JP2015037371A - Supply and demand control device - Google Patents
Supply and demand control device Download PDFInfo
- Publication number
- JP2015037371A JP2015037371A JP2013168671A JP2013168671A JP2015037371A JP 2015037371 A JP2015037371 A JP 2015037371A JP 2013168671 A JP2013168671 A JP 2013168671A JP 2013168671 A JP2013168671 A JP 2013168671A JP 2015037371 A JP2015037371 A JP 2015037371A
- Authority
- JP
- Japan
- Prior art keywords
- output
- generator
- distribution
- ratio
- demand
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Supply And Distribution Of Alternating Current (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
【課題】電力系統において、需給制御の制御対象である発電機および蓄電池への出力指令値を算出する際に、需要予測を用いた経済負荷配分の配分結果をそのまま用いる従来の方法では、需要予測が外れた場合に需給バランスが崩れる可能性が高かった。【解決手段】発電機の出力を補正する必要のある出力補正量を地域要求量から算出し、電力需要予測値を満たすように経済負荷配分した各発電機への出力の配分比率を計算し、出力補正量を満たした上で、各発電機の出力比率が経済負荷配分の配分比率に近づくように、発電機の発電出力を調整する需給制御装置。【選択図】図1In a power system, when calculating an output command value to a generator and a storage battery that are subject to supply and demand control, a conventional method that directly uses a distribution result of economic load distribution using demand prediction is used to predict demand. There was a high possibility that the supply-demand balance would be disrupted if the risk was lost. An output correction amount that needs to correct an output of a generator is calculated from a local requirement amount, and an output distribution ratio to each generator that has an economic load distribution so as to satisfy a power demand prediction value is calculated, A supply and demand control device that adjusts the power generation output of the generator so that the output ratio of each generator approaches the distribution ratio of the economic load distribution after satisfying the output correction amount. [Selection] Figure 1
Description
本発明は、電力系統の電力の需給制御装置に係り、特に経済負荷配分制御(EDC:Economic Load Dispatching Control)と負荷周波数制御(LFC:Load Frequency Control)の協調制御方式に関する。 The present invention relates to a power supply / demand control apparatus for an electric power system, and more particularly, to a cooperative control method of economic load distribution control (EDC) and load frequency control (LFC).
近年、太陽光発電や風力発電など、再生可能エネルギーを利用した発電設備の導入が積極的に行われている。しかし、これらの再生可能エネルギー利用の発電量は天候に支配されるので、出力が不安定(不確定)であるという問題がある。電力系統においては発電電力と負荷電力の需給バランスは釣り合っていなければならないが、発電出力が不安定である再生可能エネルギーを利用した発電設備を電力系統に連系すると、発電電力と負荷電力の需給バランスが崩れてしまい、周波数変動をもたらす。 In recent years, power generation facilities using renewable energy such as solar power generation and wind power generation have been actively introduced. However, since the amount of power generated using these renewable energy is controlled by the weather, there is a problem that the output is unstable (uncertain). In the power grid, the balance between supply and demand for generated power and load power must be balanced, but if power generation equipment using renewable energy with unstable power output is connected to the power system, the supply and demand for generated power and load power will be The balance is lost, causing frequency fluctuations.
従来、電力系統の周波数の制御は、特に短い周期の需要変動に対しては発電機単独で行われるガバナフリー運転が担い、それよりも周期の長い需要変動に対しては、中央給電指令所からの出力制御が担っている。中央給電指令所からの出力制御は経済負荷配分制御(EDC)および負荷周波数制御(LFC)の2つが行われている。経済負荷配分制御(EDC)は、数十分以上の長周期で変動する需要に対して行われ、電力需要の予測結果を満たした上で最も経済的(コストが安い)になる発電機の出力配分を計算し、その配分に従ってEDC対象の発電機を制御する。負荷周波数制御(LFC)は、数十秒から数分程度の短周期で変動する需要に対して行われ、現時点での需給アンバランス(需給差)に基づき、その需給差をなくすようにLFC対象の発電機を制御している(例えば、特許文献1参照)。大規模な系統のように発電機が多数台ある場合であって、EDC対象とLFC対象の発電機が分かれていてもLFC対象の発電機のみでLFC容量(LFCで補償可能な発電容量)を十分確保できる場合には、このような従来の制御方法でも有効である。 Conventionally, control of the frequency of the power system is governed by governor-free operation that is performed by a generator alone for demand fluctuations with a short period, and from the central power supply command center for demand fluctuations with a longer period. Is responsible for output control. Output control from the central power supply command center is performed by economic load distribution control (EDC) and load frequency control (LFC). Economic load distribution control (EDC) is performed on demand that fluctuates over a long period of several tens of minutes, and the output of the generator that is the most economical (low cost) after satisfying the forecast result of power demand The distribution is calculated, and the EDC target generator is controlled according to the distribution. Load frequency control (LFC) is applied to demand that fluctuates in a short cycle of several tens of seconds to several minutes. Based on the current supply-demand imbalance (supply-demand difference), LFC targets The generator is controlled (see, for example, Patent Document 1). When there are a large number of generators as in a large-scale system, even if the EDC target and LFC target generators are separated, the LFC capacity (power generation capacity that can be compensated by LFC) can be obtained only with the LFC target generator. Such a conventional control method is also effective if it can be secured sufficiently.
しかし、狭い地域において電力の発生および消費を行うマイクログリッドのような、中小規模の電力系統の場合は、発電機の台数が少ないため、従来のようにEDC対象の発電機とLFC対象の発電機を分けて制御するとLFC容量が不足する恐れがある。 However, in the case of a small and medium-sized power system such as a microgrid that generates and consumes power in a small area, the number of generators is small. If the control is separately performed, the LFC capacity may be insufficient.
そのため中小規模の電力系統のように発電機の台数が限られている場合では、EDCとLFCで発電機を共有した協調制御をすることにより、LFCに使用できる発電機台数を確保し、それによりLFC容量を確保することが望ましいと考えられる。 Therefore, in the case where the number of generators is limited, such as small and medium-sized power systems, the number of generators that can be used for LFC is secured by performing coordinated control that shares the generators with EDC and LFC. It is considered desirable to ensure LFC capacity.
特許文献2および3に記載された発明は、需給差である地域要求量(AR:Area Requirement)の長周期成分をEDC指令値の補正に用いることによって、LFCとEDCの協調制御を実現している。
ここで、地域要求量ARの算出方法(公知技術)を記載しておく。地域要求量ARは以下に示す負荷周波数制御(LFC)の方式により、3つの算出方法がある。
1.定周波数制御方式(Flat Frequency Control、FFC)
AR[kW]=−系統定数[%kW/Hz]×系統容量[kW]×周波数偏差[Hz]
周波数偏差は系統周波数と基準周波数(定格周波数)との差分で定義される。基準周波数とは、日本では50Hzまたは60Hzである。系統定数および系統容量とは、対象の電力系統固有の定数である。
2.周波数偏倚連系線電力制御方式(Tie Line Load Frequency Control、TBC)
AR[kW]=−系統定数[%kW/Hz]×系統容量[kW]×周波数偏差[Hz]+連系点潮流偏差[kW]
連系点潮流偏差は連系点潮流と連系点潮流目標値との差分で定義される。潮流は連系している系統から自系統に流れる向きを正とする。
3.定連系線電力制御方式(Flat Tie Line Control、FTC)
AR[kW]=連系点潮流偏差[kW]
連系点潮流偏差の定義は、上記のTBCの場合と同様である。
The inventions described in Patent Documents 2 and 3 realize the coordinated control of LFC and EDC by using a long-period component of AR (Area Requirement), which is a difference between supply and demand, to correct the EDC command value. Yes.
Here, a calculation method (known technique) of the regional requirement amount AR will be described. There are three calculation methods for the local requirement AR by the following load frequency control (LFC) method.
1. Constant frequency control (Flat Frequency Control, FFC)
AR [kW] =-system constant [% kW / Hz] × system capacity [kW] × frequency deviation [Hz]
The frequency deviation is defined by the difference between the system frequency and the reference frequency (rated frequency). The reference frequency is 50 Hz or 60 Hz in Japan. The system constant and the system capacity are constants specific to the target power system.
2. Frequency deviation interconnection power control system (Tie Line Load Frequency Control, TBC)
AR [kW] =-system constant [% kW / Hz] × system capacity [kW] × frequency deviation [Hz] + interconnection point power flow deviation [kW]
The linkage point tidal current deviation is defined by the difference between the linkage point tidal current and the linkage point tidal current target value. The tidal current is positive in the direction from the grid to the local grid.
3. Constant line power control system (Flat Tie Line Control, FTC)
AR [kW] = Linkage point tidal current deviation [kW]
The definition of the interconnection point power flow deviation is the same as in the case of the above TBC.
しかし、特許文献2および特許文献3に記載された発明では、経済負荷配分制御(EDC)による負荷配分は需要予測値に対しての需給バランスを満たすものであるため、需要予測が外れた場合には発電電力に過不足が起こりやすく、需給バランスを保てない可能性が高い。そこで本発明は上記課題を解決するためになされたもので、需要予測値を用いたEDCで得た発電機への配分結果を、配分比率として制御に利用することで、需要予測が外れた場合でも、発電量の過不足を起こりにくくし、需給バランスを保つことができる需給制御装置を提供するものである。 However, in the inventions described in Patent Document 2 and Patent Document 3, load distribution by economic load distribution control (EDC) satisfies the supply-demand balance with respect to the demand prediction value, and thus when the demand prediction is out of order. Is likely to be overpowered or deficient in generated power, and there is a high possibility that the supply-demand balance cannot be maintained. Therefore, the present invention has been made to solve the above-described problem, and when the demand prediction is lost by using the distribution result to the generator obtained by EDC using the demand prediction value as a distribution ratio for control. However, the present invention is to provide a supply and demand control device that makes it difficult for excess and deficiency of power generation to occur and can maintain a balance between supply and demand.
前述した課題を解決する本発明に係る需給制御装置は、発電機を複数台有する電力系統の需給制御装置であって、系統周波数、系統容量および基準周波数を用いて地域要求量を算出する地域要求量算出部と、前記地域要求量から前記発電機の出力を補正する必要のある出力補正量を計算する出力補正量変換部と、前記各発電機の燃料費特性および出力の上下限値を用いて、予め設定された電力需要を満たすように経済負荷配分し、前記各発電機への出力の配分比率を算出する経済負荷配分計算部と、前記出力補正量を満たした上で、前記各発電機の出力比率が前記配分比率に近づくように、前記発電機の発電出力を調整する電力指令値配分計算部とを有することを特徴とする。 A supply and demand control device according to the present invention that solves the above-described problems is a supply and demand control device for a power system having a plurality of generators, and calculates a regional requirement amount using a system frequency, a system capacity, and a reference frequency. Using an amount calculation unit, an output correction amount conversion unit that calculates an output correction amount that needs to correct the output of the generator from the regional requirement amount, fuel cost characteristics and upper and lower limits of the output of each generator An economic load distribution so as to satisfy a preset power demand, an economic load distribution calculation unit for calculating a distribution ratio of the output to each of the generators, and after satisfying the output correction amount, And a power command value distribution calculation unit that adjusts the power generation output of the generator so that the output ratio of the machine approaches the distribution ratio.
本発明の需給制御装置によれば、経済負荷配分(EDC)で計算した各発電機への配分結果を、配分比率として間接的に負荷周波数制御(LFC)に用いることによって、需要予測が外れた場合であっても需給バランスを保つことができる信頼性の高い電力システムを実現できる。 According to the supply and demand control apparatus of the present invention, the demand forecast is lost by indirectly using the distribution result to each generator calculated by the economic load distribution (EDC) as the distribution ratio in the load frequency control (LFC). Even in such a case, a highly reliable power system that can maintain a balance between supply and demand can be realized.
<実施例1>
以下、図1を参照して、本発明の一実施形態における需給制御装置の概要と構成を説明する。なお、図1は需給制御装置100、制御対象である発電機200および蓄電池300の構成を表す。
<Example 1>
Hereinafter, with reference to FIG. 1, the outline | summary and structure of the supply-and-demand control apparatus in one Embodiment of this invention are demonstrated. FIG. 1 shows the configuration of the supply and demand control device 100, the generator 200 to be controlled, and the storage battery 300.
需給制御装置100は、電力系統の周波数および連系点潮流、発電機の発電電力、蓄電池の充放電電力および蓄電池残存容量、ならびに電力需要予測値を入力とし、発電機200への発電電力や蓄電池300への充放電電力の演算・指令を与える。需給制御装置100は、パソコンやPLC(Programmable Logic Controller)のような計算機であり、メモリや、CPUおよびLANなどの伝送装置(不図示)が実装されている。需給制御装置100のメモリ内には、経済負荷配分計算部110、経済負荷配分の計算結果を格納するためのメモリ120、地域要求量算出部130、出力補正量変換部140、電力指令値配分量計算部150が実装される。このように構成された本発明の需給制御装置100が特徴とするところは、経済負荷配分計算部110の出力である配分比率に、発電機および蓄電池の出力比率を近づけるように、電力指令値配分量計算部150が発電機および蓄電池へ出力を配分する点にある。このような特徴を備える本発明の需給制御装置の各構成要素については以下に説明する。
需給制御装置100への入力情報を以下に説明する。計測情報である下記の各種情報は、それぞれの計測点にて計測された後、需給制御装置100へ伝送される。
The supply and demand control device 100 receives the frequency and connection point flow of the power system, the power generated by the generator, the charge / discharge power of the storage battery, the remaining capacity of the storage battery, and the predicted power demand, and the generated power and storage battery for the generator 200. Calculation / command of charge / discharge power to 300 is given. The supply and demand control device 100 is a computer such as a personal computer or a PLC (Programmable Logic Controller), and is mounted with a memory, a transmission device (not shown) such as a CPU and a LAN. In the memory of the supply and demand control apparatus 100, an economic load distribution calculation unit 110, a memory 120 for storing the calculation result of the economic load distribution, a regional requirement amount calculation unit 130, an output correction amount conversion unit 140, a power command value distribution amount A calculation unit 150 is implemented. The power supply / demand control apparatus 100 of the present invention configured as described above is characterized in that the electric power command value distribution is made so that the output ratio of the generator and the storage battery is close to the distribution ratio that is the output of the economic load distribution calculation unit 110. The quantity calculator 150 distributes the output to the generator and the storage battery. Each component of the supply-and-demand control apparatus of this invention provided with such a characteristic is demonstrated below.
Input information to the supply and demand control apparatus 100 will be described below. The following various information that is measurement information is measured at each measurement point and then transmitted to the supply and demand control apparatus 100.
周波数は、電力系統の1点から計測される。
連系点潮流は、連系している電力系統との連系点における潮流を計測したものである。
発電電力は、制御対象発電機の出力である発電電力(単位は[kW])を計測したもので、発電機が複数台ある場合は個別に計測される。
The frequency is measured from one point of the power system.
The connection point tidal current is a measurement of the tidal current at the connection point with the connected power system.
The generated power is obtained by measuring the generated power (unit: [kW]) that is the output of the controlled generator, and is measured individually when there are a plurality of generators.
蓄電池の充放電電力は、制御対象蓄電池の充放電電力(単位は[kW])を計測したもので、蓄電池が複数台ある場合は個別に計測される。
蓄電池残存容量は、制御対象蓄電池の残存容量を計測したもので、蓄電池が複数台ある場合は個別に計測される。蓄電池残存容量は、残存容量を満充電容量に対する0〜100[%]として計測してもよいし、[kWh]などの単位としてもよい。
The charge / discharge power of the storage battery is obtained by measuring the charge / discharge power (unit: [kW]) of the storage battery to be controlled, and is individually measured when there are a plurality of storage batteries.
The remaining capacity of the storage battery is obtained by measuring the remaining capacity of the storage battery to be controlled, and is individually measured when there are a plurality of storage batteries. The remaining capacity of the storage battery may be measured by measuring the remaining capacity as 0 to 100 [%] with respect to the full charge capacity, or in units such as [kWh].
電力需要予測値は、経済負荷配分計算部110(EDC)で用いる入力情報であり、EDCが例えば1分周期で処理する場合には1分後の電力需要を予測した値を用いる。本発明では、電力需要予測値は上記の予測値を設定する設定値として扱う。 The predicted power demand value is input information used by the economic load distribution calculation unit 110 (EDC), and when the EDC processes, for example, at a cycle of one minute, a value predicted from the power demand after one minute is used. In the present invention, the power demand predicted value is handled as a set value for setting the predicted value.
また、発電機の効率を表す燃料費特性や、発電機および蓄電池の出力上下限値および出力変化率の制約条件も設定する。
経済負荷配分計算部110は、電力需要予測値を入力とし、最も経済的になるように、公知手法である等増分燃料費法(等λ法)などを用いて各発電機への負荷配分を計算する。その負荷配分を、メモリ120に記憶しておく。例えば、図示しない3台の発電機A〜Cがある場合に、発電機Aに50[kW]、発電機Bに30[kW]、発電機Cに40[kW]という配分結果が得られた時、その配分結果を出力配分値としてメモリ120に格納しておく。経済負荷配分計算部110は、本実施の形態では1分周期で上記の計算をし、メモリ120に格納した情報を更新する。
In addition, the fuel cost characteristics representing the efficiency of the generator, the upper and lower limits of the output of the generator and the storage battery, and the constraint condition of the output change rate are also set.
The economic load distribution calculation unit 110 receives the power demand prediction value as input, and distributes the load to each generator using the known incremental fuel cost method (equal λ method) or the like so as to be most economical. calculate. The load distribution is stored in the memory 120. For example, when there are three generators A to C (not shown), distribution results of 50 [kW] for the generator A, 30 [kW] for the generator B, and 40 [kW] for the generator C were obtained. At that time, the distribution result is stored in the memory 120 as an output distribution value. In this embodiment, the economic load distribution calculation unit 110 performs the above calculation at a cycle of 1 minute, and updates the information stored in the memory 120.
上記の経済負荷配分計算部110で計算したメモリ120に格納した出力配分値を、下記で説明する1秒周期での負荷周波数制御(LFC)に用いる。LFCの制御の流れについては、図2、図3を用いて以下に説明する。 The output distribution value stored in the memory 120 calculated by the economic load distribution calculation unit 110 is used for load frequency control (LFC) in a 1-second cycle described below. The flow of LFC control will be described below with reference to FIGS.
地域要求量算出部130は、系統周波数、基準周波数(定格周波数)および連系点潮流などから地域要求量AR(需給インバランス)を計算する(図2のステップS11)。
出力補正量変換部140は、上記地域要求量算出部130で求めた地域要求量ARに制御係数を掛け、制御対象の発電機および蓄電池の出力への補正が必要である出力補正量Pに変換する(図2のステップS12)。例えば、負荷周波数制御をPID制御にて行っている場合は、以下の式のように出力補正量P(必要発電電力)を計算する。
The regional requirement amount calculation unit 130 calculates the regional requirement amount AR (supply / demand imbalance) from the system frequency, the reference frequency (rated frequency), the interconnection point flow, and the like (step S11 in FIG. 2).
The output correction amount conversion unit 140 multiplies the regional requirement amount AR obtained by the regional requirement amount calculation unit 130 by a control coefficient, and converts it into an output correction amount P that requires correction to the output of the generator and storage battery to be controlled. (Step S12 in FIG. 2). For example, when the load frequency control is performed by PID control, the output correction amount P (necessary generated power) is calculated as in the following equation.
出力補正量P=制御係数(比例ゲインKp、積分ゲインKi、微分ゲインKd)×地域要求量AR
ここで出力補正量Pは、発電機および蓄電池の出力に対する補正が必要な電力の合計値とも言える。
Output correction amount P = control coefficient (proportional gain Kp, integral gain Ki, differential gain Kd) × region required amount AR
Here, it can be said that the output correction amount P is a total value of electric power that needs to be corrected for the outputs of the generator and the storage battery.
電力指令値配分量計算部150は、上記出力補正量変換部140にて計算された出力補正量Pを、制御対象の発電機および蓄電池へどう配分するか、その出力配分を計算する。発電電力指令値(または充放電電力指令値)とは、発電機(または蓄電池)に与える出力指令値であり、単位は、[kW]とする。 The power command value distribution amount calculation unit 150 calculates the output distribution of how the output correction amount P calculated by the output correction amount conversion unit 140 is distributed to the generator and storage battery to be controlled. The generated power command value (or charge / discharge power command value) is an output command value given to the generator (or storage battery), and its unit is [kW].
電力指令値配分量計算部150は、以下に示す、補正量分割部151、発電機配分計算部152および蓄電池配分計算部153により構成されている。
補正量分割部151は、上記出力補正量変換部140で算出した出力補正量Pを、何らかの基準や予め決めてあるロジックにしたがって、発電機で補償すべき補正量(Pg_total:発電機台数N台の合計値)および蓄電池で補償すべき補正量(Pl_total:蓄電池台数M台の合計値)へと分割する(図2のステップS13)。例えば、蓄電池残存容量を目標値に近づけるような残存容量(State of Charge、SOC)の制御を行うため、発電機になるべく多くの負荷を割り振り、発電機の出力制約により配分できない分を蓄電池に割り振る方法が考えられる。例えば数値例としては、出力補正量Pが100[kW]であった場合に、発電機でまかなうことができる上限の80[kW]をPg_totalとして発電機に、残りの20[kW]をPl_totalとして蓄電池へ割り振ることが考えられる。
The electric power command value distribution amount calculation unit 150 includes a correction amount division unit 151, a generator distribution calculation unit 152, and a storage battery distribution calculation unit 153, which will be described below.
The correction amount dividing unit 151 corrects the output correction amount P calculated by the output correction amount conversion unit 140 by a generator according to some standard or a predetermined logic (Pg_total: N generators). 2) and a correction amount to be compensated by the storage battery (Pl_total: total value of M storage batteries) (step S13 in FIG. 2). For example, in order to control the remaining capacity (State of Charge, SOC) so as to bring the remaining capacity of the storage battery close to the target value, allocate as much load as possible to the generator, and allocate to the storage battery the amount that cannot be allocated due to the output constraints of the generator A method is conceivable. For example, when the output correction amount P is 100 [kW], the upper limit of 80 [kW] that can be covered by the generator is set as Pg_total, and the remaining 20 [kW] is set as Pl_total. It is possible to allocate to storage batteries.
発電機配分計算部152は、補正量分割部151で算出した発電機で補償すべき補正量(Pg_total)を、図示しないN台の発電機(1)〜(N)に配分する(図2のステップS14)。 The generator distribution calculation unit 152 distributes the correction amount (Pg_total) to be compensated by the generator calculated by the correction amount dividing unit 151 to N generators (1) to (N) (not shown) (see FIG. 2). Step S14).
実施例1における発電機配分計算部152の配分方法は、発電機の出力比率を経済負荷配分の配分比率に近づけるための実現方法のひとつである。
まず、発電機配分計算部152は、経済負荷配分計算部110で計算した結果を格納したメモリ120から、各発電機への出力配分値を取得する。発電機配分計算部152は、その出力配分値に基づき、各発電機の配分係数(K(1)〜K(n))を式1で算出する(図3のステップS21)。配分係数とは、全発電機の出力の合計値が1となるように、出力配分値を正規化したものである。
The distribution method of the generator distribution calculation unit 152 in the first embodiment is one of the realizing methods for bringing the output ratio of the generator close to the distribution ratio of economic load distribution.
First, the generator distribution calculation unit 152 acquires the output distribution value to each generator from the memory 120 storing the result calculated by the economic load distribution calculation unit 110. Based on the output distribution value, the generator distribution calculation unit 152 calculates the distribution coefficient (K (1) to K (n)) of each generator using Equation 1 (step S21 in FIG. 3). The distribution coefficient is obtained by normalizing the output distribution value so that the total output value of all the generators is 1.
K(1)= Ga_edc(1)/( Ga_edc(1)+Ga_edc(2)+…+Ga_edc(n)) 式 1
K(2)= Ga_edc(2)/( Ga_edc(1)+Ga_edc(2)+…+Ga_edc(n))
…
K(n)= Ga_edc(n)/( Ga_edc(1)+Ga_edc(2)+…+Ga_edc(n))
ただし、Ga_edc(1)、Ga_edc(2)、…Ga_edc(n)は、経済負荷配分計算部110で計算した発電機(1)〜(N)への出力配分値である。
K (1) = Ga_edc (1) / (Ga_edc (1) + Ga_edc (2) +… + Ga_edc (n)) Equation 1
K (2) = Ga_edc (2) / (Ga_edc (1) + Ga_edc (2) +… + Ga_edc (n))
...
K (n) = Ga_edc (n) / (Ga_edc (1) + Ga_edc (2) +… + Ga_edc (n))
However, Ga_edc (1), Ga_edc (2),... Ga_edc (n) are output distribution values to the generators (1) to (N) calculated by the economic load distribution calculation unit 110.
次に、発電機配分計算部152は、各発電機の出力実績値からN台それぞれの発電機の出力比率係数(L(1)〜L(n))を、式2で算出する(ステップS22)。なお、出力比率係数とは、全発電機の出力実績値の合計値が1となるように正規化した係数である。 Next, the generator distribution calculation unit 152 calculates the output ratio coefficient (L (1) to L (n)) of each of the N generators based on the actual output value of each generator using Equation 2 (step S22). ). The output ratio coefficient is a coefficient normalized so that the total value of the actual output values of all the generators is 1.
L(1)= Ga_past(1)/( Ga_past(1)+Ga_past(2)+…+Ga_past(n)) 式 2
L(2)= Ga_past(2)/( Ga_past(1)+Ga_past(2)+…+Ga_past(n))
…
L(n)= Ga_past(n)/( Ga_past(1)+Ga_past(2)+…+Ga_past(n))
ただし、Ga_past(1)、Ga_past(2)、…Ga_past(n)は各発電機の現時点の出力電力実績値(発電電力)である。
L (1) = Ga_past (1) / (Ga_past (1) + Ga_past (2) +… + Ga_past (n)) Equation 2
L (2) = Ga_past (2) / (Ga_past (1) + Ga_past (2) +… + Ga_past (n))
...
L (n) = Ga_past (n) / (Ga_past (1) + Ga_past (2) +… + Ga_past (n))
However, Ga_past (1), Ga_past (2),... Ga_past (n) are actual output power values (generated power) at the present time of each generator.
次に、発電機配分計算部152は、ステップS21で算出した配分係数と、ステップS22で算出した出力比率係数とを比較し、発電機で補償すべき補正量(Pg_total)を割り振るための発電機の優先順位を設定する(ステップS23)。 Next, the generator distribution calculation unit 152 compares the distribution coefficient calculated in step S21 with the output ratio coefficient calculated in step S22, and allocates a correction amount (Pg_total) to be compensated by the generator. Is set (step S23).
優先順位の設定方法について、以下に一例を挙げる。
Pg_totalが正の場合は、各発電機について、K(i)とL(i)の差(K(i)−L(i) (i=1、2、…、n))を計算し、その差が大きい順に、発電機の優先順位を高く設定する。Pg_totalが負の場合は、各発電機について、K(i)とL(i)の差を計算し、その差が大きい順に、発電機の優先順位を低く設定する。K(i)とL(i)の差は、経済負荷配分で求めた理想の比率である配分比率と、現状の出力の比率である出力比率との差であり、2つの比率の近づき具合(一般的に距離という)を表す評価指標として用いるものである。実施例1では、2つの比率のこの距離を0に近づけていくように、補正量を配分することで、出力比率を配分比率へ近づける。
An example of the priority setting method is given below.
When Pg_total is positive, for each generator, calculate the difference between K (i) and L (i) (K (i) -L (i) (i = 1, 2, ..., n)) The order of priority of generators is set higher in descending order. When Pg_total is negative, the difference between K (i) and L (i) is calculated for each generator, and the priority order of the generators is set lower in descending order of the difference. The difference between K (i) and L (i) is the difference between the distribution ratio, which is the ideal ratio obtained by economic load distribution, and the output ratio, which is the ratio of the current output. It is used as an evaluation index representing generally (distance). In the first embodiment, the output ratio is brought closer to the distribution ratio by allocating the correction amount so that the distance between the two ratios approaches zero.
次に、発電機配分計算部152は、優先順位の最も高い発電機(優先順位1の発電機)に発電機で補償すべき補正量(Pg_total)を全て割り振る(ステップS24)。ここで、割り振る先の発電機のことを割当発電機と呼び、また割当発電機に割り振る補正量(発電電力の補正量)を、割当発電量と呼ぶ。実施例1では、ステップS24で、割当発電機には優先順位の最も高い発電機を、割当発電量には発電機で補償すべき補正量(Pg_total)を設定しておく。 Next, the generator distribution calculation unit 152 allocates all the correction amounts (Pg_total) to be compensated by the generator to the generator with the highest priority (the generator with priority 1) (step S24). Here, the generator to be allocated is called an allocated generator, and the correction amount (corrected power correction amount) allocated to the allocated generator is called an allocated power generation amount. In the first embodiment, in step S24, the generator having the highest priority is set for the allocated generator, and the correction amount (Pg_total) to be compensated by the generator is set for the allocated power generation amount.
発電機(1)が優先順位1の発電機であった場合、各発電機に割り振る補正量Pg(1)、Pg(2)、…Pg(n)は、式3となる。
Pg(1)= Pg_total 式 3
Pg(2)= 0
…
Pg(n)= 0
次に、発電機配分計算部152は、式5で算出した上記の補正量を現状の出力に加算したと仮定し、各発電機の出力比率係数(N(1)〜N(n))を式4および式5で算出する(ステップS25)。
Ga_out(1)=Pg(1)+Ga_past(1) 式 4
Ga_out(2)=Pg(2)+Ga_past(2)
…
Ga_out(n)=Pg(n)+Ga_past(n)
ただし、Ga_past(1)、Ga_past(2)、…Ga_past(n)は各発電機の現時点の出力電力実績値(発電電力)である。Ga_out(1)、Ga_out(2)、…Ga_out(n)は、各発電機の発電電力指令値である。
N(1)= Ga_out(1)/( Ga_out(1)+Ga_out(2)+…+Ga_out(n)) 式 5
N(2)= Ga_out(2)/( Ga_out(1)+Ga_out(2)+…+Ga_out(n))
…
N(n)= Ga_out(n)/( Ga_out(1)+Ga_out(2)+…+Ga_out(n))
次に、発電機配分計算部152は、割当発電機について、ステップS21にて算出した配分係数(K(1)〜K(n))とステップS25にて算出した出力比率係数(N(1)〜N(n))を比較し、割当発電機に割り当てた補正量(割当発電量)が妥当かどうかを判定する(ステップS26)。ここで、詳細は後述するが、補正量が多すぎていなければ妥当であるとし、割当発電機に割当発電量を全て割り振りステップS27へ進む。割当発電量の量が多すぎた場合は妥当でないとし、ステップS28へ進む。
When the generator (1) is a generator of priority 1, the correction amounts Pg (1), Pg (2),... Pg (n) assigned to each generator are expressed by Equation 3.
Pg (1) = Pg_total Equation 3
Pg (2) = 0
...
Pg (n) = 0
Next, the generator distribution calculation unit 152 assumes that the correction amount calculated in Equation 5 is added to the current output, and calculates the output ratio coefficient (N (1) to N (n)) of each generator. Calculation is performed using Equation 4 and Equation 5 (step S25).
Ga_out (1) = Pg (1) + Ga_past (1) Equation 4
Ga_out (2) = Pg (2) + Ga_past (2)
...
Ga_out (n) = Pg (n) + Ga_past (n)
However, Ga_past (1), Ga_past (2),... Ga_past (n) are actual output power values (generated power) at the present time of each generator. Ga_out (1), Ga_out (2),... Ga_out (n) are generated power command values of the respective generators.
N (1) = Ga_out (1) / (Ga_out (1) + Ga_out (2) +… + Ga_out (n)) Equation 5
N (2) = Ga_out (2) / (Ga_out (1) + Ga_out (2) +… + Ga_out (n))
...
N (n) = Ga_out (n) / (Ga_out (1) + Ga_out (2) +… + Ga_out (n))
Next, the generator allocation calculation unit 152 for the allocated generators, the allocation coefficient (K (1) to K (n)) calculated in step S21 and the output ratio coefficient (N (1)) calculated in step S25. ... (N (n)) are compared to determine whether or not the correction amount (allocated power generation amount) allocated to the allocated generator is appropriate (step S26). Here, although details will be described later, it is determined that it is appropriate if the correction amount is not too large, and the entire allocated power generation amount is allocated to the allocated generator, and the process proceeds to step S27. If the allocated power generation amount is too large, it is not appropriate and the process proceeds to step S28.
補正量が妥当かどうかを判断するための基準を、以下に説明する。
Pg_totalが正の場合には、割当発電機について、配分係数Kから出力比率係数Nを引き、その結果(K−N)が正となる場合は、割当発電量を追加した場合でもまだ配分比率に近づく余地が残っているため、割り振りすぎてはいないと判断する。一方、配分係数Kから出力比率係数Nを引いた結果(K−N)が負となる場合、Pg_totalを全て最も優先順位の高い発電機に配分すると割り振りすぎることになるため、妥当でないと判断する。
The criteria for determining whether the correction amount is appropriate will be described below.
If Pg_total is positive, the output ratio coefficient N is subtracted from the allocation coefficient K for the allocated generator. If the result (K−N) is positive, the allocation ratio is still added even if the allocated power generation amount is added. Since there is still room for approach, it is determined that the allocation is not excessive. On the other hand, if the result of subtracting the output ratio coefficient N from the distribution coefficient K (K−N) is negative, it will be over-allocated if all Pg_total is allocated to the generator with the highest priority. .
Pg_totalが負の場合には、割当発電機について、出力比率係数Nから配分係数Kを引き、その結果(N−K)が正となる場合、上記と同じように妥当と判断し、負となる場合には妥当でないと判断する。
次に発電機配分計算部152は、割当発電機について、ステップS21とステップS25にて算出した、KとNが等しくなる補正量(Pg_hosei)を算出する。補正量(Pg_hosei)は、割当発電機が発電機(1)であった場合には、式6で計算される(ステップS28)。
When Pg_total is negative, if the allocation coefficient K is subtracted from the output ratio coefficient N for the assigned generator, and the result (N−K) is positive, it is determined to be valid in the same manner as above and becomes negative. Judge that it is not appropriate in some cases.
Next, the generator distribution calculation unit 152 calculates a correction amount (Pg_hosei) for K and N that is calculated in steps S21 and S25 for the assigned generator. The correction amount (Pg_hosei) is calculated by Expression 6 when the assigned generator is the generator (1) (step S28).
Pg_hosei=K(1)×(Ga_past(1)+Ga_past(2)+…+Ga_past(n)+ Pg_total)−Ga_past(1) 式 6
次に、発電機配分計算部152は、割当発電機にステップS28で算出した補正量(Pg_hosei)を割り振る(ステップS29)。
Pg_hosei = K (1) × (Ga_past (1) + Ga_past (2) +… + Ga_past (n) + Pg_total) −Ga_past (1) Equation 6
Next, the generator distribution calculation unit 152 allocates the correction amount (Pg_hosei) calculated in step S28 to the assigned generator (step S29).
発電機配分計算部152は、ステップS30で、割当発電機には次に優先順位の高い発電機を、割当発電量には割り振った残りの補正量(Pg_total −Pg_hosei)を設定し、ステップS25へ戻り、発電機で補償すべき補正量を全て割り振り終わるまで図3のフローを繰り返す。 In step S30, the generator distribution calculation unit 152 sets the next highest priority generator to the assigned generator, and sets the remaining correction amount (Pg_total−Pg_hosei) assigned to the assigned power generation amount, and then proceeds to step S25. Returning, the flow of FIG. 3 is repeated until all the correction amounts to be compensated by the generator have been allocated.
各発電機に割り振る補正量をPg(1)、Pg(2)、…Pg(n)すると、割当発電機が発電機(1)、次に優先順位の高い発電機が発電機(2)の場合、式7となる。
Pg(1)= Pg_hosei 式 7
Pg(2)= Pg_total −Pg_hosei
Pg(3)=0
…
Pg(n)= 0
最後に、発電機で補償すべき補正量を全て割り振り終わった後に、各発電機に割り振られた補正量と各発電機の現時点の出力電力実績値を足し合わせ、各発電機への出力である発電電力指令値を算出する(ステップS27)。各発電機の発電電力指令値(Ga_out(1)〜Ga_out(n))は、式8で計算される。
When the correction amount allocated to each generator is Pg (1), Pg (2), ... Pg (n), the assigned generator is the generator (1), and the next highest priority generator is the generator (2). In this case, Equation 7 is obtained.
Pg (1) = Pg_hosei Equation 7
Pg (2) = Pg_total −Pg_hosei
Pg (3) = 0
...
Pg (n) = 0
Finally, after all the correction amounts to be compensated by the generators have been allocated, the correction amount allocated to each generator is added to the current output power actual value of each generator, which is the output to each generator. A generated power command value is calculated (step S27). The generated power command value (Ga_out (1) to Ga_out (n)) of each generator is calculated by Expression 8.
Ga_out(1)= Pg(1)+Ga_past(1) 式 8
Ga_out(2)= Pg(2)+Ga_past(2)
…
Ga_out(n)= Pg(n)+Ga_past(n)
ただし、Ga_past(1)、Ga_past(2)、…Ga_past(n)は各発電機の現時点の出力電力実績値(発電電力)である。
Ga_out (1) = Pg (1) + Ga_past (1) Equation 8
Ga_out (2) = Pg (2) + Ga_past (2)
...
Ga_out (n) = Pg (n) + Ga_past (n)
However, Ga_past (1), Ga_past (2),... Ga_past (n) are actual output power values (generated power) at the present time of each generator.
なお、発電機の出力比率と配分比率の差を評価指標として用いて、その差の平方和を目的関数とし最小化問題を設定し、最適化手法を用いて解くことによっても、出力補正量を配分できる。その場合は、発電機の出力比率と配分比率の差を、最も小さくように配分するため、発電機の出力比率を配分比率により早く近づけることができる。 The output correction amount can also be calculated by using the difference between the generator output ratio and the distribution ratio as an evaluation index, setting the minimization problem using the sum of squares of the difference as an objective function, and solving it using an optimization method. Can be distributed. In that case, since the difference between the output ratio of the generator and the distribution ratio is allocated so as to be the smallest, the output ratio of the generator can be brought closer to the distribution ratio more quickly.
なお、補正量を割り当てる方法として、優先順位が一番高いものから順に割り当てる方法や、上記の距離に応じて、距離が遠い発電機ほど多くの補正量を割り当てる方法などが考えられる。 In addition, as a method of assigning correction amounts, a method of assigning the correction amounts in order from the highest priority, a method of assigning a larger correction amount to a generator with a longer distance according to the above distance, and the like can be considered.
実施例1では、経済負荷配分の配分比率と出力比率の差を小さくするように出力配分することで、経済負荷配分で用いる需要予測が外れた場合でも、その影響を少なくした需給制御を実現できる。 In the first embodiment, by distributing the output so as to reduce the difference between the distribution ratio of the economic load distribution and the output ratio, it is possible to realize supply and demand control with less influence even when the demand forecast used in the economic load distribution is off. .
実施例1では、各発電機の出力比率と配分比率の差が最も大きい発電機から補正量を割り当てることにより確実に出力比率を配分比率に近づけることができる。
また、優先順位の高い発電機から順に、割り振れる量をすべて配分していくことで、出力変更をする発電機の台数を少なくすることができる。
In the first embodiment, the output ratio can be reliably brought close to the distribution ratio by assigning the correction amount from the generator having the largest difference between the output ratio and the distribution ratio of each generator.
Also, by distributing all the allocated amounts in order from the generator with the highest priority, the number of generators whose output is changed can be reduced.
次に、蓄電池配分計算部153は、上記の補正量分割部151で算出した蓄電池で補償すべき補正量(Pl_total)をM台の蓄電池へと配分する(図2のステップS15)。蓄電池配分計算部153は、配分する量をPg_totalからPl_totalとし、配分する台数をN台からM台とすることで、上記の発電機の場合と同様の方法で処理できるため、説明は省略する。各蓄電池への出力である充放電電力指令値を出力し、需給制御の1周期分の制御を終了する。 Next, the storage battery distribution calculation unit 153 distributes the correction amount (Pl_total) to be compensated by the storage battery calculated by the correction amount dividing unit 151 to the M storage batteries (step S15 in FIG. 2). The storage battery allocation calculation unit 153 can perform processing in the same manner as in the case of the above-described generator by changing the allocation amount from Pg_total to Pl_total and the allocation number from N to M, and thus the description thereof is omitted. The charge / discharge electric power command value which is an output to each storage battery is output, and the control for one cycle of supply and demand control is completed.
なお、制御対象の発電機および蓄電池へ出力補正量Pを配分する際には、発電機および蓄電池の上下限制約および出力変化率制約を考慮して行う必要があるが、発明を簡潔に説明するために、本実施例では出力変化率の制約は省略して説明した。出力変化率とは、単位時間内に変化可能な出力の上下限のことである。 Note that when the output correction amount P is distributed to the generator and storage battery to be controlled, it is necessary to consider the upper and lower limit constraints and the output change rate constraint of the generator and storage battery, but the invention will be briefly described. For this reason, in this embodiment, the restriction on the output change rate is omitted. The output change rate is the upper and lower limits of the output that can change within a unit time.
前記した負荷周波数制御(LFC)の3つの方式のどの方式に対しても本発明は適用できる。
LFCの制御周期は1秒でなくても、例えば3秒であってもよい。EDCの制御周期も1分に限らず、例えば5分であってもよい。
The present invention can be applied to any of the three methods of load frequency control (LFC) described above.
The control cycle of the LFC is not limited to 1 second, but may be 3 seconds, for example. The EDC control cycle is not limited to 1 minute, and may be, for example, 5 minutes.
メモリ120に記憶する情報は、出力配分値そのものでなくても、その比率(配分比率と呼ぶ)のみでも構わない。
発電機配分計算部152と蓄電池配分計算部153の処理は、順番を入れ替えて実施しても同様の結果を得るため、どちらを先に処理しても構わない。
The information stored in the memory 120 may not be the output distribution value itself but only its ratio (referred to as distribution ratio).
The processes of the generator distribution calculation unit 152 and the storage battery distribution calculation unit 153 may be performed first in order to obtain the same result even if the order is changed.
経済負荷配分(EDC)で得た発電機の配分比率は、経済性の高いものであり、その配分比率を用いてLFCとの協調制御を行うことにより、経済性を考慮した需給制御を行うことができる。 The distribution ratio of the generators obtained by economic load distribution (EDC) is highly economical, and supply and demand control that takes into account the economic efficiency is performed by performing coordinated control with the LFC using the distribution ratio. Can do.
また、補正量分割部151にて、蓄電池の残存容量を目標値に近づけるように発電機および蓄電池に補正量を分割することによって、需給バランスの急激な変動を吸収するために蓄電池の残存容量を確保できることから、より信頼性の高い需給制御を実現できる。
<実施例2>
実施例2は、発電機配分計算部152にて発電機に出力を配分する際に、発電機の出力情報(出力比率)を用いない点で実施例1と異なる。その他の構成部分については、実施例1と同様であるため説明を省略する。以下に、発電機配分計算部152の動作手順について、図4を用いて説明する。
Further, the correction amount dividing unit 151 divides the correction amount into the generator and the storage battery so that the remaining capacity of the storage battery approaches the target value, thereby reducing the remaining capacity of the storage battery in order to absorb a sudden fluctuation in the supply and demand balance. Because it can be secured, more reliable supply and demand control can be realized.
<Example 2>
The second embodiment is different from the first embodiment in that output information (output ratio) of the generator is not used when the generator distribution calculation unit 152 distributes the output to the generator. Since other components are the same as those in the first embodiment, the description thereof is omitted. Below, the operation | movement procedure of the generator allocation calculation part 152 is demonstrated using FIG.
まず、発電機配分計算部152は、EDCで計算した各発電機への出力配分値から、各発電機の配分係数(K(1)〜K(n))を、式1で算出する(ステップS41)。配分係数の算出方法は、実施例1と同様である。 First, the generator distribution calculation unit 152 calculates the distribution coefficient (K (1) to K (n)) of each generator from Equation 1 from the output distribution value to each generator calculated by EDC (step 1). S41). The calculation method of the distribution coefficient is the same as that in the first embodiment.
次に、発電機配分計算部152は、配分係数(K(1)〜K(n))に基づき、各発電機への補正量(Pg(1)〜Pg(n))を、式9で計算する(図4のステップS42)。
Pg(1)= K(1)×Pg_total 式 9
Pg(2)= K(2)×Pg_total
…
Pg(n)= K(n)×Pg_total
最後に、発電機配分計算部152は、各発電機への出力である発電電力指令値(Ga_out(1)〜Ga_out(n))を式10で計算し、出力する(図4のステップS43)。
Next, the generator distribution calculation unit 152 calculates the correction amount (Pg (1) to Pg (n)) to each generator based on the distribution coefficient (K (1) to K (n)) using Equation 9. Calculation is performed (step S42 in FIG. 4).
Pg (1) = K (1) x Pg_total Equation 9
Pg (2) = K (2) × Pg_total
...
Pg (n) = K (n) × Pg_total
Finally, the generator distribution calculation unit 152 calculates and outputs the generated power command value (Ga_out (1) to Ga_out (n)), which is an output to each generator, using Equation 10 (step S43 in FIG. 4). .
Ga_out(1)= Pg(1)+Ga_past(1) 式 10
Ga_out(2)= Pg(2)+Ga_past(2)
…
Ga_out(n)= Pg(n)+Ga_past(n)
ただし、Ga_past(1)、Ga_past(2)、…Ga_past(n)は、各発電機の現時点の出力電力実績値(発電電力)とする。
Ga_out (1) = Pg (1) + Ga_past (1) Equation 10
Ga_out (2) = Pg (2) + Ga_past (2)
...
Ga_out (n) = Pg (n) + Ga_past (n)
However, Ga_past (1), Ga_past (2),... Ga_past (n) are actual output power actual values (generated power) of each generator.
実施例2では、制御周期ごとに、配分比率に基づいて出力補正量Pを各発電機に出力配分することから、発電機の出力比率が配分比率にすでに近い場合に対しては、その比率を保ちつつ出力補正量Pを配分することができる。したがって、実施例2は、発電機の出力比率が配分比率に近い場合に、出力補正量Pを経済負荷配分の配分比率にしたがって各発電機に出力配分することにより、経済負荷配分で用いる需要予測が外れた場合でも、その影響を少なくした需給制御を実現できる。
<実施例3>
実施例3が上記実施例と異なる点は、経済負荷配分(EDC)の対象に蓄電池が加わった点と、ある時間断面の経済性だけでなく、ある時系列にまたがる経済性を評価した経済負荷配分をする点である。経済負荷配分計算部110は、例えば一日分の需要予測値があり、その時々刻々変化する需要を満たした上で、発電機および蓄電池にどう負荷配分すれば、一日を通して最も経済的な運用になるかを計算する。
In the second embodiment, the output correction amount P is distributed to each generator based on the distribution ratio for each control cycle. Therefore, when the output ratio of the generator is already close to the distribution ratio, the ratio is set as follows. The output correction amount P can be distributed while keeping it. Therefore, in the second embodiment, when the output ratio of the generator is close to the distribution ratio, the output prediction amount P is distributed to each generator according to the distribution ratio of the economic load distribution, so that the demand forecast used in the economic load distribution Even if the power goes off, supply and demand control can be realized with less influence.
<Example 3>
Example 3 differs from the above example in that a storage battery is added to the target of economic load distribution (EDC), and not only the economics of a certain time section but also the economic load that evaluates economics over a certain time series. It is a point to distribute. The economic load distribution calculation unit 110 has, for example, a demand forecast value for one day. After satisfying the demand that changes every moment, how to distribute the load to the generator and the storage battery, the most economical operation throughout the day. Calculate what will be.
実施例3が上記実施例と異なる構成部分は、図5に示す、経済負荷配分計算部110、その入力情報である電力需要予測値、および配分計算部160である。その他の構成については、実施例1と同様であるため説明を省略する。 The components of the third embodiment that are different from the above-described embodiment are an economic load distribution calculation unit 110, a power demand prediction value that is input information thereof, and a distribution calculation unit 160 shown in FIG. Other configurations are the same as those in the first embodiment, and thus the description thereof is omitted.
電力需要予測値は、ある時間帯における電力需要予測値の時系列データとする。本発明では、電力需要予測値は設定値情報として扱う。
実施例3での経済負荷配分計算部110は、電力需要予測値を入力とし、ある時間スケジュールを全体が最も経済的になるように、各発電機および蓄電池への負荷配分を計算する。その計算方法は、目的関数に発電機および蓄電池のコストを設定し、発電機の上下限制約や出力変化率制約、蓄電池の容量による制約等を設定し、最適化問題として最適化手法を適用し解くことができる。
The power demand prediction value is time series data of the power demand prediction value in a certain time zone. In the present invention, the power demand prediction value is handled as set value information.
The economic load distribution calculation unit 110 according to the third embodiment receives the power demand prediction value as input, and calculates the load distribution to each generator and storage battery so that the entire time schedule is most economical. The calculation method sets the cost of the generator and storage battery in the objective function, sets the upper and lower limit constraints of the generator, the output change rate constraint, the constraint due to the capacity of the storage battery, etc., and applies the optimization method as an optimization problem. Can be solved.
実施例3は発電機と蓄電池を区別することなく、出力配分を決めるため、配分計算部160は、実施例1および実施例2の発電機配分計算部152のアルゴリズムと同等の処理をすることにより、すべての制御対象機器についての配分量を算出し、出力指令値を出力する。 In the third embodiment, since the output distribution is determined without distinguishing between the generator and the storage battery, the distribution calculation unit 160 performs processing equivalent to the algorithm of the generator distribution calculation unit 152 of the first and second embodiments. The distribution amount for all the control target devices is calculated, and the output command value is output.
配分計算部160での動作手順について、図6を用いて説明する。配分計算部160は、負荷周波数制御のフローであるステップS12(出力補正量Pを算出)を終えた時点から、以下のフローを開始する。 The operation procedure in the distribution calculation unit 160 will be described with reference to FIG. The distribution calculation unit 160 starts the following flow from the point of time when step S12 (calculating the output correction amount P), which is the flow of load frequency control, is completed.
まず、配分計算部160は、経済負荷配分計算部110で求めた制御対象機器(各発電機および各蓄電池)への出力配分値スケジュール(例えば一日分の出力配分値)から、例えば1分先の出力配分値のみを入力として用いる。配分計算部160は、この1分先の出力配分値を用いて、制御対象機器の配分係数(K(1)〜K(all))を、式11で算出する(ステップS51)。発電機はN台、蓄電池はM台とすると、制御対象機器の台数は、N台とM台を合わせた台数(式11ではallと記述)となる。 First, the distribution calculation unit 160, for example, one minute ahead from the output distribution value schedule (for example, the output distribution value for one day) to the control target devices (each generator and each storage battery) obtained by the economic load distribution calculation unit 110. Only the output distribution value is used as an input. The distribution calculation unit 160 calculates the distribution coefficient (K (1) to K (all)) of the control target device using Equation 11 using the output distribution value one minute ahead (step S51). If the number of generators is N and the number of storage batteries is M, the number of devices to be controlled is the total number of N and M units (denoted as all in Equation 11).
K(1)= Ga_edc(1)/( Ga_edc(1)+Ga_edc(2)+…+Ga_edc(all)) 式 11
K(2)= Ga_edc(2)/( Ga_edc(1)+Ga_edc(2)+…+Ga_edc(all))
…
K(all)= Ga_edc(n)/( Ga_edc(1)+Ga_edc(2)+…+Ga_edc(all))
ただし、Ga_edc(1)、Ga_edc(2)、…Ga_edc(all)は、経済負荷配分計算部110にて計算された、1分先の制御対象機器への出力配分値である。
K (1) = Ga_edc (1) / (Ga_edc (1) + Ga_edc (2) +… + Ga_edc (all)) Equation 11
K (2) = Ga_edc (2) / (Ga_edc (1) + Ga_edc (2) +… + Ga_edc (all))
...
K (all) = Ga_edc (n) / (Ga_edc (1) + Ga_edc (2) +… + Ga_edc (all))
However, Ga_edc (1), Ga_edc (2),... Ga_edc (all) are output distribution values to the control target device one minute ahead calculated by the economic load distribution calculation unit 110.
配分計算部160は、各発電機および各蓄電池を区別せず、制御対象機器として扱うことで、実施例1および実施例2で説明したような発電機への配分方法を適用し、制御対象機器の配分量(Pg(1)〜Pg(all))を算出する(ステップS52)。 The distribution calculation unit 160 applies the distribution method to the generator as described in the first embodiment and the second embodiment by treating each generator and each storage battery as a control target device without distinguishing each generator and each storage battery. (Pg (1) to Pg (all)) is calculated (step S52).
最後に、ステップS52で算出した制御対象機器への配分量と各発電機およ各蓄電池の現時点の出力電力実績値を足し合わせ、制御対象機器の出力指令値(発電電力指令値と充放電電力指令値を合わせたもの)を算出する(ステップS53)。制御対象機器の出力指令値(Ga_out(1)〜Ga_out(all))は、式12で計算される。 Finally, the distribution amount to the control target device calculated in step S52 and the current output power actual value of each generator and each storage battery are added together, and the output command value of the control target device (the generated power command value and the charge / discharge power) The sum of the command values is calculated (step S53). Output command values (Ga_out (1) to Ga_out (all)) of the control target device are calculated by Expression 12.
Ga_out(1)= Pg(1)+Ga_past(1) 式 12
Ga_out(2)= Pg(2)+Ga_past(2)
…
Ga_out(all)= Pg(all)+Ga_past(all)
ただし、Ga_past(1)、Ga_past(2)、…Ga_past(all)は制御対象機器の現時点の出力電力実績値(発電電力および蓄電池充放電電力)である。
Ga_out (1) = Pg (1) + Ga_past (1) Equation 12
Ga_out (2) = Pg (2) + Ga_past (2)
...
Ga_out (all) = Pg (all) + Ga_past (all)
However, Ga_past (1), Ga_past (2),... Ga_past (all) are actual output power actual values (generated power and storage battery charge / discharge power) of the control target device.
なお、蓄電池を含めた制御対象機器に関する、出力比率と配分比率との近づけ方については、実施例1に記載したような、出力比率と配分比率の差を評価指標として用いて、その差の平方和を目的関数とした最小化問題を解く方法が適用できることは言うまでもない。その他にも、補正量をすべての制御対象機器に割り当てる方法として、優先順位が一番高いものから順に割り当てる方法や、上記の距離に応じて、距離が遠い制御対象機器ほど多くの補正量を割り当てる方法などが考えられる。 In addition, regarding how to approximate the output ratio and the distribution ratio with respect to the control target device including the storage battery, the difference between the output ratio and the distribution ratio as described in Example 1 is used as an evaluation index, and the square of the difference is calculated. Needless to say, a method for solving the minimization problem with the sum as an objective function can be applied. In addition, as a method of assigning the correction amount to all the control target devices, a method of assigning the correction amount in order from the highest priority, or assigning a larger correction amount to a control target device with a longer distance according to the above distance Possible methods.
実施例3では、経済負荷配分の配分比率と、発電機および各蓄電池の出力比率の差を小さくするように、制御対象機器に出力配分することで、経済負荷配分で用いる需要予測が外れた場合でも、その影響を少なくした需給制御を実現できる。 In Example 3, when the demand forecast used for economic load distribution is off by distributing the output to the control target device so as to reduce the difference between the distribution ratio of the economic load distribution and the output ratio of the generator and each storage battery. However, supply and demand control with less influence can be realized.
実施例3では、すべての制御対象機器について、経済負荷配分で最適な配分比率を求め、その配分比率に出力比率が近づくように、出力補正量Pを配分することによって、より経済性に優れた需給制御を行うことができる。 In the third embodiment, the optimal allocation ratio is obtained by the economic load distribution for all the control target devices, and the output correction amount P is distributed so that the output ratio is close to the distribution ratio. Supply and demand control can be performed.
100 需給制御装置
110 経済負荷配分計算部
120 メモリ
130 地域要求量算出部
140 出力補正量変換部
150 電力指令値配分量計算部
151 補正量分割部
152 発電機配分計算部
153 蓄電池配分計算部
160 配分量計算部
200 発電機
300 蓄電池
DESCRIPTION OF SYMBOLS 100 Supply-demand control apparatus 110 Economic load distribution calculation part 120 Memory 130 Area requirement amount calculation part 140 Output correction amount conversion part 150 Power command value distribution amount calculation part 151 Correction amount division part 152 Generator distribution calculation part 153 Storage battery distribution calculation part 160 Distribution Quantity calculation unit 200 Generator 300 Storage battery
Claims (6)
前記出力補正量を満たした上で、前記各発電機の出力比率が前記配分比率に近づくように、前記発電機の発電出力を調整する電力指令値配分計算部と、
を有することを特徴とする需給制御装置。 A power supply and demand control apparatus for a power system having a plurality of generators, wherein a regional requirement amount calculation unit that calculates a regional requirement amount using a system frequency, a system capacity, and a reference frequency, and the output of the generator from the regional requirement amount Using an output correction amount conversion unit that calculates an output correction amount that needs to be corrected, and fuel cost characteristics and output upper and lower limit values of each of the generators so as to satisfy a predetermined power demand. And an economic load distribution calculation unit for calculating a distribution ratio of output to each of the generators,
After satisfying the output correction amount, a power command value distribution calculation unit that adjusts the power generation output of the generator so that the output ratio of each generator approaches the distribution ratio;
A supply and demand control device comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013168671A JP6225553B2 (en) | 2013-08-14 | 2013-08-14 | Supply and demand control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013168671A JP6225553B2 (en) | 2013-08-14 | 2013-08-14 | Supply and demand control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015037371A true JP2015037371A (en) | 2015-02-23 |
JP6225553B2 JP6225553B2 (en) | 2017-11-08 |
Family
ID=52687637
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013168671A Active JP6225553B2 (en) | 2013-08-14 | 2013-08-14 | Supply and demand control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6225553B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019161845A (en) * | 2018-03-13 | 2019-09-19 | 日本電気株式会社 | Processor, control device for power storage system, power storage system, processing method and program |
JP2020089175A (en) * | 2018-11-29 | 2020-06-04 | 株式会社日立製作所 | Frequency control device and frequency control method |
JP2020162255A (en) * | 2019-03-26 | 2020-10-01 | 株式会社日立製作所 | Load frequency control device and load frequency control method |
JP2021141700A (en) * | 2020-03-04 | 2021-09-16 | 株式会社日立製作所 | Power system supply and demand adjustment device, power system load frequency control device, power system balancing group device and power system supply and demand adjustment method |
KR20220096697A (en) * | 2020-12-31 | 2022-07-07 | 한국전기연구원 | Energy Storage System Operation Method and System for Ramp Rate Control of Intermittent Power Generation |
WO2022219817A1 (en) * | 2021-04-16 | 2022-10-20 | 株式会社 東芝 | Power control device and power control method |
CN117792168A (en) * | 2024-02-28 | 2024-03-29 | 山西汇达电信设备有限公司 | Generator configuration method and system |
WO2024127831A1 (en) * | 2022-12-16 | 2024-06-20 | 三菱重工業株式会社 | Power generation control device, unit price determination device, power supply control system, power generation control method, and program |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007202346A (en) * | 2006-01-27 | 2007-08-09 | Toshiba Corp | Load frequency control system of electric power system |
JP2013150473A (en) * | 2012-01-20 | 2013-08-01 | Toshiba Corp | System, device and program for controlling supply and demand for power system |
-
2013
- 2013-08-14 JP JP2013168671A patent/JP6225553B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007202346A (en) * | 2006-01-27 | 2007-08-09 | Toshiba Corp | Load frequency control system of electric power system |
JP2013150473A (en) * | 2012-01-20 | 2013-08-01 | Toshiba Corp | System, device and program for controlling supply and demand for power system |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019161845A (en) * | 2018-03-13 | 2019-09-19 | 日本電気株式会社 | Processor, control device for power storage system, power storage system, processing method and program |
JP7120600B2 (en) | 2018-03-13 | 2022-08-17 | 日本電気株式会社 | Processing device, processing method and program |
JP2020089175A (en) * | 2018-11-29 | 2020-06-04 | 株式会社日立製作所 | Frequency control device and frequency control method |
JP7240862B2 (en) | 2018-11-29 | 2023-03-16 | 株式会社日立製作所 | Frequency control device and frequency control method |
JP7169240B2 (en) | 2019-03-26 | 2022-11-10 | 株式会社日立製作所 | LOAD FREQUENCY CONTROL DEVICE AND LOAD FREQUENCY CONTROL METHOD |
JP2020162255A (en) * | 2019-03-26 | 2020-10-01 | 株式会社日立製作所 | Load frequency control device and load frequency control method |
WO2020195078A1 (en) * | 2019-03-26 | 2020-10-01 | 株式会社日立製作所 | Load frequency control device and load frequency control method |
US20220123739A1 (en) * | 2019-03-26 | 2022-04-21 | Hitachi, Ltd. | Load frequency control device and load frequency control method |
US11811409B2 (en) | 2019-03-26 | 2023-11-07 | Hitachi, Ltd. | Load frequency control device and load frequency control method |
JP2021141700A (en) * | 2020-03-04 | 2021-09-16 | 株式会社日立製作所 | Power system supply and demand adjustment device, power system load frequency control device, power system balancing group device and power system supply and demand adjustment method |
JP7313301B2 (en) | 2020-03-04 | 2023-07-24 | 株式会社日立製作所 | Power system supply and demand adjustment device, power system load frequency control device, power system balancing group device, and power system supply and demand adjustment method |
KR20220096697A (en) * | 2020-12-31 | 2022-07-07 | 한국전기연구원 | Energy Storage System Operation Method and System for Ramp Rate Control of Intermittent Power Generation |
KR102823937B1 (en) | 2020-12-31 | 2025-06-24 | 한국전기연구원 | Energy Storage System Operation Method and System for Ramp Rate Control of Intermittent Power Generation |
WO2022219817A1 (en) * | 2021-04-16 | 2022-10-20 | 株式会社 東芝 | Power control device and power control method |
WO2024127831A1 (en) * | 2022-12-16 | 2024-06-20 | 三菱重工業株式会社 | Power generation control device, unit price determination device, power supply control system, power generation control method, and program |
CN117792168A (en) * | 2024-02-28 | 2024-03-29 | 山西汇达电信设备有限公司 | Generator configuration method and system |
CN117792168B (en) * | 2024-02-28 | 2024-05-07 | 山西汇达电信设备有限公司 | Generator configuration method and system |
Also Published As
Publication number | Publication date |
---|---|
JP6225553B2 (en) | 2017-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6225553B2 (en) | Supply and demand control device | |
Valverde et al. | Model predictive control of voltages in active distribution networks | |
Yorino et al. | High-speed real-time dynamic economic load dispatch | |
US10050447B2 (en) | Multi-farm wind power generation system | |
JP6304008B2 (en) | Power supply system | |
US8046110B2 (en) | Control of active power reserve in a wind-farm | |
JP6075116B2 (en) | Supply and demand control device | |
US20230352937A1 (en) | Power regulation method and power regulation device | |
JP2013126260A (en) | Operation apparatus and method of natural variation power supply | |
JP2010084545A (en) | Control device and control method for wind turbine generator group | |
JP6743953B2 (en) | Energy management system, energy management method and computer program | |
CN104885329A (en) | A coordinated control method for a distribution network with der and ev and control system thereof | |
US20220161687A1 (en) | Energy system control | |
CN105633949A (en) | A real-time generation scheduling and control method for economical operation | |
CN108736509A (en) | A kind of active distribution network multi-source coordinating and optimizing control method and system | |
US10468888B2 (en) | Control system for solar power plant | |
JP7285053B2 (en) | Power supply and demand control device, power supply and demand control system, and power supply and demand control method | |
JP2013150473A (en) | System, device and program for controlling supply and demand for power system | |
CN105610200A (en) | Synchronous coordinated control based full-power control method for thermal power plant | |
El-Meligy et al. | Robust transmission expansion planning under robust network constrained-unit commitment | |
JP2019129547A (en) | Renewable energy hybrid power generation system and control method of the same | |
CN105429178B (en) | Photovoltaic power station AVC control method | |
JPWO2014167830A1 (en) | Power control system | |
WO2018037477A1 (en) | Power conditioning system and power conditioning method | |
JP6474017B2 (en) | Frequency control method and frequency control system in power system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20151005 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20151005 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160713 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170310 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170321 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170517 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170912 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170925 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6225553 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |