JP2015034255A - Foam and production method thereof - Google Patents
Foam and production method thereof Download PDFInfo
- Publication number
- JP2015034255A JP2015034255A JP2013166646A JP2013166646A JP2015034255A JP 2015034255 A JP2015034255 A JP 2015034255A JP 2013166646 A JP2013166646 A JP 2013166646A JP 2013166646 A JP2013166646 A JP 2013166646A JP 2015034255 A JP2015034255 A JP 2015034255A
- Authority
- JP
- Japan
- Prior art keywords
- foam
- crystalline fluororesin
- temperature
- fluororesin
- carbon dioxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
Description
本発明は、結晶性フッ素樹脂を含む樹脂材料の発泡体およびその製造方法に関する。 The present invention relates to a foam of a resin material containing a crystalline fluororesin and a method for producing the same.
結晶性フッ素樹脂は、耐候性、耐薬品性、耐熱性、防汚性等の特性を有することから、膜構造物、農業用ビニールハウス等の膜材として用いられている。該膜材には、光学フィルムに要求されるような高い光透過性ではないものの、採光が可能なレベルまたは膜材を通して向こう側の様子を見ることができるレベルの光透過性が要求されることがある。また、該膜材が発泡体であった場合、断熱性、遮音性、軽量化等の特性を発揮できることが期待される。 Crystalline fluororesins have characteristics such as weather resistance, chemical resistance, heat resistance, and antifouling properties, and are therefore used as film materials for film structures and agricultural greenhouses. The film material does not have the high light transmittance required for an optical film, but the film material is required to have a light transmission level at which the light can be taken or the state of the other side can be seen through the film material. There is. Moreover, when this film | membrane material is a foam, it is anticipated that characteristics, such as heat insulation, sound insulation, and weight reduction, can be exhibited.
合成樹脂からなる光透過性の発泡体としては、平均気泡直径が10〜200nmの範囲内にあり、気泡数密度が109〜1015個/cm3で、波長400〜800nmの可視光領域における該発泡体の光透過率と、該発泡体と同一形状の非発泡体の光透過率との比(百分率)が70%以上である光透過性合成樹脂発泡体が提案されている(特許文献1)。該発泡体は、合成樹脂に不活性ガスの超臨界流体を高圧、加熱条件下で含浸させた後、圧力を解放することによって製造される。加熱条件は、該合成樹脂の融点よりも低い温度であって、不活性ガスの超臨界流体が含浸された合成樹脂の融点よりも高い温度とされる。 The light-transmitting foam made of a synthetic resin has an average bubble diameter in the range of 10 to 200 nm, a bubble number density of 10 9 to 10 15 / cm 3 , and a visible light region with a wavelength of 400 to 800 nm. A light-transmitting synthetic resin foam in which the ratio (percentage) between the light transmittance of the foam and the light transmittance of a non-foam having the same shape as the foam is 70% or more has been proposed (Patent Literature). 1). The foam is produced by impregnating a synthetic resin with an inert gas supercritical fluid under high pressure and heating conditions, and then releasing the pressure. The heating condition is a temperature lower than the melting point of the synthetic resin and higher than the melting point of the synthetic resin impregnated with the supercritical fluid of the inert gas.
しかし、本発明者らが、特許文献1に記載された製造方法によって結晶性フッ素樹脂からなる発泡体を製造したところ、得られた発泡体は、気泡のメジアン径が1μmを超え、気泡による光散乱によってヘイズが高くなり、充分な光透過性を有してなかった。
However, when the present inventors manufactured a foam made of a crystalline fluororesin by the manufacturing method described in
本発明は、結晶性フッ素樹脂を含む樹脂材料からなり、充分な光透過性を有する発泡体、およびその製造方法を提供する。 The present invention provides a foam made of a resin material containing a crystalline fluororesin and having sufficient light transmission properties, and a method for producing the same.
本発明の発泡体は、結晶性フッ素樹脂を含む樹脂材料の発泡体であり、発泡体のヘイズが、50%以下であることを特徴とする。
本発明の発泡体は、複数の独立気泡を有し、前記独立気泡のメジアン径が、200nm以下であることが好ましい。
前記結晶性フッ素樹脂は、エチレン−テトラフルオロエチレン共重合体、テトラフルオロエチレン−ペルフルオロ(アルキルビニルエーテル)共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン−ペルフルオロ(メチルビニルエーテル)共重合体、ポリフッ化ビニルおよびポリクロロトリフルオロエチレンからなる群から選ばれる少なくとも1種であることが好ましい。
The foam of the present invention is a foam of a resin material containing a crystalline fluororesin, and the haze of the foam is 50% or less.
The foam of the present invention preferably has a plurality of closed cells, and the median diameter of the closed cells is preferably 200 nm or less.
The crystalline fluororesin includes ethylene-tetrafluoroethylene copolymer, tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoro (methyl vinyl ether) copolymer. It is preferably at least one selected from the group consisting of a polymer, polyvinyl fluoride and polychlorotrifluoroethylene.
本発明の発泡体の製造方法は、結晶性フッ素樹脂を含む樹脂材料の非発泡成形体に、31.1℃以上前記結晶性フッ素樹脂のガラス転移温度以下の条件下、超臨界状態の二酸化炭素を含浸させた後、含浸時の圧力よりも低い圧力、かつ含浸時の温度以上前記結晶性フッ素樹脂のガラス転移温度以下の雰囲気下にて非発泡成形体を発泡させることを特徴とする。
前記結晶性フッ素樹脂の結晶化度は、5〜70%であることが好ましい。
前記結晶性フッ素樹脂の融解熱は、5J/g以上であることが好ましい。
発泡時の温度における前記結晶性フッ素樹脂を含む樹脂材料の貯蔵弾性率は、1×107〜1×109であることが好ましい。
超臨界状態の二酸化炭素を含浸させた直後の前記非発泡成形体への二酸化炭素の含浸量は、0.1質量%以上であることが好ましい。
The method for producing a foam of the present invention comprises a non-foamed molded body of a resin material containing a crystalline fluororesin, and carbon dioxide in a supercritical state under conditions of 31.1 ° C. or higher and a glass transition temperature of the crystalline fluororesin or lower. After the impregnation, the non-foamed molded body is foamed in an atmosphere lower than the pressure during the impregnation and not lower than the temperature during the impregnation and not higher than the glass transition temperature of the crystalline fluororesin.
The crystallinity of the crystalline fluororesin is preferably 5 to 70%.
The heat of fusion of the crystalline fluororesin is preferably 5 J / g or more.
The storage elastic modulus of the resin material containing the crystalline fluororesin at the temperature at the time of foaming is preferably 1 × 10 7 to 1 × 10 9 .
The amount of carbon dioxide impregnated in the non-foamed molded article immediately after impregnating carbon dioxide in a supercritical state is preferably 0.1% by mass or more.
本発明の発泡体は、結晶性フッ素樹脂を含む樹脂材料からなり、充分な光透過性を有する。
本発明の発泡体の製造方法によれば、結晶性フッ素樹脂を含む樹脂材料からなり、充分な光透過性を有する発泡体を製造できる。
The foam of the present invention is made of a resin material containing a crystalline fluororesin and has sufficient light transmittance.
According to the method for producing a foam of the present invention, a foam made of a resin material containing a crystalline fluororesin and having sufficient light transmittance can be produced.
以下の用語の定義は、本明細書および特許請求の範囲にわたって適用される。
「フッ素樹脂」とは、分子中にフッ素原子を有する高分子化合物を意味する。
「結晶性フッ素樹脂」とは、示差走査型熱量計(DSC)による測定によって得られたDSC曲線において融点を示すフッ素樹脂を意味する。
「超臨界状態の二酸化炭素」とは、二酸化炭素の臨界点(臨界温度および臨界圧力)以上の超臨界状態にある二酸化炭素を意味し、気体および液体の性質、すなわち気体の拡散性と液体の溶解力とを併せ持つ。
「主成分」とは、樹脂材料等の中に該成分を50質量%以上含むことを意味する。
「メジアン径」とは、気泡径分布(積算分布)の分布曲線において積算%が50%の点における気泡径(いわゆる50%径、d50)を意味する。
The following definitions of terms apply throughout this specification and the claims.
“Fluorine resin” means a polymer compound having a fluorine atom in the molecule.
“Crystalline fluororesin” means a fluororesin having a melting point in a DSC curve obtained by measurement with a differential scanning calorimeter (DSC).
“Supercritical carbon dioxide” means carbon dioxide in a supercritical state above the critical point (critical temperature and pressure) of carbon dioxide. Combined with dissolving power.
“Main component” means that 50% by mass or more of the component is contained in a resin material or the like.
“Median diameter” means the bubble diameter (so-called 50% diameter, d50) at a point where the integration percentage is 50% in the distribution curve of the bubble diameter distribution (integration distribution).
<発泡体>
本発明の発泡体は、結晶性フッ素樹脂を含む樹脂材料の発泡体であり、発泡体のヘイズが、50%以下である。
<Foam>
The foam of the present invention is a foam of a resin material containing a crystalline fluororesin, and the haze of the foam is 50% or less.
(樹脂材料)
樹脂材料は、結晶性フッ素樹脂を主成分として含む。樹脂材料は、本発明の効果を損なわない範囲内にて、他の成分(他の樹脂、添加剤等)を含んでいてもよい。
(Resin material)
The resin material contains a crystalline fluororesin as a main component. The resin material may contain other components (other resins, additives, etc.) within a range not impairing the effects of the present invention.
(結晶性フッ素樹脂)
結晶性フッ素樹脂としては、結晶化度、機械特性および二酸化炭素との親和性のバランスの観点からエチレン−テトラフルオロエチレン共重合体(以下、ETFEと記す。)、テトラフルオロエチレン−ペルフルオロ(アルキルビニルエーテル)共重合体(以下、PFAと記す。)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(以下、FEPと記す。)、テトラフルオロエチレン−ペルフルオロ(メチルビニルエーテル)共重合体(以下、MFAと記す。)、ポリフッ化ビニリデン(以下、PVDFと記す。)、ポリフッ化ビニルおよびポリクロロトリフルオロエチレンからなる群から選ばれる少なくとも1種が挙げられる。なかでも、ETFE、PFA、FEP、MFA、ポリフッ化ビニル、ポリクロロトリフルオロエチレンが好ましく、ETFE、PFA、FEPがより好ましく、ETFE、PFAが特に好ましい。
(Crystalline fluororesin)
Crystalline fluororesins include ethylene-tetrafluoroethylene copolymer (hereinafter referred to as ETFE), tetrafluoroethylene-perfluoro (alkyl vinyl ether) from the viewpoint of balance of crystallinity, mechanical properties and affinity with carbon dioxide. ) Copolymer (hereinafter referred to as PFA), tetrafluoroethylene-hexafluoropropylene copolymer (hereinafter referred to as FEP), tetrafluoroethylene-perfluoro (methyl vinyl ether) copolymer (hereinafter referred to as MFA). .), At least one selected from the group consisting of polyvinylidene fluoride (hereinafter referred to as PVDF), polyvinyl fluoride and polychlorotrifluoroethylene. Of these, ETFE, PFA, FEP, MFA, polyvinyl fluoride, and polychlorotrifluoroethylene are preferable, ETFE, PFA, and FEP are more preferable, and ETFE and PFA are particularly preferable.
結晶性フッ素樹脂の結晶化度は、マトリックス樹脂の機械特性によって変形を抑制し、充分に小さい独立気泡を発生させる必要性から、5%以上が好ましく、10%以上がより好ましく、15%以上がさらに好ましい。結晶性フッ素樹脂の結晶化度は、結晶性フッ素樹脂の光透過性を確保する点から、70%以下が好ましく、60%以下がより好ましく、58%以下がさらに好ましい。 The degree of crystallinity of the crystalline fluororesin is preferably 5% or more, more preferably 10% or more, and more preferably 15% or more from the necessity of suppressing deformation depending on the mechanical properties of the matrix resin and generating sufficiently small closed cells. Further preferred. The degree of crystallinity of the crystalline fluororesin is preferably 70% or less, more preferably 60% or less, and even more preferably 58% or less, from the viewpoint of ensuring light transmittance of the crystalline fluororesin.
結晶性フッ素樹脂の結晶化度は、DSCを用いて結晶性フッ素樹脂の融点を挟む温度領域で比熱測定を行い、融点に起因すると考えられる吸発熱ピークの面積から融解熱を求め、下式を用いて算出する。
結晶化度=0.98×融解熱(J/g)
結晶化度の測定方法については、下記文献に記載されている。該方法は、テトラフルオロエチレン(以下、TFEと記す。)単位を有し、同単位から形成される結晶構造であることを想定しており、ETFE、PFA、FEP、MFA等については問題なく評価可能である。
C. Nakafuku et al.,”Polymer Journal”,第31巻,1999年,p.557
The degree of crystallinity of the crystalline fluororesin is determined by measuring the specific heat in the temperature region sandwiching the melting point of the crystalline fluororesin using DSC, obtaining the heat of fusion from the area of the endothermic peak believed to be due to the melting point, and using the following formula: Use to calculate.
Crystallinity = 0.98 × heat of fusion (J / g)
About the measuring method of crystallinity degree, it describes in the following literature. This method has a tetrafluoroethylene (hereinafter referred to as TFE) unit and is assumed to have a crystal structure formed from the same unit, and ETFE, PFA, FEP, MFA, etc. are evaluated without problems. Is possible.
C. Nakafuku et al. "Polymer Journal", Vol. 31, 1999, p. 557
結晶性フッ素樹脂の融解熱は、上述の結晶化度と同様の理由から、5J/g以上が好ましく、10J/g以上がより好ましく、15J/g以上がさらに好ましい。結晶性フッ素樹脂の融解熱は、同じく光透過性の観点から、70J/g以下が好ましく、60J/g以下がより好ましく、58J/g以下がさらに好ましい。 The heat of fusion of the crystalline fluororesin is preferably 5 J / g or more, more preferably 10 J / g or more, and even more preferably 15 J / g or more for the same reason as the crystallinity described above. The heat of fusion of the crystalline fluororesin is preferably 70 J / g or less, more preferably 60 J / g or less, and still more preferably 58 J / g or less from the viewpoint of light transmittance.
結晶性フッ素樹脂の含有量は、発泡体が結晶性フッ素樹脂に由来する特性を充分に発揮できる点から、樹脂材料(100質量%)のうち、50質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましい。結晶性フッ素樹脂の含有量の上限は100質量%である。 The content of the crystalline fluororesin is preferably 50% by mass or more and more than 80% by mass in the resin material (100% by mass) from the viewpoint that the foam can sufficiently exhibit the characteristics derived from the crystalline fluororesin. More preferably, 90 mass% or more is further more preferable. The upper limit of the content of the crystalline fluororesin is 100% by mass.
(ETFE)
ETFEは、エチレン(以下、Eと記す。)に基づく構成単位およびTFEに基づく構成単位を有する。
TFEに基づく構成単位の割合は、TFEに基づく構成単位とEに基づく構成単位との合計(100モル%)のうち、30〜70モル%が好ましく、40〜65モル%がより好ましく、40〜60モル%がさらに好ましい。
Eに基づく構成単位の割合は、TFEに基づく構成単位とEに基づく構成単位との合計(100モル%)のうち、30〜70モル%が好ましく、35〜60モル%がより好ましく、40〜60モル%がさらに好ましい。
TFEに基づく構成単位の割合およびEに基づく構成単位の割合が該範囲内にあれば、耐候性、耐薬品性、耐熱性、防汚性等の特性のバランスが良好となる。
(ETFE)
ETFE has a structural unit based on ethylene (hereinafter referred to as E) and a structural unit based on TFE.
The proportion of the structural unit based on TFE is preferably 30 to 70 mol%, more preferably 40 to 65 mol%, of the total (100 mol%) of the structural unit based on TFE and the structural unit based on E. 60 mol% is more preferable.
The proportion of the structural unit based on E is preferably 30 to 70 mol%, more preferably 35 to 60 mol%, of the total (100 mol%) of the structural unit based on TFE and the structural unit based on E. 60 mol% is more preferable.
If the proportion of the structural unit based on TFE and the proportion of the structural unit based on E are within the above ranges, the balance of properties such as weather resistance, chemical resistance, heat resistance, and antifouling property will be good.
ETFEは、他の単量体に基づく構成単位を有していてもよい。他の単量体としては、フッ素原子を有する単量体(ただし、ETFEを除く。)、フッ素原子を有さない単量体(ただし、Eを除く。)が挙げられる。
フッ素原子を有する単量体としては、フッ化ビニル、フッ化ビニリデン、トリフルオロエチレン、ヘキサフルオロプロピレン、ペルフルオロ(アルキルビニルエーテル)等が挙げられる。
フッ素原子を有さない単量体としては、オレフィン(ただし、Eを除く。)、ビニルエステル、ビニルエーテル等が挙げられる。
他の単量体に基づく構成単位の割合は、ETFEを構成するすべての構成単位(100モル%)のうち、30モル%以下が好ましく、0.1〜15モル%がより好ましく、0.2〜10モル%がさらに好ましい。
ETFE may have a structural unit based on another monomer. Examples of the other monomer include a monomer having a fluorine atom (excluding ETFE) and a monomer having no fluorine atom (excluding E).
Examples of the monomer having a fluorine atom include vinyl fluoride, vinylidene fluoride, trifluoroethylene, hexafluoropropylene, and perfluoro (alkyl vinyl ether).
Examples of the monomer having no fluorine atom include olefins (excluding E), vinyl esters, vinyl ethers, and the like.
The proportion of structural units based on other monomers is preferably 30 mol% or less, more preferably 0.1 to 15 mol%, of all the structural units (100 mol%) constituting ETFE, 0.2 More preferably, it is 10 mol%.
(PFA)
PFAは、TFEに基づく構成単位およびペルフルオロ(アルキルビニルエーテル)(以下、PFVEと記す。)に基づく構成単位を有する。
TFEに基づく構成単位の割合は、TFEに基づく構成単位とPFVEに基づく構成単位との合計(100モル%)のうち、90〜99.8モル%が好ましく、93〜99.5モル%がより好ましく、95〜99モル%がさらに好ましい。
PFVEに基づく構成単位の割合は、TFEに基づく構成単位とPFVEに基づく構成単位との合計(100モル%)のうち、0.2〜10モル%が好ましく、0.5〜7モル%がより好ましく、1〜5モル%がさらに好ましい。
TFEに基づく構成単位の割合およびPFVEに基づく構成単位の割合が該範囲内にあれば、耐候性、耐薬品性、耐熱性、防汚性等の特性のバランスが良好となる。
(PFA)
PFA has a structural unit based on TFE and a structural unit based on perfluoro (alkyl vinyl ether) (hereinafter referred to as PFVE).
The proportion of the structural unit based on TFE is preferably 90 to 99.8 mol%, more preferably 93 to 99.5 mol%, of the total (100 mol%) of the structural unit based on TFE and the structural unit based on PFVE. Preferably, 95 to 99 mol% is more preferable.
The proportion of the structural unit based on PFVE is preferably 0.2 to 10 mol%, more preferably 0.5 to 7 mol%, of the total (100 mol%) of the structural unit based on TFE and the structural unit based on PFVE. Preferably, 1 to 5 mol% is more preferable.
When the proportion of the structural unit based on TFE and the proportion of the structural unit based on PFVE are within the above ranges, the balance of properties such as weather resistance, chemical resistance, heat resistance, and antifouling property becomes good.
PFAは、他の単量体に基づく構成単位を有していてもよい。他の単量体としては、フッ素原子を有する単量体(ただし、TFEおよびPFVEを除く。)、フッ素原子を有さない単量体が挙げられる。
フッ素原子を有する単量体としては、フッ化ビニル、フッ化ビニリデン、トリフルオロエチレン、ヘキサフルオロプロピレン等が挙げられる。
フッ素原子を有さない単量体としては、オレフィン、ビニルエステル、ビニルエーテル等が挙げられる。
他の単量体に基づく構成単位の割合は、PFAを構成するすべての構成単位(100モル%)のうち、30モル%以下が好ましく、0.1〜15モル%がより好ましく、0.2〜10モル%がさらに好ましい。
PFA may have a structural unit based on another monomer. Examples of the other monomer include monomers having a fluorine atom (excluding TFE and PFVE) and monomers not having a fluorine atom.
Examples of the monomer having a fluorine atom include vinyl fluoride, vinylidene fluoride, trifluoroethylene, and hexafluoropropylene.
Examples of the monomer having no fluorine atom include olefin, vinyl ester, vinyl ether and the like.
The proportion of structural units based on other monomers is preferably 30 mol% or less, more preferably 0.1 to 15 mol%, of all the structural units (100 mol%) constituting PFA, 0.2 More preferably, it is 10 mol%.
(FEP)
FEPは、TFEに基づく構成単位およびヘキサフルオロプロピレン(以下、HFPと記す。)に基づく構成単位を有する。
TFEに基づく構成単位の割合は、TFEに基づく構成単位とHFPに基づく構成単位との合計(100モル%)のうち、50〜98モル%が好ましく、60〜95モル%がより好ましく、75〜90モル%がさらに好ましい。
HFPに基づく構成単位の割合は、TFEに基づく構成単位とHFPに基づく構成単位との合計(100モル%)のうち、2〜50モル%が好ましく、5〜40モル%がより好ましく、10〜25モル%がさらに好ましい。
TFEに基づく構成単位の割合およびHFPに基づく構成単位の割合が該範囲内にあれば、耐候性、耐薬品性、耐熱性、防汚性等の特性のバランスが良好となる。
(FEP)
FEP has a structural unit based on TFE and a structural unit based on hexafluoropropylene (hereinafter referred to as HFP).
The proportion of the structural unit based on TFE is preferably 50 to 98 mol%, more preferably 60 to 95 mol%, of the total (100 mol%) of the structural unit based on TFE and the structural unit based on HFP. 90 mol% is more preferable.
The proportion of the structural unit based on HFP is preferably 2 to 50 mol%, more preferably 5 to 40 mol%, of the total (100 mol%) of the structural unit based on TFE and the structural unit based on HFP. 25 mol% is more preferable.
If the proportion of the structural unit based on TFE and the proportion of the structural unit based on HFP are within this range, the balance of properties such as weather resistance, chemical resistance, heat resistance, and antifouling properties will be good.
FEPは、他の単量体に基づく構成単位を有していてもよい。他の単量体としては、フッ素原子を有する単量体(ただし、TFEおよびHFPを除く。)、フッ素原子を有さない単量体が挙げられる。
フッ素原子を有する単量体としては、フッ化ビニル、フッ化ビニリデン、トリフルオロエチレン、PFVE等が挙げられ、フッ化ビニリデンが好ましい。
フッ素原子を有さない単量体としては、オレフィン、ビニルエステル、ビニルエーテル等が挙げられ、Eが好ましい。
他の単量体に基づく構成単位の割合は、FEPを構成するすべての構成単位(100モル%)のうち、30モル%以下が好ましく、0.1〜15モル%がより好ましく、0.2〜10モル%がさらに好ましい。
FEP may have a structural unit based on another monomer. Examples of the other monomer include a monomer having a fluorine atom (excluding TFE and HFP) and a monomer having no fluorine atom.
Examples of the monomer having a fluorine atom include vinyl fluoride, vinylidene fluoride, trifluoroethylene, PFVE, and the like, and vinylidene fluoride is preferable.
Examples of the monomer having no fluorine atom include olefin, vinyl ester, vinyl ether and the like, and E is preferable.
The proportion of structural units based on other monomers is preferably 30 mol% or less, more preferably 0.1 to 15 mol%, of all the structural units (100 mol%) constituting FEP, 0.2 More preferably, it is 10 mol%.
(他の成分)
他の樹脂としては、結晶性フッ素樹脂以外のフッ素樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリビニリアルコール系樹脂等が挙げられる。
添加剤としては、顔料、紫外線吸収剤、光安定剤、充填剤、架橋剤、酸化防止剤、帯電防止剤、難燃剤、核剤、油剤、染料等が挙げられる。
他の樹脂および添加剤の合計の含有量は、樹脂材料(100質量%)のうち、50質量%以下が好ましく、20質量%以下がより好ましく、10質量%以上がさらに好ましい。
(Other ingredients)
Examples of other resins include fluororesins other than crystalline fluororesins, polyamide resins, polyester resins, and polyvinyl alcohol resins.
Examples of the additive include pigments, ultraviolet absorbers, light stabilizers, fillers, crosslinking agents, antioxidants, antistatic agents, flame retardants, nucleating agents, oil agents, dyes, and the like.
The total content of other resins and additives is preferably 50% by mass or less, more preferably 20% by mass or less, and still more preferably 10% by mass or more in the resin material (100% by mass).
(ヘイズ)
発泡体のヘイズは、50%以下であり、40%以下が好ましく、30%以下がより好ましい。ヘイズの下限値は0%である。ヘイズが該範囲内にあれば、発泡体が、採光が可能なレベルもしくは発泡体を通して向こう側の様子を見ることができるレベル、またはそれ以上の光透過性を有する。
発泡体のヘイズを該範囲内とするためには、具体的には、発泡体を後述する製造方法によって製造すればよい。
発泡体のヘイズは、JIS K 7136に準拠したヘイズメータを用いて測定する。
(Haze)
The haze of the foam is 50% or less, preferably 40% or less, and more preferably 30% or less. The lower limit of haze is 0%. If the haze is within the range, the foam has a light transmission level at or above which light can be taken or through which it can be seen.
In order to keep the haze of the foam within this range, specifically, the foam may be produced by a production method described later.
The haze of the foam is measured using a haze meter according to JIS K 7136.
(メジアン径)
発泡体の気泡としては、断熱性、遮音性、軽量化等の特性を充分に発揮できる点から、独立気泡が好ましい。
独立気泡のメジアン径は、発泡体が充分な光透過性を有する点から、200nm以下が好ましく、100nm以下がより好ましい。
独立気泡のメジアン径は、発泡体の製造のしやすさの点から、10nm以上が好ましく、30nm以上がより好ましい。
独立気泡のメジアン径は、発泡体を液体窒素等を用いて極低温に冷却した後、破壊し、あらわれた断面を電子顕微鏡で観察し、観察された断面に見られる100個以上の独立気泡の気泡径を測定し、気泡径分布(積算分布)の分布曲線を作成して求める。
(Median diameter)
As the foam bubbles, closed cells are preferable from the standpoint of sufficiently exhibiting properties such as heat insulation, sound insulation and weight reduction.
The median diameter of the closed cells is preferably 200 nm or less, and more preferably 100 nm or less, from the viewpoint that the foam has sufficient light transmittance.
The median diameter of the closed cells is preferably 10 nm or more, and more preferably 30 nm or more, from the viewpoint of ease of production of the foam.
The median diameter of closed cells is determined by cooling the foam to cryogenic temperature using liquid nitrogen or the like, then breaking the observed cross section with an electron microscope, and observing 100 or more closed cells in the observed cross section. The bubble diameter is measured, and a distribution curve of the bubble diameter distribution (integrated distribution) is created and obtained.
(作用効果)
以上説明した本発明の発泡体にあっては、結晶性フッ素樹脂を含む樹脂材料の発泡体であるため、耐候性、耐薬品性、耐熱性、防汚性等の結晶性フッ素樹脂に由来する特性を有するとともに、断熱性、遮音性、軽量化等の発泡体に由来する特性を発揮できる。また、発泡体のヘイズが、50%以下であるため、充分な光透過性を有する。
(Function and effect)
Since the foam of the present invention described above is a foam of a resin material containing a crystalline fluororesin, it is derived from a crystalline fluororesin such as weather resistance, chemical resistance, heat resistance, and antifouling properties. In addition to having properties, it can exhibit properties derived from foams such as heat insulation, sound insulation and weight reduction. Moreover, since the haze of a foam is 50% or less, it has sufficient light transmittance.
<発泡体の製造方法>
本発明の発泡体の製造方法は、結晶性フッ素樹脂を含む樹脂材料の非発泡成形体に、31.1℃以上結晶性フッ素樹脂のガラス転移温度以下の条件下、超臨界状態の二酸化炭素を含浸させた後、含浸時の圧力よりも低い圧力、かつ含浸時の温度以上結晶性フッ素樹脂のガラス転移温度以下の雰囲気下にて非発泡成形体を発泡させる方法である。
<Method for producing foam>
In the method for producing a foam of the present invention, carbon dioxide in a supercritical state is applied to a non-foamed molded article of a resin material containing a crystalline fluororesin under conditions of 31.1 ° C. or higher and a glass transition temperature of the crystalline fluororesin or lower. In this method, after impregnation, the non-foamed molded article is foamed in an atmosphere lower than the pressure during the impregnation and not lower than the temperature during the impregnation and not higher than the glass transition temperature of the crystalline fluororesin.
具体的には、たとえば、下記の工程(a)〜(d)を有する。
(a)結晶性フッ素樹脂を含む樹脂材料を成形し、非発泡成形体を得る工程。
(b)非発泡成形体に、31.1℃以上結晶性フッ素樹脂のガラス転移温度以下の条件下、超臨界状態の二酸化炭素を含浸させる工程。
(c)工程(b)の後、非発泡成形体を、工程(b)の圧力よりも低い圧力、かつ工程(b)の温度以上結晶性フッ素樹脂のガラス転移温度以下の雰囲気下にて発泡させ、発泡体を得る工程。
(d)工程(c)の後、発泡体を放冷または強制的に冷却した後、必要に応じて洗浄する工程。
Specifically, for example, the following steps (a) to (d) are included.
(A) The process of shape | molding the resin material containing crystalline fluororesin and obtaining a non-foaming molded object.
(B) A step of impregnating a non-foamed molded body with carbon dioxide in a supercritical state under conditions of 31.1 ° C. or higher and a glass transition temperature of crystalline fluororesin.
(C) After step (b), the non-foamed molded article is foamed in an atmosphere lower than the pressure in step (b) and not lower than the temperature in step (b) and not higher than the glass transition temperature of the crystalline fluororesin. And a step of obtaining a foam.
(D) After the step (c), the foam is allowed to cool or forcibly cooled and then washed as necessary.
(工程(a))
樹脂材料を成形する方法としては、公知の成形法(押出成形法、射出成形法、プレス成形法等)が挙げられる。
非発泡成形体の形状は、特に限定はされない。
(Process (a))
Examples of methods for molding the resin material include known molding methods (extrusion molding method, injection molding method, press molding method, etc.).
The shape of the non-foamed molded body is not particularly limited.
(工程(b))
本発明においては、発泡剤として二酸化炭素を用いる。二酸化炭素は、フッ素樹脂と親和性が高いため、フッ素樹脂の内部に浸透しやすく、フッ素樹脂を膨潤させやすい。
本発明においては、フッ素樹脂として結晶性フッ素樹脂を用いる。結晶性フッ素樹脂は、電子密度の高い結晶部と電子密度の低い非晶部とで構成されており、二酸化炭素による膨潤状態も均質ではない。該不均質構造を利用することによって、比較的気泡径が揃った発泡体を形成できると考えられる。
(Process (b))
In the present invention, carbon dioxide is used as a foaming agent. Since carbon dioxide has a high affinity with the fluororesin, it easily penetrates into the fluororesin and easily swells the fluororesin.
In the present invention, a crystalline fluororesin is used as the fluororesin. The crystalline fluororesin is composed of a crystal part having a high electron density and an amorphous part having a low electron density, and the swollen state by carbon dioxide is not uniform. It is considered that a foam having a relatively uniform cell diameter can be formed by using the heterogeneous structure.
本発明においては、非発泡成形体に超臨界状態の二酸化炭素を含浸させる。超臨界状態の二酸化炭素は、フッ素樹脂の内部に浸透しやすく、フッ素樹脂を膨潤させやすい。また、含浸後、含浸時の圧力よりも低い圧力にしたときに、二酸化炭素が気化して、非発泡成形体を発泡させやすい。 In the present invention, the non-foamed molded article is impregnated with carbon dioxide in a supercritical state. Carbon dioxide in a supercritical state easily penetrates into the fluororesin and easily swells the fluororesin. Further, after the impregnation, when the pressure is lower than the pressure at the time of impregnation, the carbon dioxide is vaporized and the non-foamed molded article is easily foamed.
含浸時の温度は、二酸化炭素を超臨界状態にする必要があることから、二酸化炭素の臨界温度(31.1℃)以上であり、40℃以上が好ましい。
含浸時の温度が高ければ高いほど、超臨界状態の二酸化炭素の浸透は早くなる一方、超臨界状態の二酸化炭素の密度が低下することから、含浸時の温度には上限値が存在する。また、二酸化炭素の含浸によって結晶性フッ素樹脂の体積が増加するため、結晶性フッ素樹脂が充分な硬さを有しないと、工程(c)の前で発泡してしまう。このことからも含浸時の温度には上限値が存在する。以上2点の観点から、含浸時の温度は、結晶性フッ素樹脂のガラス転移温度以下が好ましい。
The temperature at the time of impregnation is not lower than the critical temperature of carbon dioxide (31.1 ° C.) and preferably 40 ° C. or higher because carbon dioxide needs to be in a supercritical state.
The higher the temperature during impregnation, the faster the permeation of carbon dioxide in the supercritical state, while the density of carbon dioxide in the supercritical state decreases, so there is an upper limit for the temperature during impregnation. Further, since the volume of the crystalline fluororesin is increased by impregnation with carbon dioxide, if the crystalline fluororesin does not have sufficient hardness, foaming occurs before the step (c). For this reason, there is an upper limit for the temperature during impregnation. From the viewpoints of the above two points, the temperature during the impregnation is preferably equal to or lower than the glass transition temperature of the crystalline fluororesin.
含浸時の圧力は、二酸化炭素の臨界圧力(7.4MPa)以上である。超臨界状態の二酸化炭素の含浸時間を短縮する観点から、7.4MPa以上が好ましく、10MPa以上がより好ましい。
含浸時の圧力は、特に制限されないが、工業的な製造装置の作製という観点から、100MPa以下が好ましく、50MPa以下がより好ましい。
The pressure during impregnation is not less than the critical pressure of carbon dioxide (7.4 MPa). From the viewpoint of shortening the impregnation time of carbon dioxide in a supercritical state, 7.4 MPa or more is preferable, and 10 MPa or more is more preferable.
The pressure during impregnation is not particularly limited, but is preferably 100 MPa or less, and more preferably 50 MPa or less, from the viewpoint of producing an industrial production apparatus.
含浸時間は、結晶性フッ素樹脂の種類、樹脂材料の組成、非発泡成形体のサイズ、含浸時の条件等により適宜設定される。通常は、0.1〜24時間であり、0.1〜1時間が好ましい。
含浸の際に用いる容器としては、通常耐圧容器を用いる。
The impregnation time is appropriately set depending on the kind of the crystalline fluororesin, the composition of the resin material, the size of the non-foamed molded article, the conditions during the impregnation, and the like. Usually, it is 0.1 to 24 hours, and preferably 0.1 to 1 hour.
As a container used for impregnation, a pressure resistant container is usually used.
工程(b)直後の非発泡成形体への二酸化炭素の含浸量は、工程(c)の発泡を制御する観点から非常に重要なプロセス条件であるが、最も重要と考えられるのは工程(c)を行う時の結晶性フッ素樹脂中に含まれる二酸化炭素の含浸量である。必要とする小さなメジアン径の独立気泡を充分に発生させるためには、工程(c)の処理を行う時の結晶フッ素樹脂中に含まれる二酸化炭素の含浸量は、0.1質量%以上が好ましく、0.3質量%以上がより好ましく、0.5質量%以上がさらに好ましい。また、気泡が必要とするメジアン径以上に大きくならないためには、工程(c)の処理を行う時の結晶フッ素樹脂中に含まれる二酸化炭素の含浸量は、10質量%以下が好ましく、8質量%以下がより好ましく、6質量%以下がさらに好ましい。
非発泡成形体への二酸化炭素の含浸量は、工程(b)を行う前の非発泡成形体の質量W0、耐圧容器から取り出した後、工程(c)直前の非発泡成形体の質量W1を測定し、下式から求める。
非発泡成形体への二酸化炭素の含浸量=(W1−W0)/W0×100
The amount of carbon dioxide impregnated into the non-foamed molded product immediately after the step (b) is a very important process condition from the viewpoint of controlling the foaming in the step (c), but the most important is considered to be the step (c ) Is the amount of carbon dioxide impregnated in the crystalline fluororesin. In order to sufficiently generate the required closed cells having a small median diameter, the impregnation amount of carbon dioxide contained in the crystalline fluororesin during the treatment in the step (c) is preferably 0.1% by mass or more. 0.3 mass% or more is more preferable, and 0.5 mass% or more is more preferable. Further, in order to prevent the bubbles from becoming larger than the required median diameter, the impregnation amount of carbon dioxide contained in the crystalline fluororesin during the treatment of step (c) is preferably 10% by mass or less, and 8% by mass. % Or less is more preferable, and 6% by mass or less is more preferable.
The amount of carbon dioxide impregnated into the non-foamed molded body is the mass W0 of the non-foamed molded body before the step (b), the mass W1 of the non-foamed molded body just before the step (c) after taking out from the pressure vessel. Measure and obtain from the following formula.
Amount of carbon dioxide impregnated into non-foamed molded article = (W1-W0) / W0 × 100
(工程(c))
工程(b)の後、容器内の二酸化炭素を外部に放出して、容器内の圧力を工程(b)の圧力よりも低い圧力、通常は大気圧にする。
非発泡成形体を容器から取り出し、直ちに、工程(b)の圧力よりも低い圧力、かつ工程(b)の温度以上結晶性フッ素樹脂のガラス転移温度以下の雰囲気下に置く。この際、非発泡成形体に含浸した二酸化炭素が気化して、非発泡成形体を発泡させる。
(Process (c))
After the step (b), carbon dioxide in the container is released to the outside, and the pressure in the container is made lower than the pressure in the step (b), usually atmospheric pressure.
The non-foamed molded article is taken out of the container and immediately placed in an atmosphere lower than the pressure in step (b) and not lower than the temperature in step (b) and not higher than the glass transition temperature of the crystalline fluororesin. At this time, carbon dioxide impregnated in the non-foamed molded body is vaporized to foam the non-foamed molded body.
工程(b)の終了(容器内の二酸化炭素の放出開始)から工程(c)の開始(非発泡成形体を工程(b)の温度以上結晶性フッ素樹脂のガラス転移温度以下の雰囲気下に置く)までの時間は、特に制限されない。必要とするメジアン径の独立気泡を有する発泡体を得るためには、工程(c)の温度にあった適切な二酸化炭素の含浸量に調整する必要があるが、それは、非発泡成形体中の二酸化炭素の含浸量の経時変化を把握し、その結果をもとに必要な初期含有量、そして、工程(b)後から工程(c)を行うまでの待機時間を調整することで実現できる。 From the end of step (b) (start of releasing carbon dioxide in the container) to the start of step (c) (place the non-foamed molded article in an atmosphere not lower than the temperature of step (b) and not higher than the glass transition temperature of the crystalline fluororesin. ) Time is not particularly limited. In order to obtain a foam having closed cells having the required median diameter, it is necessary to adjust the amount of carbon dioxide impregnated appropriately for the temperature of step (c). This can be realized by grasping the change over time in the amount of carbon dioxide impregnated and adjusting the required initial content and the waiting time from step (b) to step (c).
発泡は、大気中で行ってもよく、液状媒体中で行ってもよい。液状媒体は、非発泡成形体および発泡体を溶解または膨潤させないものが好ましい。液状媒体としては、水、グリセロール、シリコーンオイル、熱媒オイル、溶剤、代替フロン、等が挙げられる。 Foaming may be performed in the air or in a liquid medium. The liquid medium preferably does not dissolve or swell the non-foamed molded article and the foam. Examples of the liquid medium include water, glycerol, silicone oil, heat transfer oil, solvent, and alternative chlorofluorocarbon.
発泡時の温度は、含浸した二酸化炭素の結晶性フッ素樹脂中での気化が促進されることが望ましいことから、含浸時の温度以上が好ましい。
発泡時の温度は、発泡時の発泡体の形態維持性、言い換えれば生成する独立気泡のメジアン径を充分に小さなものに抑制するという観点から、結晶性フッ素樹脂のガラス転移温度以下が好ましい。
The temperature at the time of foaming is preferably equal to or higher than the temperature at the time of impregnation because it is desirable to promote vaporization of the impregnated carbon dioxide in the crystalline fluororesin.
The temperature at the time of foaming is preferably equal to or lower than the glass transition temperature of the crystalline fluororesin from the viewpoint of suppressing the foam shape maintaining property at the time of foaming, in other words, suppressing the median diameter of the generated closed cells to be sufficiently small.
発泡時の温度における樹脂材料の貯蔵弾性率は、発生する独立気泡のメジアン径を充分に小さなものになるようにマトリックス樹脂の変形を抑制する観点から、1×107Pa以上が好ましく、1×108Pa以上がさらに好ましい。
発泡時の温度における樹脂材料の貯蔵弾性率は、独立気泡そのものを発生させるためには逆にある程度柔軟性がマトリックス樹脂には求められることから、1×109Pa以下が好ましく、7×108Pa以下がより好ましい。
発泡時の温度は、樹脂材料の貯蔵弾性率が前記範囲内となるように設定されることが好ましい。
樹脂材料の貯蔵弾性率は、動的粘弾性測定装置を用いて測定される。
The storage elastic modulus of the resin material at the temperature at the time of foaming is preferably 1 × 10 7 Pa or more from the viewpoint of suppressing the deformation of the matrix resin so that the median diameter of the generated closed cells becomes sufficiently small. 10 8 Pa or more is more preferable.
The storage elastic modulus of the resin material at the temperature at the time of foaming is preferably 1 × 10 9 Pa or less, since the matrix resin is required to have some flexibility in order to generate closed cells themselves, and preferably 7 × 10 8 Pa. Pa or less is more preferable.
The temperature at the time of foaming is preferably set so that the storage elastic modulus of the resin material is within the above range.
The storage elastic modulus of the resin material is measured using a dynamic viscoelasticity measuring device.
発泡時の圧力は、工程(b)の圧力よりも低い圧力であればよい。発泡を大気中で行う場合、通常、大気圧であり、発泡を液状媒体中で行う場合、通常、液状媒体中の液圧である。 The pressure at the time of foaming should just be a pressure lower than the pressure of a process (b). When foaming is performed in the air, it is usually atmospheric pressure, and when foaming is performed in a liquid medium, it is usually a liquid pressure in the liquid medium.
非発泡成形体を、工程(b)の温度以上結晶性フッ素樹脂のガラス転移温度以下の雰囲気下に置く時間は、結晶性フッ素樹脂の種類、樹脂材料の組成、非発泡成形体のサイズ、発泡倍率等により適宜設定される。通常は、0.1〜60分間であり、0.1〜5分間が好ましい。 The time for placing the non-foamed molded article in the atmosphere not lower than the temperature of the step (b) and not higher than the glass transition temperature of the crystalline fluororesin is the type of the crystalline fluororesin, the composition of the resin material, the size of the non-foamed molded article, It is appropriately set depending on the magnification and the like. Usually, it is 0.1 to 60 minutes, and preferably 0.1 to 5 minutes.
(工程(d))
工程(c)の後、発泡を止めるため、発泡体を放冷または強制的に冷却する。
発泡体は、必要に応じて洗浄してもよい。
(Process (d))
After step (c), the foam is allowed to cool or forcibly cooled to stop foaming.
You may wash | clean a foam as needed.
(作用効果)
以上説明した本発明の発泡体の製造方法にあっては、結晶性フッ素樹脂を含む樹脂材料の非発泡成形体に、31.1℃以上結晶性フッ素樹脂のガラス転移温度以下の条件下、超臨界状態の二酸化炭素を含浸させた後、含浸時の圧力よりも低い圧力、かつ含浸時の温度以上結晶性フッ素樹脂のガラス転移温度以下の雰囲気下にて非発泡成形体を発泡させているため、メジアン径が小さい(具体的には200nm以下の)独立気泡が形成される。そのため、ヘイズが低く抑えられ、充分な光透過性を有する発泡体が得られる。
(Function and effect)
In the method for producing a foam according to the present invention described above, the non-foamed molded article of the resin material containing the crystalline fluororesin is subjected to a condition of 31.1 ° C. or higher and below the glass transition temperature of the crystalline fluororesin. After impregnating carbon dioxide in the critical state, the non-foamed molded article is foamed in an atmosphere lower than the pressure during impregnation and not lower than the temperature during impregnation and below the glass transition temperature of the crystalline fluororesin , Closed cells having a small median diameter (specifically, 200 nm or less) are formed. Therefore, a foam having a low haze and sufficient light transmission can be obtained.
以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの例によって限定されない。
例1〜13は実施例であり、例14〜25は比較例である。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
Examples 1 to 13 are examples, and examples 14 to 25 are comparative examples.
(ガラス転移温度)
固体動的粘弾性測定装置(アイティー計測社製、DVA−220)を用いて、毎分2℃の昇温速度で温度を昇温させながら10Hzの周波数で非発泡成形体の粘弾性測定を行った。損失弾性率G”と貯蔵弾性率G’との比(G”/G’)であるtanδを温度に対してプロットし、tanδが極大を示す温度をガラス転移温度とした。
(Glass-transition temperature)
Using a solid dynamic viscoelasticity measuring device (DVA-220, manufactured by IT Measurement Co., Ltd.), measuring the viscoelasticity of a non-foamed molded article at a frequency of 10 Hz while raising the temperature at a temperature rise rate of 2 ° C per minute. went. Tan δ, which is the ratio (G ″ / G ′) of loss elastic modulus G ″ to storage elastic modulus G ′, is plotted against temperature, and the temperature at which tan δ exhibits a maximum is taken as the glass transition temperature.
(結晶化度、融解熱)
結晶性フッ素樹脂の結晶化度は、示差走査熱量計(DSC)(TA instrument社製、Q20)を用いて結晶性フッ素樹脂の融点を挟む充分に広い温度範囲で10℃/分の走査速度で比熱測定を行い、融点に起因すると考えられる吸熱ピークの面積から融解熱を求め、下式を用いて算出した。データの解析は、2nd Heatingの熱量分析データに基づいて行った。
結晶化度=0.98×融解熱(J/g)
(Crystallinity, heat of fusion)
The crystallinity of the crystalline fluororesin can be measured at a scanning speed of 10 ° C./min in a sufficiently wide temperature range sandwiching the melting point of the crystalline fluororesin using a differential scanning calorimeter (DSC) (Q20, manufactured by TA instrument). The specific heat was measured, the heat of fusion was determined from the area of the endothermic peak considered to be due to the melting point, and calculated using the following formula. Data analysis was based on 2nd Heating calorimetric data.
Crystallinity = 0.98 × heat of fusion (J / g)
(融点)
結晶性フッ素樹脂の融点は、前記吸熱ピークのトップ温度とした。
(Melting point)
The melting point of the crystalline fluororesin was the top temperature of the endothermic peak.
(膨潤量)
圧力20MPa、温度60℃または75℃において、臨界状態の二酸化炭素に非発泡成形体を60分間浸漬した際の、非発泡成形体の膨潤量(体積%)は、下記のようにして求めた。
約10mm角の非発泡成形体(フィルム)を準備した。これをサファイヤ覗き窓付きの耐熱容器に入れ、超臨界状態の二酸化炭素を導入することで、非発泡成形体に超臨界状態の二炭化酸素を含浸させた。そのときの非発泡成形体の寸法変化を2次元方向のみで評価し、その値を3/2乗とすることで体積膨潤量とした。
(Swelling amount)
The swelling amount (volume%) of the non-foamed molded product when the non-foamed molded product was immersed in carbon dioxide in a critical state for 60 minutes at a pressure of 20 MPa and a temperature of 60 ° C. or 75 ° C. was determined as follows.
An approximately 10 mm square non-foamed molded body (film) was prepared. This was put in a heat-resistant container with a sapphire viewing window, and supercritical carbon dioxide was introduced to impregnate the non-foamed molded article with supercritical oxygen dicarbide. The dimensional change of the non-foamed molded body at that time was evaluated only in the two-dimensional direction, and the value was set to 3/2 to obtain the volume swelling amount.
(含浸量)
工程(b)直後の非発泡成形体への二酸化炭素の含浸量は、下記のようにして求めた。
工程(b)の前の非発泡成形体(フィルム)の質量W0を測定した。工程(b)の後、耐圧容器から非発泡成形体を取り出し、所定の時間を経過した後に質量W1を測定し、下式から含浸量を求めた。
非発泡成形体への二酸化炭素の含浸量=(W1−W0)/W0×100
(Impregnation amount)
The amount of carbon dioxide impregnated into the non-foamed molded article immediately after the step (b) was determined as follows.
The mass W0 of the non-foamed molded body (film) before the step (b) was measured. After the step (b), the non-foamed molded article was taken out from the pressure vessel, and after a predetermined time had passed, the mass W1 was measured, and the impregnation amount was determined from the following formula.
Amount of carbon dioxide impregnated into non-foamed molded article = (W1-W0) / W0 × 100
(貯蔵弾性率)
非発泡成形体の貯蔵弾性率は、下記のようにして求めた。
固体動的粘弾性測定装置(アイティー計測社製、DVA−220)を用いて、毎分2℃の昇温速度で温度を昇温させながら10Hzの周波数で非発泡成形体の粘弾性測定を行った。得られた貯蔵弾性率の温度依存データから、必要な温度の貯蔵弾性率を求めた。
(Storage modulus)
The storage elastic modulus of the non-foamed molded article was determined as follows.
Using a solid dynamic viscoelasticity measuring device (DVA-220, manufactured by IT Measurement Co., Ltd.), measuring the viscoelasticity of a non-foamed molded article at a frequency of 10 Hz while raising the temperature at a temperature rise rate of 2 ° C per minute. went. The storage elastic modulus at the required temperature was determined from the obtained temperature-dependent data of the storage elastic modulus.
(厚さ)
非発泡成形体および発泡体の厚さは、一定圧力で接触する接触式マイクロメーター(ミツトヨ社製、Model ID−H5030)を用いて測定した。
(thickness)
The thickness of the non-foamed molded body and the foamed body was measured using a contact type micrometer (Model ID-H5030, manufactured by Mitutoyo Corporation) that contacts at a constant pressure.
(メジアン径)
発泡体における独立気泡のメジアン径は、発泡体を液体窒素等を用いて極低温に冷却した後、破壊し、あらわれた断面を電子顕微鏡で観察し、観察された断面に見られる100個以上の独立気泡の気泡径を測定し、気泡径分布(積算分布)の分布曲線を作成して求めた。
(Median diameter)
The median diameter of the closed cells in the foam is such that after the foam is cooled to a cryogenic temperature using liquid nitrogen or the like, the foam is broken, and the resulting cross section is observed with an electron microscope. The bubble diameter of the closed cells was measured, and a distribution curve of the bubble diameter distribution (integrated distribution) was created and determined.
(発泡倍率)
発泡体の発泡倍率は、工程(b)の前の非発泡成形体の比重D1と、工程(c)の後の発泡体の比重D2を比重計(島津製作所社製、AUW220D)を用いて、25℃で測定し、下式から求めた。
発泡倍率=D1/D2
(Foaming ratio)
The foaming ratio of the foam is determined using the specific gravity D1 of the non-foamed molded body before step (b) and the specific gravity D2 of the foam after step (c) using a hydrometer (manufactured by Shimadzu Corporation, AUW220D). It measured at 25 degreeC and calculated | required from the following formula.
Foaming ratio = D1 / D2
(ヘイズ)
発泡体のヘイズは、ヘイズメータ(スガ試験機社製、SMカラーコンピューター)を用いて室温で測定した。
(Haze)
The haze of the foam was measured at room temperature using a haze meter (SM color computer, manufactured by Suga Test Instruments Co., Ltd.).
(電子顕微鏡像)
発泡体について、走査型電子顕微鏡(日本電子社製、JSM−6010)を用い、発泡体の断面を観察した。
(Electron microscope image)
About the foam, the cross section of the foam was observed using the scanning electron microscope (The JEOL Co., Ltd. make, JSM-6010).
(結晶性フッ素樹脂)
実施例で用いた結晶性フッ素樹脂を表1に示す。
(Crystalline fluororesin)
Table 1 shows the crystalline fluororesins used in the examples.
(フィルムの製造)
図1に示すような、表面が平滑なステンレス製の鏡面板1と、表面に凹部が形成されたステンレス製の鏡面板2との間に、2枚のポリイミドフィルム3(東レ・デュポン社製、カプトン、厚さ75μm)を介してペレット状の樹脂材料4を配置し、これを加熱平板プレス装置(東洋精機製作所社製、ミニテストプレス)にセットし、加熱した平板プレスの間で5分間放置した後、プレスした。プレス温度は、ETFE1〜5は300℃、PFAは330℃、FEPは300℃、PVDFは230℃とした。圧力は、3.4MPaとした。
(Film production)
As shown in FIG. 1, two polyimide films 3 (manufactured by Toray DuPont Co., Ltd.) are provided between a stainless steel
(例1)
工程(a):
結晶性フッ素樹脂(旭硝子社製、フルオン(登録商標)C−88AXM)のみからなるペレット状の樹脂材料の6gを上述した方法で成形し、厚さ100μmのフィルムを得た。
(Example 1)
Step (a):
6 g of a pellet-shaped resin material made only of a crystalline fluororesin (manufactured by Asahi Glass Co., Ltd., Fluon (registered trademark) C-88AXM) was molded by the method described above to obtain a film having a thickness of 100 μm.
工程(b):
フィルムを耐圧容器に入れ、耐圧容器を40℃の温浴につけながら耐圧容器の内部に高圧の二酸化炭素を注入し、内部圧力を20MPaまで昇圧し、該圧力を1.5時間保持した。
Step (b):
The film was placed in a pressure vessel, high pressure carbon dioxide was injected into the pressure vessel while the pressure vessel was placed in a 40 ° C. warm bath, the internal pressure was increased to 20 MPa, and the pressure was maintained for 1.5 hours.
工程(c):
耐圧容器を温浴から取り出し、内部の二酸化炭素を放出し、内部を大気圧に戻した。耐圧容器からフィルムを取り出した直後、80℃に加温したグリセロール中に投入し、2分間保持し、フィルムを発泡させ、発泡フィルムを得た。
Step (c):
The pressure vessel was removed from the warm bath, the carbon dioxide inside was released, and the inside was returned to atmospheric pressure. Immediately after taking out the film from the pressure vessel, it was put into glycerol heated to 80 ° C. and held for 2 minutes to foam the film to obtain a foamed film.
工程(d):
発泡フィルムをグリセロール中から取り出し、室温に冷却した後、エタノールで洗浄し、室温で24時間真空乾燥した。
発泡フィルムの評価結果を表4に示す。
Step (d):
The foamed film was taken out of the glycerol, cooled to room temperature, washed with ethanol, and vacuum dried at room temperature for 24 hours.
Table 4 shows the evaluation results of the foamed film.
(例2〜15、17〜25)
用いる結晶性フッ素樹脂、フィルムの厚さ、工程(b)、(c)の条件を、表2、表3に示すように変更した以外は、例1と同様にして発泡フィルム(または非発泡フィルム)を得た。発泡フィルムの評価結果を表4に示す。
(Examples 2-15, 17-25)
The foamed film (or non-foamed film) was the same as Example 1 except that the crystalline fluororesin used, the thickness of the film, and the conditions of steps (b) and (c) were changed as shown in Table 2 and Table 3. ) Table 4 shows the evaluation results of the foamed film.
(例16)
フィルムの厚さ、工程(b)の条件を、表3に示すように変更し、工程(b)の終了後、工程(c)を行わず、フィルムを大気圧の状態に置き、そのままの状態で発泡させた以外は、例1と同様にして発泡フィルム(または非発泡フィルム)を得た。発泡フィルムの評価結果を表4に示す。
(Example 16)
The thickness of the film and the conditions of the step (b) are changed as shown in Table 3, and after the step (b) is finished, the step (c) is not performed and the film is left in an atmospheric pressure state as it is. A foamed film (or non-foamed film) was obtained in the same manner as in Example 1 except that foaming was performed. Table 4 shows the evaluation results of the foamed film.
結晶性フッ素樹脂からなるフィルムに、31.1℃以上結晶性フッ素樹脂のガラス転移温度以下の条件下、超臨界状態の二酸化炭素を含浸させた後、含浸時の圧力よりも低い圧力、かつ含浸時の温度以上前記結晶性フッ素樹脂のガラス転移温度以下の雰囲気下にて非発泡フィルムを発泡させることで得られた例1〜13の発泡フィルムは、ヘイズが低く抑えられ、充分な光透過性を有していた。
発泡フィルムの走査型電子顕微鏡による断面観察によれば、気泡部分は特に大きな異方性、方向性をもたず、概ね真円に近い形状を有していた。断面破断方向は特に規定しておらず、発泡フィルムの任意の断面において気泡が概ね円形状であると考えられ、その結果、形成された気泡はほとんど連通していない独立気泡であると断定できる。
A film made of crystalline fluororesin is impregnated with supercritical carbon dioxide under conditions of 31.1 ° C. or higher and below the glass transition temperature of the crystalline fluororesin, and then at a pressure lower than the pressure during impregnation. The foamed films of Examples 1 to 13 obtained by foaming the non-foamed film in an atmosphere at a temperature above the glass transition temperature and below the glass transition temperature of the crystalline fluororesin have a low haze and a sufficient light transmittance. Had.
According to the cross-sectional observation of the foamed film with a scanning electron microscope, the bubble portion did not have particularly large anisotropy and directionality, and had a shape that was almost a perfect circle. The direction in which the cross-section breaks is not particularly defined, and the bubbles are considered to be generally circular in any cross section of the foamed film. As a result, it can be determined that the formed bubbles are closed cells that are hardly communicated.
工程(c)を実質上含まない例14〜15では、発泡が見られなかった。
結晶性フッ素樹脂としてPVDFを用いた例17は、工程(c)によって内部に気泡が形成されても、室温で放置している間にPVDFの非晶層が変形し、発泡がなくなることにより、最終的に発泡体が得られなかった。
工程(b)の終了(容器内の二酸化炭素の放出開始)から工程(c)の開始(フィルムを80℃の雰囲気下に置く)までの時間が長すぎた例18は、工程(c)の開始時に、フィルムに含浸した二酸化炭素のほとんどがフィルムから抜け出したため、工程(c)を実施できなかった。
In Examples 14 to 15 substantially not including the step (c), foaming was not observed.
In Example 17 using PVDF as the crystalline fluororesin, even if bubbles were formed inside by the step (c), the amorphous layer of PVDF was deformed while being left at room temperature, and foaming disappeared. Finally, no foam was obtained.
Example 18 in which the time from the end of step (b) (start of releasing carbon dioxide in the container) to the start of step (c) (place the film in an atmosphere of 80 ° C.) is too long is shown in step (c) Since most of the carbon dioxide impregnated in the film escaped from the film at the start, step (c) could not be performed.
工程(c)の温度が結晶性フッ素樹脂のガラス転移温度より高い例19〜25は、工程(c)の時に結晶性フッ素樹脂の硬さが不足しており、発泡はするものの、気泡のメジアン径が1μm以上となり、結果、発泡体のヘイズを著しく増大させた。
工程(b)の温度が高く、かつ工程(c)を行わず、フィルムを大気圧の状態に置き、そのままの状態で発泡させた例16は、気泡のメジアン径が1μmを超え、気泡による光散乱によってヘイズが高くなり、充分な光透過性を有してなかった。例16は、特許文献1に記載された製造方法に相当する。
In Examples 19 to 25, in which the temperature of the step (c) is higher than the glass transition temperature of the crystalline fluororesin, the hardness of the crystalline fluororesin is insufficient at the time of the step (c). The diameter became 1 μm or more, and as a result, the haze of the foam was remarkably increased.
In Example 16 in which the temperature of the step (b) is high and the step (c) is not performed and the film is left in an atmospheric pressure state and foamed as it is, the median diameter of the bubbles exceeds 1 μm, and the light generated by the bubbles The haze was increased by scattering and the light transmission was not sufficient. Example 16 corresponds to the manufacturing method described in
本発明の発泡体は、膜構造物、農業用ビニールハウス等の膜材、カーテン類として有用であるとともに、一般的な建材用途においても従来のフッ素樹脂フィルムより比重が軽く、取扱性が向上しており有用である。 The foam of the present invention is useful as a membrane structure, a membrane material for agricultural greenhouses, curtains, etc., and has a lighter specific gravity than conventional fluororesin films in general building material applications, improving handling. It is useful.
1 鏡面板
2 鏡面板
3 ポリイミドフィルム
4 樹脂材料
DESCRIPTION OF
Claims (8)
発泡体のヘイズが、50%以下である、発泡体。 A foam of a resin material containing a crystalline fluororesin,
A foam having a haze of the foam of 50% or less.
前記独立気泡のメジアン径が、200nm以下である、請求項1に記載の発泡体。 Has multiple closed cells,
The foam according to claim 1, wherein the median diameter of the closed cells is 200 nm or less.
結晶性フッ素樹脂を含む樹脂材料の非発泡成形体に、31.1℃以上前記結晶性フッ素樹脂のガラス転移温度以下の条件下、超臨界状態の二酸化炭素を含浸させた後、含浸時の圧力よりも低い圧力、かつ含浸時の温度以上前記結晶性フッ素樹脂のガラス転移温度以下の雰囲気下にて非発泡成形体を発泡させる発泡体の製造方法。 A method for producing the foam according to any one of claims 1 to 3,
A non-foamed molded article of a resin material containing a crystalline fluororesin is impregnated with carbon dioxide in a supercritical state under conditions of 31.1 ° C. or more and a glass transition temperature of the crystalline fluororesin, and then the pressure during the impregnation A method for producing a foam, wherein the non-foamed molded body is foamed in an atmosphere at a lower pressure and at an impregnation temperature or more and a glass transition temperature of the crystalline fluororesin or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013166646A JP2015034255A (en) | 2013-08-09 | 2013-08-09 | Foam and production method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013166646A JP2015034255A (en) | 2013-08-09 | 2013-08-09 | Foam and production method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015034255A true JP2015034255A (en) | 2015-02-19 |
Family
ID=52543017
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013166646A Pending JP2015034255A (en) | 2013-08-09 | 2013-08-09 | Foam and production method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2015034255A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019155747A1 (en) * | 2018-02-06 | 2019-08-15 | 株式会社クレハ | Vinylidene fluoride homopolymer foamed body and method for producing foamed body |
WO2019155746A1 (en) * | 2018-02-06 | 2019-08-15 | 株式会社クレハ | Vinylidene fluoride copolymer foamed body and method for producing foamed body |
WO2021039109A1 (en) * | 2019-08-23 | 2021-03-04 | 株式会社クレハ | Molded foam and production method therefor |
JP2022099905A (en) * | 2020-12-23 | 2022-07-05 | 凸版印刷株式会社 | Mouthpiece and its manufacturing method |
US11773272B2 (en) | 2016-10-06 | 2023-10-03 | Glassomer Gmbh | Highly fluorinated nanostructured polymer foams for producing super-repellent surfaces |
WO2024043078A1 (en) | 2022-08-26 | 2024-02-29 | 古河電気工業株式会社 | Fluororesin composition and fine foam fluororesin film using same |
JP7549973B2 (en) | 2020-05-19 | 2024-09-12 | Agcエンジニアリング株式会社 | Composite particles, molded body, hollow fiber membrane manufacturing method, ion exchange membrane manufacturing method |
-
2013
- 2013-08-09 JP JP2013166646A patent/JP2015034255A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11773272B2 (en) | 2016-10-06 | 2023-10-03 | Glassomer Gmbh | Highly fluorinated nanostructured polymer foams for producing super-repellent surfaces |
WO2019155747A1 (en) * | 2018-02-06 | 2019-08-15 | 株式会社クレハ | Vinylidene fluoride homopolymer foamed body and method for producing foamed body |
WO2019155746A1 (en) * | 2018-02-06 | 2019-08-15 | 株式会社クレハ | Vinylidene fluoride copolymer foamed body and method for producing foamed body |
WO2021039109A1 (en) * | 2019-08-23 | 2021-03-04 | 株式会社クレハ | Molded foam and production method therefor |
JP7549973B2 (en) | 2020-05-19 | 2024-09-12 | Agcエンジニアリング株式会社 | Composite particles, molded body, hollow fiber membrane manufacturing method, ion exchange membrane manufacturing method |
JP2022099905A (en) * | 2020-12-23 | 2022-07-05 | 凸版印刷株式会社 | Mouthpiece and its manufacturing method |
WO2024043078A1 (en) | 2022-08-26 | 2024-02-29 | 古河電気工業株式会社 | Fluororesin composition and fine foam fluororesin film using same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2015034255A (en) | Foam and production method thereof | |
JP7112013B1 (en) | fluorine-containing copolymer | |
US8227521B2 (en) | Fluoropolymer foams prepared with the use of blowing agents and applications thereof | |
EP1745093B1 (en) | Crosslinked fluoropolymer foams, process to make them and applications thereof | |
US20120171493A1 (en) | Fluoropolymer Molding Method and Molded Article | |
JP6787335B2 (en) | Resin film and its manufacturing method | |
KR102507245B1 (en) | Pfa molded body with excellent blister resistance and method of controlling occurrence of blisters in pfa molded body | |
JP2023030133A (en) | fluorine-containing copolymer | |
JP5224408B2 (en) | Light reflecting sheet and manufacturing method thereof | |
JP2017020652A (en) | Molding | |
JP2017119741A (en) | Resin and film | |
JP2014118548A (en) | Polyvinylidene fluoride-based resin expanded particles, method for producing polyvinylidene fluoride-based resin expanded particles, and molded article of polyvinylidene fluoride-based resin expanded particles | |
JPS62252435A (en) | Fluororesin foam and sealing members using it | |
CN1715314B (en) | Fluoropolymer film and its application | |
JP2022132108A (en) | Injection molded article and its manufacturing method | |
JP2022132231A (en) | fluorine-containing copolymer | |
JPS62280236A (en) | Fluorocarbon resin having fine cell and its production | |
JPH0726050A (en) | Non-cross-linked fluororesin foam | |
JP2017052854A (en) | Fluororesin composition with excellent blister resistance | |
JP2004307864A5 (en) | ||
JP2017031290A (en) | Polylactic acid-based resin foaming particle and polylactic acid-based resin foaming particle molded body | |
JP2015174927A (en) | Foam and production method thereof | |
US20250145815A1 (en) | Fluorinated resin composition and microcellular foamed fluorinated resin film using the same | |
CN119101276A (en) | A preparation method and application of polytetrafluoroethylene foam | |
JPH05239249A (en) | Fluororesin foam |