[go: up one dir, main page]

JP2015045212A - Seismic strengthening structure of existing bridge pier, and newly-constructed bridge pier structure - Google Patents

Seismic strengthening structure of existing bridge pier, and newly-constructed bridge pier structure Download PDF

Info

Publication number
JP2015045212A
JP2015045212A JP2013188723A JP2013188723A JP2015045212A JP 2015045212 A JP2015045212 A JP 2015045212A JP 2013188723 A JP2013188723 A JP 2013188723A JP 2013188723 A JP2013188723 A JP 2013188723A JP 2015045212 A JP2015045212 A JP 2015045212A
Authority
JP
Japan
Prior art keywords
pier
plastic deformation
footing
vibration damping
end side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013188723A
Other languages
Japanese (ja)
Inventor
啓介 塩田
Keisuke Shioda
啓介 塩田
中村 信行
Nobuyuki Nakamura
信行 中村
和明 宮川
Kazuaki Miyagawa
和明 宮川
宏之 今塩
Hiroyuki Imashio
宏之 今塩
恭太郎 神田
Kyotaro Kanda
恭太郎 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Civil Engineering and Construction Corp
Original Assignee
JFE Civil Engineering and Construction Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Civil Engineering and Construction Corp filed Critical JFE Civil Engineering and Construction Corp
Priority to JP2013188723A priority Critical patent/JP2015045212A/en
Publication of JP2015045212A publication Critical patent/JP2015045212A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a seismic strengthening structure of a bridge pier, which decreases a seismic load acting on a foundation of the bridge pier during earthquakes, while achieving shortening of a construction period and a reduction in construction cost.SOLUTION: In a bridge pier, a column part 4 is erected from a footing 3 that is buried in the ground 2, and a beam part 6 for loading superstructure work 5 is formed at an upper end of the column part. A vibration-control reinforcement member 8 having one end coupled to the beam part and having the other end coupled to the footing is arranged. The vibration-control reinforcement member has a plastic deformation part 8a with hysteresis damping characteristics provided in at least a part from the side of one end to the side of the other end.

Description

本発明は、既設の高速道路の高架橋や、既設の道路、鉄道などの橋梁の橋脚の耐震補強構造、及び新設の橋脚構造に関する。   TECHNICAL FIELD The present invention relates to an existing highway viaduct, a seismic reinforcing structure for a bridge pier of an existing road, a railway, and the like, and a new pier structure.

高架橋や橋梁の橋脚は、上部工や車両荷重などの鉛直荷重を支えるとともに、地震力による水平荷重に耐えられるように設計されている。しかし、近年、東日本大震災の経験や、首都直下型地震、南海トラフ地震などの巨大な地震に備える必要性が生じてきている。
また、都市部の高架橋においては交通量や路線の増加によって上部工の道路幅を広げる場合、橋脚にかかる荷重が増加し、それによって地震力が増加することもある。このような状況では、橋梁の設計時に見込んだ地震力より大きな地震荷重が橋脚に作用するようになり、橋脚の耐震補強が必要になる。
Viaducts and bridge piers are designed to support vertical loads such as superstructures and vehicle loads, and to withstand horizontal loads due to seismic forces. However, in recent years, there has been a need to prepare for huge earthquakes such as the experience of the Great East Japan Earthquake and the Tokyo metropolitan earthquake and Nankai Trough earthquake.
In addition, in urban viaducts, when the road width of the superstructure is widened due to an increase in traffic and routes, the load on the pier increases, which may increase the seismic force. In such a situation, an earthquake load larger than the earthquake force expected at the time of designing the bridge acts on the pier, and the pier is required to be seismically reinforced.

既設橋脚の耐震補強構造として、例えば、特許文献1、2のような技術がある。
特許文献1の技術は、地中に埋設されたフーチングから柱部が立設し、柱部の上端に上部工を載置する梁部が形成された橋脚において、フーチング周りの地盤を掘削し、フーチングを囲む環状の地中壁を形成し、フーチングと地中壁との間の地盤中に複数の増設杭を打ち、増設杭と一体化するようにコンクリートを増設して既設橋脚の耐震補強を行う技術である。
一方、特許文献2の技術は、履歴減衰特性(金属部材の塑性変形に伴うエネルギー減衰特性)を有する斜材を橋脚のフーチングと柱部との間に法杖状に配置し、地震の際に斜材が軸方向に伸縮しながら塑性変形することで地震力を吸収し、地震による既設橋脚への影響を低減するものである。
As an earthquake-proof reinforcement structure of an existing pier, for example, there are techniques as disclosed in Patent Documents 1 and 2.
In the technology of Patent Document 1, a pillar portion is erected from a footing embedded in the ground, and the ground around the footing is excavated on a bridge pier in which a beam portion is placed on the upper end of the pillar portion. Form an annular underground wall that surrounds the footing, place multiple additional piles in the ground between the footing and the underground wall, add concrete to integrate with the additional piles, and provide seismic reinforcement for existing piers. It is a technique to perform.
On the other hand, in the technique of Patent Document 2, an oblique member having a hysteresis damping characteristic (energy damping characteristic accompanying plastic deformation of a metal member) is arranged like a cane between a foot of a bridge pier and a column part, and in the event of an earthquake. The diagonal material is deformed plastically while expanding and contracting in the axial direction to absorb the seismic force and reduce the impact on the existing pier due to the earthquake.

特開2005−180079号公報Japanese Patent Laid-Open No. 2005-180079 特開2003−74019号公報JP 2003-74019 A

特許文献1の技術は、フーチング周りの地盤を広い面積で掘削しなければならず、既設橋脚周辺の道路交通の規制が必要となる。また、地盤を掘削する範囲が広いので、工期の長期化、工事費の増大や、工事期間中の騒音、排水処理などの環境上の問題も発生しやすい。
また、特許文献2の技術は、フーチング周りの広い面積の地盤の掘削が不要となるので、特許文献1の技術の問題は解決することができる。
そして、特許文献2の技術は、既設橋脚のフーチングと柱部との間に法杖状に配置されている斜材が、橋脚に対して剛性や強度の補強効果がある。しかし、特許文献2の斜材は、地震時の軸方向の伸縮量が小さいので、塑性変形によるエネルギー減衰特性が小さく、地震力の低減効果が小さいという問題がある。
In the technique of Patent Document 1, the ground around the footing must be excavated in a wide area, and it is necessary to regulate road traffic around the existing pier. Also, since the ground excavation range is wide, environmental problems such as prolonged construction periods, increased construction costs, noise during construction, and wastewater treatment are likely to occur.
Moreover, since the technique of patent document 2 becomes unnecessary [excavation of the ground of the large area around a footing], the problem of the technique of patent document 1 can be solved.
And the technique of patent document 2 has the reinforcement effect of rigidity and intensity | strength with respect to a bridge pier, the diagonal material arrange | positioned in the shape of a cane between the footing of an existing bridge pier, and a pillar part. However, the diagonal material of Patent Document 2 has a problem that since the amount of expansion and contraction in the axial direction during an earthquake is small, the energy attenuation characteristic due to plastic deformation is small, and the effect of reducing the seismic force is small.

また、新設の橋脚を構築する場合にも、工期の短縮、工事費の低減化を図りながら巨大地震に耐え得る耐震補強を行わなければならない。
そこで、本発明は、上記従来例の未解決の課題に着目してなされたものであり、工期の短縮、工事費の低減化を図りながら、地震時における橋脚の耐震補強を確実に行うことができる既設橋脚の耐震補強構造及び新設の橋脚構造を提供することを目的としている。
In addition, when building a new pier, it is necessary to provide seismic reinforcement that can withstand a huge earthquake while shortening the construction period and reducing construction costs.
Therefore, the present invention has been made paying attention to the unsolved problems of the above-described conventional example, and it is possible to reliably perform seismic reinforcement of the pier during an earthquake while shortening the construction period and reducing the construction cost. The purpose is to provide a seismic reinforcement structure for existing piers and a new pier structure.

上記目的を達成するために、本発明の一態様に係る既設橋脚の耐震補強構造は、地中に埋設されたフーチングから柱部が立設し、前記柱部の上端に上部工を載置する梁部が形成された既設の橋脚の耐震補強構造であって、一端が前記梁部に連結され、他端が前記フーチングに連結された制振補強部材が配置され、当該制振補強部材は、前記一端側から前記他端側の少なくとも一部に履歴減衰特性を有する塑性変形部が設けられている。   In order to achieve the above object, the seismic reinforcement structure for an existing pier according to one aspect of the present invention is such that a pillar portion is erected from a footing embedded in the ground, and an upper work is placed on the upper end of the pillar portion. A seismic reinforcement structure of an existing bridge pier in which a beam portion is formed, wherein a vibration suppression reinforcement member having one end connected to the beam portion and the other end connected to the footing is disposed. A plastic deformation part having a hysteresis damping characteristic is provided from at least one end to the other end.

また、本発明の一態様に係る既設橋脚の耐震補強構造は、一端が前記梁部に連結され、他端が前記柱部に連結された制振補強部材が配置され、当該制振補強部材は、前記一端側から前記他端側の少なくとも一部に履歴減衰特性を有する塑性変形部が設けられているようにしてもよい。
また、本発明の一態様に係る既設橋脚の耐震補強構造は、地中に埋設されたフーチングから柱部が立設し、前記柱部の上端に上部工を載置する梁部が形成された既設の橋脚の耐震補強構造であって、一端が前記梁部に連結され、他端が前記柱部に連結された制振補強部材が配置され、当該制振補強部材は、前記一端側から前記他端側の少なくとも一部に履歴減衰特性を有する塑性変形部が設けられているようにしてもよい。
The seismic reinforcement structure for an existing pier according to one aspect of the present invention includes a vibration suppression reinforcement member having one end connected to the beam portion and the other end connected to the column portion. A plastic deformation portion having a hysteresis damping characteristic may be provided from at least one end to the other end.
The seismic reinforcement structure for an existing pier according to one aspect of the present invention is such that a pillar portion is erected from a footing embedded in the ground, and a beam portion is formed on the upper end of the pillar portion to place an upper work. A seismic reinforcement structure for an existing bridge pier, wherein a vibration suppression reinforcement member having one end connected to the beam portion and the other end connected to the column portion is disposed, and the vibration suppression reinforcement member is formed from the one end side. You may make it the plastic deformation part which has a hysteresis damping characteristic provided in at least one part of the other end side.

また、本発明の一態様に係る既設橋脚の耐震補強構造は、地中に埋設されたフーチングから柱部が立設し、前記柱部の上端に上部工を載置する梁部が形成された既設の橋脚の耐震補強構造であって、前記フーチングの上部に、地表に突出するフーチング台座が一体に形成されており、一端が前記梁部に連結され、他端が前記フーチング台座に連結された制振補強部材が配置され、当該制振補強部材は、前記一端側から前記他端側の少なくとも一部に履歴減衰特性を有する塑性変形部が設けられているようにしてもよい。   The seismic reinforcement structure for an existing pier according to one aspect of the present invention is such that a pillar portion is erected from a footing embedded in the ground, and a beam portion is formed on the upper end of the pillar portion to place an upper work. A seismic reinforcement structure for an existing bridge pier, wherein a footing pedestal projecting to the ground surface is integrally formed at the upper part of the footing, one end is connected to the beam portion, and the other end is connected to the footing pedestal. A vibration damping reinforcement member may be disposed, and the vibration damping reinforcement member may be provided with a plastic deformation portion having a hysteresis damping characteristic at least at a part from the one end side to the other end side.

また、本発明の一態様に係る既設橋脚の耐震補強構造は、護岸と、この護岸に沿って形成した歩道と、を有する河川構造物において、前記歩道から前記橋脚の前記柱部が立設しているようにしてもよい。
また、本発明の一態様に係る既設橋脚の耐震補強構造は、前記制振補強部材が、高剛性の軸力伝達部と、前記軸力伝達部と同軸に固定された履歴減衰特性を有する前記塑性変形部と、を備えていることが好ましい。
The seismic reinforcement structure for an existing pier according to one aspect of the present invention is a river structure having a revetment and a sidewalk formed along the revetment, wherein the column portion of the pier is erected from the sidewalk. You may be allowed to.
Further, in the seismic reinforcement structure for an existing pier according to one aspect of the present invention, the vibration-damping reinforcement member has a highly rigid axial force transmission portion and a hysteresis damping characteristic fixed coaxially with the axial force transmission portion. And a plastically deformed portion.

また、本発明の一態様に係る既設橋脚の耐震補強構造は、前記制振補強部材が、履歴減衰特性を有する平板形状、横断面H形、横断面U形、横断面T形、横断面円形、横断面十字形、横断面L字形、横断面S字形、横断面中空円形及び中実棒の何れか一つの形状の塑性変形部と、この塑性変形部を内挿して当該塑性変形部の座屈変形を防止する横断面角形、又は横断面円形の補剛管と、を備えていることが好ましい。   Further, in the seismic reinforcement structure for an existing pier according to one aspect of the present invention, the vibration-damping reinforcement member has a flat plate shape having a hysteresis damping characteristic, a transverse section H shape, a transverse section U shape, a transverse section T shape, and a transverse section circle. , A cross-shaped cross-section, a cross-section L-shape, a cross-section S-shape, a cross-section hollow circle and a solid rod, and a plastic deformed portion that is inserted into the plastic deformed portion. It is preferable to provide a stiffening tube having a square cross section or a circular cross section that prevents bending deformation.

また、本発明の一態様に係る既設橋脚の耐震補強構造は、前記塑性変形部を内挿した前記補剛管の内部に前記塑性変形部を拘束する充填材が充填されていることが好ましい。
また、本発明の一態様に係る既設橋脚の耐震補強構造は、前記塑性変形部が、普通鋼又は低降伏点鋼であることが好ましい。
また、本発明の一態様に係る既設橋脚の耐震補強構造は、前記梁部に載置されている上部工に、地震時における前記上部工の揺れを抑制する制振手段を設けてもよい。
In the seismic reinforcement structure for an existing pier according to one aspect of the present invention, it is preferable that a filler for constraining the plastic deformation portion is filled in the stiffening tube in which the plastic deformation portion is inserted.
In the seismic reinforcing structure for an existing pier according to one aspect of the present invention, the plastic deformation portion is preferably made of ordinary steel or low yield point steel.
Moreover, the seismic reinforcement structure of the existing bridge pier which concerns on 1 aspect of this invention may provide the vibration suppression means which suppresses the shaking of the said superstructure at the time of an earthquake in the superstructure currently mounted in the said beam part.

一方、本発明の一態様に係る新設の橋脚構造は、地中に埋設されたフーチングから柱部が立設し、前記柱部の上端に上部工を載置する梁部が形成された新設の橋脚構造であって、一端が前記梁部に連結され、他端が前記フーチングに連結された制振補強部材が配置され、当該制振補強部材は、前記一端側から前記他端側の少なくとも一部に履歴減衰特性を有する塑性変形部が設けられている。   On the other hand, the new pier structure according to one aspect of the present invention is a new pier structure in which a column portion is erected from a footing embedded in the ground, and a beam portion on which an upper work is placed is formed at the upper end of the column portion. A vibration-damping reinforcement member having one end connected to the beam portion and the other end connected to the footing is disposed, and the vibration-damping reinforcement member is at least one of the one end side to the other end side. A plastic deformation portion having a hysteresis damping characteristic is provided in the portion.

また、本発明の一態様に係る新設の橋脚構造は、一端が前記梁部に連結され、他端が前記柱部に連結された制振補強部材が配置され、当該制振補強部材は、前記一端側から前記他端側の少なくとも一部に履歴減衰特性を有する塑性変形部が設けられているようにしてもよい。
また、本発明の一態様に係る新設の橋脚構造は、地中に埋設されたフーチングから柱部が立設し、前記柱部の上端に上部工を載置する梁部が形成された新設の橋脚構造であって、一端が前記梁部に連結され、他端が前記柱部に連結された制振補強部材が配置され、当該制振補強部材は、前記一端側から前記他端側の少なくとも一部に履歴減衰特性を有する塑性変形部が設けられているようにしてもよい。
Further, in the new pier structure according to one aspect of the present invention, a vibration damping reinforcement member having one end connected to the beam portion and the other end connected to the column portion is disposed. A plastic deformation part having a hysteresis damping characteristic may be provided from at least one end side to at least a part of the other end side.
The new pier structure according to one aspect of the present invention is a new pier structure in which a pillar portion is erected from a footing embedded in the ground, and a beam portion on which an upper work is placed is formed at the upper end of the pillar portion. A vibration-damping reinforcement member having one end connected to the beam portion and the other end connected to the pillar portion is disposed at least from the one end side to the other end side. A plastic deformation part having a hysteresis damping characteristic may be provided in part.

また、本発明の一態様に係る新設の橋脚構造は、地中に埋設されたフーチングから柱部が立設し、前記柱部の上端に上部工を載置する梁部が形成された新設の橋脚構造であって、前記フーチングの上部に、地表に突出するフーチング台座が一体に形成されており、一端が前記梁部に連結され、他端が前記フーチング台座に連結された制振補強部材が配置され、当該制振補強部材は、前記一端側から前記他端側の少なくとも一部に履歴減衰特性を有する塑性変形部が設けられているようにしてもよい。   The new pier structure according to one aspect of the present invention is a new pier structure in which a pillar portion is erected from a footing embedded in the ground, and a beam portion on which an upper work is placed is formed at the upper end of the pillar portion. A pier structure, wherein a footing pedestal projecting to the ground surface is integrally formed at the upper part of the footing, one end is connected to the beam portion, and the other end is connected to the footing pedestal. The vibration-damping reinforcement member may be arranged such that a plastic deformation portion having a hysteresis damping characteristic is provided in at least a part from the one end side to the other end side.

また、本発明の一態様に係る新設の橋脚構造は、護岸と、この護岸に沿って形成した歩道と、を有する河川構造物において、前記歩道から前記橋脚の前記柱部が立設しているようにしてもよい。
また、本発明の一態様に係る新設の橋脚構造は、前記制振補強部材が、高剛性の軸力伝達部と、前記軸力伝達部と同軸に固定された履歴減衰特性を有する前記塑性変形部と、を備えていることが好ましい。
Moreover, the new pier structure which concerns on 1 aspect of this invention is the river structure which has a revetment and the sidewalk formed along this revetment, and the said pillar part of the said pier stands upright from the said sidewalk. You may do it.
Further, the new pier structure according to one aspect of the present invention is characterized in that the vibration-damping reinforcement member has a high-rigidity axial force transmission portion and a hysteresis damping characteristic that is fixed coaxially with the axial force transmission portion. And a portion.

また、本発明の一態様に係る新設の橋脚構造は、前記制振補強部材が、履歴減衰特性を有する平板形状、横断面H形、横断面U形、横断面T形、横断面円形、横断面十字形、横断面L字形、横断面S字形、横断面中空円形及び中実棒の何れか一つの形状の塑性変形部と、この塑性変形部を内挿して当該塑性変形部の座屈変形を防止する横断面角形、又は横断面円形の補剛管と、を備えていることが好ましい。   Further, in the new pier structure according to one aspect of the present invention, the vibration-damping reinforcing member has a flat plate shape having a hysteresis damping characteristic, a H-shaped cross section, a U-shaped cross section, a T-shaped cross section, a circular cross-section, a cross-section. A plastic deformed portion having any one of a cross shape, an L-shaped cross section, an S-shaped cross section, a hollow circular shape and a solid rod, and a buckling deformation of the plastic deformed portion by interpolating the plastic deformed portion. It is preferable to provide a stiffening tube having a square cross section or a circular cross section that prevents the above.

また、本発明の一態様に係る新設の橋脚構造は、前記塑性変形部を内挿した前記補剛管の内部に前記塑性変形部を拘束する充填材が充填されていることが好ましい。
また、本発明の一態様に係る新設の橋脚構造は、前記塑性変形部が、普通鋼又は低降伏点鋼であることが好ましい。
また、本発明の一態様に係る新設の橋脚構造は、前記梁部に載置されている上部工に、地震時における前記上部工の揺れを抑制する制振手段を設けることが好ましい。
Further, in the newly installed pier structure according to one aspect of the present invention, it is preferable that a filler for restraining the plastic deformation portion is filled in the stiffening tube in which the plastic deformation portion is inserted.
In the newly installed pier structure according to one aspect of the present invention, it is preferable that the plastic deformation portion is ordinary steel or low yield point steel.
In the newly installed pier structure according to one aspect of the present invention, it is preferable that a vibration control unit that suppresses shaking of the superstructure during an earthquake is provided in the superstructure placed on the beam portion.

本発明に係る既設橋脚の耐震補強構造及び新設の橋脚構造によれば、フーチングの地中を広い面積で掘削せず、基礎杭の増設やフーチングの補強が不要となるので、工期の短縮、工事費の低減化を図ることができる。
また、制振補強部材は、地震時に大きな振幅で振動する梁部に連結されており、大地震が発生すると、制振補強部材の塑性変形部が軸方向の伸縮量を大きくして塑性変形することで履歴減衰特性を向上させることができるので、地震力の低減効果を大きくすることができる。
According to the seismic reinforcement structure of the existing pier and the newly installed pier structure according to the present invention, the footing is not excavated in a large area, and it is not necessary to add foundation piles or reinforce the footing. Costs can be reduced.
In addition, the vibration damping reinforcement member is connected to a beam portion that vibrates with a large amplitude at the time of an earthquake, and when a large earthquake occurs, the plastic deformation portion of the vibration damping reinforcement member plastically deforms by increasing the amount of axial expansion and contraction. As a result, the hysteresis attenuation characteristics can be improved, and the effect of reducing seismic force can be increased.

本発明に係る第1実施形態の橋脚の補強構造を示す側面図である。It is a side view which shows the reinforcement structure of the pier of 1st Embodiment which concerns on this invention. 第1実施形態の橋脚の補強構造の動作を示す図である。It is a figure which shows operation | movement of the reinforcement structure of the pier of 1st Embodiment. 第1実施形態の制振補強部材の履歴減衰特性を示す図である。It is a figure which shows the hysteresis damping characteristic of the vibration suppression reinforcement member of 1st Embodiment. 本発明に係る第2実施形態の橋脚の耐震補強構造を示す側面図である。It is a side view which shows the seismic reinforcement structure of the bridge pier of 2nd Embodiment which concerns on this invention. 本発明に係る第3実施形態の橋脚の耐震補強構造を示す側面図である。It is a side view which shows the earthquake-proof reinforcement structure of the bridge pier of 3rd Embodiment which concerns on this invention. 本発明に係る第4実施形態の橋脚の耐震補強構造を示す図であり、(a)が側面図。(b)が(a)のA−A線矢視図である。It is a figure which shows the earthquake-proof reinforcement structure of the bridge pier of 4th Embodiment which concerns on this invention, (a) is a side view. (B) is the AA arrow line view of (a). 第4実施形態の変形例を示す平面図である。It is a top view which shows the modification of 4th Embodiment. 本発明に係る第5実施形態の橋脚の耐震補強構造を示す側面図である。It is a side view which shows the earthquake-proof reinforcement structure of the bridge pier of 5th Embodiment which concerns on this invention. 本発明に係る第6実施形態の橋脚の耐震補強構造を示す側面図である。It is a side view which shows the earthquake-proof reinforcement structure of the bridge pier of 6th Embodiment which concerns on this invention. 本発明に係る第7実施形態の橋脚の耐震補強構造を示す側面図である。It is a side view which shows the earthquake-proof reinforcement structure of the bridge pier of 7th Embodiment which concerns on this invention. 本発明に係る第8実施形態の橋脚の耐震補強構造を示す側面図である。It is a side view which shows the earthquake-proof reinforcement structure of the bridge pier of 8th Embodiment which concerns on this invention. 本発明に係る第9実施形態の橋脚の耐震補強構造を示す側面図である。It is a side view which shows the earthquake-proof reinforcement structure of the bridge pier of 9th Embodiment which concerns on this invention. 本発明に係る第10実施形態の橋脚を示す側面図である。It is a side view which shows the pier of 10th Embodiment which concerns on this invention. 第10実施形態の歩道に掘削穴を形成する工程を示し(a)が側面図、(b)が(a)のB−B線矢視図である。The process of forming a digging hole in the sidewalk of 10th Embodiment is shown, (a) is a side view, (b) is a BB line arrow directional view of (a). 第10実施形態の橋脚の補強構造を示すものであり(a)が側面図、(b)が(a)のC−C線矢視図である。The reinforcement structure of the pier of 10th Embodiment is shown, (a) is a side view, (b) is the CC arrow directional view of (a). 本発明に係る第10実施形態の橋脚の耐震補強構造の変形例である。It is a modification of the seismic reinforcement structure of the bridge pier of 10th Embodiment which concerns on this invention. 本発明に係る第10実施形態の橋脚の耐震補強構造の他の変形例である。It is another modification of the seismic reinforcement structure of the bridge pier of 10th Embodiment which concerns on this invention. 本発明に係る制振補強部材の他の構造(第1実施形態)を使用した橋脚の耐震補強構造を示す側面図である。It is a side view which shows the earthquake-resistant reinforcement structure of the bridge pier which uses the other structure (1st Embodiment) of the vibration suppression reinforcement member which concerns on this invention. 本発明に係る制振補強部材の他の構造(第2実施形態)の要部を示す図である。It is a figure which shows the principal part of the other structure (2nd Embodiment) of the damping reinforcement member which concerns on this invention. 本発明に係る制振補強部材の他の構造(第3実施形態)の要部を示す図である。It is a figure which shows the principal part of the other structure (3rd Embodiment) of the damping control member which concerns on this invention. 本発明に係る制振補強部材の他の構造(第4〜第9実施形態)の要部を示す横断面図である。It is a cross-sectional view which shows the principal part of the other structure (4th-9th embodiment) of the damping reinforcement member which concerns on this invention. 本発明に係る制振補強部材の他の構造(第10〜第15実施形態)の要部を示す横断面図である。It is a cross-sectional view which shows the principal part of the other structure (10th-15th embodiment) of the damping reinforcement member which concerns on this invention. 本発明に係る制振補強部材の他の構造(第16〜第23実施形態)の要部を示す横断面図である。It is a cross-sectional view which shows the principal part of the other structure (16th-23rd embodiment) of the damping reinforcement member which concerns on this invention.

以下、本発明を実施するための形態(以下、実施形態という。)を、図面を参照しながら詳細に説明する。
[第1実施形態]
図1〜図3は、本発明に係る梁部とフーチングとの間に制振補強部材を配置した第1実施形態の既設橋脚の耐震補強構造を示すものである。
図1に示すように、本実施形態の橋脚(既設の橋脚)1(は、地中2に埋設されたフーチング3から円柱形状の柱部4が立設し、柱部4の上端に上部工5を載置した梁部6が形成されている。また、地中2には、複数の基礎杭7a〜7dが所定深さまで打ち込まれており、これら複数の基礎杭7a〜7dの上端にフーチング3が一体形成されている。
DESCRIPTION OF EMBODIMENTS Hereinafter, modes for carrying out the present invention (hereinafter referred to as embodiments) will be described in detail with reference to the drawings.
[First Embodiment]
1 to 3 show a seismic reinforcement structure for an existing pier of a first embodiment in which a vibration damping reinforcement member is disposed between a beam portion and a footing according to the present invention.
As shown in FIG. 1, the pier (existing pier) 1 (this embodiment has a columnar column 4 erected from a footing 3 embedded in the underground 2, and an upper work is formed at the upper end of the column 4. 5 is formed, and a plurality of foundation piles 7a to 7d are driven into the underground 2 to a predetermined depth, and footings are formed on the upper ends of the plurality of foundation piles 7a to 7d. 3 is integrally formed.

そして、柱部4の外周に沿って2本の制振補強部材8が配置されている。制振補強部材8は、履歴減衰特性(塑性変形に伴うエネルギー減衰特性)を有する普通鋼又は低降伏点鋼の鋼管からなる塑性変形部8aと、この塑性変形部8aの一端に形成した一端側連結部8bと、塑性変形部8aの他端に形成した他端側連結部8cと、を備えている。
これら2本の制振補強部材8は、一端側連結部8bが梁部6の下面の柱部4に近接する内周側でピン接合され、塑性変形部8aが鉛直方向に延在し、他端側連結部8cがフーチング3の上面の柱部4に近接する内周側でピン接合されており、地震時に梁部6が振動した際に、塑性変形部8aに軸力が伝達されるようになっている。
Two vibration damping reinforcement members 8 are arranged along the outer periphery of the column portion 4. The vibration-damping reinforcement member 8 includes a plastic deformation portion 8a made of a steel pipe of ordinary steel or low yield point steel having a hysteresis damping characteristic (energy attenuation characteristic accompanying plastic deformation), and one end side formed at one end of the plastic deformation portion 8a. The connecting part 8b and the other end side connecting part 8c formed at the other end of the plastic deformation part 8a are provided.
These two vibration-damping reinforcement members 8 have one end side connection portion 8b pin-joined on the inner peripheral side close to the column portion 4 on the lower surface of the beam portion 6, and the plastic deformation portion 8a extends in the vertical direction. The end-side connecting portion 8c is pin-joined on the inner peripheral side close to the column portion 4 on the upper surface of the footing 3, so that when the beam portion 6 vibrates during an earthquake, an axial force is transmitted to the plastic deformation portion 8a. It has become.

次に、大地震が発生した際の本実施形態の耐震挙動について、図2及び図3を参照して説明する。
大地震の発生により、図2で示す図中左方向を向く地震水平力F1と、地震水平力F1に対して逆方向の地震水平力が橋脚1に作用すると、梁部6が大きな振幅で振動する。
梁部6の振動により軸力が伝達された制振補強部材8は、軸方向の伸縮を繰り返し発生することで、図3に示す履歴減衰特性を発揮する。
Next, the earthquake resistance behavior of the present embodiment when a large earthquake occurs will be described with reference to FIGS.
When an earthquake horizontal force F1 pointing to the left in the figure shown in FIG. 2 and an earthquake horizontal force in the opposite direction to the earthquake horizontal force F1 act on the pier 1 due to the occurrence of a large earthquake, the beam 6 vibrates with a large amplitude. To do.
The vibration damping reinforcement member 8 to which the axial force is transmitted by the vibration of the beam portion 6 exhibits the hysteresis damping characteristic shown in FIG. 3 by repeatedly generating expansion and contraction in the axial direction.

すなわち、図2において軸方向に伸長方向の軸力が作用する右側の制振補強部材8は、破線の直線K1に示すように弾性変形状態で伸びていった後、この制振補強部材8の降伏点と同一の軸力P1が作用した時点で塑性変形を開始する(図3の点A1)。そして、軸方向に引張り方向の軸力が作用している右側の制振補強部材8は、伸び量H1から伸び量H2に増大するまで塑性変形を行う(図3の点A2)。また、図2において軸方向に収縮方向の軸力が作用する左側の制振補強部材8は、弾性変形状態で破線の直線K2に沿って収縮されたのち、この制振補強部材8の降伏点と同一の軸力−P1が作用した時点で塑性変形を開始する(図3の点B1)。そして、軸方向に収縮方向の軸力が作用している左側の制振補強部材8は、縮み量H3から縮み量H4に増大するまで塑性変形を行う(図3の点B2)。   That is, the vibration damping reinforcement member 8 on the right side in which the axial force in the extending direction acts in the axial direction in FIG. 2 extends in an elastically deformed state as indicated by a broken line K1, and then Plastic deformation is started when the same axial force P1 as the yield point is applied (point A1 in FIG. 3). The right vibration damping reinforcement member 8 in which the axial force in the tensile direction acts in the axial direction undergoes plastic deformation until it increases from the elongation amount H1 to the elongation amount H2 (point A2 in FIG. 3). In addition, the left vibration damping reinforcement member 8 on which the axial force in the contraction direction acts in the axial direction in FIG. 2 is contracted along the broken straight line K2 in an elastically deformed state, and then the yield point of the vibration damping reinforcement member 8 When the same axial force -P1 is applied, plastic deformation is started (point B1 in FIG. 3). Then, the left vibration damping reinforcement member 8 on which the axial force in the contraction direction acts in the axial direction undergoes plastic deformation until it increases from the contraction amount H3 to the contraction amount H4 (point B2 in FIG. 3).

また、地震水平力F1に対して逆方向の地震水平力が橋脚1に作用すると(不図示)、図2の右側の制振補強部材8には軸方向に収縮方向の軸力が作用するので、図3の点A2から点A3まで収縮方向の塑性変形を行う。また、地震水平力F1に対して逆方向の地震水平力が橋脚1に作用すると、図2の左側の制振補強部材8には軸方向に伸長方向の軸力が作用するので、図3の点B2から点B3まで伸長方向の塑性変形を行う。
このように、大地震の発生で大きな地震水平力が橋脚1に作用すると、梁部6の振動により軸力が伝達された2本の制振補強部材8が軸方向の伸縮を繰り返し発生することで、図3に示すような履歴減衰特性を発揮し、地震力に対して大きなエネルギー減衰効果が得られる。
Further, when an earthquake horizontal force in the opposite direction to the earthquake horizontal force F1 acts on the pier 1 (not shown), an axial force in the contraction direction acts on the vibration damping reinforcement member 8 on the right side in FIG. 2 in the axial direction. Then, plastic deformation in the contraction direction is performed from point A2 to point A3 in FIG. Further, when an earthquake horizontal force in the opposite direction to the earthquake horizontal force F1 acts on the pier 1, an axial force in the extending direction acts on the vibration damping reinforcement member 8 on the left side of FIG. 2 in the axial direction. Plastic deformation in the extending direction is performed from point B2 to point B3.
As described above, when a large earthquake horizontal force acts on the pier 1 due to the occurrence of a large earthquake, the two damping reinforcement members 8 to which the axial force is transmitted by the vibration of the beam portion 6 repeatedly generate expansion and contraction in the axial direction. Thus, the hysteresis attenuation characteristic as shown in FIG. 3 is exhibited, and a large energy attenuation effect is obtained with respect to the seismic force.

ところで、地中2に埋設されている複数の基礎杭7a〜7dは、橋脚1の鉛直荷重Nを支持し、大地震が発生する場合には、地震荷重も分担して支持する。
図2に示す複数の基礎杭7a〜7dに示す白抜きの矢印は、基礎杭7a〜7dが支持する荷重(鉛直荷重及び地震荷重)の大きさを示しており、地震水平力F1が発生する方向の最前方に位置する基礎杭7aが、最も大きな荷重Gmaxを支持する。ここで、本実施形態の橋脚1は、制振補強部材8が軸方向の伸縮を繰り返すことで地震力に対するエネルギー減衰効果を発揮するので、基礎杭7a〜7dの地震荷重の支持が軽減され、荷重Gmaxが小さな値となる。
By the way, the some foundation pile 7a-7d embed | buried in the underground 2 supports the vertical load N of the bridge pier 1, and also shares and supports an earthquake load when a big earthquake occurs.
The white arrows shown in the plurality of foundation piles 7a to 7d shown in FIG. 2 indicate the magnitudes of the loads (vertical load and earthquake load) supported by the foundation piles 7a to 7d, and the horizontal earthquake force F1 is generated. The foundation pile 7a located in the forefront of the direction supports the largest load Gmax . Here, the bridge pier 1 of the present embodiment exerts an energy damping effect on the seismic force by repeating the expansion and contraction in the axial direction of the vibration damping reinforcement member 8, so that the support of the earthquake load of the foundation piles 7a to 7d is reduced, The load G max is a small value.

このように、本実施形態は、大地震時に制振補強部材8が軸方向の伸縮を繰り返して地震力に対するエネルギー減衰効果を発揮することで、地中2を掘削してフーチング3に増設杭を一体化する耐震補強工事を不要とすることができる。
したがって、本実施形態の橋脚1の耐震補強構造は、フーチング3周りの地中2を広い面積で掘削せず、基礎杭の増設やフーチング3の補強が不要となるので、工期の短縮、工事費の低減化を図ることができ、工事期間中の騒音、排水処理などの環境上の問題も解決することができる。
As described above, in the present embodiment, the damping reinforcement member 8 repeatedly expands and contracts in the axial direction in the event of a large earthquake and exhibits an energy attenuation effect against the seismic force, thereby excavating the underground 2 and attaching an additional pile to the footing 3. It is possible to eliminate the need for integrated seismic reinforcement work.
Therefore, the seismic reinforcement structure of the pier 1 according to this embodiment does not excavate the underground 2 around the footing 3 in a large area, and it is not necessary to add foundation piles or reinforce the footing 3. Can be reduced, and environmental problems such as noise and wastewater treatment during construction can be solved.

また、本実施形態の制振補強部材8の一端側連結部8bは、地震時に大きな振幅で振動する梁部6の下面にピン接合されており、大地震が発生すると、制振補強部材8の塑性変形部8aが軸方向の伸縮量を大きくして塑性変形することで、履歴減衰特性を向上させることができるので、地震力の低減効果を大きくした橋脚1の耐震補強構造を得ることができる。
また、本実施形態の制振補強部材8の塑性変形部8aは、普通鋼又は低降伏点鋼で構成されているので、制振補強部材8A,8Bの製作コストの低減化を図ることができる。
Moreover, the one end side connection part 8b of the vibration suppression reinforcement member 8 of this embodiment is pin-joined to the lower surface of the beam part 6 which vibrates with a large amplitude at the time of an earthquake, and when a large earthquake occurs, the vibration suppression reinforcement member 8 Since the plastic deformation portion 8a is plastically deformed by increasing the amount of expansion and contraction in the axial direction, it is possible to improve the hysteresis damping characteristics, and thus it is possible to obtain the seismic reinforcement structure of the pier 1 with a large effect of reducing the seismic force. .
In addition, since the plastic deformation portion 8a of the vibration damping reinforcement member 8 of the present embodiment is made of ordinary steel or low yield point steel, the manufacturing cost of the vibration damping reinforcement members 8A and 8B can be reduced. .

[第2実施形態]
次に、図4は、本発明に係る橋脚の梁部とフーチングとの間に制振補強部材を配置した第2実施形態の橋脚の耐震補強構造を示すものである。なお、上述した第1実施形態と同一構成部分には、同一符号を付してその説明を省略する。
図1に示すように、本実施形態の橋脚1は、梁部6とフーチング3との間に、2本の制振補強部材10が配置されている。
[Second Embodiment]
Next, FIG. 4 shows a seismic reinforcement structure for a bridge pier according to a second embodiment in which a vibration damping reinforcement member is disposed between the beam portion of the pier and the footing according to the present invention. In addition, the same code | symbol is attached | subjected to the component same as 1st Embodiment mentioned above, and the description is abbreviate | omitted.
As shown in FIG. 1, in the pier 1 of the present embodiment, two vibration damping reinforcement members 10 are arranged between the beam portion 6 and the footing 3.

制振補強部材10は、履歴減衰特性を有する普通鋼又は低降伏点鋼の鋼管からなる塑性変形部10aと、この塑性変形部10aの一端に形成した一端側連結部10bと、塑性変形部10aの他端に形成した他端側連結部10cとを備えている。本実施形態の制振補強部材10の塑性変形部10aは、第1実施形態の制振補強部材8の塑性変形部8aより長尺な部材である。
2本の制振補強部材10は、一端側連結部10bが梁部6の下面の柱部4に離間する外周側でピン接合され、塑性変形部10aが柱部4の軸線Pに交差して斜め上下方向に延在し、他端側連結部10cがフーチング3の上面の柱部4に離間する外周側でピン接合されている。
The vibration-damping reinforcement member 10 includes a plastic deformation portion 10a made of a steel pipe of ordinary steel or low yield point steel having hysteresis damping characteristics, one end side connecting portion 10b formed at one end of the plastic deformation portion 10a, and a plastic deformation portion 10a. The other end side connection part 10c formed in the other end of this is provided. The plastic deformation portion 10a of the vibration damping reinforcement member 10 of the present embodiment is a member that is longer than the plastic deformation portion 8a of the vibration suppression reinforcement member 8 of the first embodiment.
The two vibration damping reinforcement members 10 are pin-bonded at the outer peripheral side where the one end side connecting portion 10b is separated from the column portion 4 on the lower surface of the beam portion 6, and the plastic deformation portion 10a intersects the axis P of the column portion 4. The other end side connecting portion 10 c extends obliquely in the up-down direction, and is pin-bonded on the outer peripheral side away from the column portion 4 on the upper surface of the footing 3.

本実施形態によると、2本の制振補強部材10の塑性変形部10aが柱部4の軸線Pに交差して斜め上下方向に延在していることから、大地震が発生すると、本実施形態の塑性変形部10aは、第1実施形態の制振補強部材8Aの塑性変形部8aと比較して軸方向の伸縮量を大きくして塑性変形する。このため、第1実施形態の制振補強部材8よりさらに履歴減衰特性を向上させることができ、地震力の低減効果を大きくした橋脚1の耐震補強構造を得ることができる。
なお、本実施形態の2本の制振補強部材10は、他端側連結部10cがフーチング3の上面の柱部4に離間する外周側でピン接合されているが、他端側連結部10cが柱部4の軸線に一致したフーチング3の上面でピン接合するように配置すると、塑性変形部10aが伸縮量を大きくして塑性変形し、履歴減衰特性を向上させることができる。
According to this embodiment, since the plastic deformation portion 10a of the two vibration damping reinforcement members 10 intersects the axis P of the column portion 4 and extends obliquely in the vertical direction, this implementation is performed when a large earthquake occurs. The plastic deformation portion 10a of the form is plastically deformed by increasing the amount of expansion and contraction in the axial direction as compared with the plastic deformation portion 8a of the vibration damping reinforcement member 8A of the first embodiment. For this reason, the hysteresis damping characteristic can be further improved as compared with the vibration-damping reinforcement member 8 of the first embodiment, and the seismic reinforcement structure of the pier 1 that can increase the effect of reducing the seismic force can be obtained.
Note that the two vibration damping reinforcing members 10 of the present embodiment are pin-joined on the outer peripheral side where the other end side connecting portion 10c is separated from the column portion 4 on the upper surface of the footing 3, but the other end side connecting portion 10c. If it arrange | positions so that it may pin-join on the upper surface of the footing 3 in alignment with the axis line of the pillar part 4, the plastic deformation part 10a enlarges an expansion-contraction amount, and plastically deforms, and it can improve a hysteresis damping characteristic.

[第3実施形態]
次に、図5は、本発明に係る橋脚の梁部とフーチングとの間に制振補強部材を配置した第3実施形態の橋脚の耐震補強構造を示すものである。
本実施形態の橋脚1は、フーチング3の上面の外周側に一体化されて上方に延在し、上部が地表に突出した鉄筋コンクリート製の2つのフーチング台座11A,11Bと、梁部6とフーチング台座11A,11Bとの間に、2本の制振補強部材12が配置されている。
[Third Embodiment]
Next, FIG. 5 shows a seismic reinforcement structure for a bridge pier according to a third embodiment in which a vibration damping reinforcement member is disposed between the beam portion of the pier and the footing according to the present invention.
The bridge pier 1 of this embodiment is integrated with the outer peripheral side of the upper surface of the footing 3 and extends upward, and the two footing bases 11A and 11B made of reinforced concrete with the upper part protruding to the ground surface, the beam part 6 and the footing base Two damping reinforcement members 12 are arranged between 11A and 11B.

制振補強部材12は、履歴減衰特性を有する普通鋼又は低降伏点鋼の鋼管からなる塑性変形部12aと、この塑性変形部12aの一端に形成した一端側連結部12bと、塑性変形部12aの他端に形成した他端側連結部12cとを備えている。
制振補強部材12は、一端側連結部12bが梁部6の下面にピン接合され、塑性変形部12aが鉛直方向に延在し、他端側連結部12cがフーチング台座11A、或いはフーチング台座11Bにピン接合されている。
本実施形態によると、第1実施形態と同様の効果を奏することができるとともに、制振補強部材12Aの塑性変形部12aが地表の上方(フーチング台座11A,11Bの上部)に配置されていることから、地震時に橋脚1の耐震を行った後、地中2を掘削せずに塑性変形した塑性変形部12aの交換作業を容易に行うことができる。
The vibration-damping reinforcement member 12 includes a plastic deformation portion 12a made of a steel pipe of ordinary steel or low yield point steel having hysteresis damping characteristics, one end side connecting portion 12b formed at one end of the plastic deformation portion 12a, and a plastic deformation portion 12a. The other end side connection part 12c formed in the other end of this is provided.
In the vibration damping reinforcement member 12, one end side connecting portion 12b is pin-joined to the lower surface of the beam portion 6, the plastic deformation portion 12a extends in the vertical direction, and the other end side connecting portion 12c is the footing base 11A or the footing base 11B. It is pin-joined.
According to this embodiment, the same effects as those of the first embodiment can be obtained, and the plastic deformation portion 12a of the vibration damping reinforcement member 12A is disposed above the ground surface (upper part of the footing bases 11A and 11B). Thus, after the pier 1 is quake-resistant during the earthquake, it is possible to easily replace the plastic deformed portion 12a that has been plastically deformed without excavating the underground 2.

[第4実施形態]
次に、図6(a)、(b)は、本発明に係る橋脚の梁部とフーチングとの間に制振補強部材を配置した第4実施形態の橋脚の耐震補強構造を示すものである。
本実施形態の橋脚1は、図6(b)で示すように、平面視長方形状の梁部6の短尺方向の両側から一対の制振連結部13a,13bが突出して形成されている。
また、柱部4の外周を4分割した位置に4本の制振補強部材8が配置されている。制振補強部材8は、第1実施形態と同様に、塑性変形部8aと、一端側連結部8bと、他端側連結部8cとを備えた部材である。
[Fourth Embodiment]
Next, FIGS. 6 (a) and 6 (b) show a seismic reinforcement structure for a bridge pier according to a fourth embodiment in which a vibration damping reinforcement member is disposed between the beam portion of the pier and the footing according to the present invention. .
As shown in FIG. 6 (b), the bridge pier 1 of the present embodiment is formed with a pair of vibration damping connection portions 13 a and 13 b protruding from both sides in the short direction of the beam portion 6 having a rectangular shape in plan view.
In addition, four damping reinforcement members 8 are arranged at positions obtained by dividing the outer periphery of the column part 4 into four parts. As in the first embodiment, the vibration damping reinforcing member 8 is a member including a plastic deformation portion 8a, one end side connection portion 8b, and the other end side connection portion 8c.

2本の制振補強部材8は、一端側連結部8bが梁部6の下面の柱部4に近接する内周側でピン接合され、塑性変形部8aが鉛直方向に延在し、他端側連結部8cがフーチング3の上面の柱部4に近接する内周側でピン接合されている。
残りの2本の制振補強部材8は、一端側連結部8bが一対の制振連結部13a,13bにピン接合され、塑性変形部8aが鉛直方向に延在し、他端側連結部8cがフーチング3の上面の柱部4に近接する内周側でピン接合されている。
The two vibration damping reinforcement members 8 are pin-bonded at one end side connecting portion 8b on the inner peripheral side close to the column portion 4 on the lower surface of the beam portion 6, the plastic deformation portion 8a extends in the vertical direction, and the other end The side connecting portion 8 c is pin-joined on the inner peripheral side close to the column portion 4 on the upper surface of the footing 3.
In the remaining two vibration damping reinforcing members 8, one end side connecting portion 8b is pin-joined to the pair of vibration damping connecting portions 13a and 13b, the plastic deformation portion 8a extends in the vertical direction, and the other end side connecting portion 8c. Are pin-joined on the inner peripheral side close to the column part 4 on the upper surface of the footing 3.

本実施形態によると、柱部4の外周を4分割した位置に4本の制振補強部材8が、梁部6とフーチング3とに連結して配置されており、橋脚1に対して全ての方向から地震水平力が作用しても、4本の制振補強部材8の何れかが軸方向の伸縮を繰り返して地震力に対するエネルギー減衰効果を発揮するので、さらに地震力の低減効果を大きくした橋脚1の耐震補強構造を得ることができる。   According to the present embodiment, four vibration-damping reinforcement members 8 are connected to the beam portion 6 and the footing 3 at positions where the outer periphery of the pillar portion 4 is divided into four parts, Even if a seismic horizontal force acts from the direction, any of the four damping reinforcement members 8 repeatedly expands and contracts in the axial direction to exert an energy attenuation effect on the seismic force, further increasing the effect of reducing the seismic force A seismic reinforcement structure for the pier 1 can be obtained.

なお、図6(a)、(b)では、梁部6の長尺方向及び短尺方向に4分割した位置に、4本の制振補強部材8を配置した構造としたが、本発明の要旨がこれに限定されるものではなく、円柱形状の柱部4の中心に対して3以上に分割した位置に配置した構造であってもよい。なお、3以上に配置する位置を不均等配置しても、地震力の低減効果を大きくすることができる。
また、図7に示すように、円柱形状の柱部4に代えて断面矩形状の柱部14とし、梁部6の短尺方向の両側から一対の制振連結部15a,15bを突出して形成し、断面矩形状の柱部14の周囲に制振補強部材8と同一構造の複数の制振補強部材8を配置した構造としてもよい。
6 (a) and 6 (b), the four vibration damping reinforcing members 8 are arranged at positions divided into four in the long direction and the short direction of the beam portion 6, but the gist of the present invention is shown. However, the structure is not limited to this, and may be a structure arranged at a position divided into three or more with respect to the center of the columnar column part 4. Note that the effect of reducing seismic force can be increased even if three or more positions are arranged unevenly.
Further, as shown in FIG. 7, instead of the columnar column portion 4, a column portion 14 having a rectangular cross section is formed, and a pair of vibration damping connection portions 15 a and 15 b are formed to protrude from both sides in the short direction of the beam portion 6. Further, a structure may be adopted in which a plurality of vibration damping reinforcement members 8 having the same structure as that of the vibration damping reinforcement member 8 are arranged around the column portion 14 having a rectangular cross section.

[第5実施形態]
次に、図8は、本発明に係る橋脚の梁部とフーチングとの間に制振補強部材を配置した第5実施形態の橋脚の耐震補強構造を示すものである。
本実施形態の橋脚1は、梁部6の短尺方向の両側から一対の制振連結部17(図8では一方のみを記載)が突出して形成されている。
また、フーチング3の上面の内周側の4分割した位置に、上部が地表に突出した鉄筋コンクリート製の4個のフーチング台座18(図8では3個のフーチング台座18を記載)が配置されている。
[Fifth Embodiment]
Next, FIG. 8 shows a seismic reinforcement structure for a bridge pier according to a fifth embodiment in which a vibration-damping reinforcement member is disposed between the beam portion of the pier and the footing according to the present invention.
The bridge pier 1 of the present embodiment is formed with a pair of vibration damping connection portions 17 (only one of which is shown in FIG. 8) protruding from both sides of the beam portion 6 in the short direction.
Further, four reinforced concrete footings 18 (three footing pedestals 18 are shown in FIG. 8) are arranged at four positions on the inner peripheral side of the upper surface of the footing 3 and the upper part protrudes from the ground surface. .

そして、梁部6及び一対の制振連結部17と4個のフーチング台座18との間に、4の制振補強部材19(図8では3本の制振補強部材19を記載)が配置されている。
4本の制振補強部材19は、履歴減衰特性を有する普通鋼又は低降伏点鋼の鋼管からなる塑性変形部19aと、この塑性変形部19aの一端に形成した一端側連結部19bと、塑性変形部19aの他端に形成した他端側連結部19cと、を備えている。
Between the beam portion 6 and the pair of vibration damping connection portions 17 and the four footing bases 18, four vibration damping reinforcement members 19 (three vibration damping reinforcement members 19 are shown in FIG. 8) are arranged. ing.
The four vibration-damping reinforcement members 19 include a plastic deformation portion 19a made of a steel pipe of ordinary steel or low yield point steel having hysteresis damping characteristics, one end side connection portion 19b formed at one end of the plastic deformation portion 19a, The other end side connection part 19c formed in the other end of the deformation | transformation part 19a is provided.

そして、2本の制振補強部材19の一端側連結部19bが梁部6の下面にピン接合され、塑性変形部19aが鉛直方向に延在し、他端側連結部19cがフーチング台座18にピン接合されている。また、残りの2本の制振補強部材19の一端側連結部19bが一対の制振連結部17にピン接合され、塑性変形部19aが鉛直方向に延在し、他端側連結部19cがフーチング台座18にピン接合されている。   Then, one end side connection portion 19b of the two vibration damping reinforcement members 19 is pin-bonded to the lower surface of the beam portion 6, the plastic deformation portion 19a extends in the vertical direction, and the other end side connection portion 19c is connected to the footing pedestal 18. Pin-joined. Further, the one end side connecting portion 19b of the remaining two vibration damping reinforcement members 19 is pin-joined to the pair of vibration damping connecting portions 17, the plastic deformation portion 19a extends in the vertical direction, and the other end side connecting portion 19c is Pin-bonded to the footing base 18.

本実施形態によると、柱部4の外周を4分割した位置に4本の制振補強部材19が、梁部6及び一対の制振連結部17とフーチング3とに連結して配置されており、橋脚1に対して全ての方向から地震水平力が作用しても、4本の制振補強部材19の何れかが軸方向の伸縮を繰り返して地震力に対するエネルギー減衰効果を発揮するので、さらに地震力の低減効果を大きくした橋脚1の耐震補強構造を得ることができる。
また、4本の制振補強部材19の塑性変形部19aが地表の上方(フーチング台座18の上部)に配置されていることから、地震時に橋脚1の耐震を行った後、地中2を掘削せずに塑性変形した塑性変形部19aの交換作業を容易に行うことができる。
According to the present embodiment, the four vibration damping reinforcement members 19 are connected to the beam portion 6, the pair of vibration damping connection portions 17, and the footing 3 at positions where the outer periphery of the column portion 4 is divided into four. Even if an earthquake horizontal force acts on the pier 1 from all directions, any one of the four vibration damping reinforcement members 19 repeatedly expands and contracts in the axial direction to exert an energy attenuation effect on the earthquake force. The seismic reinforcement structure of the bridge pier 1 with the increased effect of reducing the seismic force can be obtained.
Moreover, since the plastic deformation part 19a of the four damping control reinforcement members 19 is arrange | positioned above the ground surface (upper part of the footing base 18), after performing the earthquake resistance of the pier 1 at the time of an earthquake, it excavates underground 2 Therefore, it is possible to easily replace the plastic deformed portion 19a which has been plastically deformed.

[第6実施形態]
次に、図9は、本発明に係る橋脚の梁部とフーチングとの間に制振補強部材を配置した第6実施形態の橋脚の耐震補強構造を示すものである。
本実施形態の橋脚20は、地中2に埋設された2基のフーチング21と、これら2基のフーチング21から立設する円柱形状の柱部22と、柱部22の上端に形成され、上部工23を載置した梁部24とを備えた門形構造である。地中2には、2基のフーチング21にそれぞれ一体化された複数の基礎杭25が所定深さまで打ち込まれている。
[Sixth Embodiment]
Next, FIG. 9 shows a seismic reinforcement structure of a bridge pier according to a sixth embodiment in which a vibration damping reinforcement member is disposed between the beam portion of the pier and the footing according to the present invention.
The pier 20 of the present embodiment is formed at two upperings 21 embedded in the underground 2, a columnar column 22 standing from these two footings 21, and an upper end of the column 22, It is a portal structure provided with a beam portion 24 on which a work 23 is placed. In the underground 2, a plurality of foundation piles 25 respectively integrated with the two footings 21 are driven to a predetermined depth.

そして、2本の柱部22の外周に沿ってそれぞれ2本の制振補強部材8が配置されている。制振補強部材8の構造は、図1で示した構成と同一である。
本実施形態の門形構造の橋脚20も、2基のフーチング21周りの地中2を広い面積で掘削せず、基礎杭の増設やフーチング3の補強が不要となるので、工期の短縮、工事費の低減化を図ることができ、工事期間中の騒音、排水処理などの環境上の問題も解決することができる。
Two damping reinforcement members 8 are arranged along the outer peripheries of the two column portions 22, respectively. The structure of the vibration damping reinforcement member 8 is the same as that shown in FIG.
The bridge-shaped bridge pier 20 of this embodiment also does not excavate the underground 2 around the two footings 21 in a large area, so that it is not necessary to add foundation piles or reinforce the footings 3. Costs can be reduced and environmental problems such as noise and wastewater treatment during construction can be solved.

また、本実施形態の門形構造の橋脚20は、大地震が発生すると、制振補強部材8の塑性変形部8aが軸方向の伸縮量を大きくして塑性変形することで、履歴減衰特性を向上させることができるので、地震力の低減効果を大きくした橋脚20の耐震補強構造を得ることができる。
なお、本実施形態は、2本の柱部22の外周に沿ってそれぞれ2本の制振補強部材8が鉛直方向に延在して配置されているが、他端側連結部8cが柱部22の軸線に一致したフーチング21の上面でピン接合し、塑性変形部8aを斜め上下方向に延在させて配置すると、塑性変形部8aが伸縮量を大きくして塑性変形し、履歴減衰特性を向上させることができる。
In addition, when a large earthquake occurs, the bridge pier 20 of the portal structure according to the present embodiment has a hysteresis damping characteristic because the plastic deformation portion 8a of the vibration damping reinforcement member 8 is plastically deformed by increasing the amount of expansion and contraction in the axial direction. Since it can improve, the seismic reinforcement structure of the pier 20 which made the reduction effect of a seismic force large can be obtained.
In the present embodiment, two vibration-damping reinforcement members 8 are arranged so as to extend in the vertical direction along the outer peripheries of the two column portions 22, but the other end side connection portion 8c is the column portion. When the plastic deformed portion 8a is disposed with the plastic deformation portion 8a extending obliquely in the vertical direction, the plastic deformable portion 8a is plastically deformed with a large amount of expansion and contraction. Can be improved.

[第7実施形態]
次に、図10は、本発明に係る橋脚の梁部と柱部との間に制振補強部材を配置した第7実施形態の橋脚の耐震補強構造を示すものである。なお、上述した第1実施形態と同一構成部分には、同一符号を付してその説明を省略する。
本実施形態の橋脚26は2本の制振補強部材8を備えており、これら2本の制振補強部材8A,8Bの一端側連結部8bが梁部6の下面の柱部4から離間する外周側でピン接合され、塑性変形部8aが斜め上下方向に延在し、他端側連結部8cが柱部4の下部にピン接合されており、地震時に梁部6が振動した際に、各制振補強部材8A,8Bに軸力が伝達されるようになっている。
[Seventh Embodiment]
Next, FIG. 10 shows a seismic reinforcement structure for a bridge pier according to a seventh embodiment in which a vibration damping reinforcement member is disposed between a beam portion and a column portion of the pier according to the present invention. In addition, the same code | symbol is attached | subjected to the component same as 1st Embodiment mentioned above, and the description is abbreviate | omitted.
The bridge pier 26 of the present embodiment includes two vibration damping reinforcement members 8, and one end side connection portions 8 b of these two vibration damping reinforcement members 8 </ b> A and 8 </ b> B are separated from the column portion 4 on the lower surface of the beam portion 6. When the outer peripheral side is pin-bonded, the plastic deformation portion 8a extends obliquely in the up-down direction, and the other end-side connection portion 8c is pin-bonded to the lower portion of the column portion 4, and when the beam portion 6 vibrates during an earthquake, An axial force is transmitted to each vibration damping reinforcement member 8A, 8B.

本実施形態によると、大地震の発生により地震水平力が橋脚26に作用すると、梁部6が大きな振幅で振動する。
一端側連結部8bが梁部6にピン接合され、他端側連結部8cが柱部4の下部にピン接合された2本の制振補強部材8A,8Bは、軸方向の伸縮を繰り返し発生することで、履歴減衰特性を発揮し、地震力に対して大きなエネルギー減衰効果が得られる。
According to this embodiment, when an earthquake horizontal force acts on the pier 26 due to the occurrence of a large earthquake, the beam portion 6 vibrates with a large amplitude.
The two vibration damping reinforcement members 8A and 8B in which the one end side connecting portion 8b is pin-joined to the beam portion 6 and the other end side connecting portion 8c is pin-joined to the lower portion of the column portion 4 repeatedly generate axial expansion and contraction. By doing so, the hysteresis attenuation characteristic is exhibited, and a large energy attenuation effect against the seismic force can be obtained.

そして、本実施形態の橋脚26は、制振補強部材8A,8Bが軸方向の伸縮を繰り返して地震力に対するエネルギー減衰効果を発揮するので、基礎杭7a〜7dの地震荷重の支持が軽減される。
したがって、本実施形態の橋脚26の耐震補強構造も、フーチング3周りの地中2を広い面積で掘削せず、基礎杭の増設やフーチング3の補強が不要となるので、工期の短縮、工事費の低減化を図ることができ、工事期間中の騒音、排水処理などの環境上の問題も解決することができる。
And since the damping reinforcement member 8A, 8B repeats an axial expansion-contraction and exhibits the energy attenuation effect with respect to a seismic force, the bridge pier 26 of this embodiment reduces the support of the earthquake load of the foundation piles 7a-7d. .
Therefore, the seismic reinforcement structure of the pier 26 of the present embodiment also does not excavate the underground 2 around the footing 3 in a large area, so that it is not necessary to add foundation piles or reinforce the footing 3. Can be reduced, and environmental problems such as noise and wastewater treatment during construction can be solved.

また、本実施形態の制振補強部材8A,8Bの一端側連結部8bは、地震時に大きな振幅で振動する梁部6の下面にピン接合されており、大地震が発生すると、制振補強部材8A,8Bの塑性変形部8aが軸方向の伸縮量を大きくして塑性変形することで、履歴減衰特性を向上させることができるので、地震力の低減効果を大きくした橋脚1の耐震補強構造を得ることができる。   Further, the one end side coupling portion 8b of the vibration damping reinforcement members 8A and 8B of the present embodiment is pin-joined to the lower surface of the beam portion 6 that vibrates with a large amplitude during an earthquake, and when a large earthquake occurs, the vibration damping reinforcement member Since the plastic deformation portion 8a of 8A and 8B is plastically deformed by increasing the amount of expansion and contraction in the axial direction, it is possible to improve the hysteresis damping characteristics. Can be obtained.

[第8実施形態]
次に、図11は、本発明に係る橋脚の梁部と柱部との間に制振補強部材を配置した第8実施形態の橋脚の耐震補強構造を示すものである。
本実施形態の橋脚26は、フーチング3の内周側上面に一体化されて柱部4の基部側の全周を覆い、上部が地表に突出している鉄筋コンクリート製の円柱形状の柱補強部27が形成されている。また、梁部6と柱補強部27との間に、2本の制振補強部材12が配置されている。制振補強部材12の構造は、図5で示した構成と同一である。
[Eighth Embodiment]
Next, FIG. 11 shows a seismic reinforcement structure for a bridge pier according to an eighth embodiment in which a vibration-damping reinforcement member is disposed between the beam portion and the column portion of the pier according to the present invention.
The bridge pier 26 of the present embodiment has a column-shaped column reinforcing portion 27 made of reinforced concrete that is integrated with the upper surface on the inner peripheral side of the footing 3 and covers the entire circumference on the base side of the column portion 4 and the upper portion protrudes from the ground surface. Is formed. In addition, two vibration damping reinforcement members 12 are arranged between the beam portion 6 and the column reinforcement portion 27. The structure of the vibration damping reinforcing member 12 is the same as that shown in FIG.

制振補強部材12は、一端側連結部12bが梁部6の下面の柱部4から離間する外周側でピン接合され、他端側連結部12cが柱補強部27の上部でピン接合されている。
本実施形態によると、上述した第7実施形態と同様の効果を奏することができるとともに、制振補強部材12の塑性変形部12aが地表(柱補強部27の上部)に配置されていることから、地震時に橋脚26の耐震を行った後、地中2を掘削せずに塑性変形した塑性変形部12aの交換作業を容易に行うことができる。
The vibration damping reinforcement member 12 has one end side connection portion 12b pin-bonded on the outer peripheral side spaced from the column portion 4 on the lower surface of the beam portion 6 and the other end side connection portion 12c pin-bonded on the upper portion of the column reinforcement portion 27. Yes.
According to the present embodiment, the same effects as those of the seventh embodiment described above can be achieved, and the plastic deformation portion 12a of the vibration damping reinforcement member 12 is disposed on the ground surface (upper part of the column reinforcement portion 27). After the earthquake resistance of the bridge pier 26 at the time of the earthquake, it is possible to easily replace the plastic deformation portion 12a that has been plastically deformed without excavating the underground 2.

[第9実施形態]
次に、図12は、本発明に係る橋脚の梁部及びフーチングの間と、梁部及び柱部の間とに制振補強部材を配置した第9実施形態の橋脚の耐震補強構造を示すものである。
本実施形態の橋脚29は、図9で示した第6実施形態と同様に、地中2に埋設された2基のフーチング21と、これら2基のフーチング21から立設する円柱形状の柱部22と、柱部22の上端に形成され、上部工23を載置した梁部24とを備えた門形構造であり、地中2には、2基のフーチング21にそれぞれ一体化された複数の基礎杭25が所定深さまで打ち込まれている。
[Ninth Embodiment]
Next, FIG. 12 shows a seismic reinforcement structure for a bridge pier according to a ninth embodiment in which vibration damping reinforcement members are arranged between the beam portion and footing of the pier according to the present invention and between the beam portion and the column portion. It is.
As in the sixth embodiment shown in FIG. 9, the bridge pier 29 of this embodiment includes two footings 21 embedded in the underground 2 and a columnar column portion standing from these two footings 21. 22 and a beam-shaped structure formed on the upper end of the pillar portion 22 and provided with a beam portion 24 on which the superstructure 23 is placed. In the underground 2, a plurality of pieces integrated with two footings 21 respectively. The foundation pile 25 is driven to a predetermined depth.

そして、本実施形態は、梁部24とフーチング21との間に2本の柱部22の外周に沿って複数の第1の制振補強部材30が配置され、梁部24と2本の柱部22との間に複数の第2の制振補強部材31が配置されている。
第1の制振補強部材30は、履歴減衰特性を有する普通鋼又は低降伏点鋼の鋼管からなる塑性変形部30aと、この塑性変形部30aの一端に形成した一端側連結部30bと、塑性変形部30aの他端に形成した他端側連結部30cと、を備えている。
In the present embodiment, a plurality of first vibration damping reinforcement members 30 are arranged between the beam portion 24 and the footing 21 along the outer periphery of the two column portions 22, and the beam portion 24 and the two columns are arranged. A plurality of second vibration damping reinforcing members 31 are arranged between the portion 22 and the second portion 22.
The first vibration damping reinforcement member 30 includes a plastic deformation portion 30a made of a steel pipe of ordinary steel or low yield point steel having hysteresis damping characteristics, one end side connection portion 30b formed at one end of the plastic deformation portion 30a, The other end side connection part 30c formed in the other end of the deformation | transformation part 30a is provided.

そして、第1の制振補強部材30は、一端側連結部30bが梁部24にピン接合され、塑性変形部30aが鉛直方向に延在し、他端側連結部8cがフーチング21の上面にピン接合されている。
また、第2の制振補強部材31は、履歴減衰特性を有する普通鋼又は低降伏点鋼の鋼管からなる塑性変形部31aと、この塑性変形部31aの一端に形成した一端側連結部31bと、塑性変形部31aの他端に形成した他端側連結部31cと、を備えている。
第2の制振補強部材31は、一端側連結部31bが梁部24の長手方向(図12の左右方向)の中央部に寄った位置にピン接合され、塑性変形部31aが斜め上下方向に延在し、他端側連結部31cが各柱部22にピン接合されている。
The first vibration damping reinforcement member 30 has one end side connecting portion 30b pin-connected to the beam portion 24, the plastic deformation portion 30a extending in the vertical direction, and the other end side connecting portion 8c on the upper surface of the footing 21. Pin-joined.
Further, the second vibration damping reinforcing member 31 includes a plastic deformation portion 31a made of a steel pipe of ordinary steel or low yield point steel having hysteresis damping characteristics, and one end side connection portion 31b formed at one end of the plastic deformation portion 31a. The other end side connection part 31c formed in the other end of the plastic deformation part 31a is provided.
The second vibration damping reinforcement member 31 is pin-joined at a position where the one end side connection portion 31b is close to the central portion in the longitudinal direction of the beam portion 24 (left and right direction in FIG. 12), and the plastic deformation portion 31a is obliquely up and down. The other end side connection portion 31 c is pin-bonded to each column portion 22.

本実施形態の門形構造の橋脚29の場合、大地震が発生すると、梁部24とフーチング21との間に配置した複数の第1の制振補強部材30の塑性変形部30aが軸方向の伸縮量を大きくして塑性変形すると同時に、梁部24と柱部22との間に配置した第2の制振補強部材31の塑性変形部31aが軸方向の伸縮量を大きくして塑性変形するので、履歴減衰特性をさらに向上させることができ、地震力の低減効果を大きくした橋脚29の耐震補強構造を得ることができる。   In the case of the bridge-shaped pier 29 of the present embodiment, when a large earthquake occurs, the plastic deformation portions 30a of the plurality of first vibration-damping reinforcement members 30 arranged between the beam portion 24 and the footing 21 are in the axial direction. The plastic deformation portion 31a of the second vibration damping reinforcement member 31 disposed between the beam portion 24 and the column portion 22 is plastically deformed by increasing the amount of expansion and contraction in the axial direction. Therefore, the hysteresis attenuation characteristics can be further improved, and the seismic reinforcement structure for the pier 29 can be obtained in which the effect of reducing the seismic force is increased.

[第10実施形態]
次に、図13から図15は、本発明に係る橋脚の梁部とフーチングとの間に制振補強部材を配置した第10実施形態の橋脚の耐震補強構造を示すものである。なお、図1の第1実施形態で示した構成と同一構成部分には同一符号を付してその説明を省略する。
図13は、耐震補強前の橋脚1を示すものであり、河川32の水際に沿って河川テラス33が形成され、河川テラス33に沿って護岸34が形成され、護岸34に沿って河川テラス33より高位置に歩道35が形成され、歩道35に沿って低位置に車道36が形成された河川構造物において、橋脚1の柱部4が歩道35から立設している。
本実施形態の橋脚1の耐震補強構造は、先ず、図14に示すように、柱部4の外周に沿う位置で歩道35を掘削し、フーチング3に達する複数の掘削穴37を形成する。
[Tenth embodiment]
Next, FIGS. 13 to 15 show a seismic reinforcement structure for a bridge pier according to a tenth embodiment in which a vibration damping reinforcement member is disposed between a beam portion of the pier and a footing according to the present invention. In addition, the same code | symbol is attached | subjected to the component same as the structure shown in 1st Embodiment of FIG. 1, and the description is abbreviate | omitted.
FIG. 13 shows the pier 1 before the seismic reinforcement. A river terrace 33 is formed along the river 32, a revetment 34 is formed along the river terrace 33, and the river terrace 33 is formed along the revetment 34. In a river structure in which a sidewalk 35 is formed at a higher position and a roadway 36 is formed at a lower position along the sidewalk 35, the pillar portion 4 of the pier 1 is erected from the sidewalk 35.
As shown in FIG. 14, the seismic reinforcement structure of the bridge pier 1 of the present embodiment first excavates the sidewalk 35 at a position along the outer periphery of the column part 4 to form a plurality of excavation holes 37 reaching the footing 3.

次に、図15に示すように、複数の掘削穴37内部に、フーチング3の上面に一体化された鉄筋コンクリート製のフーチング台座38を形成し、そのフーチング台座38の上部を歩道35より上方に突出させる。
また、複数の掘削穴37の上方位置となるように、梁部6の短尺方向の両側から複数の制振連結部39を突出して形成する。
そして、制振連結部39とフーチング台座38との間に、4本の制振補強部材12が配置されている。制振補強部材12の構造は、図5で示した構成と同一である。
Next, as shown in FIG. 15, a reinforced concrete footing pedestal 38 integrated with the upper surface of the footing 3 is formed inside the plurality of excavation holes 37, and the upper part of the footing pedestal 38 projects upward from the sidewalk 35. Let
Further, a plurality of vibration damping connection portions 39 are formed so as to protrude from both sides in the short direction of the beam portion 6 so as to be positioned above the plurality of excavation holes 37.
The four vibration damping reinforcement members 12 are disposed between the vibration damping coupling part 39 and the footing base 38. The structure of the vibration damping reinforcing member 12 is the same as that shown in FIG.

制振補強部材12は、一端側連結部12bが制振連結部39にピン接合され、他端側連結部12cがフーチング台座38の上部にピン接合されている。
本実施形態によると、大地震が発生すると、梁部6とフーチング3との間に配置した複数の制振補強部材12の塑性変形部12aが軸方向の伸縮量を大きくして塑性変形するので、履歴減衰特性を向上させることができ、地震力の低減効果を大きくした橋脚1の耐震補強構造を得ることができる。
In the vibration damping reinforcement member 12, one end side connection portion 12 b is pin-bonded to the vibration suppression connection portion 39, and the other end side connection portion 12 c is pin-bonded to the upper portion of the footing base 38.
According to the present embodiment, when a large earthquake occurs, the plastic deformation portions 12a of the plurality of vibration damping reinforcement members 12 arranged between the beam portion 6 and the footing 3 are plastically deformed by increasing the amount of expansion and contraction in the axial direction. In addition, it is possible to improve the hysteresis damping characteristics and to obtain the seismic reinforcement structure of the pier 1 in which the effect of reducing seismic force is increased.

また、本実施形態は、柱部4の周囲の歩道35を掘削してフーチング台座38を形成し、このフーチング台座38と梁部6に設けた制振連結部39との間に制振補強部材12を配置することで、河川構造物の歩道35を橋脚1の耐震補強構造で占有せず、さらに護岸34も占有することなく、橋脚1の耐震補強構造を確実に行うことができる。
さらに、制振補強部材12の塑性変形部12aが歩道35の上方(フーチング台座38の上部)に配置されていることから、地震時に橋脚26の耐震を行った後、歩道35を掘削せずに塑性変形した塑性変形部12aの交換作業を容易に行うことができる。
Further, in the present embodiment, a footing pedestal 38 is formed by excavating the sidewalk 35 around the pillar portion 4, and a vibration damping reinforcing member is provided between the footing pedestal 38 and the vibration damping connecting portion 39 provided on the beam portion 6. By arranging 12, the seismic reinforcement structure of the pier 1 can be reliably performed without occupying the sidewalk 35 of the river structure with the seismic reinforcement structure of the pier 1 and further occupying the revetment 34.
Further, since the plastic deformation portion 12a of the vibration damping reinforcement member 12 is disposed above the sidewalk 35 (upper part of the footing pedestal 38), after the pier 26 is quake-resistant during an earthquake, the sidewalk 35 is not excavated. The replacement operation of the plastically deformed plastic deformation portion 12a can be easily performed.

[第10実施形態の変形例]
次に、図16及び図17は、図13から図15で示した第10実施形態の変形例を示すものである。
図16の変形例は、梁部6に載置されている上部工5に制振ダンパー40が付設されている。この図16の構成によると、地震発生時に上部工5の揺動を制振ダンパー40が抑制し、梁部6が過剰に大きな振幅で振動するのが抑制されるので、大地震が発生しても柱部4の基部に作用する曲げモーメントを減衰させることができ、さらに橋脚1の耐震補強構造を確実に行うことができる。
[Modification of the tenth embodiment]
Next, FIG.16 and FIG.17 shows the modification of 10th Embodiment shown in FIGS. 13-15.
In the modification of FIG. 16, a damping damper 40 is attached to the upper work 5 placed on the beam portion 6. According to the configuration shown in FIG. 16, since the damping damper 40 suppresses the swing of the superstructure 5 when an earthquake occurs and the beam portion 6 is suppressed from vibrating with an excessively large amplitude, a large earthquake occurs. In addition, the bending moment acting on the base portion of the column portion 4 can be attenuated, and the seismic reinforcement structure of the pier 1 can be reliably performed.

また、図17の変形例は、梁部6に設けた制振連結部39と上部工5との間に、制振ダンパー41が配置されている。この図17の構成も、地震発生時に上部工5の揺動を制振ダンパー41が抑制し、梁部6が過剰に大きな振幅で振動するのが抑制されるので、大地震が発生しても柱部4の基部に作用する曲げモーメントを減衰させることができ、さらに橋脚1の耐震補強構造を確実に行うことができる。   In the modified example of FIG. 17, a damping damper 41 is disposed between the damping connection portion 39 provided on the beam portion 6 and the upper work 5. In the configuration of FIG. 17 as well, the vibration control damper 41 suppresses the swing of the superstructure 5 when an earthquake occurs, and the beam portion 6 is suppressed from vibrating with an excessively large amplitude. The bending moment acting on the base portion of the column portion 4 can be attenuated, and the seismic reinforcement structure of the pier 1 can be reliably performed.

[制振補強部材の構造]
次に、図18から図22に示すものは、前述の各実施形態で使用した制振補強部材8,10,12,19,30とは異なる構造の制振補強部材を示すものである。
図18に示す制振補強部材42は、高剛性の鋼管からなる軸力伝達部42aと、この軸力伝達部42aに同軸に固定された履歴減衰特性を有する普通鋼又は低降伏点鋼の鋼管からなる塑性変形部42bと、軸力伝達部42a側の端部に形成した一端側連結部42cと、塑性変形部42b側の端部に形成した他端側連結部42dと、を備えている。
[Structure of vibration damping reinforcement member]
Next, what is shown in FIG. 18 to FIG. 22 shows a vibration damping reinforcement member having a structure different from that of the vibration damping reinforcement members 8, 10, 12, 19, and 30 used in the above-described embodiments.
18 includes an axial force transmission portion 42a made of a highly rigid steel pipe, and a steel tube of plain steel or low yield point steel having hysteresis damping characteristics fixed coaxially to the axial force transmission portion 42a. The plastic deformation part 42b which consists of, the one end side connection part 42c formed in the edge part by the side of the axial force transmission part 42a, and the other end side connection part 42d formed in the edge part by the side of the plastic deformation part 42b are provided. .

そして、この制振補強部材42は、一端側連結部42cが梁部6の下面にピン接合され、軸力伝達部42a及び塑性変形部42bが鉛直方向に延在し、他端側連結部42dが、地表に突出したフーチング台座11A、或いはフーチング台座11Bの上面にピン接合されている。
本実施形態の制振補強部材42によると、軸力伝達部42a及び塑性変形部42bの軸方向の長さ比を変化させることで、橋脚1の耐震補強を行うために最適な履歴減衰特性を有する制振補強部材42を選択することができ、大地震が発生した際の地震力の低減効果を十分発揮することができる。
In this vibration damping reinforcing member 42, one end side connection portion 42c is pin-joined to the lower surface of the beam portion 6, the axial force transmission portion 42a and the plastic deformation portion 42b extend in the vertical direction, and the other end side connection portion 42d. Are pin-bonded to the upper surface of the footing pedestal 11A or the footing pedestal 11B protruding from the ground surface.
According to the vibration damping reinforcement member 42 of the present embodiment, an optimum hysteresis damping characteristic for performing earthquake-proof reinforcement of the pier 1 by changing the axial length ratio of the axial force transmission portion 42a and the plastic deformation portion 42b. The damping / reinforcing member 42 can be selected, and the effect of reducing the seismic force when a large earthquake occurs can be exhibited sufficiently.

また、図19に示す制振補強部材44は、履歴減衰特性を有する普通鋼又は低降伏点鋼の鋼管からなる塑性変形部44aと、塑性変形部44aが変形した場合に、塑性変形部44aの外周面に内周面が接触するように塑性変形部44aを内挿する円筒形状の補剛管44bと、塑性変形部44aの一方の端部に形成した一端側連結部(不図示)と、塑性変形部44aの他方の端部に形成した他端側連結部(不図示)と、を備えている。   Further, the vibration-damping reinforcement member 44 shown in FIG. 19 has a plastic deformation portion 44a made of a steel pipe of ordinary steel or low yield point steel having a hysteresis damping characteristic, and the plastic deformation portion 44a when the plastic deformation portion 44a is deformed. A cylindrical stiffening tube 44b for inserting the plastic deformation portion 44a so that the inner peripheral surface is in contact with the outer peripheral surface, one end side connection portion (not shown) formed at one end of the plastic deformation portion 44a, The other end side connection part (not shown) formed in the other edge part of the plastic deformation part 44a is provided.

この制振補強部材44は、例えば、図18に示す橋脚1では、一端側連結部が梁部6の下面にピン接合され、塑性変形部44a及び補剛管44bが鉛直方向に延在し、他端側連結部が地表に突出したフーチング台座11A、或いはフーチング台座11Bの上面にピン接合される。
本実施形態の制振補強部材44によると、地震時に梁部6が振動した際に、収縮方向の軸力が作用する塑性変形部44aが座屈変形を起こす場合がある。そのときに、塑性変形部44aの外周に配置されている補剛管44bが塑性変形部44aの座屈変形を防止し、地震時における塑性変形部44aの軸方向の伸縮変形を繰り返すことで履歴減衰特性を発揮し、大地震が発生した際の地震力の低減効果を十分発揮することができる。
For example, in the bridge pier 1 shown in FIG. 18, the vibration damping reinforcement member 44 has one end side connecting portion pin-connected to the lower surface of the beam portion 6, and the plastic deformation portion 44 a and the stiffening tube 44 b extend in the vertical direction. The other end side connecting portion is pin-bonded to the upper surface of the footing base 11A or the footing base 11B protruding from the ground surface.
According to the vibration damping reinforcement member 44 of the present embodiment, when the beam portion 6 vibrates during an earthquake, the plastic deformation portion 44a to which the axial force in the contraction direction acts may buckle. At that time, the stiffening tube 44b disposed on the outer periphery of the plastic deformation portion 44a prevents buckling deformation of the plastic deformation portion 44a and repeats the expansion and contraction deformation in the axial direction of the plastic deformation portion 44a during an earthquake. Demonstrates attenuation characteristics, and can fully demonstrate the effect of reducing seismic force when a large earthquake occurs.

また、図20に制振補強部材45は、履歴減衰特性を有する普通鋼又は低降伏点鋼の平板形状からなる塑性変形部45aと、この塑性変形部45aの幅方向端部に互いに対向する内角部が接触するように塑性変形部45aを内挿する四角筒形状の補剛管45bと、塑性変形部45aの一方の端部に形成した一端側連結部(不図示)と、塑性変形部45aの他方の端部に形成した他端側連結部(不図示)と、を備えている。
この制振補強部材45は、例えば、図18に示す橋脚1では、一端側連結部が梁部6の下面にピン接合され、塑性変形部45a及び補剛管45bが鉛直方向に延在し、他端側連結部が地表に突出したフーチング台座11A、或いはフーチング台座11Bの上面にピン接合される。
Further, in FIG. 20, the vibration damping reinforcement member 45 includes a plastic deformation portion 45a having a flat plate shape of plain steel or low yield point steel having hysteresis damping characteristics, and an inner angle opposed to the width direction end portion of the plastic deformation portion 45a. A square tube-shaped stiffening tube 45b in which the plastic deformation portion 45a is inserted so that the portions are in contact with each other, one end side connection portion (not shown) formed at one end of the plastic deformation portion 45a, and the plastic deformation portion 45a. The other end side connection part (not shown) formed in the other end part.
For example, in the bridge pier 1 shown in FIG. 18, the vibration damping reinforcement member 45 has one end-side connection portion pin-bonded to the lower surface of the beam portion 6, and the plastic deformation portion 45 a and the stiffening tube 45 b extend in the vertical direction. The other end side connecting portion is pin-bonded to the upper surface of the footing base 11A or the footing base 11B protruding from the ground surface.

本実施形態の制振補強部材45によると、地震時に梁部6が振動した際に、収縮方向の軸力が作用する平板形状の塑性変形部45aが座屈変形を起こす場合がある。そのときに、塑性変形部45aの幅方向端部に互いに対向する内角部が接触している四角筒形状の補剛管45bが塑性変形部45aの座屈変形を防止し、地震時における塑性変形部44aの軸方向の伸縮変形を繰り返すことで履歴減衰特性を発揮し、大地震が発生した際の地震力の低減効果を十分発揮することができる。   According to the vibration-damping reinforcement member 45 of the present embodiment, when the beam portion 6 vibrates during an earthquake, the plate-shaped plastic deformation portion 45a on which the axial force in the contraction direction acts may buckle. At that time, the rectangular tube-shaped stiffening tube 45b whose inner corners opposed to each other in the width direction end of the plastic deformation portion 45a prevent buckling deformation of the plastic deformation portion 45a, and plastic deformation during an earthquake. By repeating the expansion and contraction in the axial direction of the portion 44a, the hysteresis attenuation characteristic can be exhibited, and the effect of reducing the seismic force when a large earthquake occurs can be sufficiently exhibited.

なお、上述した制振補強部材45は、塑性変形部45aを内挿する四角筒形状の補剛管45bとしたが、円筒形状の補剛管としてもよい。
ここで、図20に示す制振補強部材45は、平板形状の塑性変形部45aと、塑性変形部45aを内挿する四角筒形状の補剛管45bとしたが、本発明の要旨がこれに限定されるものではなく、塑性変形部を横断面H型形、U字形、T字形、円形及び十字形とし、塑性変形部を内挿する補剛管を円筒形状としてもよい。
The above-described vibration damping reinforcement member 45 is a square cylindrical stiffening tube 45b into which the plastic deformation portion 45a is inserted, but may be a cylindrical stiffening tube.
Here, the vibration damping reinforcement member 45 shown in FIG. 20 is a flat plate-shaped plastic deformation portion 45a and a square tube-shaped stiffening tube 45b into which the plastic deformation portion 45a is inserted. The plastic deformation portion is not limited, and the plastic deformation portion may have a H-shaped cross section, a U shape, a T shape, a circular shape, and a cross shape, and the stiffening tube that interpolates the plastic deformation portion may have a cylindrical shape.

また、図21(a)に示す制振補強部材46は、平板形状の塑性変形部46aと、この塑性変形部46aを内挿する四角筒形状の補剛管46bと、塑性変形部46aを埋め込んで補剛管46bに充填されたモルタルなどの充填材46cとを備えている。この制振補強部材46は、補剛管46bに充填されている充填材46cが塑性変形部46aの座屈変形を防止し、地震時における塑性変形部46aの軸方向の伸縮変形を繰り返すことで履歴減衰特性を発揮し、大地震が発生した際の地震力の低減効果を十分発揮することができる。
なお、図21(b)に示す制振補強部材47は、平板形状の塑性変形部47aと、この塑性変形部47aを内挿する円形筒形状の補剛管47bと、塑性変形部47aを埋め込んで補剛管47bに充填されたモルタルなどの充填材46cとを備えており、図21(a)の制振補強部材46と同様の効果を奏することができる。
21A includes a flat plate-shaped plastic deformation portion 46a, a rectangular tube-shaped stiffening tube 46b for interposing the plastic deformation portion 46a, and the plastic deformation portion 46a. And a filler 46c such as mortar filled in the stiffening tube 46b. In this vibration damping reinforcement member 46, the filler 46c filled in the stiffening tube 46b prevents the plastic deformation portion 46a from buckling and repeats the axial deformation of the plastic deformation portion 46a during an earthquake. Demonstrates hysteresis damping characteristics, and can fully demonstrate the effect of reducing seismic force when a large earthquake occurs.
21 (b) embeds a flat plate-shaped plastic deformation portion 47a, a circular cylindrical stiffening tube 47b into which the plastic deformation portion 47a is inserted, and a plastic deformation portion 47a. And the stiffening tube 47b is filled with a filler 46c such as mortar, and the same effects as those of the vibration damping reinforcement member 46 of FIG.

また、図21(c)に示す制振補強部材48は、横断面H形の塑性変形部48aと、この塑性変形部48aを内挿する四角筒形状の補剛管48bと、塑性変形部48aを埋め込んで補剛管48bに充填されたモルタルなどの充填材48cとを備えている。この制振補強部材48は、補剛管48bに充填されている充填材48cが塑性変形部48aの座屈変形を防止し、地震時における塑性変形部48aの軸方向の伸縮変形を繰り返すことで履歴減衰特性を発揮し、大地震が発生した際の地震力の低減効果を十分発揮することができる。なお、図21(d)に示す制振補強部材49は、横断面H形の塑性変形部49aと、この塑性変形部49aを内挿する円形筒形状の補剛管49bと、塑性変形部49aを埋め込んで補剛管49bに充填されたモルタルなどの充填材49cとを備えており、図21(c)の制振補強部材48と同様の効果を奏することができる。   21C includes a plastic deformation portion 48a having an H-shaped cross section, a square tube-shaped stiffening tube 48b for interpolating the plastic deformation portion 48a, and a plastic deformation portion 48a. And a filling material 48c such as mortar filled in the stiffening tube 48b. In this vibration damping reinforcement member 48, the filler 48 c filled in the stiffening tube 48 b prevents buckling deformation of the plastic deformation portion 48 a, and repeats axial deformation of the plastic deformation portion 48 a during an earthquake. Demonstrates hysteresis damping characteristics, and can fully demonstrate the effect of reducing seismic force when a large earthquake occurs. 21 (d) includes a plastic deformation portion 49a having an H-shaped cross section, a circular cylindrical stiffening tube 49b that interpolates the plastic deformation portion 49a, and a plastic deformation portion 49a. And a filling material 49c such as mortar filled in the stiffening tube 49b, and the same effects as those of the vibration-damping reinforcement member 48 of FIG.

そして、図21(e)に示す制振補強部材50は、横断面U字形の塑性変形部50aと、この塑性変形部50aを内挿する四角筒形状の補剛管50bと、塑性変形部50aを埋め込んで補剛管50bに充填されたモルタルなどの充填材50cとを備えている。この制振補強部材50は、補剛管50bに充填されている充填材50cが塑性変形部50aの座屈変形を防止し、地震時における塑性変形部50aの軸方向の伸縮変形を繰り返すことで履歴減衰特性を発揮し、大地震が発生した際の地震力の低減効果を十分発揮することができる。なお、図21(f)に示す制振補強部材51は、横断面U字形の塑性変形部51aと、この塑性変形部51aを内挿する円形筒形状の補剛管51bと、塑性変形部51aを埋め込んで補剛管51bに充填されたモルタルなどの充填材51cとを備えており、図21(e)の制振補強部材50と同様の効果を奏することができる。   21 (e) includes a plastic deformation portion 50a having a U-shaped cross section, a square tube-shaped stiffening tube 50b that interpolates the plastic deformation portion 50a, and a plastic deformation portion 50a. And a filling material 50c such as mortar filled in the stiffening tube 50b. In this vibration damping reinforcement member 50, the filler 50c filled in the stiffening tube 50b prevents buckling deformation of the plastic deformation portion 50a, and repeats axial expansion and contraction deformation of the plastic deformation portion 50a during an earthquake. Demonstrates hysteresis damping characteristics, and can fully demonstrate the effect of reducing seismic force when a large earthquake occurs. 21 (f) includes a plastic deformation portion 51a having a U-shaped cross section, a circular cylindrical stiffening tube 51b for interpolating the plastic deformation portion 51a, and a plastic deformation portion 51a. And a filling material 51c such as mortar filled in the stiffening tube 51b, and the same effects as those of the vibration-damping reinforcement member 50 of FIG.

また、図22(g)、(i)、(k)に示す制振補強部材52,54,56も、横断面T字形の塑性変形部50a、横断面円形の塑性変形部54a、横断面十字形の塑性変形部56aを備え、これら塑性変形部を内挿した四角筒形状の補剛管52b,54b,56bに充填材52c,54c,56cを充填することで塑性変形部の座屈変形を防止し、大地震が発生した際の地震力の低減効果を十分発揮することができるようにしている。   22 (g), (i), and (k) also include a plastic deformation portion 50a having a T-shaped cross section, a plastic deformation portion 54a having a circular cross section, and a cross section having a sufficient cross section. The plastic deforming portion 56a is provided, and the cylindrical cylindrical stiffening tubes 52b, 54b, and 56b having the plastic deforming portions inserted therein are filled with the fillers 52c, 54c, and 56c, so that the plastic deforming portion is buckled. It is possible to prevent and exert the effect of reducing the seismic force when a large earthquake occurs.

また、図22(h)、(j)、(l)に示す制振補強部材53,55,57も、横断面T字形の塑性変形部53a、横断面円形の塑性変形部55a、横断面十字形の塑性変形部57aを備え、これら塑性変形部を内挿した円形筒形状の補剛管53b,55b,57bに充填材53c,55c,57cを充填することで塑性変形部の座屈変形を防止し、大地震が発生した際の地震力の低減効果を十分発揮することができるようにしている。   22 (h), (j), and (l) also include a plastic deformation portion 53a having a T-shaped cross section, a plastic deformation portion 55a having a circular cross section, and a cross section having a sufficient cross section. The plastic deformation portion 57a is provided, and the cylindrical cylindrical stiffening pipes 53b, 55b, 57b inserted with the plastic deformation portion are filled with the fillers 53c, 55c, 57c, thereby buckling deformation of the plastic deformation portion. It is possible to prevent and exert the effect of reducing the seismic force when a large earthquake occurs.

さらに、図23(m)、(0)、(q)、(s)に示す制振補強部材58,60,62,64も、横断面L字形の塑性変形部58a、横断面S形の塑性変形部60a、円筒形の塑性変形部62a、中実棒からなる塑性変形部64aを備え、これら塑性変形部を内挿した四角筒形状の補剛管58b,60b,62b,64bに充填材58c,60c,62c,64cを充填することで塑性変形部の座屈変形を防止し、大地震が発生した際の地震力の低減効果を十分発揮することができるようにしている。   23 (m), (0), (q), and (s) also include a plastic deformation portion 58a having an L-shaped cross section and a plastic having an S-shaped cross section. A deformable portion 60a, a cylindrical plastic deformable portion 62a, and a plastic deformable portion 64a made of a solid rod are provided. A rectangular tube-shaped stiffening tube 58b, 60b, 62b, 64b in which these plastic deformable portions are inserted is filled with a filler 58c. , 60c, 62c, and 64c are prevented so that the plastic deformation portion is prevented from buckling and the effect of reducing the seismic force when a large earthquake occurs can be sufficiently exhibited.

さらにまた、図23(n)、(p)、(r)、(t)に示す制振補強部材59,61,63,65も、横断面L字形の塑性変形部59a、横断面S形の塑性変形部61a、円筒形の塑性変形部63a、中実棒からなる塑性変形部65aを備え、これら塑性変形部を内挿した円形筒形状の補剛管59b,61b,63b,65bに充填材59c,61c,63c,65cを充填することで塑性変形部の座屈変形を防止し、大地震が発生した際の地震力の低減効果を十分発揮することができるようにしている。
このような制振補強部材42〜65は、各実施形態で使用した制振補強部材8,10,12,19,30に代えて使用することが可能である。
Furthermore, the vibration-damping reinforcement members 59, 61, 63, 65 shown in FIGS. 23 (n), (p), (r), and (t) are also L-shaped plastic deformed portions 59a and S-shaped cross sections. A plastic deformation portion 61a, a cylindrical plastic deformation portion 63a, and a plastic deformation portion 65a made of a solid rod are provided. Fillers are provided in circular cylindrical stiffening tubes 59b, 61b, 63b, and 65b in which these plastic deformation portions are inserted. By filling 59c, 61c, 63c, and 65c, buckling deformation of the plastic deformation portion is prevented, and the effect of reducing the seismic force when a large earthquake occurs can be sufficiently exhibited.
Such vibration damping reinforcement members 42 to 65 can be used in place of the vibration damping reinforcement members 8, 10, 12, 19, 30 used in each embodiment.

また、上述した各実施形態では円柱形状の柱部4或いは、円柱形状の柱部22を使用しているが、横断面矩形状の柱部を使用しても同様の効果を奏することができる。
ここで、上述した第1実施形態(図1〜図3)、第2実施形態(図4)、第3実施形態(図5)、第4実施形態(図6(a),(b))、第5実施形態(図8)、第6実施形態(図9)、第7実施形態(図10)、第8実施形態(図11)、第9実施形態(図12)、第10実施形態(図13〜図15)、第10実施形態の変形例(図16、図17)は、既存の橋脚1の耐震補強構造について説明したが、これら第1〜第10実施形態の変形例の構造を、制振補強部材を配置した新設の橋脚構造と置き換えて考えても、上述した第1〜第10実施形態の変形例と同様に、大地震が発生した際に、新設の橋脚構造に対して地震力の低減効果を十分発揮することができる。そして、図18から図22で示した制振補強部材を、新設の橋脚構造に配置すると、地震力の低減効果をさらに発揮した新設の橋脚構造とすることができる。
Moreover, in each embodiment mentioned above, although the column-shaped column part 4 or the column-shaped column part 22 is used, even if it uses the column part of a cross-sectional rectangular shape, there can exist the same effect.
Here, the first embodiment (FIGS. 1 to 3), the second embodiment (FIG. 4), the third embodiment (FIG. 5), and the fourth embodiment (FIGS. 6A and 6B) described above. The fifth embodiment (FIG. 8), the sixth embodiment (FIG. 9), the seventh embodiment (FIG. 10), the eighth embodiment (FIG. 11), the ninth embodiment (FIG. 12), and the tenth embodiment. (FIGS. 13 to 15) and the modifications of the tenth embodiment (FIGS. 16 and 17) have been described with respect to the existing seismic reinforcement structure of the pier 1, but the structures of the modifications of the first to tenth embodiments Even if it is replaced with a newly installed pier structure in which a damping reinforcement member is arranged, as in the modified examples of the first to tenth embodiments described above, when a large earthquake occurs, The seismic force can be reduced sufficiently. When the vibration-damping reinforcement member shown in FIGS. 18 to 22 is arranged in the newly installed pier structure, a newly installed pier structure that further exhibits the effect of reducing seismic force can be obtained.

1…橋脚、2…地中、3…フーチング、4…柱部(円筒形状)、5…上部工、6…梁部、7a〜7e…基礎杭、8…制振補強部材、8a…塑性変形部、8b…一端側連結部、8c…他端側連結部、10…制振補強部材、10a…塑性変形部、10b…一端側連結部、10c…他端側連結部、11A,11B…フーチング台座、12…制振補強部材、12a…塑性変形部、12b…一端側連結部、12c…他端側連結部、13a,13b…制振連結部、14…柱部(断面矩形状)、15a,15b…制振連結部、17…制振連結部、18…フーチング台座、20…橋脚、21…フーチング、22…柱部、23…上部工、24…梁部、25…基礎杭、26…橋脚、27…柱補強部、29…橋脚、30…第1の制振補強部材、30a…塑性変形部、30b…一端側連結部、30c…他端側連結部、31…第2の制振補強部材、31a…塑性変形部、31b…一端側連結部、31c…他端側連結部、32…河川、33…河川テラス、34…護岸、35…歩道、36…車道、37…掘削穴、38…フーチング台座、39…制振連結部、40、41…制振ダンパー(制振手段)、42…制振補強部材、42a…軸力伝達部、42b…塑性変形部、42c…一端側連結部、42d…他端側連結部、44…制振補強部材、44a…塑性変形部、44b…補剛管、45…制振補強部材、45a…塑性変形部、45b…補剛管、46〜65…制振補強部材、46a〜65a…塑性変形部、46b〜65b…補剛管、46c〜65c…充填材   DESCRIPTION OF SYMBOLS 1 ... Pier, 2 ... Underground, 3 ... Footing, 4 ... Column part (cylindrical shape), 5 ... Superstructure, 6 ... Beam part, 7a-7e ... Foundation pile, 8 ... Damping reinforcement member, 8a ... Plastic deformation Part, 8b ... one end side connection part, 8c ... other end side connection part, 10 ... vibration damping reinforcement member, 10a ... plastic deformation part, 10b ... one end side connection part, 10c ... other end side connection part, 11A, 11B ... footing Pedestal, 12 ... Damping reinforcement member, 12a ... Plastic deformation part, 12b ... One end side connection part, 12c ... Other end side connection part, 13a, 13b ... Damping connection part, 14 ... Column (rectangular cross section), 15a , 15b ... Damping connection part, 17 ... Damping connection part, 18 ... Footing base, 20 ... Pier, 21 ... Footing, 22 ... Column part, 23 ... Superstructure, 24 ... Beam part, 25 ... Foundation pile, 26 ... Bridge piers, 27 ... column reinforcements, 29 ... piers, 30 ... first damping reinforcement members, 30a ... plastic deformation parts, 0b ... one end side connection part, 30c ... other end side connection part, 31 ... second vibration damping reinforcement member, 31a ... plastic deformation part, 31b ... one end side connection part, 31c ... other end side connection part, 32 ... river, 33 ... River terrace, 34 ... Seawall, 35 ... Sidewalk, 36 ... Roadway, 37 ... Excavation hole, 38 ... Footing base, 39 ... Damping connection, 40, 41 ... Damping damper (damping means), 42 ... Damping Vibration reinforcement member, 42a ... axial force transmission part, 42b ... plastic deformation part, 42c ... one end side connection part, 42d ... other end side connection part, 44 ... vibration damping reinforcement member, 44a ... plastic deformation part, 44b ... stiffening tube 45 ... Damping reinforcement member, 45a ... Plastic deformation part, 45b ... Stiffening pipe, 46-65 ... Damping reinforcement member, 46a-65a ... Plastic deformation part, 46b-65b ... Stiffening pipe, 46c-65c ... Filling Material

Claims (20)

地中に埋設されたフーチングから柱部が立設し、前記柱部の上端に上部工を載置する梁部が形成された既設の橋脚の耐震補強構造であって、
一端が前記梁部に連結され、他端が前記フーチングに連結された制振補強部材が配置され、当該制振補強部材は、前記一端側から前記他端側の少なくとも一部に履歴減衰特性を有する塑性変形部が設けられていることを特徴とする既設橋脚の耐震補強構造。
A seismic reinforcement structure for an existing bridge pier in which a pillar portion is erected from a footing embedded in the ground, and a beam portion on which an upper work is placed is formed at the upper end of the pillar portion,
A vibration damping reinforcing member having one end connected to the beam portion and the other end connected to the footing is disposed, and the vibration damping reinforcing member has a hysteresis damping characteristic from the one end side to at least a part of the other end side. A seismic reinforcement structure for an existing pier, characterized in that a plastic deformation part is provided.
一端が前記梁部に連結され、他端が前記柱部に連結された制振補強部材が配置され、当該制振補強部材は、前記一端側から前記他端側の少なくとも一部に履歴減衰特性を有する塑性変形部が設けられていることを特徴とする請求項1記載の既設橋脚の耐震補強構造。   A vibration damping reinforcing member having one end connected to the beam portion and the other end connected to the column portion is disposed, and the vibration damping reinforcing member has a hysteresis damping characteristic from the one end side to at least a part of the other end side. The seismic reinforcement structure for an existing pier according to claim 1, wherein a plastically deformed portion having the following is provided. 地中に埋設されたフーチングから柱部が立設し、前記柱部の上端に上部工を載置する梁部が形成された既設の橋脚の耐震補強構造であって、
一端が前記梁部に連結され、他端が前記柱部に連結された制振補強部材が配置され、当該制振補強部材は、前記一端側から前記他端側の少なくとも一部に履歴減衰特性を有する塑性変形部が設けられていることを特徴とする既設橋脚の耐震補強構造。
A seismic reinforcement structure for an existing bridge pier in which a pillar portion is erected from a footing embedded in the ground, and a beam portion on which an upper work is placed is formed at the upper end of the pillar portion,
A vibration damping reinforcing member having one end connected to the beam portion and the other end connected to the column portion is disposed, and the vibration damping reinforcing member has a hysteresis damping characteristic from the one end side to at least a part of the other end side. A seismic reinforcement structure for an existing bridge pier, characterized in that a plastically deformed portion having s is provided.
地中に埋設されたフーチングから柱部が立設し、前記柱部の上端に上部工を載置する梁部が形成された既設の橋脚の耐震補強構造であって、
前記フーチングの上部に、地表に突出するフーチング台座が一体に形成されており、
一端が前記梁部に連結され、他端が前記フーチング台座に連結された制振補強部材が配置され、当該制振補強部材は、前記一端側から前記他端側の少なくとも一部に履歴減衰特性を有する塑性変形部が設けられていることを特徴とする既設橋脚の耐震補強構造。
A seismic reinforcement structure for an existing bridge pier in which a pillar portion is erected from a footing embedded in the ground, and a beam portion on which an upper work is placed is formed at the upper end of the pillar portion,
A footing pedestal protruding on the ground surface is integrally formed on the upper part of the footing,
A vibration damping reinforcing member having one end connected to the beam portion and the other end connected to the footing pedestal is disposed, and the vibration damping reinforcing member has a hysteresis damping characteristic from the one end side to at least a part of the other end side. A seismic reinforcement structure for an existing bridge pier, characterized in that a plastically deformed portion having s is provided.
護岸と、この護岸に沿って形成した歩道と、を有する河川構造物において、前記歩道から前記橋脚の前記柱部が立設していることを特徴とする請求項1乃至4の何れか1項記載の既設橋脚の耐震補強構造。   5. The river structure having a revetment and a sidewalk formed along the revetment, wherein the pillar portion of the pier is erected from the sidewalk. Seismic reinforcement structure for existing piers. 前記制振補強部材は、高剛性の軸力伝達部と、前記軸力伝達部と同軸に固定された履歴減衰特性を有する前記塑性変形部と、を備えていることを特徴とする請求項1乃至5の何れか1項記載の既設橋脚の耐震補強構造。   2. The vibration damping reinforcement member includes a highly rigid axial force transmission portion and the plastic deformation portion having a hysteresis damping characteristic fixed coaxially with the axial force transmission portion. The seismic reinforcement structure of the existing pier of any one of thru | or 5. 前記制振補強部材は、履歴減衰特性を有する平板形状、横断面H形、横断面U形、横断面T形、横断面円形、横断面十字形、横断面L字形、横断面S字形、横断面中空円形及び中実棒の何れか一つの形状の塑性変形部と、この塑性変形部を内挿して当該塑性変形部の座屈変形を防止する横断面角形、又は横断面円形の補剛管と、を備えていることを特徴とする請求項1乃至5の何れか1項記載の既設橋脚の耐震補強構造。   The vibration-damping reinforcement member has a flat plate shape having a hysteresis damping characteristic, a transverse section H shape, a transverse section U shape, a transverse section T shape, a transverse section circle shape, a transverse cross shape, a transverse section L shape, a transverse section S shape, a transverse shape. A plastically deformed portion having a shape of any one of a hollow hollow circle and a solid rod, and a stiffening tube having a rectangular cross section or a circular cross section that interpolates the plastic deformed portion to prevent buckling deformation of the plastic deformed portion. The seismic reinforcement structure for an existing bridge pier according to any one of claims 1 to 5, wherein 前記塑性変形部を内挿した前記補剛管の内部に前記塑性変形部を拘束する充填材が充填されていることを特徴とする請求項7記載の既設橋脚の耐震補強構造。   The seismic reinforcement structure for an existing pier according to claim 7, wherein a filler for constraining the plastic deformation portion is filled in the stiffening pipe in which the plastic deformation portion is inserted. 前記塑性変形部は、普通鋼又は低降伏点鋼であることを特徴とする請求項1乃至8の何れか1項記載の既設橋脚の耐震補強構造。   The seismic reinforcement structure for an existing pier according to any one of claims 1 to 8, wherein the plastically deformed portion is made of ordinary steel or low yield point steel. 前記梁部に載置されている上部工に、地震時における前記上部工の揺れを抑制する制振手段を設けたことを特徴とする請求項1乃至9の何れか1項記載の既設橋脚の耐震補強構造。   The existing bridge pier according to any one of claims 1 to 9, wherein the superstructure placed on the beam portion is provided with a vibration control means for suppressing shaking of the superstructure during an earthquake. Seismic reinforcement structure. 地中に埋設されたフーチングから柱部が立設し、前記柱部の上端に上部工を載置する梁部が形成された新設の橋脚構造であって、
一端が前記梁部に連結され、他端が前記フーチングに連結された制振補強部材が配置され、当該制振補強部材は、前記一端側から前記他端側の少なくとも一部に履歴減衰特性を有する塑性変形部が設けられていることを特徴とする新設の橋脚構造。
A new pier structure in which a pillar portion is erected from a footing embedded in the ground, and a beam portion on which an upper work is placed is formed at the upper end of the pillar portion,
A vibration damping reinforcing member having one end connected to the beam portion and the other end connected to the footing is disposed, and the vibration damping reinforcing member has a hysteresis damping characteristic from the one end side to at least a part of the other end side. A new pier structure characterized in that a plastic deformation part is provided.
一端が前記梁部に連結され、他端が前記柱部に連結された制振補強部材が配置され、当該制振補強部材は、前記一端側から前記他端側の少なくとも一部に履歴減衰特性を有する塑性変形部が設けられていることを特徴とする請求項11記載の新設の橋脚構造。   A vibration damping reinforcing member having one end connected to the beam portion and the other end connected to the column portion is disposed, and the vibration damping reinforcing member has a hysteresis damping characteristic from the one end side to at least a part of the other end side. The newly installed pier structure according to claim 11, wherein a plastically deformed portion having the following is provided. 地中に埋設されたフーチングから柱部が立設し、前記柱部の上端に上部工を載置する梁部が形成された新設の橋脚構造であって、
一端が前記梁部に連結され、他端が前記柱部に連結された制振補強部材が配置され、当該制振補強部材は、前記一端側から前記他端側の少なくとも一部に履歴減衰特性を有する塑性変形部が設けられていることを特徴とする新設の橋脚構造。
A new pier structure in which a pillar portion is erected from a footing embedded in the ground, and a beam portion on which an upper work is placed is formed at the upper end of the pillar portion,
A vibration damping reinforcing member having one end connected to the beam portion and the other end connected to the column portion is disposed, and the vibration damping reinforcing member has a hysteresis damping characteristic from the one end side to at least a part of the other end side. A new pier structure having a plastic deformation portion having
地中に埋設されたフーチングから柱部が立設し、前記柱部の上端に上部工を載置する梁部が形成された新設の橋脚構造であって、
前記フーチングの上部に、地表に突出するフーチング台座が一体に形成されており、
一端が前記梁部に連結され、他端が前記フーチング台座に連結された制振補強部材が配置され、当該制振補強部材は、前記一端側から前記他端側の少なくとも一部に履歴減衰特性を有する塑性変形部が設けられていることを特徴とする新設の橋脚構造。
A new pier structure in which a pillar portion is erected from a footing embedded in the ground, and a beam portion on which an upper work is placed is formed at the upper end of the pillar portion,
A footing pedestal protruding on the ground surface is integrally formed on the upper part of the footing,
A vibration damping reinforcing member having one end connected to the beam portion and the other end connected to the footing pedestal is disposed, and the vibration damping reinforcing member has a hysteresis damping characteristic from the one end side to at least a part of the other end side. A new pier structure having a plastic deformation portion having
護岸と、この護岸に沿って形成した歩道と、を有する河川構造物において、前記歩道から前記橋脚の前記柱部が立設していることを特徴とする請求項11乃至14の何れか1項記載の新設の橋脚構造。   15. A river structure having a revetment and a sidewalk formed along the revetment, wherein the pillar portion of the pier is erected from the sidewalk. New pier structure as described. 前記制振補強部材は、高剛性の軸力伝達部と、前記軸力伝達部と同軸に固定された履歴減衰特性を有する前記塑性変形部と、を備えていることを特徴とする請求項11乃至15の何れか1項記載の新設の橋脚構造。   12. The vibration damping reinforcing member includes a highly rigid axial force transmission portion and the plastic deformation portion having a hysteresis damping characteristic fixed coaxially with the axial force transmission portion. A new pier structure according to any one of items 15 to 15. 前記制振補強部材は、履歴減衰特性を有する平板形状、横断面H形、横断面U形、横断面T形、横断面円形、横断面十字形、横断面L字形、横断面S字形、横断面中空円形及び中実棒の何れか一つの形状の塑性変形部と、この塑性変形部を内挿して当該塑性変形部の座屈変形を防止する横断面角形、又は横断面円形の補剛管と、を備えていることを特徴とする請求項11乃至15の何れか1項記載の新設の橋脚構造。   The vibration-damping reinforcement member has a flat plate shape having a hysteresis damping characteristic, a transverse section H shape, a transverse section U shape, a transverse section T shape, a transverse section circle shape, a transverse cross shape, a transverse section L shape, a transverse section S shape, a transverse shape. A plastically deformed portion having a shape of any one of a hollow hollow circle and a solid rod, and a stiffening tube having a rectangular cross section or a circular cross section that interpolates the plastic deformed portion to prevent buckling deformation of the plastic deformed portion. The newly installed pier structure according to any one of claims 11 to 15, wherein 前記塑性変形部を内挿した前記補剛管の内部に前記塑性変形部を拘束する充填材が充填されていることを特徴とする請求項17記載の新設の橋脚構造。   The new pier structure according to claim 17, wherein a filler for restraining the plastic deformation portion is filled in the stiffening pipe in which the plastic deformation portion is inserted. 前記塑性変形部は、普通鋼又は低降伏点鋼であることを特徴とする請求項11乃至18の何れか1項記載の新設の橋脚構造。   The new pier structure according to any one of claims 11 to 18, wherein the plastically deformed portion is made of ordinary steel or low yield point steel. 前記梁部に載置されている上部工に、地震時における前記上部工の揺れを抑制する制振手段を設けたことを特徴とする請求項11乃至19の何れか1項記載の新設の橋脚構造。   The new bridge pier according to any one of claims 11 to 19, wherein the superstructure placed on the beam portion is provided with a damping means for suppressing shaking of the superstructure during an earthquake. Construction.
JP2013188723A 2013-07-29 2013-09-11 Seismic strengthening structure of existing bridge pier, and newly-constructed bridge pier structure Pending JP2015045212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013188723A JP2015045212A (en) 2013-07-29 2013-09-11 Seismic strengthening structure of existing bridge pier, and newly-constructed bridge pier structure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013156481 2013-07-29
JP2013156481 2013-07-29
JP2013188723A JP2015045212A (en) 2013-07-29 2013-09-11 Seismic strengthening structure of existing bridge pier, and newly-constructed bridge pier structure

Publications (1)

Publication Number Publication Date
JP2015045212A true JP2015045212A (en) 2015-03-12

Family

ID=52670919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013188723A Pending JP2015045212A (en) 2013-07-29 2013-09-11 Seismic strengthening structure of existing bridge pier, and newly-constructed bridge pier structure

Country Status (1)

Country Link
JP (1) JP2015045212A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115030063A (en) * 2022-05-27 2022-09-09 江苏科技大学 A single-column pier bridge reinforcement structure with adjustable additional support and its construction method
CN118166680A (en) * 2024-05-15 2024-06-11 北京建筑大学 In-service steel bridge pier anti-seismic toughness improving structure and construction method thereof
JP7546478B2 (en) 2020-12-24 2024-09-06 Jfeシビル株式会社 Earthquake-resistant reinforcement structures and structures

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5873605A (en) * 1981-10-26 1983-05-02 合資会社名大リ−ス Method and apparatus for traversing bridge beam
JPH0321709A (en) * 1989-06-15 1991-01-30 Yamamoto Chikasui Kenkyusho:Kk Revetment retaining wall block body with road plate and road widening method using block body
JPH0533321A (en) * 1991-07-31 1993-02-09 Maeda Corp Revetment concrete
JPH0557111U (en) * 1992-01-10 1993-07-30 新日本製鐵株式会社 Anti-vibration bracing member
JPH07180118A (en) * 1993-11-10 1995-07-18 Kobe Steel Ltd Girder rear surface coating louver in elevated structure and louver panel
JPH10131120A (en) * 1996-10-31 1998-05-19 Mitsubishi Heavy Ind Ltd Bridge pier
JPH11323826A (en) * 1998-03-17 1999-11-26 Ohbayashi Corp Lower structure of viaduct
JP2001220709A (en) * 2000-02-09 2001-08-17 Railway Technical Res Inst Seismic frame structure and its design method
JP2001227192A (en) * 1999-06-30 2001-08-24 Nippon Steel Corp Elastic-plastic hysteresis brace with axial yielding and damping steel structure
JP2002180418A (en) * 2000-12-11 2002-06-26 Oiles Ind Co Ltd Seismic isolation system for bridge
JP2003064624A (en) * 2001-08-24 2003-03-05 Railway Technical Res Inst Seismic retrofit method of existing reinforced concrete viaduct
JP2003268722A (en) * 2002-03-19 2003-09-25 Takeshi Noguchi Improvement work method for intersection and its adjacent part having bridge pier of viaduct on road median strip
JP2004332478A (en) * 2003-05-12 2004-11-25 Chuo Fukken Consultants Co Ltd Earthquake resistant structure for bridge
JP2009068295A (en) * 2007-09-14 2009-04-02 Nippon Steel Engineering Co Ltd Elevated structure
JP2009281081A (en) * 2008-05-23 2009-12-03 Sankyo Oilless Industry Inc Mounting structure of damping device

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5873605A (en) * 1981-10-26 1983-05-02 合資会社名大リ−ス Method and apparatus for traversing bridge beam
JPH0321709A (en) * 1989-06-15 1991-01-30 Yamamoto Chikasui Kenkyusho:Kk Revetment retaining wall block body with road plate and road widening method using block body
JPH0533321A (en) * 1991-07-31 1993-02-09 Maeda Corp Revetment concrete
JPH0557111U (en) * 1992-01-10 1993-07-30 新日本製鐵株式会社 Anti-vibration bracing member
JPH07180118A (en) * 1993-11-10 1995-07-18 Kobe Steel Ltd Girder rear surface coating louver in elevated structure and louver panel
JPH10131120A (en) * 1996-10-31 1998-05-19 Mitsubishi Heavy Ind Ltd Bridge pier
JPH11323826A (en) * 1998-03-17 1999-11-26 Ohbayashi Corp Lower structure of viaduct
JP2001227192A (en) * 1999-06-30 2001-08-24 Nippon Steel Corp Elastic-plastic hysteresis brace with axial yielding and damping steel structure
JP2001220709A (en) * 2000-02-09 2001-08-17 Railway Technical Res Inst Seismic frame structure and its design method
JP2002180418A (en) * 2000-12-11 2002-06-26 Oiles Ind Co Ltd Seismic isolation system for bridge
JP2003064624A (en) * 2001-08-24 2003-03-05 Railway Technical Res Inst Seismic retrofit method of existing reinforced concrete viaduct
JP2003268722A (en) * 2002-03-19 2003-09-25 Takeshi Noguchi Improvement work method for intersection and its adjacent part having bridge pier of viaduct on road median strip
JP2004332478A (en) * 2003-05-12 2004-11-25 Chuo Fukken Consultants Co Ltd Earthquake resistant structure for bridge
JP2009068295A (en) * 2007-09-14 2009-04-02 Nippon Steel Engineering Co Ltd Elevated structure
JP2009281081A (en) * 2008-05-23 2009-12-03 Sankyo Oilless Industry Inc Mounting structure of damping device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7546478B2 (en) 2020-12-24 2024-09-06 Jfeシビル株式会社 Earthquake-resistant reinforcement structures and structures
CN115030063A (en) * 2022-05-27 2022-09-09 江苏科技大学 A single-column pier bridge reinforcement structure with adjustable additional support and its construction method
CN118166680A (en) * 2024-05-15 2024-06-11 北京建筑大学 In-service steel bridge pier anti-seismic toughness improving structure and construction method thereof

Similar Documents

Publication Publication Date Title
JP4079975B2 (en) Retaining wall construction method
JP2007321452A (en) Bridge construction method and its bridge structure
JP6642977B2 (en) Pile foundation structure
JP5041758B2 (en) Seismic isolation structure with artificial ground
JP2004244955A (en) Cast-in-place concrete filled steel pipe pile, construction method of cast-in-place concrete filled steel pipe pile, and basic structure of structure
JP2015045212A (en) Seismic strengthening structure of existing bridge pier, and newly-constructed bridge pier structure
JP5092705B2 (en) Support structure of structure, construction method of underground structure, replacement method of foundation load
KR100756517B1 (en) Hollow Composite Pier
KR20070053197A (en) Wall structure composited with prestressed concrete and child-type board pile and construction method
JP2010047933A (en) Damping reinforcement frame
KR101126338B1 (en) Wave pattern steel plate having a wall
JP2004270168A (en) Earthquake-proof reinforcement structure and method
JP2004027727A (en) Foundation pile and construction method of foundation pile
JP5423134B2 (en) Foundation structure
JP3899307B2 (en) Cast-in-place concrete filled steel pipe pile and method for constructing cast-in-place concrete filled steel pipe pile
JP6774774B2 (en) Pile foundation structure
JP3690495B2 (en) Building construction method and building
JP4652009B2 (en) Structure
JP2007146399A (en) Construction method of soil cement pile, soil cement pile
JP2017057701A (en) Concrete wall structure and construction method for reinforced embankment integrated bridge
KR101131769B1 (en) Method for constructing abutment using concrete filled tube
JP2006316495A (en) Foundation structure of bridge pier and its construction method
JP3138317U (en) Building
JP4607485B2 (en) Expanded caisson foundation structure and seismic reinforcement structure for existing caisson foundation
JP2023070278A (en) Joint structure between pile and superstructure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170404