[go: up one dir, main page]

JP2015008212A - Polishing liquid and substrate polishing method using the same - Google Patents

Polishing liquid and substrate polishing method using the same Download PDF

Info

Publication number
JP2015008212A
JP2015008212A JP2013132721A JP2013132721A JP2015008212A JP 2015008212 A JP2015008212 A JP 2015008212A JP 2013132721 A JP2013132721 A JP 2013132721A JP 2013132721 A JP2013132721 A JP 2013132721A JP 2015008212 A JP2015008212 A JP 2015008212A
Authority
JP
Japan
Prior art keywords
acid
polishing
group
polishing liquid
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013132721A
Other languages
Japanese (ja)
Inventor
田中 孝明
Takaaki Tanaka
孝明 田中
深沢 正人
Masato Fukazawa
正人 深沢
隆 篠田
Takashi Shinoda
隆 篠田
貴浩 吉川
Takahiro Yoshikawa
貴浩 吉川
吉川 茂
Shigeru Yoshikawa
茂 吉川
貴彬 松本
Takaaki Matsumoto
貴彬 松本
山下 哲朗
Tetsuro Yamashita
哲朗 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2013132721A priority Critical patent/JP2015008212A/en
Publication of JP2015008212A publication Critical patent/JP2015008212A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polishing liquid capable of improving flatness after polishing, and a substrate polishing method using the polishing liquid.SOLUTION: The polishing liquid for CMP contains cerium oxide particles, an organic acid A, a polymer compound B, and water. The organic acid A has at least one group selected from the group consisting of a -COOM group, a -Ph-OM group, an -SOM group, and a -POMgroup. The pKa of the organic acid A is less than 9. The polymer compound B has at least one selected from the group consisting of a carboxylic acid group and a carboxylate group, and at least one selected from the group consisting of a sulfurous acid group and a sulfite group.

Description

本発明は、研磨液及びこの研磨液を用いた基板の研磨方法に関する。より詳細には、本発明は、半導体素子製造技術である、基板表面の平坦化工程、特に、絶縁材料、BPSG材料(ボロン、リンをドープした二酸化珪素)の平坦化工程、シャロートレンチ分離(STI)の形成工程等において使用される、研磨液及びこの研磨液を用いた基板の研磨方法に関する。   The present invention relates to a polishing liquid and a method for polishing a substrate using the polishing liquid. More specifically, the present invention is a semiconductor device manufacturing technique, a planarization process of a substrate surface, in particular, a planarization process of an insulating material, a BPSG material (boron, silicon dioxide doped with phosphorus), shallow trench isolation (STI). ) Forming process and the like, and a method for polishing a substrate using the polishing liquid.

現在のULSI半導体素子製造工程では、半導体素子の高密度・微細化のための加工技術が研究開発されている。その加工技術の一つである、CMP(ケミカルメカニカルポリッシング:化学機械研磨)による平坦化技術は、半導体素子製造工程において、絶縁材料の平坦化、STI(シャロートレンチアイソレーション)形成工程、プラグ形成工程、埋め込み金属配線形成工程(ダマシン工程)等を行う際に、必須の技術となってきている。CMP工程(CMP技術を用いた平坦化工程)は、一般に、研磨パッド(研磨布)と、基体上の被研磨材料との間にCMP用研磨液を供給しながら、前記被研磨材料を研磨することによって行われる。   In the current ULSI semiconductor device manufacturing process, processing technology for high density and miniaturization of semiconductor devices has been researched and developed. One of the processing techniques, planarization technology by CMP (Chemical Mechanical Polishing), is the planarization of insulating material, STI (Shallow Trench Isolation) formation process, and plug formation process in the semiconductor device manufacturing process. It has become an indispensable technique when performing a buried metal wiring forming process (damascene process) and the like. In the CMP process (planarization process using the CMP technique), the polishing material is generally polished while supplying a polishing slurry for CMP between the polishing pad (polishing cloth) and the polishing material on the substrate. Is done by.

前記CMPに用いるCMP用研磨液は、種々のものが知られている。CMP用研磨液に含まれる砥粒(研磨粒子)によって分類すると、砥粒として酸化セリウム(セリア)粒子を含むセリア系研磨液、砥粒として酸化ケイ素(シリカ)粒子を含むシリカ系研磨液、砥粒として酸化アルミニウム(アルミナ)粒子を含むアルミナ系研磨液、砥粒として有機樹脂粒子を含む樹脂粒子系研磨液等が知られている。   Various polishing liquids for CMP used in the CMP are known. When classified according to abrasive grains (polishing particles) contained in CMP polishing liquid, ceria-based polishing liquid containing cerium oxide (ceria) particles as abrasive grains, silica-based polishing liquid containing silicon oxide (silica) particles as abrasive grains, and abrasives Known are alumina-based polishing liquids containing aluminum oxide (alumina) particles as grains, resin particle-based polishing liquids containing organic resin particles as abrasive grains, and the like.

半導体素子製造工程において、酸化珪素等の絶縁材料を研磨するための研磨液としては、シリカ系研磨液と比較して無機絶縁材料に対する研磨速度が速い点で、セリア系研磨液が注目されている。   As a polishing liquid for polishing an insulating material such as silicon oxide in a semiconductor element manufacturing process, a ceria-based polishing liquid has attracted attention because it has a higher polishing rate for an inorganic insulating material than a silica-based polishing liquid. .

セリア系研磨液として、下記特許文献1には、高純度酸化セリウム砥粒を用いた半導体用のCMP用研磨液が記載されている。また、下記特許文献2及び3には、セリア系研磨液の研磨速度を制御し、グローバルな平坦性を向上させるために添加剤を加える技術が記載されている。   As a ceria-based polishing liquid, the following Patent Document 1 describes a CMP polishing liquid for semiconductors using high-purity cerium oxide abrasive grains. Patent Documents 2 and 3 listed below describe techniques for adding additives to control the polishing rate of the ceria-based polishing liquid and improve global flatness.

特開平10−106994号公報Japanese Patent Laid-Open No. 10-106994 特許3278532号公報Japanese Patent No. 3278532 国際公開WO2012/086781号International Publication WO2012 / 086781

CMPにより絶縁材料を研磨する工程の代表的なものとして、上述のSTI形成工程が挙げられる。STI形成工程では、凹部を有する基体上に堆積した絶縁材料の余分な部分を除くためにCMPが使用される。CMP用研磨液には、絶縁材料をある程度高速に研磨できることが求められるが、それ以外にも種々の特性が求められ、例えば、ディッシング量を低減し、平坦性に優れた研磨をできることが求められる。なお、ディッシングとは、前記凹部に堆積された絶縁材料が余分に除去されて、被研磨面の一部が皿のように凹む現象である。ディッシングが発生すると、研磨後の表面の平坦性に劣るため好ましくない。   A typical example of the process of polishing the insulating material by CMP is the above-described STI formation process. In the STI formation process, CMP is used to remove excess portions of the insulating material deposited on the substrate having the recesses. The polishing liquid for CMP is required to be able to polish the insulating material at a certain high speed, but various other characteristics are also required. For example, it is required to reduce the amount of dishing and to polish with excellent flatness. . Note that dishing is a phenomenon in which an insulating material deposited in the concave portion is removed excessively and a part of the surface to be polished is recessed like a dish. When dishing occurs, it is not preferable because the surface flatness after polishing is poor.

このような課題に対し、特許文献3には、所定の構造を有する有機酸を研磨液に添加することで、220〜390Å(22〜39nm)程度のディッシング量に低減できる技術が開示されている。   For such a problem, Patent Document 3 discloses a technique that can be reduced to a dishing amount of about 220 to 390 mm (22 to 39 nm) by adding an organic acid having a predetermined structure to the polishing liquid. .

しかしながら、配線やSTIのデザインルールの微細化の進展に伴い、更なる平坦性の向上(例えば、絶縁材料のディッシング量の低減)が求められている。また、半導体デバイスの生産のさらなる精度向上も求められており、例えば、トレンチ密度の異なる部分における絶縁材料の残膜厚差が小さいことが求められている。   However, with the progress of miniaturization of design rules for wiring and STI, further improvement in flatness (for example, reduction of the amount of dishing of an insulating material) is required. In addition, further improvement in the accuracy of semiconductor device production is also required. For example, it is required that the difference in the remaining film thickness of the insulating material in portions with different trench densities is small.

本発明は、前記実情に鑑みてなされたものであり、基板の表面の被研磨材料を研磨するCMP技術において、研磨後の平坦性を向上させることが可能な研磨液及びこの研磨液を用いた基板の研磨方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and in a CMP technique for polishing a material to be polished on the surface of a substrate, a polishing liquid capable of improving flatness after polishing and the polishing liquid are used. It is an object of the present invention to provide a method for polishing a substrate.

本発明は、酸化セリウム粒子、有機酸A、高分子化合物B及び水を含むCMP用の研磨液であって、有機酸Aは、−COOM基、−Ph−OM基、−SOM基及び−PO基(式中、MはH、NH、Na及びKから選択されるいずれか一種であり、Phは置換基を有していても良いフェニル基を示す)からなる群より選択される少なくとも一つの基を有しており、有機酸AのpKaが9未満であり、高分子化合物Bは、カルボン酸基及びカルボン酸塩基からなる群より選択される少なくとも一種と、亜硫酸基及び亜硫酸塩基からなる群より選択される少なくとも一種とを有する、研磨液を提供する。 The present invention is a polishing slurry for CMP containing cerium oxide particles, an organic acid A, a polymer compound B, and water, and the organic acid A includes a —COOM group, a —Ph—OM group, a —SO 3 M group, and From the group consisting of —PO 3 M 2 groups (wherein M is any one selected from H, NH 4 , Na and K, and Ph represents a phenyl group which may have a substituent). Having at least one selected group, the pKa of the organic acid A is less than 9, and the polymer compound B includes at least one selected from the group consisting of a carboxylic acid group and a carboxylic acid group, and a sulfite group And at least one selected from the group consisting of sulfite groups.

本発明の研磨液では、基板の表面の被研磨材料(例えば、絶縁材料、BPSG材料、STI材料)を研磨するCMP技術において、充分な被研磨材料の研磨速度を維持しつつ、かつ研磨後の平坦性を向上させることができる。   In the polishing liquid of the present invention, in a CMP technique for polishing a material to be polished (for example, an insulating material, a BPSG material, or an STI material) on the surface of the substrate, a sufficient polishing rate of the material to be polished is maintained, and after polishing. Flatness can be improved.

有機酸Aの含有量が、研磨液全質量に対して0.001〜1質量%であることが好ましい。これにより、充分な被研磨材料の研磨速度の維持と、研磨後の平坦性向上とをより達成しやすくなる。   The content of the organic acid A is preferably 0.001 to 1% by mass with respect to the total mass of the polishing liquid. This makes it easier to maintain a sufficient polishing rate of the material to be polished and improve flatness after polishing.

高分子化合物Bの含有量が、研磨液全質量に対して0.01〜0.50質量%であることが好ましい。これにより、充分な被研磨材料の研磨速度の維持と、研磨後の平坦性向上とをより達成しやすくなる。   The content of the polymer compound B is preferably 0.01 to 0.50 mass% with respect to the total mass of the polishing liquid. This makes it easier to maintain a sufficient polishing rate of the material to be polished and improve flatness after polishing.

研磨液のpHが4.0以上6.0以下であることが好ましい。これにより、研磨後の平坦性向上をより達成しやすくなる。また、研磨液の保存安定性が向上する傾向がある。   It is preferable that pH of polishing liquid is 4.0 or more and 6.0 or less. This makes it easier to achieve improved flatness after polishing. In addition, the storage stability of the polishing liquid tends to be improved.

本発明の研磨液は、酸化セリウム粒子及び水を含む第1の液と、有機酸A、高分子化合物B及び水を含む第2の液と、から構成される二液式研磨液として保存しておいてもよい。これにより、研磨液を使用する直前まで酸化セリウム粒子の分散安定性をより良好に保つことができるため、より効果的な研磨速度及び平坦性を得ることが可能である。   The polishing liquid of the present invention is stored as a two-part polishing liquid composed of a first liquid containing cerium oxide particles and water, and a second liquid containing organic acid A, polymer compound B and water. You may keep it. Thereby, since dispersion stability of cerium oxide particles can be kept better until just before using the polishing liquid, it is possible to obtain a more effective polishing rate and flatness.

なお、本発明の研磨液は、前記第1の液が、分散剤をさらに含むことが好ましい。これにより、酸化セリウム粒子の分散安定性をさらに良好に保つことができる。   In the polishing liquid of the present invention, it is preferable that the first liquid further contains a dispersant. Thereby, the dispersion stability of the cerium oxide particles can be kept better.

本発明は、また、基板表面の被研磨材料を本発明の研磨液を用いて研磨する、基板の研磨方法を提供する。本発明の研磨液を使用するこのような研磨方法によれば、充分な被研磨材料の研磨速度を維持しつつ、さらに研磨後の平坦性を向上させることが可能である。   The present invention also provides a method for polishing a substrate, wherein a material to be polished on the surface of the substrate is polished using the polishing liquid of the present invention. According to such a polishing method using the polishing liquid of the present invention, it is possible to further improve the flatness after polishing while maintaining a sufficient polishing rate of the material to be polished.

本発明によれば、基板の表面の被研磨材料(例えば、STI材料)を研磨するCMP技術において、研磨後の表面平坦性を向上させることが可能な研磨液及びこの研磨液を用いた基板の研磨方法を提供できる。これにより、例えば、ディッシングの低減及びトレンチ密度の異なる部分における絶縁材料の残膜厚差の低減を図ることができる。   According to the present invention, in a CMP technique for polishing a material to be polished (for example, an STI material) on a surface of a substrate, a polishing liquid capable of improving surface flatness after polishing and a substrate using the polishing liquid A polishing method can be provided. Thereby, for example, it is possible to reduce dishing and to reduce the difference in the remaining film thickness of the insulating material in portions having different trench densities.

研磨特性の評価基板を示す模式断面図である。It is a schematic cross section showing an evaluation substrate for polishing characteristics.

以下、本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

[研磨液]
本実施形態に係る研磨液は、酸化セリウム粒子と、分散剤と、有機酸Aと、高分子化合物Bと、水とを含有するCMP用の研磨液である。以下、本実施形態に係る研磨液に含まれる各成分について詳細に説明する。
[Polishing liquid]
The polishing liquid according to this embodiment is a polishing liquid for CMP containing cerium oxide particles, a dispersant, an organic acid A, a polymer compound B, and water. Hereinafter, each component contained in the polishing liquid according to the present embodiment will be described in detail.

(酸化セリウム粒子)
酸化セリウム粒子としては、特に制限はなく、公知のものを使用できる。一般に酸化セリウムは、炭酸塩、硝酸塩、硫酸塩、しゅう酸塩等のセリウム化合物を酸化することによって得られる。酸化セリウム粒子を作製する方法としては、焼成、過酸化水素等による酸化法等が挙げられる。
(Cerium oxide particles)
There is no restriction | limiting in particular as a cerium oxide particle, A well-known thing can be used. In general, cerium oxide is obtained by oxidizing a cerium compound such as carbonate, nitrate, sulfate, or oxalate. Examples of the method for producing the cerium oxide particles include firing, an oxidation method using hydrogen peroxide, and the like.

TEOS−CVD法等で形成される酸化珪素の研磨に酸化セリウム粒子を使用する場合、酸化セリウム粒子の結晶子径(結晶子の直径)が大きく、かつ結晶歪みが少ない程、即ち結晶性が良い程、高速研磨が可能であるが、被研磨材料に研磨傷が入りやすい傾向がある。このような観点から、酸化セリウム粒子は、2個以上の結晶子から構成され、結晶粒界を有する粒子が好ましく、結晶子径が1〜300nmの範囲内である粒子がより好ましい。   When cerium oxide particles are used for polishing silicon oxide formed by TEOS-CVD or the like, the crystallite diameter (crystallite diameter) of the cerium oxide particles is larger and the crystal distortion is smaller, that is, the crystallinity is better. The higher the polishing speed is, the more easily the polishing material tends to have polishing scratches. From such a point of view, the cerium oxide particles are preferably composed of two or more crystallites, particles having a crystal grain boundary, and more preferably particles having a crystallite diameter in the range of 1 to 300 nm.

前記結晶子径は走査型電子顕微鏡(SEM)による観察で測定できる。具体的には、走査型電子顕微鏡(SEM)観察で得られた画像から、粒子の長径と短径とを測定し、長径と短径との積の平方根を粒子径とする。   The crystallite diameter can be measured by observation with a scanning electron microscope (SEM). Specifically, the major axis and minor axis of the particle are measured from an image obtained by observation with a scanning electron microscope (SEM), and the square root of the product of the major axis and the minor axis is defined as the particle diameter.

酸化セリウム粒子中のアルカリ金属及びハロゲン類の含有率は、半導体素子の製造に係る研磨に好適に用いられることから、10ppm以下であることが好ましい。   The content of alkali metal and halogens in the cerium oxide particles is preferably 10 ppm or less because it is suitably used for polishing in the manufacture of semiconductor elements.

酸化セリウム粒子の平均粒径は、10〜500nmであることが好ましく、20〜400nmであることがより好ましく、50〜300nmであることが更に好ましい。酸化セリウム粒子の平均粒径が10nm以上であれば、良好な研磨速度が得られる傾向があり、500nm以下であれば、被研磨材料に傷がつきにくくなる傾向がある。   The average particle diameter of the cerium oxide particles is preferably 10 to 500 nm, more preferably 20 to 400 nm, and still more preferably 50 to 300 nm. If the average particle size of the cerium oxide particles is 10 nm or more, a good polishing rate tends to be obtained, and if it is 500 nm or less, the material to be polished tends to be hardly damaged.

ここで、酸化セリウム粒子の平均粒径は、レーザ回折式粒度分布計(例えば、Malvern社製 商品名:Master Sizer Microplus、屈折率:1.93、光源:He−Neレーザ、吸収0)で測定したD50の値(体積分布のメジアン径、累積中央値)を意味する。平均粒径の測定には、適切な濃度(例えば、He−Neレーザに対する測定時透過率(H)が60〜70%となる濃度)に研磨液を希釈したサンプルを用いる。なお、酸化セリウム研磨液が、後述するように酸化セリウム粒子を水に分散させた酸化セリウムスラリと、添加剤を水に溶解させた添加液とに分けて保存されている場合は、酸化セリウムスラリを適切な濃度に希釈して測定できる。   Here, the average particle diameter of the cerium oxide particles is measured by a laser diffraction particle size distribution analyzer (for example, product name: Master Sizer Microplus, refractive index: 1.93, light source: He—Ne laser, absorption 0 manufactured by Malvern). Means the value of D50 (median diameter of volume distribution, cumulative median value). For the measurement of the average particle diameter, a sample in which the polishing liquid is diluted to an appropriate concentration (for example, a concentration at which the measurement transmittance (H) for a He—Ne laser is 60 to 70%) is used. When the cerium oxide polishing liquid is stored separately in a cerium oxide slurry in which cerium oxide particles are dispersed in water and an additive solution in which an additive is dissolved in water as described later, the cerium oxide slurry is stored. Can be diluted to an appropriate concentration.

酸化セリウム粒子の含有量は、良好な研磨速度が得られる傾向がある観点で、研磨液全質量基準で0.1質量%以上が好ましく、0.5質量%以上がより好ましい。また、酸化セリウム粒子の含有量は、粒子の凝集が抑制されて被研磨材料に傷がつきにくくなる傾向がある観点で、20質量%以下が好ましく、5質量%以下がより好ましく、3質量%以下が更に好ましく、1.5質量%以下が特に好ましい。   The content of the cerium oxide particles is preferably 0.1% by mass or more and more preferably 0.5% by mass or more based on the total mass of the polishing liquid from the viewpoint that a good polishing rate tends to be obtained. The content of the cerium oxide particles is preferably 20% by mass or less, more preferably 5% by mass or less, and more preferably 3% by mass from the viewpoint that the aggregation of the particles is suppressed and the material to be polished is less likely to be damaged. The following is more preferable, and 1.5% by mass or less is particularly preferable.

(有機酸A)
本実施形態に係る研磨液は、有機酸Aとして有機酸及び/又はその塩を含有する。これにより、研磨速度を向上させ、かつ研磨終了後の被研磨材料(例えば、酸化珪素)の平坦性を向上させることができる。より詳細には、凹凸を有する被研磨面を研磨した場合に、研磨時間を短縮できることに加え、一部が過剰に研磨されて皿のように凹む現象、いわゆるディッシング(Dishing)が生じることを抑制できる。また、トレンチ密度の異なる部分における被研磨材料の残膜厚差を低減できる。この効果は、有機酸及び/又はその塩と酸化セリウム粒子とを併用することにより、より効率的に得られる。
(Organic acid A)
The polishing liquid according to this embodiment contains an organic acid and / or a salt thereof as the organic acid A. Thereby, the polishing rate can be improved and the flatness of the material to be polished (for example, silicon oxide) after the polishing can be improved. More specifically, when polishing the surface to be polished, the polishing time can be shortened, and the phenomenon that a part of the surface is excessively polished and recessed like a dish, so-called dishing, is suppressed. it can. Further, the difference in the remaining film thickness of the material to be polished in the portions having different trench densities can be reduced. This effect can be obtained more efficiently by using an organic acid and / or a salt thereof and cerium oxide particles in combination.

有機酸及び/又はその塩は、−COOM基、−Ph−OM基(フェノール性−OM基)、−SOM基及び−PO基(式中、MはH、NH、Na及びKからなる群より選択されるいずれか一種であり、Phは置換基を有していてもよいフェニル基を示す)からなる群より選択される少なくとも一つの基を有するものであり、水溶性の有機化合物であることが好ましい。 Organic acids and / or salts thereof, -COOM group, -Ph-OM group (phenolic -OM group), - SO 3 M group and -PO 3 M 2 group (wherein, M is H, NH 4, Na And Ph represents at least one group selected from the group consisting of a phenyl group which may have a substituent, and is water-soluble. It is preferable that it is an organic compound.

有機酸Aは、室温(25℃)における酸解離定数pKa(pKaが2つ以上ある場合は一番低い第一段階のpKa)が9未満であるが、pKaとしては、8未満であることが好ましく、7未満であることがより好ましく、6未満であることが更に好ましく、5未満であることが特に好ましく、3未満であることが極めて好ましい。有機酸AのpKaが9未満であれば、研磨液中で少なくともその一部以上が有機酸イオンとなって水素イオンを放出し、所望するpH領域にpHを保つことができる。なお、pKaの下限値は、例えば−10であることが好ましい。 The organic acid A has an acid dissociation constant pKa at room temperature (25 ° C.) (the lowest first stage pKa 1 when there are two or more pKa) is less than 9, but the pKa is less than 8. Is preferably less than 7, more preferably less than 6, particularly preferably less than 5, and most preferably less than 3. If the pKa of the organic acid A is less than 9, at least a part of the organic acid A becomes an organic acid ion in the polishing liquid to release hydrogen ions, and the pH can be maintained in a desired pH range. In addition, it is preferable that the lower limit of pKa is -10, for example.

有機酸Aとしては、例えば、
ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、シクロヘキサンカルボン酸、フェニル酢酸、安息香酸、o−トルイル酸、m−トルイル酸、p−トルイル酸、o−メトキシ安息香酸、m−メトキシ安息香酸、p−メトキシ安息香酸、アクリル酸、メタクリル酸、クロトン酸、ペンテン酸、ヘキセン酸、ヘプテン酸、オクテン酸、ノネン酸、デセン酸、ウンデセン酸、ドデセン酸、トリデセン酸、テトラデセン酸、ペンタデセン酸、ヘキサデセン酸、ヘプタデセン酸、イソ酪酸、イソ吉草酸、ケイ皮酸、キナルジン酸、ニコチン酸、1−ナフトエ酸、2−ナフトエ酸、ピコリン酸、ビニル酢酸、フェニル酢酸、フェノキシ酢酸、2−フランカルボン酸、メルカプト酢酸、レブリン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、1,9−ノナンジカルボン酸、1,10−デカンジカルボン酸、1,11−ウンデカンジカルボン酸、1,12−ドデカンジカルボン酸、1,13−トリデカンジカルボン酸、1,14−テトラデカンジカルボン酸、1,15−ペンタデカンジカルボン酸、1,16−ヘキサデカンジカルボン酸、マレイン酸、フマル酸、イタコン酸、シトラコン酸、メサコン酸、キノリン酸、キニン酸、ナフタル酸、フタル酸、イソフタル酸、テレフタル酸、グリコール酸、乳酸、3−ヒドロキシプロピオン酸、2−ヒドロキシ酪酸、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、3−ヒドロキシ吉草酸、5−ヒドロキシ吉草酸、キナ酸、キヌレン酸、サリチル酸、酒石酸、アコニット酸、アスコルビン酸、アセチルサリチル酸、アセチルリンゴ酸、アセチレンジカルボン酸、アセトキシコハク酸、アセト酢酸、3−オキソグルタル酸、アトロパ酸、アトロラクチン酸、アントラキノンカルボン酸、アントラセンカルボン酸、イソカプロン酸、イソカンホロン酸、イソクロトン酸、2−エチル−2−ヒドロキシ酪酸、エチルマロン酸、エトキシ酢酸、オキサロ酢酸、オキシ二酢酸、2−オキソ酪酸、カンホロン酸、クエン酸、グリオキシル酸、グリシド酸、グリセリン酸、グルカル酸、グルコン酸、クロコン酸、シクロブタンカルボン酸、シクロヘキサンジカルボン酸、ジフェニル酢酸、ジ−O−ベンゾイル酒石酸、ジメチルコハク酸、ジメトキシフタル酸、タルトロン酸、タンニン酸、チオフェンカルボン酸、チグリン酸、デソキサル酸、テトラヒドロキシコハク酸、テトラメチルコハク酸、テトロン酸、デヒドロアセト酸、テレビン酸、トロパ酸、バニリン酸、パラコン酸、ヒドロキシイソフタル酸、ヒドロキシケイ皮酸、ヒドロキシナフトエ酸、o−ヒドロキシフェニル酢酸、m−ヒドロキシフェニル酢酸、p−ヒドロキシフェニル酢酸、3−ヒドロキシ−3−フェニルプロピオン酸、ピバル酸、ピリジンジカルボン酸、ピリジントリカルボン酸、ピルビン酸、α−フェニルケイ皮酸、フェニルグリシド酸、フェニルコハク酸、フェニル酢酸、フェニル乳酸、プロピオル酸、ソルビン酸、2,4−ヘキサジエン二酸、2−ベンジリデンプロピオン酸、3−ベンジリデンプロピオン酸、ベンジリデンマロン酸、ベンジル酸、ベンゼントリカルボン酸、1,2−ベンゼンジ酢酸、ベンゾイルオキシ酢酸、ベンゾイルオキシプロピオン酸、ベンゾイルギ酸、ベンゾイル酢酸、O−ベンゾイル乳酸、3−ベンゾイルプロピオン酸、没食子酸、メソシュウ酸、5−メチルイソフタル酸、2−メチルクロトン酸、α−メチルケイ皮酸、メチルコハク酸、メチルマロン酸、2−メチル酪酸、o−メトキシケイ皮酸、p−メトキシケイ皮酸、メルカプトコハク酸、メルカプト酢酸、O−ラクトイル乳酸、リンゴ酸、ロイコン酸、ロイシン酸、ロジゾン酸、ロゾール酸、α−ケトグルタル酸、L−アルコルビン酸、イズロン酸、ガラクツロン酸、グルクロン酸、ピログルタミン酸、エチレンジアミン四酢酸、シアン化三酢酸、アスパラギン酸、グルタミン酸、N’−ヒドロキシエチル−N,N,N’−トリ酢酸及びニトリロトリ酢酸等のカルボン酸;
メタンスルホン酸、エタンスルホン酸、プロパンスルホン酸、ブタンスルホン酸、ペンタンスルホン酸、ヘキサンスルホン酸、ヘプタンスルホン酸、オクタンスルホン酸、ノナンスルホン酸、デカンスルホン酸、ウンデカンスルホン酸、ドデカンスルホン酸、トリデカンスルホン酸、テトラデカンスルホン酸、ペンタデカンスルホン酸、ヘキサデカンスルホン酸、ヘプタデカンスルホン酸、オクタデカンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、p−トルエンスルホン酸、ヒドロキシエタンスルホン酸、ヒドロキシフェノールスルホン酸及びアントラセンスルホン酸等のスルホン酸;
デシルホスホン酸及びフェニルホスホン酸等のホスホン酸、などが挙げられる。さらに、前記のカルボン酸、スルホン酸及びホスホン酸については、これらの主鎖のプロトンを1つ又は2つ以上、F、Cl、Br、I、OH、CN及びNO等の原子又は原子団で置換した誘導体であってもよい。これらは1種類を単独で又は2種類以上を組み合わせて使用できる。
As the organic acid A, for example,
Formic acid, acetic acid, propionic acid, butyric acid, valeric acid, cyclohexanecarboxylic acid, phenylacetic acid, benzoic acid, o-toluic acid, m-toluic acid, p-toluic acid, o-methoxybenzoic acid, m-methoxybenzoic acid, p -Methoxybenzoic acid, acrylic acid, methacrylic acid, crotonic acid, pentenoic acid, hexenoic acid, heptenoic acid, octenoic acid, nonenoic acid, decenoic acid, undecenoic acid, dodecenoic acid, tridecenoic acid, tetradecenoic acid, pentadecenoic acid, hexadecenoic acid, Heptadecenoic acid, isobutyric acid, isovaleric acid, cinnamic acid, quinaldic acid, nicotinic acid, 1-naphthoic acid, 2-naphthoic acid, picolinic acid, vinylacetic acid, phenylacetic acid, phenoxyacetic acid, 2-furancarboxylic acid, mercaptoacetic acid , Levulinic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pime Acid, suberic acid, azelaic acid, sebacic acid, 1,9-nonanedicarboxylic acid, 1,10-decanedicarboxylic acid, 1,11-undecanedicarboxylic acid, 1,12-dodecanedicarboxylic acid, 1,13-tridecane Dicarboxylic acid, 1,14-tetradecanedicarboxylic acid, 1,15-pentadecanedicarboxylic acid, 1,16-hexadecanedicarboxylic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, mesaconic acid, quinolinic acid, quinic acid, naphthalic acid , Phthalic acid, isophthalic acid, terephthalic acid, glycolic acid, lactic acid, 3-hydroxypropionic acid, 2-hydroxybutyric acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 3-hydroxyvaleric acid, 5-hydroxyvaleric acid, quinic acid , Kynurenic acid, salicylic acid, tartaric acid, aconitic acid, ascorbic acid, Cetylsalicylic acid, acetylmalic acid, acetylenedicarboxylic acid, acetoxysuccinic acid, acetoacetic acid, 3-oxoglutaric acid, atropaic acid, atrolactic acid, anthraquinone carboxylic acid, anthracene carboxylic acid, isocaproic acid, isocamphoric acid, isocrotonic acid, 2-ethyl 2-hydroxybutyric acid, ethylmalonic acid, ethoxyacetic acid, oxaloacetic acid, oxydiacetic acid, 2-oxobutyric acid, camphoric acid, citric acid, glyoxylic acid, glycidic acid, glyceric acid, glucaric acid, gluconic acid, croconic acid, cyclobutane Carboxylic acid, cyclohexanedicarboxylic acid, diphenylacetic acid, di-O-benzoyltartaric acid, dimethylsuccinic acid, dimethoxyphthalic acid, tartronic acid, tannic acid, thiophenecarboxylic acid, tiglic acid, desoxosaric acid, tetrahys Droxysuccinic acid, tetramethyl succinic acid, tetronic acid, dehydroacetic acid, terephthalic acid, tropic acid, vanillic acid, paraconic acid, hydroxyisophthalic acid, hydroxycinnamic acid, hydroxynaphthoic acid, o-hydroxyphenylacetic acid, m-hydroxyphenyl Acetic acid, p-hydroxyphenylacetic acid, 3-hydroxy-3-phenylpropionic acid, pivalic acid, pyridinedicarboxylic acid, pyridinetricarboxylic acid, pyruvic acid, α-phenylcinnamic acid, phenylglycidic acid, phenylsuccinic acid, phenylacetic acid , Phenyllactic acid, propiolic acid, sorbic acid, 2,4-hexadienedioic acid, 2-benzylidenepropionic acid, 3-benzylidenepropionic acid, benzylidenemalonic acid, benzylic acid, benzenetricarboxylic acid, 1,2-benzenediacetic acid, benzoic acid Oxyacetic acid, benzoyloxypropionic acid, benzoylformic acid, benzoylacetic acid, O-benzoyllactic acid, 3-benzoylpropionic acid, gallic acid, mesooxalic acid, 5-methylisophthalic acid, 2-methylcrotonic acid, α-methylcinnamic acid, methylsuccinic acid Acid, methylmalonic acid, 2-methylbutyric acid, o-methoxycinnamic acid, p-methoxycinnamic acid, mercaptosuccinic acid, mercaptoacetic acid, O-lactoyl lactic acid, malic acid, leuconic acid, leucine acid, rosinic acid, rosole Acid, α-ketoglutaric acid, L-alcorbic acid, iduronic acid, galacturonic acid, glucuronic acid, pyroglutamic acid, ethylenediaminetetraacetic acid, triacetic acid acetic acid, aspartic acid, glutamic acid, N′-hydroxyethyl-N, N, N ′ -Carboxylic acids such as triacetic acid and nitrilotriacetic acid;
Methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, butanesulfonic acid, pentanesulfonic acid, hexanesulfonic acid, heptanesulfonic acid, octanesulfonic acid, nonanesulfonic acid, decanesulfonic acid, undecanesulfonic acid, dodecanesulfonic acid, tridecane Sulfonic acid, tetradecanesulfonic acid, pentadecanesulfonic acid, hexadecanesulfonic acid, heptadecanesulfonic acid, octadecanesulfonic acid, benzenesulfonic acid, naphthalenesulfonic acid, p-toluenesulfonic acid, hydroxyethanesulfonic acid, hydroxyphenolsulfonic acid and anthracenesulfone Sulfonic acids such as acids;
And phosphonic acids such as decylphosphonic acid and phenylphosphonic acid. Furthermore, with regard to the carboxylic acid, sulfonic acid and phosphonic acid, one or more protons of these main chains are represented by atoms or atomic groups such as F, Cl, Br, I, OH, CN and NO 2. It may be a substituted derivative. These can be used alone or in combination of two or more.

有機酸A(有機酸及び又はその塩)の含有量は、研磨液全質量基準で0.001〜1質量%であることが好ましい。有機酸及び/又はその塩の含有量が0.001質量%以上であれば、研磨終了後の被研磨材料(例えば、酸化珪素)の平坦性を向上させることができる傾向があり、この観点で、有機酸及び/又はその塩の含有量は0.005質量%以上がより好ましく、0.01質量%以上が更に好ましく、0.05質量%以上が特に好ましく、0.1質量%以上が非常に好ましい。一方、含有量が1質量%以下であれば、被研磨材料の研磨速度が充分に向上する傾向があり、また酸化セリウム粒子の凝集が抑制される傾向があり、この観点で、有機酸及び/又はその塩の含有量は0.7質量%以下がより好ましく、0.5質量%以下が更に好ましい。   The content of the organic acid A (organic acid and / or salt thereof) is preferably 0.001 to 1% by mass based on the total mass of the polishing liquid. If the content of the organic acid and / or salt thereof is 0.001% by mass or more, the flatness of the material to be polished (for example, silicon oxide) after polishing tends to be improved. The content of the organic acid and / or salt thereof is more preferably 0.005% by mass or more, still more preferably 0.01% by mass or more, particularly preferably 0.05% by mass or more, and extremely preferably 0.1% by mass or more. Is preferred. On the other hand, if the content is 1% by mass or less, the polishing rate of the material to be polished tends to be sufficiently improved, and aggregation of the cerium oxide particles tends to be suppressed. Alternatively, the content of the salt is more preferably 0.7% by mass or less, and further preferably 0.5% by mass or less.

(高分子化合物B)
本実施形態に係る研磨液は、カルボン酸基及びカルボン酸塩基からなる群より選択される少なくとも一種を有し、かつ、亜硫酸基及び亜硫酸塩基からなる群より選択される少なくとも一種を有する高分子化合物Bを含む。これにより、研磨終了後の被研磨材料(例えば、酸化珪素)の平坦性を向上できる。より詳細には、ディッシングが生じることを抑制できる。また、トレンチ密度の異なる部分における被研磨材料の残膜厚差を低減できる。この効果は、前記有機酸Aと、酸化セリウム粒子と、を併用することにより、より効率的に得られる。なお、高分子化合物Bは、主鎖にカルボン酸基及びカルボン酸塩基からなる群より選択される少なくとも一種を有することが好ましい。また、高分子化合物Bは、主鎖末端に亜硫酸基及び亜硫酸塩基からなる群より選択される少なくとも一種を有することが好ましい。
(Polymer Compound B)
The polishing liquid according to the present embodiment has at least one selected from the group consisting of a carboxylic acid group and a carboxylic acid group, and has a polymer compound having at least one selected from the group consisting of a sulfite group and a sulfite group B is included. Thereby, the flatness of the material to be polished (for example, silicon oxide) after completion of polishing can be improved. More specifically, the occurrence of dishing can be suppressed. Further, the difference in the remaining film thickness of the material to be polished in the portions having different trench densities can be reduced. This effect can be obtained more efficiently by using the organic acid A and cerium oxide particles in combination. In addition, it is preferable that the high molecular compound B has at least 1 type selected from the group which consists of a carboxylic acid group and a carboxylic acid group in a principal chain. Moreover, it is preferable that the high molecular compound B has at least 1 type selected from the group which consists of a sulfite group and a sulfite group at the principal chain terminal.

前記高分子化合物Bは、不飽和カルボン酸を含む単量体成分の重合体由来のものであることが好ましい。不飽和カルボン酸としては、例えば、アクリル酸、メタクリル酸、クロトン酸、フマル酸、マレイン酸等が挙げられる。   The polymer compound B is preferably derived from a polymer of a monomer component containing an unsaturated carboxylic acid. Examples of the unsaturated carboxylic acid include acrylic acid, methacrylic acid, crotonic acid, fumaric acid, and maleic acid.

前記高分子化合物Bは、前記不飽和カルボン酸の単独重合体(ホモポリマ)由来のものであってもよく、複数の前記不飽和カルボン酸の共重合体(コポリマ)由来のものであってもよい。単独重合体としては、ポリアクリル酸、ポリメタクリル酸、ポリクロトン酸、ポリフマル酸、ポリマレイン酸等が挙げられ、中でも、アクリル酸の単独重合体であるポリアクリル酸が好ましい。また、共重合体としては、アクリル酸―メタクリル酸共重合体が挙げられる。   The polymer compound B may be derived from a homopolymer (homopolymer) of the unsaturated carboxylic acid, or may be derived from a plurality of copolymers (copolymers) of the unsaturated carboxylic acid. . Examples of the homopolymer include polyacrylic acid, polymethacrylic acid, polycrotonic acid, polyfumaric acid, polymaleic acid and the like. Among them, polyacrylic acid which is a homopolymer of acrylic acid is preferable. Examples of the copolymer include acrylic acid-methacrylic acid copolymer.

前記共重合体は、さらに別の重合性化合物と、前記不飽和カルボン酸を含む単量体成分の共重合体であってもよい。このような別の重合性化合物としては、アクリル酸アルキル、メタクリル酸アルキル、クロトン酸アルキル等が挙げられる。前記アルキルとしては、メチル、エチル、プロピル、ブチル、ペンチル、オクチル等が挙げられる。このような共重合体としては例えば、アクリル酸―アクリル酸メチル共重合体、アクリル酸―メタクリル酸メチル共重合体等が挙げられる。   The copolymer may be a copolymer of another polymerizable compound and a monomer component containing the unsaturated carboxylic acid. Examples of such another polymerizable compound include alkyl acrylate, alkyl methacrylate, and alkyl crotonic acid. Examples of the alkyl include methyl, ethyl, propyl, butyl, pentyl, octyl and the like. Examples of such a copolymer include acrylic acid-methyl acrylate copolymer, acrylic acid-methyl methacrylate copolymer, and the like.

CMP用研磨液中で、カルボン酸基の一部又は全部がカルボン酸塩基になっていてもよい。カルボン酸塩基は、前記カルボン酸基の部分が塩となっている基をいう。具体的には、アンモニウム塩基、ナトリウム塩基、カリウム塩基等が挙げられる。このようにするためには、高分子化合物Bのカルボン酸基の一部又は全部を予めカルボン酸塩基にしてからCMP用研磨液を調製してもよいし、CMP研磨液に高分子化合物Bを添加した後に、さらに塩基を添加して、高分子化合物Bのカルボン酸基の一部又は全部をカルボン酸塩基にしてもよい。   In the CMP polishing liquid, part or all of the carboxylic acid groups may be carboxylic acid groups. The carboxylate group refers to a group in which the carboxylic acid group moiety is a salt. Specific examples include ammonium base, sodium base, potassium base and the like. In order to do this, a polishing slurry for CMP may be prepared after previously converting a part or all of the carboxylic acid groups of the polymer compound B to a carboxylate group, or the polymer compound B is added to the CMP polishing solution. After the addition, a base may be further added so that a part or all of the carboxylic acid groups of the polymer compound B may be converted to a carboxylic acid base.

本発明のCMP用研磨液において、高分子化合物Bは、亜硫酸基を末端基として有することが好ましい。ここで、亜硫酸基は、CMP用研磨液中で亜硫酸塩基となっていてもよい。亜硫酸塩基としては、亜硫酸ナトリウム基、亜硫酸カリウム基、亜硫酸アンモニウム基等が挙げられ、亜硫酸アンモニウム基が好ましい。   In the polishing slurry for CMP of the present invention, the polymer compound B preferably has a sulfite group as a terminal group. Here, the sulfite group may be a sulfite group in the polishing slurry for CMP. Examples of the sulfite group include a sodium sulfite group, a potassium sulfite group, and an ammonium sulfite group, and an ammonium sulfite group is preferable.

末端基として亜硫酸基を有する高分子化合物Bを得るための方法としては、亜硫酸塩を用いて単量体成分を重合させる方法が好ましく、亜硫酸塩を用いて前記不飽和カルボン酸を含む単量体成分を重合させる方法がより好ましい。亜硫酸塩としては、亜硫酸ナトリウム、亜硫酸カリウム、亜硫酸アンモニウム等が挙げられ、中でもアルカリ金属イオンを含有しない点で、亜硫酸アンモニウムが好ましい。また、高分子化合物Bは、1種を単独で又は2種以上を組み合わせて使用できる。   As a method for obtaining the polymer compound B having a sulfite group as a terminal group, a method of polymerizing a monomer component using sulfite is preferable, and a monomer containing the unsaturated carboxylic acid using sulfite is used. A method of polymerizing the components is more preferable. Examples of the sulfite include sodium sulfite, potassium sulfite, and ammonium sulfite. Among them, ammonium sulfite is preferable because it does not contain alkali metal ions. Moreover, the high molecular compound B can be used individually by 1 type or in combination of 2 or more types.

高分子化合物Bの含有量は、研磨終了後の被研磨材料(例えば、酸化珪素)の平坦性を向上させることができる傾向がある観点で、研磨液全質量基準で0.01質量%以上であることが好ましい。同様の観点で、0.02質量%以上がより好ましく、0.05質量%以上が更に好ましく、0.10質量%以上が特に好ましい。また、被研磨材料の研磨速度が充分に向上する傾向があり、また酸化セリウム粒子の凝集が抑制される傾向がある観点で、研磨液全質量基準で0.50質量%以下であることが好ましく、0.45質量%以下がより好ましく、0.40質量%以下が更に好ましい。   The content of the polymer compound B is 0.01% by mass or more based on the total mass of the polishing liquid from the viewpoint that the flatness of the material to be polished (for example, silicon oxide) after the polishing is finished can be improved. Preferably there is. From the same viewpoint, 0.02% by mass or more is more preferable, 0.05% by mass or more is further preferable, and 0.10% by mass or more is particularly preferable. In addition, it is preferable that the polishing rate of the material to be polished is 0.50% by mass or less based on the total mass of the polishing liquid from the viewpoint that the polishing rate tends to be sufficiently improved and aggregation of cerium oxide particles tends to be suppressed. 0.45 mass% or less is more preferable, and 0.40 mass% or less is still more preferable.

高分子化合物Bの重量平均分子量は、特に制限はないが、被研磨材料の研磨速度が充分に得られる傾向があり、また、酸化セリウム粒子の凝集を抑制しやすい傾向がある観点で、100000以下が好ましく、10000以下がより好ましい。また、平坦性向上効果を得やすくなる傾向がある観点で、高分子化合物Bの重量平均分子量は、1000以上が好ましい。なお、重量平均分子量は、GPC(Gel Permeation Chromatography:ゲル浸透クロマトグラフィー)で測定し、ポリアクリル酸ナトリウム標準物質で作成した検量線を用いて算出することができる。   Although there is no restriction | limiting in particular in the weight average molecular weight of the high molecular compound B, From the viewpoint which there exists a tendency which can fully obtain the grinding | polishing speed | rate of to-be-polished material, and there exists a tendency which is easy to suppress aggregation of a cerium oxide particle, it is 100,000 or less. Is preferable, and 10,000 or less is more preferable. Moreover, the weight average molecular weight of the high molecular compound B is preferably 1000 or more from the viewpoint that the flatness improving effect tends to be easily obtained. The weight average molecular weight is measured by GPC (Gel Permeation Chromatography) and can be calculated using a calibration curve prepared with a sodium polyacrylate standard substance.

(水)
水としては、特に制限されないが、脱イオン水、イオン交換水及び超純水等が好ましい。水の含有量は、前記各含有成分の含有量の残部でよく、研磨液中に含有されていれば特に限定されない。なお、研磨液は、必要に応じて水以外の溶媒、例えば、エタノール、アセトン等の極性溶媒等を更に含有してもよい。
(water)
Although it does not restrict | limit especially as water, Deionized water, ion-exchange water, ultrapure water, etc. are preferable. The content of water is not particularly limited as long as it is the remainder of the content of each of the above-described components and is contained in the polishing liquid. The polishing liquid may further contain a solvent other than water, for example, a polar solvent such as ethanol or acetone, if necessary.

(分散剤)
本実施形態に係る研磨液には、酸化セリウム粒子を分散させるための分散剤を含有させることができる。分散剤としては、水溶性陰イオン性分散剤、水溶性非イオン性分散剤、水溶性陽イオン性分散剤及び水溶性両性分散剤等が挙げられ、中でも、水溶性陰イオン性分散剤が好ましい。これらは一種類を単独で又は二種類以上を組み合わせて使用できる。なお、高分子化合物Bとして例示された前記化合物(例えば、ポリアクリル酸アンモニウム)を分散剤として使用することもできる。
(Dispersant)
The polishing liquid according to the present embodiment can contain a dispersant for dispersing the cerium oxide particles. Examples of the dispersant include water-soluble anionic dispersants, water-soluble nonionic dispersants, water-soluble cationic dispersants and water-soluble amphoteric dispersants, and among them, water-soluble anionic dispersants are preferable. . These can be used alone or in combination of two or more. In addition, the said compound (for example, ammonium polyacrylate) illustrated as the high molecular compound B can also be used as a dispersing agent.

水溶性陰イオン性分散剤としては、共重合成分としてアクリル酸を含む高分子及びその塩が好ましく、当該高分子の塩がより好ましい。共重合成分としてアクリル酸を含む高分子及びその塩としては、例えば、ポリアクリル酸及びそのアンモニウム塩、アクリル酸とメタクリル酸との共重合体及びそのアンモニウム塩、並びに、アクリル酸アミドとアクリル酸との共重合体及びそのアンモニウム塩が挙げられる。   As the water-soluble anionic dispersant, a polymer containing acrylic acid as a copolymerization component and a salt thereof are preferable, and a salt of the polymer is more preferable. Polymers containing acrylic acid as a copolymerization component and salts thereof include, for example, polyacrylic acid and ammonium salts thereof, copolymers of acrylic acid and methacrylic acid and ammonium salts thereof, and acrylic amides and acrylic acids. And copolymers thereof and ammonium salts thereof.

その他の水溶性陰イオン性分散剤としては、例えば、ラウリル硫酸トリエタノールアミン、ラウリル硫酸アンモニウム、ポリオキシエチレンアルキルエーテル硫酸トリエタノールアミン及び特殊ポリカルボン酸型高分子分散剤が挙げられる。   Examples of other water-soluble anionic dispersants include lauryl sulfate triethanolamine, ammonium lauryl sulfate, polyoxyethylene alkyl ether sulfate triethanolamine, and special polycarboxylic acid type polymer dispersants.

また、水溶性非イオン性分散剤としては、例えば、ポリエチレングリコールモノラウレート、ポリエチレングリコールモノステアレート、ポリエチレングリコールジステアレート、ポリエチレングリコールモノオレエート、ポリオキシエチレンアルキルアミン、ポリオキシエチレン硬化ヒマシ油、2−ヒドロキシエチルメタクリレート及びアルキルアルカノールアミドが挙げられる。   Examples of the water-soluble nonionic dispersant include polyethylene glycol monolaurate, polyethylene glycol monostearate, polyethylene glycol distearate, polyethylene glycol monooleate, polyoxyethylene alkylamine, and polyoxyethylene hydrogenated castor oil. 2-hydroxyethyl methacrylate and alkylalkanolamides.

水溶性陽イオン性分散剤としては、例えば、ポリビニルピロリドン、ココナットアミンアセテート及びステアリルアミンアセテートが挙げられる。   Examples of the water-soluble cationic dispersant include polyvinyl pyrrolidone, coconut amine acetate, and stearyl amine acetate.

水溶性両性分散剤としては、例えば、ラウリルベタイン、ステアリルベタイン、ラウリルジメチルアミンオキサイド及び2−アルキル−N−カルボキシメチル−N−ヒドロキシエチルイミダゾリニウムベタインが挙げられる。   Examples of the water-soluble amphoteric dispersant include lauryl betaine, stearyl betaine, lauryl dimethylamine oxide, and 2-alkyl-N-carboxymethyl-N-hydroxyethylimidazolinium betaine.

分散剤の含有量は、酸化セリウム粒子の分散性を向上させて沈降を抑制し、被研磨材料の研磨傷を更に減らす観点から、研磨液全質量基準で0.001〜10質量%の範囲が好ましい。   The content of the dispersant is in the range of 0.001 to 10% by mass based on the total mass of the polishing liquid from the viewpoint of improving the dispersibility of the cerium oxide particles to suppress sedimentation and further reducing polishing scratches on the material to be polished. preferable.

分散剤の重量平均分子量は、特に制限はないが、100〜150000が好ましく、1000〜20000がより好ましい。分散剤の分子量が100以上であれば、酸化珪素又は窒化珪素等の被研磨材料を研磨するときに、良好な研磨速度が得られやすい傾向がある。分散剤の分子量が150000以下であれば、研磨液の保存安定性が低下しにくい傾向がある。なお、重量平均分子量は、GPCで測定し、ポリアクリル酸ナトリウム標準物質で作成した検量線を用いて算出することができる。   Although the weight average molecular weight of a dispersing agent does not have a restriction | limiting in particular, 100-150,000 are preferable and 1000-20000 are more preferable. When the molecular weight of the dispersant is 100 or more, a good polishing rate tends to be easily obtained when polishing a material to be polished such as silicon oxide or silicon nitride. If the molecular weight of the dispersant is 150,000 or less, the storage stability of the polishing liquid tends to be difficult to decrease. The weight average molecular weight is measured by GPC and can be calculated using a calibration curve prepared with a sodium polyacrylate standard substance.

(その他の添加剤)
本実施形態に係る研磨液は、有機酸及び/又はその塩、並びにカルボン酸基又はカルボン酸塩基及び亜硫酸基又は亜硫酸塩基を有する水溶性有機高分子とは別の添加剤として水溶性高分子を使用できる。このような水溶性高分子としては、例えば、アルギン酸、ペクチン酸、カルボキシメチルセルロース、寒天、カードラン及びプルラン等の多糖類;ポリビニルアルコール、ポリビニルピロリドン及びポリアクロレイン等のビニル系ポリマ等が挙げられる。これら水溶性高分子の重量平均分子量は、500以上が好ましい。また、これら水溶性高分子の含有量は、研磨液全質量基準で0.01〜5質量%が好ましい。
(Other additives)
The polishing liquid according to the present embodiment includes a water-soluble polymer as an additive different from the organic acid and / or salt thereof, and the water-soluble organic polymer having a carboxylic acid group or a carboxylate group and a sulfite group or a sulfite group. Can be used. Examples of such water-soluble polymers include polysaccharides such as alginic acid, pectic acid, carboxymethyl cellulose, agar, curdlan and pullulan; vinyl polymers such as polyvinyl alcohol, polyvinyl pyrrolidone and polyacrolein. These water-soluble polymers preferably have a weight average molecular weight of 500 or more. Further, the content of these water-soluble polymers is preferably 0.01 to 5% by mass based on the total mass of the polishing liquid.

[研磨液の調製・保存方法]
本実施形態に係る研磨液は、例えば、酸化セリウム粒子、水及び分散剤を配合して酸化セリウム粒子を分散させた後に、さらに有機酸A及び高分子化合物Bを添加することによって得ることができる。なお、本実施形態に係る研磨液は、酸化セリウム粒子、分散剤、有機酸A、高分子化合物B、水及び任意に水溶性高分子を含む一液式研磨液として保存してもよく、酸化セリウム粒子、分散剤及び水を含む酸化セリウムスラリ(第1の液)と、有機酸A、高分子化合物B、水及び任意に水溶性高分子を含む添加液(第2の液)と、から構成される二液式研磨液として保存してもよい。
[Preparation and storage method of polishing liquid]
The polishing liquid according to the present embodiment can be obtained, for example, by adding cerium oxide particles, water, and a dispersing agent to disperse the cerium oxide particles, and further adding an organic acid A and a polymer compound B. . The polishing liquid according to this embodiment may be stored as a one-part polishing liquid containing cerium oxide particles, a dispersant, an organic acid A, a polymer compound B, water, and optionally a water-soluble polymer. A cerium oxide slurry (first liquid) containing cerium particles, a dispersant and water, and an additive liquid (second liquid) containing an organic acid A, a polymer compound B, water and optionally a water-soluble polymer. You may preserve | save as a two-component polishing liquid comprised.

なお、二液式研磨液の場合は、有機酸A及び高分子化合物B以外の添加剤は、酸化セリウムスラリと添加液のいずれに含まれてもよいが、酸化セリウム粒子の分散安定性に影響がない点で、添加液に含まれることが好ましい。   In the case of a two-part polishing liquid, additives other than the organic acid A and the polymer compound B may be included in either the cerium oxide slurry or the additive liquid, but this affects the dispersion stability of the cerium oxide particles. It is preferable that it is contained in an additive liquid at the point which does not have.

酸化セリウムスラリと添加液とを分けた二液式研磨液として保存する場合、これら二液の配合を任意に変えることにより平坦化特性と研磨速度の調整が可能となる。二液式研磨液を用いて研磨する場合、酸化セリウムスラリ及び添加液をそれぞれ別の配管で送液し、これらの配管を供給配管出口の直前で合流させて両液を混合して研磨パッド上に供給する方法や、研磨直前に酸化セリウムスラリと添加液とを混合する方法を用いることができる。   When storing as a two-component polishing liquid in which the cerium oxide slurry and the additive liquid are separated, the planarization characteristics and the polishing rate can be adjusted by arbitrarily changing the combination of these two liquids. When polishing with a two-part polishing liquid, the cerium oxide slurry and additive liquid are sent through separate pipes, and these pipes are combined just before the supply pipe outlet to mix the two liquids onto the polishing pad. Or a method of mixing the cerium oxide slurry and the additive solution immediately before polishing.

本実施形態に係る研磨液及びスラリは、貯蔵・運搬・保管等に係るコストを抑制できる観点で、使用時に水等の液状媒体で例えば2倍以上に希釈されて使用される、研磨液用貯蔵液又はスラリ用貯蔵液として保管できる。前記各貯蔵液は、研磨の直前に液状媒体で希釈されてもよいし、研磨パッド上に貯蔵液と液状媒体を供給し、研磨パッド上で希釈されてもよい。   The polishing liquid and slurry according to the present embodiment are used for polishing liquid storage, which is used after being diluted with a liquid medium such as water, for example, twice or more at the time of use, from the viewpoint of suppressing costs related to storage, transportation, storage and the like. Can be stored as a liquid or slurry stock. Each of the storage liquids may be diluted with a liquid medium immediately before polishing, or may be diluted on the polishing pad by supplying the storage liquid and the liquid medium onto the polishing pad.

前記貯蔵液の希釈倍率としては、倍率が高いほど貯蔵・運搬・保管等に係るコストの抑制効果が高いため、2倍以上が好ましく、3倍以上がより好ましい。また、上限としては特に制限はないが、倍率が高いほど貯蔵液に含まれる成分の量が多く(濃度が高く)なり、保管中の安定性が低下する傾向があるため、一般的には10倍以下が好ましく、7倍以下がより好ましく、5倍以下が更に好ましい。なお、三液以上に構成成分を分けてもよく、その場合についても同様である。なお、希釈倍率がX倍であるとは、貯蔵液が貯蔵液の質量の(X−1)倍の質量の液状媒体と混合され、最終的に全質量が貯蔵液のX倍になることを意味する。   The dilution ratio of the stock solution is preferably 2 times or more and more preferably 3 times or more because the higher the magnification is, the higher the cost suppressing effect related to storage, transportation, storage, and the like. The upper limit is not particularly limited. However, the higher the magnification, the greater the amount of components contained in the stock solution (the higher the concentration), and the lower the stability during storage. Is preferably 7 times or less, more preferably 7 times or less, and still more preferably 5 times or less. In addition, you may divide a structural component into three liquids or more, and it is the same also in that case. Note that the dilution factor is X times that the stock solution is mixed with a liquid medium having a mass (X-1) times the mass of the stock solution, and the total mass is finally X times that of the stock solution. means.

本実施形態に係る研磨液は、所望のpHに調整して研磨に供することができる。pH調整剤としては特に制限はないが、例えば、硝酸、硫酸、塩酸、リン酸、ホウ酸及び酢酸等の酸、並びに水酸化ナトリウム、アンモニア水、水酸化カリウム及び水酸化カルシウム等の塩基が挙げられる。研磨液が半導体研磨に使用される場合には、アンモニア水、酸成分が好適に使用される。pH調整剤としては、予めアンモニアで部分的に中和された水溶性高分子のアンモニウム塩を使用できる。   The polishing liquid according to this embodiment can be adjusted to a desired pH and used for polishing. The pH adjuster is not particularly limited, and examples thereof include acids such as nitric acid, sulfuric acid, hydrochloric acid, phosphoric acid, boric acid and acetic acid, and bases such as sodium hydroxide, aqueous ammonia, potassium hydroxide and calcium hydroxide. It is done. When the polishing liquid is used for semiconductor polishing, ammonia water and an acid component are preferably used. As the pH adjuster, an ammonium salt of a water-soluble polymer that has been partially neutralized with ammonia in advance can be used.

なお、室温(25℃)における研磨液のpHは4.0以上6.0以下であることが好ましい。pHが4.0以上であることにより研磨液の保存安定性が向上する傾向があり、被研磨材料の傷の発生数が減少する傾向があり、同様の観点で、前記pHは、4.3以上がより好ましく、4.5以上が更に好ましい。また、pHが6.0以下であることにより、平坦性の向上効果を充分に発揮できる傾向があり、同様の観点で、前記pHは5.7以下がより好ましく、5.5以下が更に好ましい。研磨液のpHは、pHメータ(例えば、横河電機株式会社製のModel PH81(商品名))で測定できる。例えば、標準緩衝液(フタル酸塩pH緩衝液pH:4.21(25℃)、中性リン酸塩pH緩衝液pH6.86(25℃))を用いて2点校正した後、電極を研磨液に入れて、25℃で2分以上経過して安定した後の値を測定することで、研磨液のpHを測定できる。   The pH of the polishing liquid at room temperature (25 ° C.) is preferably 4.0 or more and 6.0 or less. When the pH is 4.0 or more, the storage stability of the polishing liquid tends to be improved, and the number of scratches on the material to be polished tends to decrease. From the same viewpoint, the pH is 4.3. The above is more preferable, and 4.5 or more is more preferable. Further, when the pH is 6.0 or less, there is a tendency that the effect of improving the flatness can be sufficiently exhibited. From the same viewpoint, the pH is more preferably 5.7 or less, and further preferably 5.5 or less. . The pH of the polishing liquid can be measured with a pH meter (for example, Model PH81 (trade name) manufactured by Yokogawa Electric Corporation). For example, after calibrating two points using a standard buffer solution (phthalate pH buffer solution pH: 4.21 (25 ° C.), neutral phosphate pH buffer solution pH 6.86 (25 ° C.)), the electrode is polished. The pH of the polishing liquid can be measured by putting it in the liquid and measuring the value after 2 minutes have passed and stabilized at 25 ° C.

次に、本実施形態に係る研磨液の、基板表面の被研磨材料の研磨への応用(Use)について説明する。   Next, the application (Use) of the polishing liquid according to the present embodiment to the polishing of the material to be polished on the substrate surface will be described.

[研磨方法]
本実施形態に係る基板の研磨方法は、基板表面の被研磨材料を前記研磨液を用いて研磨する。より詳しくは、例えば、基板表面の被研磨材料を研磨定盤の研磨パッドに押圧した状態で、前記研磨液を被研磨材料と研磨パッドとの間に供給しながら、基板と研磨定盤とを相対的に動かして被研磨材料を研磨する。
[Polishing method]
In the substrate polishing method according to this embodiment, the material to be polished on the substrate surface is polished using the polishing liquid. More specifically, for example, while pressing the polishing material on the substrate surface against the polishing pad of the polishing surface plate, while supplying the polishing liquid between the polishing material and the polishing pad, the substrate and the polishing surface plate are The material to be polished is polished by relatively moving.

基板としては、回路素子及び配線パターンが形成された段階の半導体基板や、回路素子が形成された段階の半導体基板等のように、半導体基板上に絶縁材料が形成された基板等の半導体素子製造に係る基板などが挙げられる。   As a substrate, semiconductor element manufacturing such as a substrate in which an insulating material is formed on a semiconductor substrate, such as a semiconductor substrate in a stage where a circuit element and a wiring pattern are formed, or a semiconductor substrate in a stage where a circuit element is formed And the like.

前記被研磨材料としては、例えば、酸化珪素、窒化珪素、酸化珪素の複合材料等の無機絶縁材料などが挙げられる。このような基板上の無機絶縁材料を、本実施形態に係る研磨液で研磨することによって、絶縁材料表面の凹凸を解消し、基板全面にわたって平滑な面にできる。また、本実施形態に係る研磨液は、シャロートレンチ分離にも使用できる。   Examples of the material to be polished include inorganic insulating materials such as silicon oxide, silicon nitride, and silicon oxide composite materials. By polishing such an inorganic insulating material on the substrate with the polishing liquid according to the present embodiment, unevenness on the surface of the insulating material can be eliminated, and the entire surface of the substrate can be made smooth. Further, the polishing liquid according to the present embodiment can also be used for shallow trench isolation.

以下、絶縁材料として、無機絶縁材料の膜が形成された半導体基板の場合を例に挙げて、基板の研磨方法を更に詳細に説明する。   Hereinafter, the method for polishing a substrate will be described in more detail, taking as an example the case of a semiconductor substrate on which a film of an inorganic insulating material is formed as an insulating material.

研磨装置としては、被研磨材料を有する半導体基板等の基板を保持するホルダーと、回転数を変更可能なモータ等が取り付けてあり、研磨パッド(研磨布)を貼り付け可能な研磨定盤と、を有する一般的な研磨装置を使用できる。研磨装置としては、例えば、株式会社荏原製作所製の研磨装置:型番EPO−111、AMAT製MIRRA,Reflexion等を使用できる。   As a polishing apparatus, a holder for holding a substrate such as a semiconductor substrate having a material to be polished, a motor capable of changing the number of rotations, etc. are attached, and a polishing surface plate on which a polishing pad (polishing cloth) can be attached, A general polishing apparatus having the following can be used. As a polishing apparatus, for example, a polishing apparatus manufactured by Ebara Manufacturing Co., Ltd .: model number EPO-111, MIRRA, Reflexion manufactured by AMAT, etc. can be used.

研磨パッドとしては、一般的な不織布、発泡ポリウレタン及び多孔質フッ素樹脂等を特に制限なく使用できる。また、研磨パッドには、研磨液が溜まるような溝加工が施されていることが好ましい。   As the polishing pad, a general nonwoven fabric, foamed polyurethane, porous fluororesin, or the like can be used without particular limitation. Moreover, it is preferable that the polishing pad is grooved so that the polishing liquid is accumulated.

研磨条件に制限はないが、定盤の回転速度は、半導体基板が飛び出さないように200回転/分以下の低回転が好ましく、半導体基板にかける圧力(加工荷重)は、研磨後に傷が発生しないように100kPa以下が好ましい。研磨している間は、研磨パッドに研磨液をポンプ等で連続的に供給する。この供給量に制限はないが、研磨パッドの表面が常に研磨液で覆われていることが好ましい。   The polishing conditions are not limited, but the rotation speed of the surface plate is preferably low rotation of 200 rotations / minute or less so that the semiconductor substrate does not pop out, and the pressure (working load) applied to the semiconductor substrate is scratched after polishing. 100 kPa or less is preferable. During polishing, the polishing liquid is continuously supplied to the polishing pad with a pump or the like. Although there is no restriction | limiting in this supply amount, it is preferable that the surface of a polishing pad is always covered with polishing liquid.

研磨終了後の半導体基板は、流水中で良く洗浄後、スピンドライヤ等を用いて半導体基板上に付着した水滴を払い落として、乾燥させることが好ましい。   The semiconductor substrate after polishing is preferably washed in running water, and then dried by removing water droplets adhering to the semiconductor substrate using a spin dryer or the like.

このように被研磨材料である無機絶縁膜を研磨液で研磨することによって、表面の凹凸を解消し、半導体基板全面にわたって平滑な面が得られる。平坦化されたシャロートレンチを形成した後は、無機絶縁膜の上にアルミニウム配線を形成し、その配線間及び配線上に再度無機絶縁膜を形成後、研磨液を用いて当該無機絶縁膜を研磨して平滑な面を得る。この工程を所定数繰り返すことにより、所望の層数を有する半導体基板を製造できる。   By polishing the inorganic insulating film, which is the material to be polished, with the polishing liquid in this manner, surface irregularities can be eliminated and a smooth surface can be obtained over the entire surface of the semiconductor substrate. After the planarized shallow trench is formed, an aluminum wiring is formed on the inorganic insulating film, an inorganic insulating film is formed again between the wirings and on the wiring, and then the inorganic insulating film is polished with a polishing liquid. To obtain a smooth surface. By repeating this step a predetermined number of times, a semiconductor substrate having a desired number of layers can be manufactured.

本実施形態に係る研磨液により研磨される無機絶縁材料としては、例えば、酸化珪素及び窒化珪素が挙げられる。酸化珪素は、リン及びホウ素等の元素がドープされていても良い。無機絶縁材料の作製方法としては、低圧CVD法、プラズマCVD法等が挙げられる。   Examples of the inorganic insulating material polished with the polishing liquid according to the present embodiment include silicon oxide and silicon nitride. Silicon oxide may be doped with elements such as phosphorus and boron. As a method for manufacturing the inorganic insulating material, a low pressure CVD method, a plasma CVD method, or the like can be given.

低圧CVD法による酸化珪素膜形成は、Si源としてモノシラン:SiH、酸素源として酸素:Oを用いる。このSiH−O系酸化反応を、400℃以下の低温で行うことにより酸化珪素膜が得られる。場合によっては、CVDにより得られた酸化珪素膜は、1000℃又はそれ以下の温度で熱処理される。高温リフローによる表面平坦化を図るために、酸化珪素膜にリン:Pをドープするときには、SiH−O−PH系反応ガスを用いることが好ましい。 The silicon oxide film formation by the low pressure CVD method uses monosilane: SiH 4 as the Si source and oxygen: O 2 as the oxygen source. A silicon oxide film can be obtained by performing this SiH 4 —O 2 -based oxidation reaction at a low temperature of 400 ° C. or lower. In some cases, the silicon oxide film obtained by CVD is heat-treated at a temperature of 1000 ° C. or lower. In order to planarize the surface by high-temperature reflow, when doping silicon: P with phosphorus: P, it is preferable to use a SiH 4 —O 2 —PH 3 -based reactive gas.

プラズマCVD法は、通常の熱平衡下では高温を必要とする化学反応が低温でできる利点を有する。プラズマ発生法には、容量結合型と誘導結合型の2つが挙げられる。反応ガスとしては、Si源としてSiH、酸素源としてNOを用いたSiH−NO系ガスとテトラエトキシシラン(TEOS)をSi源に用いたTEOS−O系ガス(TEOS−プラズマCVD法)が挙げられる。基板温度は、250〜400℃、反応圧力は、67〜400Paが好ましい。 The plasma CVD method has an advantage that a chemical reaction requiring a high temperature can be performed at a low temperature under normal thermal equilibrium. There are two plasma generation methods, capacitive coupling type and inductive coupling type. The reaction gases, SiH 4 as an Si source, an oxygen source as N 2 O was used was SiH 4 -N 2 O-based gas and TEOS-O-based gas using tetraethoxysilane (TEOS) in an Si source (TEOS-plasma CVD method). The substrate temperature is preferably 250 to 400 ° C., and the reaction pressure is preferably 67 to 400 Pa.

低圧CVD法による窒化珪素膜形成は、Si源としてジクロルシラン:SiHCl、窒素源としてアンモニア:NHを用いる。このSiHCl−NH系酸化反応を、900℃の高温で行わせることにより窒化珪素膜が得られる。プラズマCVD法による窒化珪素膜形成は、反応ガスとしては、Si源としてSiH、窒素源としてNHを用いたSiH−NH系ガスが挙げられる。基板温度は、300〜400℃が好ましい。 Silicon nitride film formation by the low pressure CVD method uses dichlorosilane: SiH 2 Cl 2 as a Si source and ammonia: NH 3 as a nitrogen source. A silicon nitride film is obtained by performing this SiH 2 Cl 2 —NH 3 -based oxidation reaction at a high temperature of 900 ° C. In the formation of a silicon nitride film by the plasma CVD method, examples of the reactive gas include SiH 4 —NH 3 based gas using SiH 4 as the Si source and NH 3 as the nitrogen source. The substrate temperature is preferably 300 to 400 ° C.

本実施形態に係る研磨液及び基板の研磨方法は、半導体基板に形成された無機絶縁膜だけでなく、各種半導体装置の製造プロセス等にも適用できる。本実施形態に係る研磨液及び基板の研磨方法は、例えば、所定の配線を有する配線板上の酸化珪素材料、ガラス及び窒化珪素等の無機絶縁材料、ポリシリコン、Al、Cu、Ti、TiN、W、Ta及びTaN等を主として含有する材料、フォトマスク・レンズ・プリズム等の光学ガラス、ITO等の無機導電材料、ガラス及び結晶質材料で構成される光集積回路・光スイッチング素子・光導波路、光ファイバーの端面、シンチレータ等の光学用単結晶、固体レーザ単結晶、青色レーザLED用サファイヤ基板、SiC、GaP及びGaAs等の半導体単結晶、磁気ディスク用ガラス基板、並びに磁気ヘッド等を研磨することにも適用できる。   The polishing liquid and the substrate polishing method according to the present embodiment can be applied not only to the inorganic insulating film formed on the semiconductor substrate but also to the manufacturing processes of various semiconductor devices. The polishing liquid and substrate polishing method according to this embodiment include, for example, a silicon oxide material on a wiring board having predetermined wiring, an inorganic insulating material such as glass and silicon nitride, polysilicon, Al, Cu, Ti, TiN, Optically integrated circuit / optical switching element / optical waveguide composed of materials mainly containing W, Ta and TaN, optical glass such as photomask / lens / prism, inorganic conductive material such as ITO, glass and crystalline material, Polishing optical fiber end faces, optical single crystals such as scintillators, solid state laser single crystals, sapphire substrates for blue laser LEDs, semiconductor single crystals such as SiC, GaP and GaAs, glass substrates for magnetic disks, magnetic heads, etc. Is also applicable.

以下、実施例により本発明を説明するが、本発明はこれらの実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not restrict | limited to these Examples.

(1.酸化セリウム粒子の作製)
市販の炭酸セリウム水和物40kgをアルミナ製容器に入れ、830℃、空気中で2時間焼成することにより黄白色の粉末を20kg得た。この粉末の相同定をX線回折法で行ったところ酸化セリウムであることを確認した。得られた酸化セリウム粉末20kgを、ジェットミルを用いて乾式粉砕し、粉末状(粒子状)の酸化セリウムを得た。得られた粉末状の酸化セリウムを走査型電子顕微鏡(SEM)で観察したところ、結晶子サイズの粒子と、2個以上の結晶子から構成され結晶粒界を有する粒子とが含まれていた。得られたSEM画像から任意に50個の結晶子を選択し、それぞれについて長径と短径との積の平方根から粒子径を求めたところ、結晶子径はいずれも1〜300nmの範囲に含まれていた。
(1. Preparation of cerium oxide particles)
40 kg of commercially available cerium carbonate hydrate was placed in an alumina container and baked in air at 830 ° C. for 2 hours to obtain 20 kg of yellowish white powder. When the phase of this powder was identified by X-ray diffraction, it was confirmed that the powder was cerium oxide. 20 kg of the obtained cerium oxide powder was dry pulverized using a jet mill to obtain powdered (particulate) cerium oxide. When the obtained powdered cerium oxide was observed with a scanning electron microscope (SEM), it contained crystallite-sized particles and particles composed of two or more crystallites and having a crystal grain boundary. Arbitrary 50 crystallites were selected from the obtained SEM images, and when the particle diameter was determined from the square root of the product of the major axis and the minor axis for each, the crystallite diameter was included in the range of 1 to 300 nm. It was.

(2.高分子化合物の合成)
(2.1 高分子化合物1)
脱イオン水214gを、撹拌機、温度計及び空気導入口を備えた1L(Lはリットル。以下同じ。)の合成用フラスコに投入し、液温を25℃にした。その後、焼結フィルターを通して細かい気泡にした空気を脱イオン水中に導入し、アクリル酸250gと、亜硫酸二アンモニウム100gを脱イオン水200gに溶解させた水溶液とを、それぞれ別々の投入口にセットし、4時間かけて滴下が完了する滴下速度で、両者を同時に滴下した。滴下中、重合反応による発熱を冷水で冷却しながら、液温を25℃〜30℃に保持した。滴下終了後、さらに1時間空気を吹き込み続けた後、不揮発分が40質量%となるように調整して、高分子化合物1の水溶液を得た。高分子化合物1は、下記一般式(I)に示すように、末端に亜硫酸アンモニウム塩基を有するポリアクリル酸であり、重量平均分子量は4000であった。

Figure 2015008212
(2. Synthesis of polymer compounds)
(2.1 Polymer compound 1)
214 g of deionized water was put into a 1 L synthesis flask equipped with a stirrer, a thermometer, and an air inlet (L is liter, the same applies hereinafter), and the liquid temperature was adjusted to 25 ° C. After that, air made into fine bubbles through the sintered filter is introduced into deionized water, and 250 g of acrylic acid and an aqueous solution in which 100 g of diammonium sulfite is dissolved in 200 g of deionized water are set in separate inlets. Both were dropped simultaneously at a dropping speed at which dropping was completed over 4 hours. During the dropwise addition, the liquid temperature was maintained at 25 ° C. to 30 ° C. while cooling the exotherm due to the polymerization reaction with cold water. After the completion of the dropwise addition, air was further blown for 1 hour, and then adjusted so that the nonvolatile content was 40% by mass, whereby an aqueous solution of polymer compound 1 was obtained. As shown in the following general formula (I), the polymer compound 1 was polyacrylic acid having an ammonium sulfite base at the end, and the weight average molecular weight was 4000.
Figure 2015008212

(2.2 高分子化合物2)
脱イオン水160gと2−プロパノール140gとを、撹拌機、温度計及び空気導入口を備えた1Lの合成用フラスコに投入し、窒素ガス雰囲気下で攪拌しながら液温を80℃に昇温した。そして、アクリル酸234.6gと、2,2’−アゾビス〔2−(2−イミダゾリン−2−イル)プロパン〕二硫酸塩二水和物64.8gを脱イオン水169.8gに溶解させたものとを、それぞれ別々の投入口にセットし、2時間かけて滴下が完了する滴下速度で、両者を同時に滴下した。その後、液温を80℃〜85℃で3時間保温後、25℃〜30℃まで冷却した後、不揮発分が40質量%となるように調整して、高分子化合物2の水溶液を得た。高分子化合物2は、下記一般式(II)に示すように、末端に2−(2−イミダゾリン−2−イル)プロパンを有するポリアクリル酸であり、重量平均分子量は3000であった。

Figure 2015008212
(2.2 Polymer compound 2)
160 g of deionized water and 140 g of 2-propanol were put into a 1 L synthesis flask equipped with a stirrer, a thermometer and an air inlet, and the liquid temperature was raised to 80 ° C. while stirring in a nitrogen gas atmosphere. . Then 234.6 g of acrylic acid and 64.8 g of 2,2′-azobis [2- (2-imidazolin-2-yl) propane] disulfate dihydrate were dissolved in 169.8 g of deionized water. The two were simultaneously dropped at a dropping speed at which dropping was completed over 2 hours. Thereafter, the liquid temperature was kept at 80 ° C. to 85 ° C. for 3 hours, and after cooling to 25 ° C. to 30 ° C., the aqueous solution of the polymer compound 2 was obtained by adjusting the nonvolatile content to 40% by mass. As shown in the following general formula (II), the polymer compound 2 was polyacrylic acid having 2- (2-imidazolin-2-yl) propane at the terminal, and the weight average molecular weight was 3000.
Figure 2015008212

(実施例1−1)
前記で作製した酸化セリウム粒子200.0gと、脱イオン水795.0gとを混合し、分散剤としてポリアクリル酸アンモニウム水溶液(重量平均分子量:8000、40質量%)5gを添加して、攪拌しながら超音波分散を行い、酸化セリウム分散液を得た。超音波分散は、超音波周波数400kHz、分散時間20分で行った。
(Example 1-1)
200.0 g of the cerium oxide particles prepared above and 795.0 g of deionized water are mixed, and 5 g of an aqueous solution of ammonium polyacrylate (weight average molecular weight: 8000, 40% by mass) is added as a dispersant and stirred. Then, ultrasonic dispersion was performed to obtain a cerium oxide dispersion. Ultrasonic dispersion was performed at an ultrasonic frequency of 400 kHz and a dispersion time of 20 minutes.

その後、1L容器(高さ:17cm)に1kgの酸化セリウム分散液を入れて静置し、沈降分級を行なった。分級時間15時間後、水面からの深さ13cmより上の上澄みをポンプでくみ上げた。得られた上澄みの酸化セリウム分散液を、次いで酸化セリウム粒子の含有量が5質量%になるように、脱イオン水で希釈して酸化セリウムスラリを得た。   Thereafter, 1 kg of cerium oxide dispersion was placed in a 1 L container (height: 17 cm) and allowed to stand, and sedimentation classification was performed. After 15 hours of classification time, the supernatant above a depth of 13 cm from the water surface was pumped up. The obtained supernatant cerium oxide dispersion was diluted with deionized water so that the content of cerium oxide particles was 5% by mass to obtain a cerium oxide slurry.

酸化セリウムスラリ中における酸化セリウム粒子の平均粒径(D50)を測定するため、He−Neレーザに対する測定時透過率(H)が60〜70%になるように前記スラリを希釈して、測定サンプルとした。この測定サンプルをレーザ回折式粒度分布計Master Sizer Microplus(Malvern社製、商品名)を用い、屈折率:1.93、吸収:0として測定したところ、D50の値は150nmであった。   In order to measure the average particle diameter (D50) of the cerium oxide particles in the cerium oxide slurry, the slurry is diluted so that the measurement transmittance (H) with respect to the He—Ne laser is 60 to 70%, and a measurement sample is obtained. It was. When this measurement sample was measured using a laser diffraction particle size distribution meter Master Sizer Microplus (trade name, manufactured by Malvern) as a refractive index of 1.93 and an absorption of 0, the value of D50 was 150 nm.

有機酸Aとしてp−トルエンスルホン酸一水和物(pKa(25℃)=−2.8)2gと、脱イオン水700gとを混合し、高分子化合物Bとして前記高分子化合物1(40質量%水溶液)を6.25g加えた後、アンモニア水(25質量%)を加えてpH4.5(25℃)に調整した。さらに脱イオン水を加えて、全体量750gとして有機酸添加液とした。   2 g of p-toluenesulfonic acid monohydrate (pKa (25 ° C.) = − 2.8) as an organic acid A and 700 g of deionized water are mixed, and the polymer compound 1 (40 mass) as a polymer compound B is mixed. % Aqueous solution) was added, and aqueous ammonia (25% by mass) was added to adjust the pH to 4.5 (25 ° C.). Further, deionized water was added to obtain an organic acid addition liquid with a total amount of 750 g.

ここに、前記の酸化セリウムスラリ200gを添加して、アンモニア水(25質量%水溶液)を加えて、pH5.0(25℃)に調整し、さらに脱イオン水を加えて、全量を1000gとし、酸化セリウム研磨液(酸化セリウム粒子含有量:1.0質量%)を作製した。   Here, 200 g of the cerium oxide slurry is added, aqueous ammonia (25% by mass aqueous solution) is added to adjust the pH to 5.0 (25 ° C.), deionized water is further added to make the total amount 1000 g, A cerium oxide polishing liquid (cerium oxide particle content: 1.0 mass%) was prepared.

また、前記と同様に測定サンプルを調製して、研磨液中の粒子の平均粒径をレーザ回折式粒度分布計で測定した結果、D50の値は150nmであった。   Further, a measurement sample was prepared in the same manner as described above, and the average particle size of the particles in the polishing liquid was measured with a laser diffraction particle size distribution meter. As a result, the value of D50 was 150 nm.

(絶縁膜の研磨)
研磨試験ウエハとして、SEMATECH社製のパターンウエハ(商品名:864ウエハ、直径:200mm)を用いた。この研磨試験ウエハとこれを用いた研磨特性の評価方法を、図1を用いて説明する。
(Insulating film polishing)
As a polishing test wafer, a pattern wafer (trade name: 864 wafer, diameter: 200 mm) manufactured by SEMATECH was used. The polishing test wafer and a method for evaluating polishing characteristics using the wafer will be described with reference to FIG.

図1(a)は、研磨試験ウエハの一部分を拡大した模式断面図である。ウエハ1の表面には複数の溝が形成されていて、ウエハ1の凸部表面には厚さ150nm(1500Å)の窒化珪素膜2が形成されている。溝の深さ(凸部の表面から凹部の底面までの段差)は500nm(5000Å)である。以下、凸部をアクティブ部、凹部をトレンチ部という。なお、図1には明示されていないが、ウエハ1には、トレンチ部/アクティブ部の断面幅が100μm/100μm、20μm/80μm及び80μm/20μmである3つの領域が形成されている。   FIG. 1A is a schematic cross-sectional view in which a part of a polishing test wafer is enlarged. A plurality of grooves are formed on the surface of the wafer 1, and a silicon nitride film 2 having a thickness of 150 nm (1500 mm) is formed on the surface of the convex portion of the wafer 1. The depth of the groove (step from the surface of the convex portion to the bottom surface of the concave portion) is 500 nm (5000 mm). Hereinafter, the convex portion is referred to as an active portion, and the concave portion is referred to as a trench portion. Although not clearly shown in FIG. 1, the wafer 1 is formed with three regions having trench / active section cross-sectional widths of 100 μm / 100 μm, 20 μm / 80 μm, and 80 μm / 20 μm.

図1(b)は、研磨試験ウエハの一部分を拡大した模式断面図である。研磨試験ウエハは、アクティブ部の表面からの酸化珪素膜3の厚さが600nm(6000Å)となるように、プラズマTEOS法によってアクティブ部及びトレンチ部に酸化珪素膜3が形成されている。研磨試験では、研磨試験ウエハの酸化珪素膜3を研磨して平坦化を行う。   FIG. 1B is an enlarged schematic cross-sectional view of a part of the polishing test wafer. In the polishing test wafer, the silicon oxide film 3 is formed in the active part and the trench part by the plasma TEOS method so that the thickness of the silicon oxide film 3 from the surface of the active part becomes 600 nm (6000 mm). In the polishing test, the silicon oxide film 3 of the polishing test wafer is polished and planarized.

図1(c)は、酸化珪素膜3を研磨した後の研磨試験ウエハの一部分を拡大した模式断面図である。アクティブ部の窒化珪素膜2表面で研磨を終了し、このときの研磨に要した時間を研磨時間とし、トレンチ部の深さ4からトレンチ部内の酸化珪素膜3の厚さ(酸化珪素膜の残膜厚)5を引いた値をディッシング量6とする。なお、研磨時間は短いほうが良く、ディッシング量6は小さい方が良い。   FIG. 1C is a schematic cross-sectional view showing an enlarged part of a polishing test wafer after polishing the silicon oxide film 3. Polishing is completed on the surface of the silicon nitride film 2 in the active portion, and the time required for polishing at this time is defined as the polishing time, and the thickness of the silicon oxide film 3 in the trench portion from the depth 4 of the trench portion (the remaining silicon oxide film remaining) The value obtained by subtracting (film thickness) 5 is the dishing amount 6. It should be noted that the polishing time should be shorter and the dishing amount 6 should be smaller.

このような研磨試験ウエハの研磨には研磨装置(Applied Materials社製、製品名:Reflexion)を用いた。基板取り付け用の吸着パッドを貼り付けたホルダーに研磨試験ウエハをセットした。研磨装置の直径600mmの研磨定盤に、多孔質ウレタン樹脂製の研磨パッド(溝形状=パーフォレートタイプ:Rohm and Haas社製、型番IC1010)を貼り付けた。更に、被研磨膜である絶縁材料(酸化珪素膜)面を下にして前記ホルダーを研磨定盤上に載せ、加工荷重を352gf/cm(34.5kPa)に設定した。 A polishing apparatus (manufactured by Applied Materials, product name: Reflexion) was used for polishing the polishing test wafer. A polishing test wafer was set in a holder on which a suction pad for mounting the substrate was attached. A polishing pad made of porous urethane resin (groove shape = perforate type: manufactured by Rohm and Haas, model number IC1010) was attached to a polishing surface plate having a diameter of 600 mm of a polishing apparatus. Furthermore, the holder was placed on the polishing surface plate with the surface of the insulating material (silicon oxide film) as the film to be polished facing down, and the processing load was set to 352 gf / cm 2 (34.5 kPa).

前記研磨パッド上に前記酸化セリウム研磨液を150mL/分の速度で滴下しながら、研磨定盤と研磨試験ウエハとをそれぞれ90回転/分で作動させて、研磨試験ウエハを研磨した。100μm/100μm領域のアクティブ部の窒化珪素膜が表面に露出したときの研磨時間を研磨終了時間とした。研磨後の研磨試験ウエハは、純水で良く洗浄後、乾燥した。   While the cerium oxide polishing liquid was dropped on the polishing pad at a rate of 150 mL / min, the polishing platen and the polishing test wafer were each operated at 90 rpm to polish the polishing test wafer. The polishing time when the silicon nitride film of the active part in the 100 μm / 100 μm region was exposed on the surface was defined as the polishing end time. The polished test wafer after polishing was thoroughly washed with pure water and then dried.

平坦性の評価項目として、以下の2項目について評価した。
項目1:100μm/100μm領域のトレンチ部のディッシング(Dishing)量:触針式段差計(型番P16 KLA−tencor製)を用いて測定した。
項目2:20μm/80μm領域及び80μm/20μm領域のトレンチ部のSiO残膜厚差(SiO密度差):ナノメトリクス社製の干渉式膜厚測定装置ナノスペック/AFT5100(商品名)を用いて、それぞれの領域における酸化珪素膜(SiO膜)の残膜厚を測定し、その差を求めた。
The following two items were evaluated as evaluation items for flatness.
Item 1: Dishing amount of trench in 100 μm / 100 μm region: Measured using a stylus type step meter (model number P16, manufactured by KLA-tencor).
Item 2: SiO 2 residual film thickness difference (SiO 2 density difference) in the trench portions of the 20 μm / 80 μm region and the 80 μm / 20 μm region: using an interference type film thickness measuring device Nanospec / AFT5100 (trade name) manufactured by Nanometrics The residual film thickness of the silicon oxide film (SiO 2 film) in each region was measured, and the difference was obtained.

(実施例2〜4及び比較例1〜3)
研磨液のpH、有機酸の使用量、高分子化合物の種類及び使用量等を表1に示すものへ変更した以外は、実施例1と同様にして酸化セリウム研磨液を作製し、絶縁膜の研磨を行った。結果を同表に示す。表1から、本発明により提供される研磨液により平坦性が向上し、ディッシングの低減及びSiO膜の残膜厚差の低減が達成されることが明らかとなった。
(Examples 2 to 4 and Comparative Examples 1 to 3)
A cerium oxide polishing liquid was prepared in the same manner as in Example 1 except that the pH of the polishing liquid, the amount of organic acid used, the type and amount of polymer compound used were changed to those shown in Table 1, and the insulating film Polishing was performed. The results are shown in the same table. From Table 1, it became clear that the flatness was improved by the polishing liquid provided by the present invention, and the reduction in dishing and the difference in the residual film thickness of the SiO 2 film were achieved.

Figure 2015008212
Figure 2015008212

1…ウエハ、2…窒化珪素膜、3…プラズマTEOS法によって形成された酸化珪素膜、4…トレンチ部の深さ、5…研磨後のトレンチ部の酸化珪素膜厚、6…ディッシング量。   DESCRIPTION OF SYMBOLS 1 ... Wafer, 2 ... Silicon nitride film, 3 ... Silicon oxide film formed by plasma TEOS method, 4 ... Depth of trench part, 5 ... Silicon oxide film thickness of trench part after grinding | polishing, 6 ... Dishing amount.

Claims (7)

酸化セリウム粒子、有機酸A、高分子化合物B及び水を含むCMP用の研磨液であって、
前記有機酸Aは、−COOM基、−Ph−OM基、−SOM基及び−PO基(式中、MはH、NH、Na及びKからなる群より選択されるいずれか一種であり、Phは置換基を有していてもよいフェニル基を示す)からなる群より選択される少なくとも一つの基を有しており、
前記有機酸AのpKaが9未満であり、
前記高分子化合物Bは、カルボン酸基及びカルボン酸塩基からなる群より選択される少なくとも一種と、亜硫酸基及び亜硫酸塩基からなる群より選択される少なくとも一種とを有する、研磨液。
A polishing liquid for CMP containing cerium oxide particles, organic acid A, polymer compound B and water,
The organic acid A is a —COOM group, —Ph—OM group, —SO 3 M group and —PO 3 M 2 group (wherein M is any selected from the group consisting of H, NH 4 , Na and K) And Ph has at least one group selected from the group consisting of a phenyl group which may have a substituent),
PKa of the organic acid A is less than 9,
The polymer compound B is a polishing liquid having at least one selected from the group consisting of a carboxylic acid group and a carboxylic acid group and at least one selected from the group consisting of a sulfite group and a sulfite group.
前記有機酸Aの含有量が、研磨液全質量に対して0.001〜1質量%である、請求項1に記載の研磨液。   The polishing liquid according to claim 1, wherein the content of the organic acid A is 0.001 to 1 mass% with respect to the total mass of the polishing liquid. 前記高分子化合物Bの含有量が、研磨液全質量に対して0.01〜0.50質量%である、請求項1又は2に記載の研磨液。   The polishing liquid according to claim 1 or 2, wherein the content of the polymer compound B is 0.01 to 0.50 mass% with respect to the total mass of the polishing liquid. pHが4.0以上6.0以下である、請求項1〜3のいずれか一項に記載の研磨液。   The polishing liquid according to any one of claims 1 to 3, wherein the pH is 4.0 or more and 6.0 or less. 前記酸化セリウム粒子及び水を含む第1の液と、前記有機酸A、前記高分子化合物B及び水を含む第2の液と、から構成される二液式研磨液として保存される、請求項1〜4のいずれか一項に記載の研磨液。   It is preserve | saved as a two-component polishing liquid comprised from the 1st liquid containing the said cerium oxide particle and water, and the 2nd liquid containing the said organic acid A, the said high molecular compound B, and water. The polishing liquid as described in any one of 1-4. 前記第1の液が、分散剤をさらに含む、請求項5に記載の研磨液。   The polishing liquid according to claim 5, wherein the first liquid further contains a dispersant. 基板表面の被研磨材料を請求項1〜6のいずれか一項に記載の研磨液を用いて研磨する、基板の研磨方法。
A method for polishing a substrate, comprising polishing a material to be polished on the surface of the substrate using the polishing liquid according to claim 1.
JP2013132721A 2013-06-25 2013-06-25 Polishing liquid and substrate polishing method using the same Pending JP2015008212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013132721A JP2015008212A (en) 2013-06-25 2013-06-25 Polishing liquid and substrate polishing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013132721A JP2015008212A (en) 2013-06-25 2013-06-25 Polishing liquid and substrate polishing method using the same

Publications (1)

Publication Number Publication Date
JP2015008212A true JP2015008212A (en) 2015-01-15

Family

ID=52338308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013132721A Pending JP2015008212A (en) 2013-06-25 2013-06-25 Polishing liquid and substrate polishing method using the same

Country Status (1)

Country Link
JP (1) JP2015008212A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016186214A1 (en) * 2015-05-20 2016-11-24 Hoya株式会社 Method for polishing glass substrate, polishing liquid, method for manufacturing glass substrate, method for manufacturing glass substrate for magnetic disc, and method for manufacturing magnetic disc
JP2017045822A (en) * 2015-08-26 2017-03-02 日立化成株式会社 Polishing liquid for CMP and polishing method using the same
CN109863579A (en) * 2016-09-29 2019-06-07 花王株式会社 Slurry composition
CN110998800A (en) * 2017-08-14 2020-04-10 日立化成株式会社 Grinding liquid, grinding liquid set and grinding method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016186214A1 (en) * 2015-05-20 2016-11-24 Hoya株式会社 Method for polishing glass substrate, polishing liquid, method for manufacturing glass substrate, method for manufacturing glass substrate for magnetic disc, and method for manufacturing magnetic disc
JP2017045822A (en) * 2015-08-26 2017-03-02 日立化成株式会社 Polishing liquid for CMP and polishing method using the same
CN109863579A (en) * 2016-09-29 2019-06-07 花王株式会社 Slurry composition
JPWO2018062403A1 (en) * 2016-09-29 2019-07-11 花王株式会社 Polishing liquid composition
CN110998800A (en) * 2017-08-14 2020-04-10 日立化成株式会社 Grinding liquid, grinding liquid set and grinding method
CN110998800B (en) * 2017-08-14 2023-09-22 株式会社力森诺科 Polishing liquid, polishing liquid set and polishing method

Similar Documents

Publication Publication Date Title
JP6269733B2 (en) Polishing liquid and substrate polishing method using the polishing liquid
KR102399744B1 (en) Polishing liquid, polishing liquid set and polishing method
JP6582567B2 (en) Slurry and manufacturing method thereof, and polishing method
JP2015224276A (en) Polishing liquid and polishing method of substrate using the polish liquid
JP6708951B2 (en) Polishing liquid and polishing method
JP2012186339A (en) Polishing liquid and polishing method of substrate using the same
JP2015008212A (en) Polishing liquid and substrate polishing method using the same
JP2017075226A (en) Method for producing polishing liquid, polishing liquid and polishing method
JP2001007060A (en) Cmp-polishing agent and method for polishing substrate
JP2013045944A (en) Polishing method of substrate
JP2014027146A (en) Polishing solution and substrate polishing method using polishing solution
JP2006179678A (en) Cmp abrasive for semiconductor insulating film and method for polishing substrate
JP2017011162A (en) Method for producing polishing liquid, polishing liquid, and polishing method
JP2015209485A (en) Method for producing polishing liquid, polishing liquid and polishing method
JP2015137290A (en) Manufacturing method of polishing liquid and polishing liquid, and polishing method
JP2015023122A (en) Polishing liquid and production method therefor, and polishing method