182160.3A EP2843201A1 (en) 2013-08-28 2014-08-25 Variable valve timing control device
CN201410433388.4A CN104420918A (en) 2013-08-28 2014-08-28 Variable Valve Timing Control Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013177121A JP2015045282A (en) 2013-08-28 2013-08-28 Valve opening/closing timing control device

Publications (1)

Publication Number Publication Date
JP2015045282A true JP2015045282A (en) 2015-03-12

Family

ID=51390072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013177121A Pending JP2015045282A (en) 2013-08-28 2013-08-28 Valve opening/closing timing control device

Country Status (4)

Country Link
US (1) US20150059670A1 (en)
EP (1) EP2843201A1 (en)
JP (1) JP2015045282A (en)
CN (1) CN104420918A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6666715B2 (en) 2015-12-28 2020-03-18 株式会社ミクニ Valve timing change device
JP6721334B2 (en) * 2015-12-28 2020-07-15 株式会社ミクニ Valve timing change device
US10041384B2 (en) * 2016-05-31 2018-08-07 Gm Global Technology Operations Control valve
JP6954764B2 (en) * 2017-05-12 2021-10-27 株式会社デンソー Valve timing adjuster

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006183590A (en) * 2004-12-28 2006-07-13 Denso Corp Valve timing adjustment device
JP2012057578A (en) * 2010-09-10 2012-03-22 Aisin Seiki Co Ltd Valve timing control device
JP2012172559A (en) * 2011-02-18 2012-09-10 Aisin Seiki Co Ltd Valve opening/closing timing control device
JP2012172558A (en) * 2011-02-18 2012-09-10 Aisin Seiki Co Ltd Valve opening/closing timing control device
JP2013053553A (en) * 2011-09-03 2013-03-21 Honda Motor Co Ltd Internal combustion engine with variable valve opening characteristic

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006183590A (en) * 2004-12-28 2006-07-13 Denso Corp Valve timing adjustment device
JP2012057578A (en) * 2010-09-10 2012-03-22 Aisin Seiki Co Ltd Valve timing control device
JP2012172559A (en) * 2011-02-18 2012-09-10 Aisin Seiki Co Ltd Valve opening/closing timing control device
JP2012172558A (en) * 2011-02-18 2012-09-10 Aisin Seiki Co Ltd Valve opening/closing timing control device
JP2013053553A (en) * 2011-09-03 2013-03-21 Honda Motor Co Ltd Internal combustion engine with variable valve opening characteristic

Also Published As

Publication number Publication date
US20150059670A1 (en) 2015-03-05
EP2843201A1 (en) 2015-03-04
CN104420918A (en) 2015-03-18

Similar Documents

Publication Publication Date Title
JP5585832B2 (en) Valve timing control device
JP5403341B2 (en) Valve timing control device
JP5574189B2 (en) Valve timing adjustment device
US20080173267A1 (en) Valve timing control apparatus
JPH07139319A (en) Valve-timing adjusting device
WO2015122359A1 (en) Valve timing control apparatus
JPH06330712A (en) Valve timing regulating device
JP2000130118A (en) Valve opening and closing time control device
JP2009185766A (en) Valve timing adjusting device
WO2016031808A1 (en) Valve timing control device
EP2843202B1 (en) Variable valve timing control device
JP2015045282A (en) Valve opening/closing timing control device
JP2004092653A5 (en)
JP2019007515A (en) Hydraulic control valve
JP5136852B2 (en) Valve timing control device
JP4560736B2 (en) Valve timing adjustment device
JP7200914B2 (en) valve timing adjuster
JP2016089682A (en) Valve opening/closing timing control device
WO2016068180A1 (en) Valve open/close period control device
JP2005121016A (en) Phaser
JP6273801B2 (en) Valve timing control device
JP5979102B2 (en) Valve timing control device
CN109209547B (en) One-way clutch type variable valve timing apparatus and engine system thereof
JP2006291944A (en) Valve opening/closing timing control device
JP5105187B2 (en) Valve timing control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171017