JP2015026736A - Reactor and method of manufacturing the same - Google Patents
Reactor and method of manufacturing the same Download PDFInfo
- Publication number
- JP2015026736A JP2015026736A JP2013155877A JP2013155877A JP2015026736A JP 2015026736 A JP2015026736 A JP 2015026736A JP 2013155877 A JP2013155877 A JP 2013155877A JP 2013155877 A JP2013155877 A JP 2013155877A JP 2015026736 A JP2015026736 A JP 2015026736A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic powder
- aggregate
- resin
- reactor
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Insulating Of Coils (AREA)
Abstract
【課題】磁性粉末混合樹脂からなるコアを有するリアクトルにおいて、コアにおける磁性粉末の充填率を容易に向上することができるリアクトルを提供すること。【解決手段】リアクトル1は、通電されることにより磁束を発生するコイル10と、磁性粉末混合樹脂21を硬化してなるとともにコイル10を内部に埋設したコア20と、を備える。磁性粉末混合樹脂21は、磁性粉末22を集合させて粒状に成形されている複数の磁性粉末集合体220と、複数の磁性粉末集合体220を分散した状態で内包する絶縁樹脂23とからなる。【選択図】図4In a reactor having a core made of a magnetic powder mixed resin, a reactor capable of easily improving the filling rate of magnetic powder in the core is provided. A reactor includes a coil that generates a magnetic flux when energized, and a core that is formed by curing a magnetic powder mixed resin and embedded in the coil. The magnetic powder mixed resin 21 includes a plurality of magnetic powder aggregates 220 that are formed into a granular shape by aggregating the magnetic powder 22 and an insulating resin 23 that encloses the plurality of magnetic powder aggregates 220 in a dispersed state. [Selection] Figure 4
Description
本発明は、リアクトル及びその製造方法に関する。 The present invention relates to a reactor and a manufacturing method thereof.
従来、例えば、電気自動車やハイブリッド自動車等において、動力源である交流モータに通電する駆動電流を生成するために、インバータやコンバータ等の電力変換装置が用いられている。かかる電力変換装置においては、電力変換回路の一部を構成する半導体モジュールやこれを冷却する冷却器が備えられ、更に、入力電圧を昇圧又は降圧するための昇降圧回路の一部にはリアクトル等の電子部品が備えられている。 2. Description of the Related Art Conventionally, for example, in an electric vehicle, a hybrid vehicle, and the like, a power conversion device such as an inverter or a converter is used in order to generate a drive current that is passed through an AC motor that is a power source. In such a power conversion device, a semiconductor module constituting a part of the power conversion circuit and a cooler for cooling the semiconductor module are provided, and a reactor or the like is included in a part of the step-up / down circuit for stepping up or stepping down the input voltage The electronic parts are provided.
そして、上記リアクトルとして、磁性粉末と、該磁性粉末を分散した状態で内包する絶縁樹脂とを備えた磁性粉末混合樹脂の内部にコイルを埋設するとともに、当該磁性粉末混合樹脂を硬化したものをコアとして使用するものがある(特許文献1)。 As the reactor, a coil is embedded in a magnetic powder mixed resin including magnetic powder and an insulating resin encapsulated in a state where the magnetic powder is dispersed, and a core obtained by curing the magnetic powder mixed resin is used as a core. (Patent Document 1).
上記リアクトルにおいて、リアクトルの性能を向上するために、磁性粉末混合樹脂における磁性粉末の充填率を高めることが考えられる。これにより、コアの飽和磁束密度の向上や、コアにおける鉄損の低減が期待できるからである。しかしながら、単に磁性粉末混合樹脂における磁性粉末の充填量を増やせば、磁性粉末混合樹脂における粘度が過度に高くなるなどして、磁性粉末を絶縁樹脂内に均一に分散することが困難となるおそれがある。そのため、磁性粉末の充填率を十分に高めるには改善の余地があった。 In the reactor, in order to improve the performance of the reactor, it is conceivable to increase the filling rate of the magnetic powder in the magnetic powder mixed resin. This is because an improvement in the saturation magnetic flux density of the core and a reduction in iron loss in the core can be expected. However, simply increasing the filling amount of the magnetic powder in the magnetic powder mixed resin may make it difficult to uniformly disperse the magnetic powder in the insulating resin due to excessively high viscosity in the magnetic powder mixed resin. is there. Therefore, there is room for improvement in order to sufficiently increase the filling rate of the magnetic powder.
本発明は、かかる問題点に鑑みてなされたもので、磁性粉末混合樹脂からなるコアを有するリアクトルにおいて、コアにおける磁性粉末の充填率を容易に向上することができるリアクトルを提供しようとするものである。 The present invention has been made in view of such problems, and in a reactor having a core made of a magnetic powder mixed resin, it is intended to provide a reactor that can easily improve the filling rate of magnetic powder in the core. is there.
本発明の一態様は、通電されることにより磁束を発生するコイルと、
磁性粉末混合樹脂を硬化してなるとともに上記コイルを内部に埋設したコアと、
を備え、
上記磁性粉末混合樹脂は、磁性粉末を集合させて粒状に成形されている複数の磁性粉末集合体と、該複数の磁性粉末集合体を分散した状態で内包する絶縁樹脂とからなることを特徴とするリアクトルにある。
One embodiment of the present invention includes a coil that generates magnetic flux when energized;
A core obtained by curing a magnetic powder mixed resin and having the coil embedded therein;
With
The magnetic powder mixed resin is characterized by comprising a plurality of magnetic powder aggregates formed into a granular shape by aggregating magnetic powders and an insulating resin containing the plurality of magnetic powder aggregates in a dispersed state. There is a reactor to do.
本発明の他の態様は、磁性粉末を集合させて、粒状の磁性粉末集合体を複数形成する集合体形成工程と、
通電されることにより磁束を発生するコイルをケース内に載置するコイル載置工程と、
上記コイルを載置した上記ケース内に、上記複数の磁性粉末集合体を配置する集合体配置工程と、
上記複数の磁性粉末集合体を配置した上記ケース内に、液状の絶縁樹脂を注いで該絶縁樹脂に上記複数の磁性粉末集合体を分散させて磁性粉末混合樹脂を形成する混合樹脂形成工程と、
上記混合工程で形成した上記磁性粉末混合樹脂を硬化する硬化工程と、
を含むことを特徴とするリアクトルの製造方法にある。
Another aspect of the present invention is an assembly forming step in which magnetic powders are aggregated to form a plurality of granular magnetic powder aggregates;
A coil placement step of placing a coil that generates magnetic flux when energized in a case;
An assembly arrangement step of arranging the plurality of magnetic powder assemblies in the case on which the coil is placed;
A mixed resin forming step of pouring a liquid insulating resin into the case in which the plurality of magnetic powder aggregates are arranged to disperse the plurality of magnetic powder aggregates in the insulating resin to form a magnetic powder mixed resin; and
A curing step of curing the magnetic powder mixed resin formed in the mixing step;
It is in the manufacturing method of the reactor characterized by including.
上記リアクトルにおいては、磁性粉末混合樹脂において、磁性粉末を集合させて粒状に成形された複数の磁性粉末集合体が絶縁樹脂に分散している。磁性粉末集合体は磁性粉末よりも平均粒径が大きいため、当該磁性粉末混合樹脂の粘度は、磁性粉末集合体と同質量の磁性粉末を分散させた磁性粉末混合樹脂の粘度に比べて低くなる。そのため、磁性粉末集合体を絶縁樹脂内に均一に分散させることが容易となることから、磁性粉末混合樹脂における磁性粉末の充填率を容易に向上することができる。その結果、コアの飽和磁束密度の向上と、コアにおける鉄損の低減とが図られるとともに、リアクトル全体の小型化に寄与する。 In the reactor, in the magnetic powder mixed resin, a plurality of magnetic powder aggregates formed by collecting magnetic powder into a granular shape are dispersed in the insulating resin. Since the magnetic powder aggregate has a larger average particle size than the magnetic powder, the viscosity of the magnetic powder mixed resin is lower than the viscosity of the magnetic powder mixed resin in which the same amount of magnetic powder as the magnetic powder aggregate is dispersed. . For this reason, it is easy to uniformly disperse the magnetic powder aggregate in the insulating resin, so that the filling rate of the magnetic powder in the magnetic powder mixed resin can be easily improved. As a result, it is possible to improve the saturation magnetic flux density of the core and reduce the iron loss in the core, and contribute to the miniaturization of the entire reactor.
上記リアクトルの製造方法によれば、上述の作用効果を奏するリアクトルを製造することができる。 According to the manufacturing method of the reactor, it is possible to manufacture a reactor that exhibits the above-described effects.
以上のごとく、本発明によれば、磁性粉末混合樹脂からなるコアを有するリアクトルにおいて、コアにおける磁性粉末の充填率を容易に向上することができるリアクトルを提供することができる。 As described above, according to the present invention, in the reactor having the core made of the magnetic powder mixed resin, it is possible to provide a reactor that can easily improve the filling rate of the magnetic powder in the core.
本発明のリアクトルは、電気自動車やハイブリッド自動車に搭載されるインバータやコンバータなどの電力変換装置に使用することができる。 The reactor of this invention can be used for power converters, such as an inverter and a converter, which are mounted in an electric vehicle or a hybrid vehicle.
(実施例1)
本例の実施例に係るリアクトルにつき、図1〜図12を用いて説明する。
本例のリアクトル1は、図1、図2に示すように、通電されることにより磁束を発生するコイル10と、磁性粉末混合樹脂21を硬化してなるとともにコイル10を内部に埋設したコア20とを備える。
磁性粉末混合樹脂21は、図2、図3に示すように、磁性粉末22を集合させて粒状に成形されている複数の磁性粉末集合体220と、複数の磁性粉末集合体220と絶縁樹脂23とを混合してなる。
Example 1
About the reactor which concerns on the Example of this example, it demonstrates using FIGS.
As shown in FIGS. 1 and 2, the reactor 1 of this example includes a coil 10 that generates a magnetic flux when energized, and a core 20 in which the magnetic powder mixed resin 21 is cured and the coil 10 is embedded therein. With.
As shown in FIGS. 2 and 3, the magnetic powder mixed resin 21 includes a plurality of magnetic powder aggregates 220 in which the magnetic powder 22 is aggregated and formed into a granular shape, a plurality of magnetic powder aggregates 220, and an insulating resin 23. And mixed.
以下、本例のリアクトル1について、詳述する。
コイル10は、銅線を円筒状に所定回数巻回して形成されている。コイル10は、図1に示すように、コア2に埋設された状態で、円筒状のケース30内に収納されている。ケース30は上面側(コイル10の巻回軸方向Zの一端側)が開口している。
Hereinafter, the reactor 1 of this example is explained in full detail.
The coil 10 is formed by winding a copper wire into a cylindrical shape a predetermined number of times. As shown in FIG. 1, the coil 10 is housed in a cylindrical case 30 while being embedded in the core 2. The case 30 is open on the upper surface side (one end side in the winding axis direction Z of the coil 10).
磁性粉末22は、軟磁性金属粉末であって、例えば、Fe、Fe−Si合金の他、Co、Ni、Fe−Ni合金、Fe−Al合金、Fe−Co合金、Fe−Cr合金、Fe−N合金、Fe−C合金、Fe−B合金、Fe−P合金、Fe−Al−Si合金とすることができる。本例では、Fe−6.5%Si粉末を磁性粉末22として使用した。磁性粉末22の平均粒径D50は、例えば、10〜500μmとすることができ、本例では、磁性粉末22の平均粒径D50は140μmである。磁性粉末22の表面には、図3に示すように、絶縁被膜24が形成されている。絶縁被膜24は、例えば、リン酸系、樹脂系、金属酸化物である。本例では、リン酸系の絶縁被膜24が磁性粉末22の表面に形成されている。絶縁被膜24の厚さは、必要とされる絶縁被膜24の強度や採用した絶縁被膜24の種類などを考慮して適宜選択でき、例えば、10nm〜1μmとすることができる。 The magnetic powder 22 is a soft magnetic metal powder and includes, for example, Fe, Fe—Si alloy, Co, Ni, Fe—Ni alloy, Fe—Al alloy, Fe—Co alloy, Fe—Cr alloy, Fe— N alloy, Fe-C alloy, Fe-B alloy, Fe-P alloy, Fe-Al-Si alloy can be used. In this example, Fe-6.5% Si powder was used as the magnetic powder 22. The average particle diameter D50 of the magnetic powder 22 can be set to, for example, 10 to 500 μm. In this example, the average particle diameter D50 of the magnetic powder 22 is 140 μm. As shown in FIG. 3, an insulating coating 24 is formed on the surface of the magnetic powder 22. The insulating coating 24 is, for example, phosphoric acid type, resin type, or metal oxide. In this example, a phosphoric acid-based insulating coating 24 is formed on the surface of the magnetic powder 22. The thickness of the insulating coating 24 can be appropriately selected in consideration of the required strength of the insulating coating 24 and the type of the insulating coating 24 employed, and can be set to, for example, 10 nm to 1 μm.
磁性粉末集合体220は、図3に示すように、磁性粉末22を集合させて、粒状に形成されている。磁性粉末集合体220を形成する方法としては、例えば、所定の圧粉装置によって磁性粉末22を圧縮して集合させる圧縮成形を採用することができる。なお、本明細書において、「粒状」とは、球状に限らず、各種の形状を含む広い概念をいうものとする。また、本明細書において、磁性粉末集合体220における「平均粒径」とは、その形状が球形の場合は、その直径の平均値をいい、その形状が球形以外の場合は、その形状において最も長い部分の長さの平均値をいうものとする。 As shown in FIG. 3, the magnetic powder aggregate 220 is formed into a granular shape by assembling the magnetic powder 22. As a method of forming the magnetic powder aggregate 220, for example, compression molding in which the magnetic powder 22 is compressed and aggregated by a predetermined compacting apparatus can be employed. In the present specification, the term “granular” is not limited to a spherical shape, but refers to a broad concept including various shapes. Further, in this specification, the “average particle diameter” in the magnetic powder aggregate 220 means an average value of the diameter when the shape is spherical, and is the most in the shape when the shape is other than spherical. It shall mean the average value of the length of the long part.
磁性粉末集合体220は、第1磁性粉末集合体221、第2磁性粉末集合体222及び第3磁性粉末集合体223を有する。第1磁性粉末集合体221、第2磁性粉末集合体222及び第3磁性粉末集合体223は、いずれも粒状に形成されている。
第1磁性粉末集合体221の平均粒径D50は、例えば、1.0〜5.0mmとすることができ、本例では、3.0mmとした。図3に示すように、第1磁性粉末集合体221の粒径d1は、磁性粉末22の粒径d2の約20倍である。
第2磁性粉末集合体222の平均粒径D50は、例えば、第1磁性粉末集合体221の平均粒径D50の0.3〜0.5倍とすることができ、本例では、第1磁性粉末集合体221の平均粒径D50の0.4倍の1.2mmとした。
第3磁性粉末集合体223の平均粒径D50は、例えば、第1磁性粉末集合体221の平均粒径D50の0.1〜0.3倍とすることができ、本例では、第1磁性粉末集合体221の平均粒径D50の0.2倍の0.6mmとした。
The magnetic powder aggregate 220 includes a first magnetic powder aggregate 221, a second magnetic powder aggregate 222, and a third magnetic powder aggregate 223. The first magnetic powder aggregate 221, the second magnetic powder aggregate 222, and the third magnetic powder aggregate 223 are all formed in a granular shape.
The average particle diameter D50 of the first magnetic powder aggregate 221 can be set to 1.0 to 5.0 mm, for example, and is set to 3.0 mm in this example. As shown in FIG. 3, the particle size d1 of the first magnetic powder aggregate 221 is about 20 times the particle size d2 of the magnetic powder 22.
The average particle diameter D50 of the second magnetic powder aggregate 222 can be, for example, 0.3 to 0.5 times the average particle diameter D50 of the first magnetic powder aggregate 221. The average particle diameter D50 of the powder aggregate 221 was 0.4 times 1.2 mm.
The average particle diameter D50 of the third magnetic powder aggregate 223 can be, for example, 0.1 to 0.3 times the average particle diameter D50 of the first magnetic powder aggregate 221. The average particle diameter D50 of the powder aggregate 221 was 0.2 mm, 0.6 mm.
磁性粉末集合体220に含まれる第1磁性粉末集合体221、第2磁性粉末集合体222及び第3磁性粉末集合体223の含有比率は、例えば、必要とされる充填率、絶縁樹脂の材質、磁性粉末の材質などを考慮して適宜決定することができる。本例では、磁性粉末樹脂21における体積比を、第1磁性粉末集合体221:第2磁性粉末集合体222:第3磁性粉末集合体223=92:6:2とした。さらに、本例では、磁性粉末樹脂21は、磁性粉末集合体220を形成していない磁性粉末22を含んでいる。なお、第1磁性粉末集合体221、第2磁性粉末集合体222及び第3磁性粉末集合体223に加えて、磁性粉末集合体220を形成していない磁性粉末22が混合されたものを、磁性粉末集合体220と呼ぶ場合があるものとする。 The content ratio of the first magnetic powder aggregate 221, the second magnetic powder aggregate 222, and the third magnetic powder aggregate 223 included in the magnetic powder aggregate 220 is, for example, a required filling rate, a material of the insulating resin, It can be determined appropriately in consideration of the material of the magnetic powder. In this example, the volume ratio in the magnetic powder resin 21 was set to the first magnetic powder aggregate 221: the second magnetic powder aggregate 222: the third magnetic powder aggregate 223 = 92: 6: 2. Further, in this example, the magnetic powder resin 21 includes the magnetic powder 22 that does not form the magnetic powder aggregate 220. In addition, in addition to the first magnetic powder aggregate 221, the second magnetic powder aggregate 222, and the third magnetic powder aggregate 223, a mixture of the magnetic powder 22 that does not form the magnetic powder aggregate 220 is magnetically mixed. It may be called a powder aggregate 220.
絶縁樹脂は、例えば、エポキシ樹脂、シリコーン樹脂、PPS(ポリフェ二レンサルファイド)樹脂、などを採用することができる。 As the insulating resin, for example, an epoxy resin, a silicone resin, a PPS (polyphenylene sulfide) resin, or the like can be used.
次に、本例のリアクトル1は以下の方法で作製した。
まず、磁性粉末22を準備した。そして、図4(a)に示すように、磁性粉末22を圧粉装置401に投入した。圧粉装置401により、磁性粉末22を1000MPaで圧縮して粒状に集合させて、第1磁性粉末集合体221、第2磁性粉末集合体222及び第3磁性粉末集合体223を含む磁性粉末集合体220を作製した(集合体作成工程)。
Next, the reactor 1 of this example was produced by the following method.
First, magnetic powder 22 was prepared. And as shown to Fig.4 (a), the magnetic powder 22 was thrown into the compaction apparatus 401. FIG. A magnetic powder assembly including a first magnetic powder assembly 221, a second magnetic powder assembly 222, and a third magnetic powder assembly 223, which is obtained by compressing the magnetic powder 22 at 1000 MPa and collecting the particles in a granular form by a compactor 401. 220 was produced (aggregate production step).
次に、第1磁性粉末集合体221、第2磁性粉末集合体222及び第3磁性粉末集合体223を、加熱装置402によって800℃で所定時間、加熱した後、ゆっくりと冷却して焼鈍した(焼鈍工程)。
その後、図4(b)に示すように、第1磁性粉末集合体221、第2磁性粉末集合体222及び第3磁性粉末集合体223と、磁性粉末22とを所定量ずつ取り出してブレンダ403に投入し、それぞれが均一に分散するように充分混合した(集合体混合工程)。
Next, the first magnetic powder aggregate 221, the second magnetic powder aggregate 222, and the third magnetic powder aggregate 223 were heated at 800 ° C. for a predetermined time by the heating device 402, and then slowly cooled and annealed ( Annealing process).
Thereafter, as shown in FIG. 4B, a predetermined amount of the first magnetic powder aggregate 221, the second magnetic powder aggregate 222, the third magnetic powder aggregate 223, and the magnetic powder 22 are taken out into a blender 403. And mixed sufficiently so that each of them was uniformly dispersed (aggregate mixing step).
次いで、図4(c)に示すように、コイル10をケース30内に載置した。(コイル載置工程)。コイル10は、巻回軸方向Zの一端側がケース30の開口側となるように載置した。
そして、図4(d)に示すように、コイル10を載置したケース30内に、上記混合した後の磁性粉末集合体220を配置した(混合体配置工程)。所定量の磁性粉末集合体220をケース30内に配置した後、ケース30を図示しない真空チャンバ内で真空度1000Paまで減圧した。減圧下において、図4(e)に示すように、滴下漏斗704により、液状の絶縁樹脂23を所定量、磁性粉末集合体220の上に注いだ。その後、真空チャンバ内を大気圧に戻し、絶縁樹脂23を大気圧によって磁性粉末集合体220に含浸させた。これにより、図4(f)に示すように、磁性粉末集合体220を絶縁樹脂23に分散させて内包させた状態にすることにより、ケース30内に磁性粉末混合樹脂21を作製した(混合樹脂形成工程)。その後、磁性粉末混合樹脂21をケース30とともに加熱して、磁性粉末混合樹脂21を硬化した(硬化工程)。これにより、コイル10を内部に埋設したコア20を形成し、リアクトル1を作製した。
Next, the coil 10 was placed in the case 30 as shown in FIG. (Coil placement process). The coil 10 was placed so that one end side in the winding axis direction Z was the opening side of the case 30.
And as shown in FIG.4 (d), the magnetic powder aggregate 220 after the said mixing was arrange | positioned in the case 30 which mounted the coil 10 (mixed body arrangement | positioning process). After placing a predetermined amount of the magnetic powder aggregate 220 in the case 30, the case 30 was depressurized to a degree of vacuum of 1000 Pa in a vacuum chamber (not shown). Under reduced pressure, as shown in FIG. 4 (e), a predetermined amount of the liquid insulating resin 23 was poured onto the magnetic powder aggregate 220 by the dropping funnel 704. Thereafter, the inside of the vacuum chamber was returned to atmospheric pressure, and the magnetic resin aggregate 220 was impregnated with the insulating resin 23 by atmospheric pressure. As a result, as shown in FIG. 4 (f), the magnetic powder aggregate resin 220 was dispersed in the insulating resin 23 and contained therein, thereby producing the magnetic powder mixed resin 21 in the case 30 (mixed resin). Forming step). Thereafter, the magnetic powder mixed resin 21 was heated together with the case 30 to cure the magnetic powder mixed resin 21 (curing step). Thereby, the core 20 which embedded the coil 10 inside was formed, and the reactor 1 was produced.
(検証試験1)
磁性粉末の充填率とコアの鉄損との関係について、検証試験を行った。
図5に示すように、試料a〜dについて、それぞれの磁性粉末の充填率を変化させたリング状試験片を作製し、周波数10kHz、磁束密度50mTにおける鉄損を測定した。各試料a〜dの組成は以下のとおりである。
試料a:Fe−6.5%Si粉末(平均粒径D50=140μm)
試料b:Fe−3%Si粉末(平均粒径D50=140μm)
試料c:Fe−9.5%Si−5.5%Al粉末(平均粒径D50=30μm)
試料d:Fe基アモルファス粉末(平均粒径D50=30μm)
(Verification test 1)
A verification test was conducted on the relationship between the filling rate of the magnetic powder and the core iron loss.
As shown in FIG. 5, for the samples a to d, ring-shaped test pieces in which the filling rate of each magnetic powder was changed were manufactured, and the iron loss at a frequency of 10 kHz and a magnetic flux density of 50 mT was measured. The composition of each sample ad is as follows.
Sample a: Fe-6.5% Si powder (average particle diameter D50 = 140 μm)
Sample b: Fe-3% Si powder (average particle diameter D50 = 140 μm)
Sample c: Fe-9.5% Si-5.5% Al powder (average particle size D50 = 30 μm)
Sample d: Fe-based amorphous powder (average particle diameter D50 = 30 μm)
図5に示すように、試料a〜dのすべてについて、充填率が55%程度から70%程度の範囲において、各磁性粉末の充填率を高めることにより、鉄損が有意に低減することを確認した。 As shown in FIG. 5, it is confirmed that the iron loss is significantly reduced by increasing the filling rate of each magnetic powder in the range of about 55% to 70% for all the samples a to d. did.
(検証試験2)
粉末の充填条件と充填率の関係について、検証試験を行った。以下のように下記の各粉末をそれぞれケースに充填して試料1〜9を作製した。
試料1:ガスアトマイズ法によるFe−6.5%Si粉末(平均粒径D50=140μm)(以下、鉄粉Aと記す)を、大気圧下でケースに自然に流し込んで充填した。
試料2:鉄粉Aを、真空度1000Paの減圧下でケースに流し込んで充填した。
試料3:鉄粉Aを、真空度20Paの減圧下でケースに流し込んで充填した。
試料4:鉄粉Aを、大気圧下でケースに自然に流し込んだ後、ケースを所定回数タッピングした。
試料5:鉄粉Aを、大気圧下でケースに自然に流し込んだ後、加振装置により周波数10Hzで所定時間振動を与えた。
試料6:鉄粉Aを、大気圧下でケースに自然に流し込んだ後、加振装置により周波数200Hzで所定時間振動を与えた。
試料7:水アトマイズ法によるFe−6.5%Si粉末(平均粒径D50=140μm)(以下、鉄粉Bと記す)を、大気圧下でケースに自然に流し込んで充填した。鉄粉Bは、図6に示すように、鉄粉Aの粒度分布よりも広い粒度分布を有していた。
試料8:水アトマイズ法によるFe−6.5%Si粉末(平均粒径D50=140μm)(以下、鉄粉Cと記す)を、大気圧下でケースに自然に流し込んで充填した。鉄粉Cは、図6に示すように、鉄粉Aの粒度分布よりも広い粒度分布を有するとともに、粒度分布において、鉄粉Bと同様に粒径220μmにピークを有することに加えて、粒径40μmにもピークを有していた。
試料9:鉄粉Cを、真空度1000Paの減圧下でケースに流し込んだ後、加振装置により周波数200Hzで所定時間振動を与えた。
(Verification test 2)
A verification test was performed on the relationship between the powder filling condition and the filling rate. Samples 1 to 9 were prepared by filling the cases with the following powders as follows.
Sample 1: Fe-6.5% Si powder (average particle diameter D50 = 140 μm) (hereinafter referred to as iron powder A) by gas atomization method was naturally poured into a case under atmospheric pressure and filled.
Sample 2: Iron powder A was poured into a case under reduced pressure with a vacuum degree of 1000 Pa and filled.
Sample 3: Iron powder A was poured and filled in a case under a reduced pressure of 20 Pa in vacuum.
Sample 4: After iron powder A was naturally poured into the case under atmospheric pressure, the case was tapped a predetermined number of times.
Sample 5: Iron powder A was naturally poured into a case under atmospheric pressure, and then was vibrated at a frequency of 10 Hz for a predetermined time by a vibration device.
Sample 6: Iron powder A was naturally poured into a case under atmospheric pressure, and then was vibrated at a frequency of 200 Hz for a predetermined time by a vibration device.
Sample 7: Fe-6.5% Si powder (average particle diameter D50 = 140 μm) (hereinafter referred to as iron powder B) by a water atomization method was naturally poured into a case and filled under atmospheric pressure. The iron powder B had a particle size distribution wider than the particle size distribution of the iron powder A, as shown in FIG.
Sample 8: Fe-6.5% Si powder (average particle diameter D50 = 140 μm) (hereinafter referred to as iron powder C) obtained by a water atomization method was naturally poured into a case and filled under atmospheric pressure. As shown in FIG. 6, the iron powder C has a particle size distribution wider than the particle size distribution of the iron powder A, and in the particle size distribution, in addition to having a peak at a particle size of 220 μm like the iron powder B, It also had a peak at a diameter of 40 μm.
Sample 9: Iron powder C was poured into a case under a reduced pressure of 1000 Pa in vacuum, and then was vibrated at a frequency of 200 Hz for a predetermined time by a vibration device.
試料1〜9について、乾燥状態における粉体の充填率を測定し、測定結果を表1に示した。なお、試料2〜8における上昇値は、試料1の充填率との差分を示し、試料9における上昇値は、試料8の充填率との差分を示す。 For Samples 1 to 9, the powder filling rate in the dry state was measured, and the measurement results are shown in Table 1. In addition, the increase value in the samples 2 to 8 indicates a difference from the filling rate of the sample 1, and the increase value in the sample 9 indicates a difference from the filling rate of the sample 8.
表1に示すように、試料7は試料1に比べて充填率が1.7%上昇していることから、広い粒度分布を有する鉄粉Bを用いることにより、充填率が向上することを確認した。さらに、試料8は試料7に比べて充填率が3.4%上昇していることから、鉄粉Bに対して、粒径40μmにもピークを有している鉄粉Cを用いることにより、充填率が効果的に向上することを確認した。そして、試料9は試料8に比べて充填率が11.9%上昇していることから、鉄粉Cを用いた場合においても、減圧及び加振によって充填率が向上することを確認した。以上から、充填する鉄粉の粒径を制御すること、特に、粒径分布において複数のピークを有する鉄粉を用いることにより、充填率が効果的に向上することが確認できた。 As shown in Table 1, since the filling rate of sample 7 is 1.7% higher than that of sample 1, it is confirmed that the filling rate is improved by using iron powder B having a wide particle size distribution. did. Furthermore, since the filling rate of the sample 8 is 3.4% higher than that of the sample 7, by using the iron powder C having a peak at a particle size of 40 μm with respect to the iron powder B, It was confirmed that the filling rate was effectively improved. And since the filling rate of the sample 9 rose 11.9% compared with the sample 8, even when the iron powder C was used, it confirmed that a filling rate improved by pressure reduction and vibration. From the above, it was confirmed that the filling rate was effectively improved by controlling the particle size of the iron powder to be filled, in particular, by using iron powder having a plurality of peaks in the particle size distribution.
粒子を密に充填する際に、粒径の異なる粒子を組み合わせることによって、充填率を向上できることは、Horsfield理論により説明できる。すなわち、単一の粒径を有するモデル粒子である真球(一次球)を充填する場合には、いわゆる六方最密充填とすることにより、充填率が74.1体積%となって最も密に充填できる。さらに、一次球よりも粒径の小さいモデル粒子である二次球を追加する場合には、二次球が一次球に対して0.414の粒径比を有するときに、充填率が79.3体積%となって最も密に充填できる。さらに、二次球に加えて三次球を追加する場合には、三次球が一次球に対して0.225の粒径比を有するときに、充填率が81.0体積%となって最も密に充填できる。このように、粒径の異なる粒子を充填する場合には、所定の粒径比となるように組み合わせることによって、その充填率を向上することができる。 It can be explained by the Horsfield theory that the packing rate can be improved by combining particles having different particle diameters when packing particles closely. That is, when filling true spheres (primary spheres), which are model particles having a single particle size, the packing ratio is 74.1% by volume by using so-called hexagonal close-packing. Can be filled. Further, when a secondary sphere that is a model particle having a smaller particle diameter than the primary sphere is added, when the secondary sphere has a particle size ratio of 0.414 with respect to the primary sphere, the filling rate is 79. 3% by volume can be filled most densely. Further, when a tertiary sphere is added in addition to the secondary sphere, when the tertiary sphere has a particle size ratio of 0.225 with respect to the primary sphere, the filling rate is 81.0% by volume, which is the most dense. Can be filled. Thus, when filling particles having different particle diameters, the filling ratio can be improved by combining them so as to have a predetermined particle diameter ratio.
(検証試験3)
次に、磁性粉末の充填率と磁性粉末混合樹脂の粘度の関係を検証した。まず、ガスアトマイズ法によるFe−6.5%Si粉末(平均粒径D50=140μm)と、エポキシ樹脂とを準備した。そして、当該樹脂に上記Fe−6.5%Si粉末を分散させて作製した磁性粉末混合樹脂において、当該磁性粉末の充填率を変化させて、その粘度を測定し、その結果を図7に示した。
図7に示すように、磁性粉末の充填率の上昇に伴って、当該磁性粉末混合樹脂の粘度が上昇することを確認した。
(Verification test 3)
Next, the relationship between the filling rate of the magnetic powder and the viscosity of the magnetic powder mixed resin was verified. First, an Fe-6.5% Si powder (average particle diameter D50 = 140 μm) and an epoxy resin prepared by a gas atomization method were prepared. Then, in the magnetic powder mixed resin prepared by dispersing the Fe-6.5% Si powder in the resin, the viscosity was measured by changing the filling rate of the magnetic powder, and the result is shown in FIG. It was.
As shown in FIG. 7, it was confirmed that the viscosity of the magnetic powder mixed resin increased as the filling rate of the magnetic powder increased.
(検証試験4)
磁性粉末混合樹脂において、その粘度が高くなると、樹脂と磁性粉末との混合精度や型成形による成形性が低下する。特に、粘度が150Pa・sを超えると、樹脂と磁性粉末とを混練により均一化することが困難となったり、注型の際の成形性が低下したりするおそれがある。上記検証試験3から、上記磁性粉末では、図7に示すように、その充填率が65体積%程度よりも高い場合には、粘度が150Pa・sを超えることとなることが確認できた。
そこで、磁性粉末の充填率が65体積%程度よりも高い場合において、磁性粉末を樹脂に均一に分散させる方法として、ケースに充填した磁性粉末に対して、樹脂を含浸させる方法について検証した。
(Verification test 4)
When the viscosity of the magnetic powder mixed resin is increased, the mixing accuracy of the resin and the magnetic powder and the moldability by mold molding are lowered. In particular, when the viscosity exceeds 150 Pa · s, it may be difficult to homogenize the resin and the magnetic powder by kneading, or the moldability during casting may be reduced. From the verification test 3, it was confirmed that the magnetic powder had a viscosity exceeding 150 Pa · s when the filling rate was higher than about 65% by volume, as shown in FIG.
Therefore, as a method of uniformly dispersing the magnetic powder in the resin when the filling rate of the magnetic powder is higher than about 65% by volume, a method of impregnating the resin into the magnetic powder filled in the case was verified.
まず、ガスアトマイズ法によるFe−Si6.5%粉末(平均粒径D50=140μm。以下、「鉄粉P」という。)と、ガスアトマイズ法によるFe−Si6.5%粉末(平均粒径D50=10μm。以下、「鉄粉Q」という。)とを準備した。そして、鉄粉Pと鉄粉Qとの体積比がP:Q=8:2となるように、両者を混合して磁性粉末複合体を作製した。図8に示すように、当該磁性粉末複合体22aを、ケース701に充填した。ケース701は、底面が直径50mmの円形であって、上面が開口した、高さ100mmの円筒形を有する。 First, Fe—Si 6.5% powder (average particle diameter D50 = 140 μm, hereinafter referred to as “iron powder P”) by gas atomization method and Fe—Si 6.5% powder (average particle diameter D50 = 10 μm) by gas atomization method. Hereinafter, “iron powder Q”) was prepared. And both were mixed so that the volume ratio of the iron powder P and the iron powder Q might be set to P: Q = 8: 2, and the magnetic powder composite_body | complex was produced. As shown in FIG. 8, the case 701 was filled with the magnetic powder composite 22a. The case 701 has a circular shape with a diameter of 50 mm and a cylindrical shape with a height of 100 mm with an open top surface.
その後、磁性粉末複合体22aを充填したケース701を真空チャンバ702内に載置した。そして、真空チャンバ702内を真空ポンプ703により、真空度1000Paまで減圧した。その後、図示しない加振装置により、ケース701に周波数200Hzで所定時間振動を与えた。真空チャンバ702には、減圧状態の真空チャンバ702内に滴下可能に接続された滴下漏斗704が備えられている。滴下漏斗704により、減圧状態の真空チャンバ702内において、ケース701に充填された磁性粉末複合体22aの上に、液体ガラス樹脂23a(室温における粘度10mPa・s)を所定量、注いだ。その後、真空チャンバ702内を大気圧に戻して、樹脂表面23bを大気圧で加圧し、磁性粉末複合体22aに樹脂23aが含浸する様子を観察した(図9)。 Thereafter, the case 701 filled with the magnetic powder composite 22 a was placed in the vacuum chamber 702. Then, the vacuum chamber 702 was depressurized to a vacuum degree of 1000 Pa by a vacuum pump 703. Thereafter, the case 701 was vibrated for a predetermined time at a frequency of 200 Hz by a vibration device (not shown). The vacuum chamber 702 includes a dropping funnel 704 that is connected to the vacuum chamber 702 in a decompressed state so as to be able to drop. With a dropping funnel 704, a predetermined amount of liquid glass resin 23a (viscosity of 10 mPa · s) was poured onto the magnetic powder composite 22a filled in the case 701 in a vacuum chamber 702 under reduced pressure. Thereafter, the inside of the vacuum chamber 702 was returned to atmospheric pressure, the resin surface 23b was pressurized at atmospheric pressure, and the state in which the magnetic powder composite 22a was impregnated with the resin 23a was observed (FIG. 9).
そして、樹脂23aの含浸距離(含浸層802の高さ)を、真空チャンバ702内を大気圧に戻した時点を測定開始時間(0分)として5分経過ごとに計測し、その測定結果を図10に示した。図9、図10に示すように、樹脂23aからなる樹脂層801が、磁性粉末複合体22aからなる粉末層803に継時的に含浸していき、樹脂23aと磁性粉末複合体22aとからなる含浸層802の高さが増加したことが確認できた。そして、図10に示すように、含浸距離が40mmとなるのに20分を要した。なお、含浸層802における磁性粉末複合体22aの充填率は75.0体積%であった。 Then, the impregnation distance (the height of the impregnation layer 802) of the resin 23a is measured every 5 minutes with the measurement start time (0 minute) when the inside of the vacuum chamber 702 is returned to the atmospheric pressure, and the measurement result is shown in FIG. This is shown in FIG. As shown in FIGS. 9 and 10, the resin layer 801 made of the resin 23a is continuously impregnated into the powder layer 803 made of the magnetic powder composite 22a, and is made of the resin 23a and the magnetic powder composite 22a. It was confirmed that the height of the impregnated layer 802 was increased. Then, as shown in FIG. 10, it took 20 minutes for the impregnation distance to be 40 mm. The filling rate of the magnetic powder composite 22a in the impregnated layer 802 was 75.0% by volume.
(含浸速度の最適化)
樹脂23aは、ケース701充填された磁性粉末複合体22aの隙間を流れて、磁性粉末複合体22aに含浸する。流体力学的観点から、磁性粉末が小さくなると、これに伴って当該隙間も小さくなり、当該隙間を流れる樹脂における圧損は大きくなると考えられる。そのため、磁性粉末が小さくなるほど、樹脂の流れは緩慢になると推察できる。そこで、樹脂の流れを高速化して含浸速度の最適化を図るために、磁性粉末の粒径と上記圧損との関係を検証した。
(Optimization of impregnation speed)
The resin 23a flows through the gap between the magnetic powder composites 22a filled with the case 701 and impregnates the magnetic powder composites 22a. From the hydrodynamic point of view, it is considered that when the magnetic powder is reduced, the gap is also reduced, and the pressure loss in the resin flowing through the gap is increased. Therefore, it can be inferred that the smaller the magnetic powder, the slower the resin flow. Therefore, in order to optimize the impregnation rate by increasing the flow rate of the resin, the relationship between the particle size of the magnetic powder and the pressure loss was verified.
樹脂が流れる磁性粉末の隙間は円管ではないが、当該隙間における代表長さとして、式1に示した式で定義される相当直径DRを用いて、当該隙間における圧損を相当直径DRにおける円管の圧損に置き換えて取り扱うこととした。 Although the gap of the magnetic powder resin flows is not a circular tube, the characteristic length in the gap, using the equivalent diameter D R which is defined by the formula shown in Formula 1, in the equivalent diameter D R of the pressure loss in the gap It was decided to replace the pressure loss of the circular pipe.
図11に示すように、磁性粉末22の直径をDとすると、濡れ淵長さlpは隙間qの周面の長さであり、流路の断面積Sは隙間qの面積であるため、それぞれ式2、式3で示される。そして、相当直径DRはDを用いて、以下の式4にて表すことができる。 As shown in FIG. 11, when the diameter of the magnetic powder 22 is D, the wet wrinkle length l p is the length of the circumferential surface of the gap q, and the cross-sectional area S of the flow path is the area of the gap q. They are represented by Formula 2 and Formula 3, respectively. Then, the equivalent diameter D R is with D, it can be expressed by Equation 4 below.
そして、相当直径DRにおける円管内層流の圧損ΔPは、Hagen-Poiseuilleの式から、以下の式5として表すことができる。 Then, the pressure loss ΔP of Pipe layer flow in equivalent diameter D R can be the equation of Hagen-Poiseuille, expressed as equation 5 below.
式5に示すように、上記円管内層流の圧損(すなわち、上記磁性粉末の隙間を流れる樹脂の圧損)ΔPは、磁性粉末の直径Dの二乗に反比例する。すなわち、この関係に基づいて、磁性粉末の直径D(粒径)を変更することにより、上記樹脂における圧損ΔPを調整できる。 As shown in Equation 5, the pressure loss of the laminar flow in the circular pipe (that is, the pressure loss of the resin flowing through the gap between the magnetic powders) ΔP is inversely proportional to the square of the diameter D of the magnetic powder. That is, based on this relationship, the pressure loss ΔP in the resin can be adjusted by changing the diameter D (particle diameter) of the magnetic powder.
(検証試験5)
含浸速度の最適化の検証のために、平均粒径D50=3.0mmmの炭素銅球と平均粒径D50=1.2mmの炭素銅球とを8:2の体積比で混合した複合体を準備し、上記検証試験4と同様の方法で樹脂を含浸させた。図12において符号Xで示すように、含浸距離が40mmとなるのに要した時間は10秒であった。したがって、粉末の平均粒径を約10倍程度大きくすることにより、図12において符号Yで示す上記検証試験2の場合に比べて、樹脂の含浸速度が100倍程度、向上することを確認した。これにより、磁性粉末の粒径を変更することにより、樹脂の含浸速度の最適化を図ることができることが検証できた。
(Verification test 5)
In order to verify the optimization of the impregnation speed, a composite in which carbon copper spheres having an average particle diameter D50 = 3.0 mm and carbon copper spheres having an average particle diameter D50 = 1.2 mm were mixed at a volume ratio of 8: 2. Prepared and impregnated with resin in the same manner as in verification test 4 above. As shown by the symbol X in FIG. 12, the time required for the impregnation distance to be 40 mm was 10 seconds. Therefore, it was confirmed that by increasing the average particle size of the powder by about 10 times, the impregnation rate of the resin was improved by about 100 times compared to the case of the verification test 2 indicated by the symbol Y in FIG. Thus, it was verified that the impregnation rate of the resin can be optimized by changing the particle size of the magnetic powder.
上記検証試験に基づいて、本例のリアクトル1の作用効果について、詳述する。
本例のリアクトル1によれば、磁性粉末混合樹脂21において、磁性粉末22を集合させて粒状に形成された複数の磁性粉末集合体220が絶縁樹脂23に分散している。磁性粉末集合体220は磁性粉末22よりも平均粒径が大きいため、磁性粉末混合樹脂21の粘度は、磁性粉末集合体220と同質量の磁性粉末22を分散させた磁性粉末混合樹脂の粘度に比べて低くなる。そのため、磁性粉末集合体220を絶縁樹脂23内に均一に分散させることが容易となることから、磁性粉末混合樹脂21における磁性粉末22の充填率を容易に向上することができる。その結果、コア20の飽和磁束密度の向上と、コア20における鉄損の低減とが図られるとともに、リアクトル1全体の小型化に寄与する。
Based on the said verification test, the effect of the reactor 1 of this example is explained in full detail.
According to the reactor 1 of the present example, in the magnetic powder mixed resin 21, a plurality of magnetic powder aggregates 220 formed by collecting the magnetic powder 22 into a granular shape are dispersed in the insulating resin 23. Since the magnetic powder aggregate 220 has an average particle size larger than that of the magnetic powder 22, the viscosity of the magnetic powder mixed resin 21 is equal to the viscosity of the magnetic powder mixed resin in which the magnetic powder 22 having the same mass as the magnetic powder aggregate 220 is dispersed. Compared to lower. For this reason, it is easy to uniformly disperse the magnetic powder aggregate 220 in the insulating resin 23, so that the filling rate of the magnetic powder 22 in the magnetic powder mixed resin 21 can be easily improved. As a result, the saturation magnetic flux density of the core 20 is improved and the iron loss in the core 20 is reduced, and the entire reactor 1 is reduced in size.
本例のリアクトル1では、複数の磁性粉末集合体220は、第1の平均粒径(D50=3.0mm)を有する第1磁性粉末集合体221と、第1の平均粒径(D50=3.0mm)よりも小さい第2の平均粒径(D50=1.2mm)を有する第2磁性粉末集合体222とを有する。これにより、上述の検証試験2で検証した通り、磁性粉末混合樹脂21において、第1磁性粉末集合体221と第2磁性粉末集合体222とが一層密に充填されることとなり、複数の磁性粉末集合体220の充填率の向上が一層図られる。 In the reactor 1 of this example, the plurality of magnetic powder aggregates 220 include a first magnetic powder aggregate 221 having a first average particle diameter (D50 = 3.0 mm) and a first average particle diameter (D50 = 3). And a second magnetic powder aggregate 222 having a second average particle diameter (D50 = 1.2 mm) smaller than 0.0 mm). Thereby, as verified in the verification test 2 described above, in the magnetic powder mixed resin 21, the first magnetic powder aggregate 221 and the second magnetic powder aggregate 222 are more densely packed, and a plurality of magnetic powders are filled. The filling rate of the aggregate 220 is further improved.
本例のリアクトル1では、複数の磁性粉末集合体220は、第1の平均粒径(D50=3.0mm)を有する第1磁性粉末集合体221と、第2の平均粒径(D50=1.2mm)を有する第2磁性粉末集合体222とに加えて、第2の平均粒径(D50=1.2mm)よりも小さい第3の平均粒径(D50=0.6mm)を有する第3磁性粉末集合体223を有する。これにより、上述の検証試験2に記載の通り、磁性粉末混合樹脂21において、第1磁性粉末集合体221、第2磁性粉末集合体222及び第3磁性粉末集合体223が一層密に充填されることとなり、複数の磁性粉末集合体220の充填率の向上がより一層図られる。 In the reactor 1 of this example, the plurality of magnetic powder aggregates 220 include a first magnetic powder aggregate 221 having a first average particle diameter (D50 = 3.0 mm) and a second average particle diameter (D50 = 1). In addition to the second magnetic powder aggregate 222 having a second average particle size (D50 = 1.2 mm) and a third average particle size (D50 = 0.6 mm). It has a magnetic powder aggregate 223. Thereby, as described in the verification test 2 described above, the first magnetic powder aggregate 221, the second magnetic powder aggregate 222, and the third magnetic powder aggregate 223 are more densely filled in the magnetic powder mixed resin 21. As a result, the filling rate of the plurality of magnetic powder aggregates 220 is further improved.
本例のリアクトル1では、図4に示すように、磁性粉末混合樹脂21において、絶縁樹脂23は、磁性粉末集合体220とともに磁性粉末22を分散して内包している。これにより、磁性粉末混合樹脂21において、磁性粉末集合体220の隙間に磁性粉末22が入り込むこととなり、磁性粉末22を含む磁性粉末集合体220の充填率がより一層向上する。 In the reactor 1 of this example, as shown in FIG. 4, in the magnetic powder mixed resin 21, the insulating resin 23 disperses and encloses the magnetic powder 22 together with the magnetic powder aggregate 220. Thereby, in the magnetic powder mixed resin 21, the magnetic powder 22 enters the gap between the magnetic powder aggregates 220, and the filling rate of the magnetic powder aggregates 220 including the magnetic powder 22 is further improved.
本例では、磁性粉末22は絶縁被膜を有しているため、磁性粉末集合体220において各磁性粉末22間の絶縁性が維持されている。これにより、磁性粉末22を圧縮することによって個々の磁性粉末22よりも大きな粒状の磁性粉末集合体23を形成したことに起因する渦電流損の増加が防止されている。したがって、磁性粉末22を圧縮して得られる磁性粉末集合体220(第1磁性粉末集合体221、第2磁性粉末集合体222及び第3磁性粉末集合体223)の粒径を適宜調整することで、渦電流損の増大を招くことなく、絶縁樹脂23の含浸速度の最適化を図ることができる。 In this example, since the magnetic powder 22 has an insulating coating, the insulation between the magnetic powders 22 is maintained in the magnetic powder aggregate 220. Thereby, an increase in eddy current loss due to the formation of a granular magnetic powder aggregate 23 larger than the individual magnetic powder 22 by compressing the magnetic powder 22 is prevented. Accordingly, by appropriately adjusting the particle size of the magnetic powder aggregate 220 (the first magnetic powder aggregate 221, the second magnetic powder aggregate 222, and the third magnetic powder aggregate 223) obtained by compressing the magnetic powder 22. The impregnation speed of the insulating resin 23 can be optimized without increasing the eddy current loss.
本例では、上記集合体形成工程において、磁性粉末集合体220は、第1磁性粉末集合体221と、第2磁性粉末集合体222とを含んでおり、上記集合体形成工程の後、かつ上記集合体配置工程の前に、第1磁性粉末集合体221と第2磁性粉末集合体222とを混合する集合体混合工程を含んでいる。これにより、磁性粉末集合体220において、第1磁性粉末集合体221と第2磁性粉末集合体222とが充分に混合されることとなり、磁性粉末混合樹脂21において、両者が絶縁樹脂23に均一に分散することとなり、充填率の向上に寄与する。なお、本例では、磁性粉末集合体220は、さらに第3磁性粉末集合体223を含んでおり、第3磁性粉末集合体223も、第1磁性粉末集合体221及び第2磁性粉末集合体222と同様に、集合体混合工程において充分に混合され、集合体形成工程において絶縁樹脂23に均一に分散することとなる。 In this example, in the assembly forming step, the magnetic powder assembly 220 includes a first magnetic powder assembly 221 and a second magnetic powder assembly 222, and after the assembly forming step, and Prior to the assembly arrangement step, an assembly mixing step of mixing the first magnetic powder assembly 221 and the second magnetic powder assembly 222 is included. As a result, in the magnetic powder aggregate 220, the first magnetic powder aggregate 221 and the second magnetic powder aggregate 222 are sufficiently mixed. In the magnetic powder mixed resin 21, both of them are uniformly in the insulating resin 23. This contributes to an improvement in the filling rate. In this example, the magnetic powder aggregate 220 further includes a third magnetic powder aggregate 223, and the third magnetic powder aggregate 223 is also the first magnetic powder aggregate 221 and the second magnetic powder aggregate 222. In the same manner as above, the mixture is sufficiently mixed in the assembly mixing step, and is uniformly dispersed in the insulating resin 23 in the assembly formation step.
上記樹脂混合工程において、絶縁樹脂23をケース30内に配置した磁性粉末集合体220に含浸させて磁性粉末混合樹脂21を形成した。これにより、上記検証試験5で示したように、磁性粉末集合体220の充填率の高い本例の磁性粉末混合樹脂21においても、絶縁樹脂23に磁性粉末集合体220を容易に均一に分散させることができる。 In the resin mixing step, the magnetic powder mixed resin 21 was formed by impregnating the magnetic powder aggregate 220 disposed in the case 30 with the insulating resin 23. As a result, as shown in the verification test 5, the magnetic powder aggregate 220 is easily and uniformly dispersed in the insulating resin 23 even in the magnetic powder mixed resin 21 of this example having a high filling rate of the magnetic powder aggregate 220. be able to.
本例では上記混合工程において、ケース内に配置した複数の磁性粉末集合体220に絶縁樹脂23を含浸することにより、絶縁樹脂23に磁性粉末集合体220(磁性粉末22)を均一に分散させた。ただし、混合工程において、必要とする混合精度や型成形における成形性が得られる場合には、含浸に替えて又は含浸とともに、混練により絶縁樹脂23と磁性粉末集合体220とを混合して均一に分散させてもよい。 In this example, in the mixing step, the magnetic powder aggregate 220 (magnetic powder 22) is uniformly dispersed in the insulating resin 23 by impregnating the plurality of magnetic powder aggregates 220 arranged in the case with the insulating resin 23. . However, in the mixing step, when the required mixing accuracy and moldability in mold forming can be obtained, the insulating resin 23 and the magnetic powder aggregate 220 are mixed uniformly by kneading instead of or together with the impregnation. It may be dispersed.
本例では、上記集合体作成工程の後、かつ上記集合体混合工程の前に、焼鈍工程を行った。これにより、上記集合体作成工程において、磁性粉末集合体220の内部残留応力や残留歪を取り除き、コア20におけるヒステリシス損を低減して、鉄損を低減することができる。なお、磁性粉末集合体220の内部残留応力や残留歪の除去が不要である場合には、焼鈍工程を省略することができ、製造工程を簡略化できる。 In this example, an annealing process was performed after the assembly creating process and before the assembly mixing process. Thereby, in the said assembly preparation process, the internal residual stress and the residual distortion of the magnetic powder aggregate 220 are removed, the hysteresis loss in the core 20 can be reduced, and the iron loss can be reduced. If it is not necessary to remove the internal residual stress and residual strain of the magnetic powder aggregate 220, the annealing process can be omitted, and the manufacturing process can be simplified.
本例では、磁性粉末集合体220は、第1磁性粉末集合体221に加えて、第2磁性粉末集合体222及び第3磁性粉末集合体223を含んでいることとしたが、第2磁性粉末集合体222及び第3磁性粉末集合体223を含んでいないこととしてもよい。この場合においても、磁性粉末集合体220が第2磁性粉末集合体222及び第3磁性粉末集合体223を含むことによる作用効果を除いて、本例の作用効果を奏することができる。なお、第2磁性粉末集合体222及び第3磁性粉末集合体223を含んでいない場合には、ブレンダ403による磁性粉末集合体220を混合する集合体混合工程を省略することができ、製造工程を簡略化できる。 In this example, the magnetic powder aggregate 220 includes the second magnetic powder aggregate 222 and the third magnetic powder aggregate 223 in addition to the first magnetic powder aggregate 221. The aggregate 222 and the third magnetic powder aggregate 223 may not be included. Even in this case, the operational effects of this example can be achieved except for the operational effects of the magnetic powder aggregate 220 including the second magnetic powder aggregate 222 and the third magnetic powder aggregate 223. If the second magnetic powder assembly 222 and the third magnetic powder assembly 223 are not included, the assembly mixing step of mixing the magnetic powder assembly 220 by the blender 403 can be omitted, and the manufacturing process can be omitted. It can be simplified.
1 リアクトル
10 コイル
20 コア
21 磁性粉末混合樹脂
22 磁性粉末
220 磁性粉末集合体
221 第1磁性粉末集合体
222 第2磁性粉末集合体
223 第3磁性粉末集合体
23 絶縁樹脂
30 ケース
DESCRIPTION OF SYMBOLS 1 Reactor 10 Coil 20 Core 21 Magnetic powder mixed resin 22 Magnetic powder 220 Magnetic powder aggregate 221 First magnetic powder aggregate 222 Second magnetic powder aggregate 223 Third magnetic powder aggregate 23 Insulating resin 30 Case
Claims (7)
磁性粉末混合樹脂(21)を硬化してなるとともに上記コイル(10)を内部に埋設したコア(20)と、
を備え、
上記磁性粉末混合樹脂(21)は、磁性粉末(22)を集合させて粒状に成形されている複数の磁性粉末集合体(220)と、該複数の磁性粉末集合体(220)を分散した状態で内包する絶縁樹脂(23)とを有することを特徴とするリアクトル(1)。 A coil (10) that generates magnetic flux when energized;
A core (20) obtained by curing the magnetic powder mixed resin (21) and having the coil (10) embedded therein;
With
The magnetic powder mixed resin (21) is a state in which a plurality of magnetic powder aggregates (220) formed by agglomerating the magnetic powder (22) into a granular form and the plurality of magnetic powder aggregates (220) are dispersed. And a reactor (1) having an insulating resin (23) encapsulated therein.
通電されることにより磁束を発生するコイル(10)をケース(30)内に載置するコイル載置工程と、
上記コイル(10)を載置した上記ケース(30)内に、上記複数の磁性粉末集合体(220)を配置する集合体配置工程と、
上記複数の磁性粉末集合体(220)を配置した上記ケース(30)内に、液状の絶縁樹脂(23)を注いで該絶縁樹脂(23)に上記複数の磁性粉末集合体(220)を分散させて磁性粉末混合樹脂(21)を形成する混合樹脂形成工程と、
上記混合工程で形成した上記磁性粉末混合樹脂(21)を硬化する硬化工程と、
を含むことを特徴とするリアクトル(1)の製造方法。 An assembly forming step of assembling the magnetic powder (22) to form a plurality of granular magnetic powder assemblies (220);
A coil placing step of placing the coil (10) that generates magnetic flux when energized in the case (30);
An assembly arrangement step of arranging the plurality of magnetic powder assemblies (220) in the case (30) on which the coil (10) is placed;
A liquid insulating resin (23) is poured into the case (30) in which the plurality of magnetic powder aggregates (220) are arranged, and the plurality of magnetic powder aggregates (220) are dispersed in the insulating resin (23). A mixed resin forming step of forming a magnetic powder mixed resin (21),
A curing step of curing the magnetic powder mixed resin (21) formed in the mixing step;
The manufacturing method of the reactor (1) characterized by including these.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013155877A JP6295533B2 (en) | 2013-07-26 | 2013-07-26 | Reactor and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013155877A JP6295533B2 (en) | 2013-07-26 | 2013-07-26 | Reactor and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015026736A true JP2015026736A (en) | 2015-02-05 |
JP6295533B2 JP6295533B2 (en) | 2018-03-20 |
Family
ID=52491162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013155877A Active JP6295533B2 (en) | 2013-07-26 | 2013-07-26 | Reactor and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6295533B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018152543A (en) * | 2017-03-14 | 2018-09-27 | サムソン エレクトロ−メカニックス カンパニーリミテッド. | Coil component |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0262011A (en) * | 1988-08-29 | 1990-03-01 | Matsushita Electric Ind Co Ltd | Inductance element and its manufacture |
JPH05299232A (en) * | 1992-04-20 | 1993-11-12 | Matsushita Electric Ind Co Ltd | Resin molded magnetic material |
JPH07153616A (en) * | 1993-11-30 | 1995-06-16 | Taiyo Yuden Co Ltd | Resin composite ferrite, manufacture thereof and material for electronic component |
JPH088105A (en) * | 1994-06-20 | 1996-01-12 | Sony Corp | Ferrite resin |
WO1998008233A1 (en) * | 1996-08-21 | 1998-02-26 | Tdk Corporation | Magnetic powder and magnetic molded article |
JP2000114022A (en) * | 1998-08-04 | 2000-04-21 | Hitachi Ferrite Electronics Ltd | Powder-molded magnetic core |
JP2001250709A (en) * | 2000-03-03 | 2001-09-14 | Daido Steel Co Ltd | Magnetic powder for dust core |
JP2008192887A (en) * | 2007-02-06 | 2008-08-21 | Nec Tokin Corp | Coil component |
JP2014212164A (en) * | 2013-04-17 | 2014-11-13 | 株式会社神戸製鋼所 | Winding element and method for manufacturing the same |
-
2013
- 2013-07-26 JP JP2013155877A patent/JP6295533B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0262011A (en) * | 1988-08-29 | 1990-03-01 | Matsushita Electric Ind Co Ltd | Inductance element and its manufacture |
JPH05299232A (en) * | 1992-04-20 | 1993-11-12 | Matsushita Electric Ind Co Ltd | Resin molded magnetic material |
JPH07153616A (en) * | 1993-11-30 | 1995-06-16 | Taiyo Yuden Co Ltd | Resin composite ferrite, manufacture thereof and material for electronic component |
JPH088105A (en) * | 1994-06-20 | 1996-01-12 | Sony Corp | Ferrite resin |
WO1998008233A1 (en) * | 1996-08-21 | 1998-02-26 | Tdk Corporation | Magnetic powder and magnetic molded article |
JP2000114022A (en) * | 1998-08-04 | 2000-04-21 | Hitachi Ferrite Electronics Ltd | Powder-molded magnetic core |
JP2001250709A (en) * | 2000-03-03 | 2001-09-14 | Daido Steel Co Ltd | Magnetic powder for dust core |
JP2008192887A (en) * | 2007-02-06 | 2008-08-21 | Nec Tokin Corp | Coil component |
JP2014212164A (en) * | 2013-04-17 | 2014-11-13 | 株式会社神戸製鋼所 | Winding element and method for manufacturing the same |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018152543A (en) * | 2017-03-14 | 2018-09-27 | サムソン エレクトロ−メカニックス カンパニーリミテッド. | Coil component |
JP7392249B2 (en) | 2017-03-14 | 2023-12-06 | サムソン エレクトロ-メカニックス カンパニーリミテッド. | coil parts |
Also Published As
Publication number | Publication date |
---|---|
JP6295533B2 (en) | 2018-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6403093B2 (en) | COMPOSITE MATERIAL, MAGNETIC CORE FOR MAGNETIC COMPONENT, REACTOR, CONVERTER, AND POWER CONVERTER | |
JP5096605B2 (en) | Outer core manufacturing method, outer core, and reactor | |
JP5341306B2 (en) | Reactor | |
JP6730785B2 (en) | Metal composite core manufacturing method and reactor manufacturing method | |
JP2009033051A (en) | Reactor core | |
JP7607215B2 (en) | Manufacturing method of powder magnetic core | |
JP2019216199A (en) | Core, reactor, manufacturing method of the core, and manufacturing method of the reactor | |
JP4924986B2 (en) | Reactor core | |
JP5660164B2 (en) | Method for producing soft magnetic composite material | |
JP5867674B2 (en) | Powder magnetic core and manufacturing method thereof | |
JP6295533B2 (en) | Reactor and manufacturing method thereof | |
JP2017123407A (en) | Composite material molded body, reactor, and method for producing composite material molded body | |
CN110942882B (en) | Method for manufacturing metal composite core | |
JP2006100292A (en) | Powder magnetic core manufacturing method and powder magnetic core using the same | |
JP2012199580A (en) | Method of manufacturing soft magnetic composite material | |
JP6840523B2 (en) | Reactor manufacturing method, core manufacturing method | |
JP2010238930A (en) | Composite soft magnetic material, method of manufacturing the composite soft magnetic material, and electromagnetic circuit component | |
JP5305118B2 (en) | Reactor and boost converter | |
JP7623329B2 (en) | Metal Composite Core | |
JP7138736B2 (en) | CORE, REACTOR, CORE MANUFACTURING METHOD AND REACTOR MANUFACTURING METHOD | |
JP6087708B2 (en) | Winding element manufacturing method | |
JP2012142601A (en) | Reactor and converter | |
JP5195891B2 (en) | Reactor core, reactor, and reactor manufacturing method | |
JP5294095B2 (en) | Method for producing soft magnetic composite material | |
JP6120022B2 (en) | Reactor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151130 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161024 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161101 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170523 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170713 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180123 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180205 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6295533 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |