[go: up one dir, main page]

JP2015000001A - Method for producing irritable bowel syndrome model animal - Google Patents

Method for producing irritable bowel syndrome model animal Download PDF

Info

Publication number
JP2015000001A
JP2015000001A JP2013124206A JP2013124206A JP2015000001A JP 2015000001 A JP2015000001 A JP 2015000001A JP 2013124206 A JP2013124206 A JP 2013124206A JP 2013124206 A JP2013124206 A JP 2013124206A JP 2015000001 A JP2015000001 A JP 2015000001A
Authority
JP
Japan
Prior art keywords
diarrhea
irritable bowel
bowel syndrome
group
induced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013124206A
Other languages
Japanese (ja)
Inventor
孝之 利光
Takayuki Toshimitsu
孝之 利光
英恵 土橋
Hanae Dobashi
英恵 土橋
秀二 池上
Hideji Ikegami
秀二 池上
伊藤 裕之
Hiroyuki Ito
裕之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiji Co Ltd
Original Assignee
Meiji Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Co Ltd filed Critical Meiji Co Ltd
Priority to JP2013124206A priority Critical patent/JP2015000001A/en
Publication of JP2015000001A publication Critical patent/JP2015000001A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a method for producing an irritable bowel syndrome diarrhea model animal in which chronic diarrhea is induced.SOLUTION: The present inventors take aim at the fact that abnormal proliferation of enterobacteria is caused by the reduced immunity and the abnormal proliferation of enterobacteria is related to the onset of an irritable bowel syndrome diarrhea type. From this, the fact that chronic diarrhea is induced by administering an immunosuppressive drug to an animal is found, and the present invention is completed.

Description

本発明は、下痢型の過敏性腸症候群モデル動物の作製方法、および下痢型の過敏性腸症候群の治療に有効なプロピオン酸菌に関する。   The present invention relates to a method for producing a diarrhea-type irritable bowel syndrome model animal and a propionic acid bacterium effective for the treatment of diarrhea-type irritable bowel syndrome.

消化管機能異常症(Functional Gastrointestinal disorders:FGIDs)は器質的疾患を有さない消化管疾患の一群である。消化管の運動や知覚といった機能の異常が原因となり、罹患部位によって腹痛や嘔気、嘔吐、腹部膨満感、下痢や便秘のような排便異常など様々な症状をきたす。
FGIDsに含まれる過敏性腸症候群(Irritable bowel syndrome: IBS)は下部消化管の機能異常によって起こり、その病態生理は腸管の運動異常であることが分かっている。その症状は、腹痛や腹部不快感(排便によって軽快することを特徴とする)、便通の異常(下痢、便秘、下痢・便秘の混合)、便性の異常(粘液の混入、硬さの異常)、腹部膨満感などが観察される。下痢型では腸管通過時間の短縮、便秘型では腸管通過時間の延長が認められる。
従来、ストレスがIBSの原因とされていたが、近年では腸内細菌叢の乱れもIBSの原因として注目されている(非特許文献1〜6)。
Functional gastrointestinal disorders (FGIDs) are a group of gastrointestinal disorders that do not have organic disorders. Abnormal functions such as gastrointestinal motility and perception cause various symptoms such as abdominal pain, nausea, vomiting, abdominal bloating, and defecation abnormalities such as diarrhea and constipation.
Irritable bowel syndrome (IBS), which is included in FGIDs, is caused by a malfunction of the lower gastrointestinal tract, and its pathophysiology is known to be an intestinal motility abnormality. Symptoms include abdominal pain and abdominal discomfort (characterized by relief from defecation), bowel movement abnormalities (diarrhea, constipation, mixed diarrhea / constipation), fecal abnormalities (mixed mucus, abnormal hardness) Abdominal fullness is observed. In the diarrhea type, the intestinal transit time is shortened, and in the constipation type, the intestinal transit time is prolonged.
Conventionally, stress has been a cause of IBS, but in recent years, disturbance of the intestinal bacterial flora has also attracted attention as a cause of IBS (Non-Patent Documents 1 to 6).

IBS下痢型の病態モデル動物としては、恐怖条件付けストレス誘発排便亢進モデル、拘束ストレス誘発排便亢進モデル、セロトニン誘発下痢モデル(特許文献1)、ヒマシ油誘発下痢などが知られている。しかし、実際のIBSで観察されるような慢性の下痢を再現できる病態モデル動物がさらに求められていた。   As the IBS diarrhea type disease model animal, fear-conditioned stress-induced defecation enhancement model, restraint stress-induced defecation enhancement model, serotonin-induced diarrhea model (Patent Document 1), castor oil-induced diarrhea and the like are known. However, there is a further need for a disease state animal model that can reproduce chronic diarrhea as observed in actual IBS.

特開2012−140415号公報JP 2012-140415 A

DuPont A.W. and DuPont H.L., Nat Rev Gastroenterol Hepatol 8, 523-531,2011DuPont A.W. and DuPont H.L., Nat Rev Gastroenterol Hepatol 8, 523-531,2011 Al-Khatib K. and Lin H.C., Gut and Liver 3(1), 14-19, 2009Al-Khatib K. and Lin H.C., Gut and Liver 3 (1), 14-19, 2009 Posserud I. et al, Gut 56, 802-808, 2007Posserud I. et al, Gut 56, 802-808, 2007 Lee H.R. and Pimentel M., Curr Gastroenterol Rep 8(4), 305-311, 2006Lee H.R. and Pimentel M., Curr Gastroenterol Rep 8 (4), 305-311, 2006 Van Citters G.W. and Lin H.C., Curr Gastroenterol Rep 7(4), 317-320,2005Van Citters G.W. and Lin H.C., Curr Gastroenterol Rep 7 (4), 317-320,2005 Malinen E., et al, Am J Gastroenterol 100(2), 373-382, 2005Malinen E., et al, Am J Gastroenterol 100 (2), 373-382, 2005

本発明の課題は、慢性的な下痢を誘導した過敏性腸症候群下痢型モデル動物を作製する方法を提供することである。   An object of the present invention is to provide a method for producing an irritable bowel syndrome diarrhea model animal in which chronic diarrhea is induced.

本発明者らは、免疫低下によって腸内細菌の異常増殖おきること、および腸内細菌の異常増殖が過敏性腸症候群下痢型の発症につながることに着目した。このことから、動物に免疫抑制剤を投与することで慢性的な下痢が誘導されることを見出し、本発明を完成させた。   The inventors of the present invention focused on the abnormal growth of intestinal bacteria due to decreased immunity, and the abnormal growth of intestinal bacteria leads to the development of irritable bowel syndrome diarrhea type. From this, it was found that chronic diarrhea is induced by administering an immunosuppressive agent to animals, and the present invention was completed.

具体的には、マウスを用いたin vivo試験において、免疫抑制剤を投与した後に下痢が誘導され、さらに腸管バリア機能の低下、免疫機能の低下・破綻、腸内総菌数の増加、及び腸内細菌叢の構成の乱れが観察された。これらの現象の多くはヒトの過敏性腸症候群下痢型患者において特徴的に見られることが報告されている(非特許文献1〜6)。従って、本発明の方法により慢性的な下痢を誘導した過敏性腸症候群下痢型のモデル動物を作製することができた。また、本発明の方法により、過敏性腸症候群下痢型の病態を改善しうる素材を見出すこともできた。さらに、本発明の方法は、免疫が抑制された状態(免疫不全疾患など)で起きる下痢症状のモデル動物を作製することも可能である。   Specifically, in an in vivo test using mice, diarrhea is induced after administration of an immunosuppressant, and further a decrease in intestinal barrier function, a decrease or breakdown of immune function, an increase in the total number of enteric bacteria, and Disturbances in the internal bacterial flora were observed. It has been reported that many of these phenomena are characteristically seen in human irritable bowel syndrome diarrhea type patients (Non-Patent Documents 1 to 6). Therefore, an irritable bowel syndrome diarrhea model animal in which chronic diarrhea was induced by the method of the present invention could be produced. Moreover, the material which can improve the pathological condition of irritable bowel syndrome diarrhea type | mold was also able to be found by the method of this invention. Furthermore, the method of the present invention can also produce a model animal of diarrhea symptoms that occur in a state in which immunity is suppressed (such as an immunodeficiency disease).

すなわち、本発明は、
[1] 非ヒト哺乳動物に、免疫抑制剤を投与することを特徴とする、慢性の下痢を誘導する方法、
[2] 免疫抑制剤が、アルキル化剤、代謝拮抗剤、カルシニューリン阻害剤からなる群から選ばれた少なくとも1種類以上である、前記[1]に記載の方法、
[3] 免疫抑制剤が、カルシニューリン阻害剤である、前記[2]に記載の方法、
[4] 免疫抑制剤が、タクロリムスである、前記[3]に記載の方法、
[5] 一日当たりの免疫抑制剤の投与量が、0.6〜50mg/kg body weightである、前記[1]〜[4]のいずれか1つに記載の方法、
[6] 免疫抑制剤の投与期間が、連続した5〜25日である、前記[1]〜[5]のいずれか1つに記載の方法、
[7] 非ヒト哺乳動物が、齧歯類又はウサギ類である、前記[1]〜[6]のいずれか1つに記載の方法、
[8] 非ヒト哺乳動物が、マウスである、前記[7]に記載の方法、
[9] 前記[1]〜[8]のいずれか1つに記載の方法により得られる、慢性の下痢が誘導された、過敏性腸症候群下痢型モデル動物、
[10] 前記[1]〜[8]のいずれか1つに記載の方法により、慢性の下痢が誘導された非ヒト哺乳動物を取得することを含む、過敏性腸症候群下痢型モデル動物の作製方法、
[11] 前記[10]に記載の方法により過敏性腸症候群下痢型モデル動物を作製し、その過敏性腸症候群下痢型モデル動物に被験物質を投与し、さらに該動物における、下痢症状、腸運動性、内臓痛覚過敏からなる群から選ばれた少なくとも1種類以上を評価することを特徴とする、過敏性腸症候群下痢型を促進又は抑制する物質のスクリーニング方法、
[12] 過敏性腸症候群下痢型の予防剤及び/又は治療剤のスクリーニング方法である、前記[11]に記載のスクリーニング方法、
[13] 過敏性腸症候群下痢型の予防用食品及び/又は治療用食品のスクリーニング方法である、前記[11]に記載のスクリーニング方法、
[14] 前記[1]〜[8]のいずれか1つに記載の方法により得られる、慢性の下痢が誘導された、免疫不全疾患による下痢のモデル動物、
[15] 前記[1]〜[8]のいずれか1つに記載の方法により得られる、慢性の下痢が誘導された非ヒト哺乳動物を取得することを含む、免疫不全疾患による下痢のモデル動物の作製方法、
[16] 免疫抑制剤の投与で誘導される慢性の下痢を抑制する、Propionibacterium freudenreichii ET-3株(受託番号:FERM
BP-8115)、
[17] 過敏性腸症候群下痢型を抑制する、Propionibacterium freudenreichii ET-3株(受託番号:FERM BP-8115)、
[18] 免疫不全疾患による下痢を抑制する、Propionibacterium freudenreichii ET-3株(受託番号:FERM BP-8115)、からなる。
That is, the present invention
[1] A method for inducing chronic diarrhea, comprising administering an immunosuppressive agent to a non-human mammal,
[2] The method according to [1] above, wherein the immunosuppressive agent is at least one selected from the group consisting of alkylating agents, antimetabolites, and calcineurin inhibitors.
[3] The method according to [2] above, wherein the immunosuppressive agent is a calcineurin inhibitor,
[4] The method according to [3] above, wherein the immunosuppressive agent is tacrolimus,
[5] The method according to any one of [1] to [4] above, wherein the dose of the immunosuppressant per day is 0.6 to 50 mg / kg body weight.
[6] The method according to any one of [1] to [5] above, wherein the administration period of the immunosuppressive agent is continuous 5 to 25 days,
[7] The method according to any one of [1] to [6], wherein the non-human mammal is a rodent or a rabbit.
[8] The method according to [7] above, wherein the non-human mammal is a mouse,
[9] An irritable bowel syndrome diarrhea model animal obtained by the method according to any one of [1] to [8], wherein chronic diarrhea is induced,
[10] Production of irritable bowel syndrome diarrhea model animal comprising obtaining a non-human mammal in which chronic diarrhea has been induced by the method according to any one of [1] to [8] above Method,
[11] An irritable bowel syndrome diarrhea model animal is prepared by the method described in [10], a test substance is administered to the irritable bowel syndrome diarrhea model animal, and diarrhea symptoms, intestinal motility in the animal are further administered. A method for screening a substance that promotes or inhibits irritable bowel syndrome diarrhea, characterized by evaluating at least one selected from the group consisting of sex and visceral hyperalgesia,
[12] The screening method according to [11] above, which is a screening method for a prophylactic and / or therapeutic agent for irritable bowel syndrome diarrhea type,
[13] The screening method according to [11] above, which is a screening method for foods for preventing and / or treating irritable bowel syndrome diarrhea type,
[14] A model animal of diarrhea due to an immunodeficiency disease, which is obtained by the method according to any one of [1] to [8], wherein chronic diarrhea is induced,
[15] A model animal of diarrhea due to an immunodeficiency disease, comprising obtaining a non-human mammal in which chronic diarrhea has been induced, obtained by the method according to any one of [1] to [8] above Production method,
[16] Propionibacterium freudenreichii ET-3 strain (accession number: FERM) that suppresses chronic diarrhea induced by administration of immunosuppressants
BP-8115),
[17] Propionibacterium freudenreichii ET-3 strain (accession number: FERM BP-8115), which suppresses irritable bowel syndrome diarrhea type,
[18] Propionibacterium freudenreichii ET-3 strain (accession number: FERM BP-8115), which suppresses diarrhea caused by an immunodeficiency disease.

本発明の方法によって、慢性的な下痢を誘導したIBS下痢型のモデル動物を作製することができる。また、得られたモデル動物を用いてIBS下痢型の予防/治療により有効な素材をスクリーニングすることができる。   By the method of the present invention, a model animal of IBS diarrhea type in which chronic diarrhea has been induced can be produced. Moreover, an effective material can be screened by prevention / treatment of IBS diarrhea type using the obtained model animal.

実施例1において、糞便の性状を評価した結果。グラフは便性スコアのmean±SE(n=5)を表す。**:p<0.01 vs. control群(Student's t-test)。In Example 1, the result of having evaluated the property of feces. The graph represents mean ± SE (n = 5) of fecal score. **: p <0.01 vs. control group (Student's t-test). 実施例1において、血中LPS濃度およびIL-6濃度を測定した結果。グラフはmean±SE(n=5)を表す。*:p<0.05 vs. control群(Student's t-test)。In Example 1, the result of having measured the blood LPS density | concentration and IL-6 density | concentration. The graph represents mean ± SE (n = 5). *: P <0.05 vs. control group (Student's t-test). 実施例2において、糞便の性状を評価した結果。グラフは便性スコアのmean±SE(n=5)を表す。**:p<0.01 vs. control群(Student's t-test)。In Example 2, the result of having evaluated the property of feces. The graph represents mean ± SE (n = 5) of fecal score. **: p <0.01 vs. control group (Student's t-test). 実施例2において、血中サイトカイン濃度を測定した結果を示す。グラフはmean±SE(n=5)を表す。#:p<0.1、*:p<0.05(Student's t-test)。In Example 2, the result of having measured the blood cytokine density | concentration is shown. The graph represents mean ± SE (n = 5). #: P <0.1, *: p <0.05 (Student's t-test). 実施例2において、脾臓の免疫細胞ポピュレーションを解析した結果を示す。グラフは存在比のmean±SE(n=5)を表す。*:p<0.05(Student's t-test)。In Example 2, the result of having analyzed the immune cell population of the spleen is shown. The graph represents the abundance ratio mean ± SE (n = 5). *: P <0.05 (Student's t-test). 実施例2において、血中LPS濃度を測定した結果を示す。グラフはmean±SE(n=5)を表す。*:p<0.05(Student's t-test)。In Example 2, the result of having measured the blood LPS density | concentration is shown. The graph represents mean ± SE (n = 5). *: P <0.05 (Student's t-test). 実施例2において、Bacterial Translocationを検出した結果を示す。グラフはBacterial Translocationの陽性率を表す。In Example 2, the result of having detected Bacterial Translocation is shown. The graph represents the positive rate of Bacterial Translocation. 実施例2において、回腸組織におけるoccludinの遺伝子発現量を測定した結果を示す。グラフはGAPDHに対するoccludinのmRNA発現量について、mean±SE(n=5)を表す。*:p<0.05(Student's t-test)。In Example 2, the result of having measured the gene expression level of occludin in an ileal tissue is shown. The graph represents mean ± SE (n = 5) for the expression level of occludin mRNA against GAPDH. *: P <0.05 (Student's t-test). 実施例3において、糞便の性状を評価した結果。グラフは便性スコアのmean±SD(n=7)を表す。**:p<0.01 vs. control群(Student's t-test)。In Example 3, the result of having evaluated the property of feces. The graph represents mean ± SD (n = 7) of fecal score. **: p <0.01 vs. control group (Student's t-test). 実施例3において、腸内細菌叢を次世代シーケンサーで解析した結果。グラフはmean±SD(n=7)を表す。*:p<0.05、**:p<0.01(Student's t-test)。In Example 3, the result of having analyzed the intestinal microflora with the next-generation sequencer. The graph represents mean ± SD (n = 7). *: P <0.05, **: p <0.01 (Student's t-test). 実施例3において、腸内細菌叢をq−PCRで解析した結果。グラフはmean±SD(n=7)を表す。*:p<0.05、**:p<0.01(Student's t-test)。In Example 3, the result of having analyzed the intestinal microflora by q-PCR. The graph represents mean ± SD (n = 7). *: P <0.05, **: p <0.01 (Student's t-test). 実施例3において、盲腸内容物のsIgAを測定した結果。グラフはmean±SE(n=7)を表す。 *:p<0.05(Student's t-test)。In Example 3, the result of measuring sIgA of cecal contents. The graph represents mean ± SE (n = 7). *: P <0.05 (Student's t-test). 実施例3において、回腸組織におけるReg3γの遺伝子発現量を測定した結果を示す。グラフはGAPDHに対するReg3γのmRNA発現量について、mean±SE(n=7)を表す。*:p<0.05(Student's t-test)。In Example 3, the result of having measured the gene expression level of Reg3 (gamma) in an ileum tissue is shown. The graph represents mean ± SE (n = 7) for the mRNA expression level of Reg3γ with respect to GAPDH. *: P <0.05 (Student's t-test). 実施例3において、回腸組織のoccludinタンパク質量を測定した結果を示す。グラフはβ-actinに対するoccludinタンパク質量について、mean±SE(n=7)を表す。In Example 3, the result of having measured the amount of occludin protein of an ileal tissue is shown. The graph represents mean ± SE (n = 7) for the amount of occludin protein relative to β-actin. 実施例3において、血中のgranulysin濃度を測定した結果。mean±SE(n=7)を表す。*:p<0.05、**:p<0.01(Student's t-test)。The result of measuring granulysin concentration in blood in Example 3. It represents mean ± SE (n = 7). *: P <0.05, **: p <0.01 (Student's t-test).

以下、本発明を詳細に説明する。ただし、本発明は以下の好ましい実施態様に限定されず、本発明の範囲内で自由に変更できるものである。   Hereinafter, the present invention will be described in detail. However, the present invention is not limited to the following preferred embodiments, and can be freely changed within the scope of the present invention.

本発明は、非ヒト哺乳動物に、免疫抑制剤を投与することを特徴とする、慢性の下痢を誘導する方法に関する。また、本発明は、前記方法により慢性の下痢が誘導された過敏性腸症候群下痢型モデル動物に関する。あるいは、本発明は、前記方法により慢性の下痢が誘導された過敏性腸症候群下痢型モデル動物の作製方法に関する。そして、本発明は、前記方法により慢性の下痢が誘導された過敏性腸症候群下痢型モデル動物を作製し、その過敏性腸症候群下痢型モデル動物に被検物質を投与し、これを評価することを特徴とする、過敏性腸症候群下痢型を促進又は抑制する物質のスクリーニング方法に関する。   The present invention relates to a method for inducing chronic diarrhea, which comprises administering an immunosuppressive agent to a non-human mammal. The present invention also relates to an irritable bowel syndrome diarrhea model animal in which chronic diarrhea is induced by the above method. Alternatively, the present invention relates to a method for producing an irritable bowel syndrome diarrhea model animal in which chronic diarrhea is induced by the above method. Then, the present invention creates an irritable bowel syndrome diarrhea model animal in which chronic diarrhea has been induced by the above-described method, and administers a test substance to the irritable bowel syndrome diarrhea model animal and evaluates it. The present invention relates to a screening method for a substance that promotes or suppresses diarrhea type of irritable bowel syndrome.

免疫抑制剤は、免疫系のはたらきを抑制する効果があり、移植臓器の拒絶抑制や自己免疫疾患の治療、炎症性疾患の治療などに使用されている。免疫抑制剤は、その作用機序からアルキル化剤(シクロフォスファミドなど)、代謝拮抗剤(アザチオプリンなど)、カルシニューリン阻害剤(FK506、シクロスポリンなど)などに分類することができる。   Immunosuppressants have the effect of suppressing the function of the immune system, and are used for suppressing rejection of transplanted organs, treating autoimmune diseases, treating inflammatory diseases, and the like. Immunosuppressive agents can be classified into alkylating agents (such as cyclophosphamide), antimetabolites (such as azathioprine), calcineurin inhibitors (such as FK506, cyclosporine) and the like based on their mechanism of action.

FK506は免疫抑制剤の1つであり、別名をタクロリムス(Tacrolimus)、化学名を(3S, 4R, 5S, 8R, 9E, 12S, 14S,
15R, 16S, 18R, 19R, 26aS)-5, 19-Dihydroxy-3-{(1E)-2-[(1R,3R, 4R)-4-hydroxy-3-methoxycyclohexyl]-1-methylethenyl}-14,
16-dimethoxy-4, 10, 12,18-tetramethyl-8-( prop-2-en-1-yl )-15, 19-epoxy-5, 6,
8, 11, 12, 13, 14, 15, 16, 17, 18, 19,24, 25, 26, 26a-hexadecahydro-3H-pyrido[2,
1-c][1, 4]oxaazacyclotricosine-1, 7, 20, 21(4H,23H)-tetrone monohydrateという。FK506のCas
No.は104987-11-3である。
FK506は、ヘルパーT細胞にてFK506結合タンパク質と複合体を形成し、カルシニューリンの活性化を阻害する。こうして、T細胞(特にヘルパーT細胞)の活性化を強く阻害して臓器移植の拒絶を抑えるほか、T細胞からのサイトカイン産生(IL-12、IFNγ)を抑制し潰瘍性大腸炎の治療にも適用されている。FK506の副作用の1つに激しい下痢症状がある。
FK506 is one of the immunosuppressants, also known as Tacrolimus and chemical names (3S, 4R, 5S, 8R, 9E, 12S, 14S,
15R, 16S, 18R, 19R, 26aS) -5, 19-Dihydroxy-3-{(1E) -2-[(1R, 3R, 4R) -4-hydroxy-3-methoxycyclohexyl] -1-methylethenyl} -14 ,
16-dimethoxy-4, 10, 12,18-tetramethyl-8- (prop-2-en-1-yl) -15, 19-epoxy-5, 6,
8, 11, 12, 13, 14, 15, 16, 17, 18, 19,24, 25, 26, 26a-hexadecahydro-3H-pyrido [2,
1-c] [1, 4] oxaazacyclotricosine-1, 7, 20, 21 (4H, 23H) -tetrone monohydrate. Cas of FK506
No. is 104987-11-3.
FK506 forms a complex with FK506 binding protein in helper T cells and inhibits activation of calcineurin. In this way, the activation of T cells (especially helper T cells) is strongly inhibited to suppress rejection of organ transplants, and cytokine production (IL-12, IFNγ) from T cells is suppressed to treat ulcerative colitis. Has been applied. One of the side effects of FK506 is severe diarrhea.

腸炎の後などに免疫が低下すると、腸内細菌の異常増殖 がおきることが知られている。そして、腸内細菌の異常増殖が過敏性腸症候群の発症につながることも多数報告されている。また、腸内細菌が異常増殖すると、栄養不良や腸粘膜の損傷がおこることも知られている。さらに、異常増殖した腸内細菌が、本来腸内細菌が常在しない小腸にも移行する可能性も生じる。
免疫が低下すると、腸内細菌叢を構成する細菌も変化し、腸内細菌叢が悪化する。このときストレスや腸粘膜の損傷などにより腸管バリア機能が破綻すると、病原性細菌等がBacterial
Translocationをおこしやすくなり、感染症のリスクも高くなる。
It is known that intestinal bacteria overgrow when immunity decreases after enteritis. And it has been reported that abnormal growth of intestinal bacteria leads to the onset of irritable bowel syndrome. It is also known that malnutrition and intestinal mucosa damage occur when intestinal bacteria grow abnormally. Furthermore, there is a possibility that the abnormally grown intestinal bacteria may migrate to the small intestine where the intestinal bacteria are not normally present.
When immunity decreases, the bacteria that make up the intestinal flora also change, and the intestinal flora worsens. At this time, if the intestinal barrier function breaks down due to stress or damage to the intestinal mucosa, pathogenic bacteria etc.
Translocation is easier and the risk of infection is higher.

本発明の方法では、非ヒト哺乳動物に免疫抑制剤を投与することで、慢性の下痢を誘導することができる。発明者らがマウスにFK506を投与したところ、下痢の誘導、腸管バリア機能の低下、血中IL-6濃度の亢進、血中Th1型サイトカイン(IL-12、IFNγ)の低下、ヘルパーT細胞数の減少、腸内総菌数の増加、腸内Lactobacillus属占有率の低下、腸内Bacteroides
fragilis groupの増加、回腸Reg3γレベルの低下および血中granulysinレベルの低下が観察された。
この結果は、FK506投与による免疫機能低下、腸管バリア機能の低下、および腸内細菌叢の悪化を示すものであり、その結果腸運動性が亢進して下痢が発生したものと考えられる。また、これらの現象の多くはヒトの過敏性腸症候群下痢型患者において特徴的に見られることが報告されている(非特許文献1〜6)。従って、本発明の方法で慢性的な下痢を誘導した過敏性腸症候群下痢型のモデル動物を作製することができたといえる。
In the method of the present invention, chronic diarrhea can be induced by administering an immunosuppressive agent to a non-human mammal. When the inventors administered FK506 to mice, induction of diarrhea, decreased intestinal barrier function, increased blood IL-6 concentration, decreased blood Th1-type cytokines (IL-12, IFNγ), number of helper T cells Decrease, intestinal total bacteria count, intestinal Lactobacillus occupancy reduction, intestinal Bacteroides
Increased fragilis group, decreased ileal Reg3γ level and decreased blood granulysin level were observed.
This result indicates a decrease in immune function, a decrease in intestinal barrier function, and a deterioration in the intestinal bacterial flora caused by administration of FK506. As a result, it is considered that intestinal motility was enhanced and diarrhea occurred. In addition, it has been reported that many of these phenomena are characteristically seen in human irritable bowel syndrome diarrhea type patients (Non-Patent Documents 1 to 6). Therefore, it can be said that an irritable bowel syndrome diarrhea model animal in which chronic diarrhea was induced by the method of the present invention could be produced.

本発明の方法は、非ヒト哺乳動物に免疫抑制剤を投与する工程を含む。本発明で使用できる非ヒト哺乳動物は、齧歯類(ラット、マウス、モルモットなど)、ウサギ、イヌなど、実験動物として一般的に使用されているものを挙げることができるが、これらの例に限定されない。   The method of the present invention comprises the step of administering an immunosuppressive agent to a non-human mammal. Non-human mammals that can be used in the present invention include those generally used as laboratory animals such as rodents (rats, mice, guinea pigs, etc.), rabbits, dogs, etc. It is not limited.

本発明の方法にて用いる免疫抑制剤は、使用する非ヒト哺乳動物の種類や、評価する病態の程度、投与経路などにより、適宜選択することができる。本発明の方法で用いる免疫抑制剤の具体的な例として、アルキル化剤(シクロフォスファミドなど)、代謝拮抗剤(アザチオプリンなど)、カルシニューリン阻害剤(FK506、シクロスポリンなど)などを挙げることができるが、これらの例に限定されない。免疫機能を抑制するものであればどのような免疫抑制剤を使用してもよく、免疫抑制剤の一種類あるいは複数種類を組み合わせて使用してもよい。   The immunosuppressant used in the method of the present invention can be appropriately selected depending on the type of non-human mammal used, the degree of the pathological condition to be evaluated, the administration route, and the like. Specific examples of the immunosuppressant used in the method of the present invention include alkylating agents (such as cyclophosphamide), antimetabolites (such as azathioprine), calcineurin inhibitors (such as FK506, cyclosporine), and the like. However, it is not limited to these examples. Any immunosuppressive agent may be used as long as it suppresses the immune function, and one type or a plurality of types of immunosuppressive agents may be used in combination.

本発明の方法において、免疫抑制剤の投与量、投与頻度、投与期間は、免疫抑制剤の種類、使用する非ヒト哺乳動物の種類や、評価する病態の程度、投与経路などにより適宜調整することができる。例えば、後述の実施例ではICR系マウスを用いて、FK506を1mg/kg
body weightの用量で1回/日、14日間腹腔内投与したところ、投与4日目から下痢症状が急激に増悪し、投与日数が多くなるに従って症状が悪化した。さらにFK506投与後を14日目には腸管バリア機能の低下、血中IL-6濃度の亢進、血中Th1型サイトカイン(IL-12、IFNγ)の低下、ヘルパーT細胞数の減少、腸内総菌数の増加、腸内Lactobacillus属占有率の低下、腸内Bacteroides
fragilis groupの増加、回腸Reg3γレベルの低下および血中granulysinレベルの低下が観察された。
本発明の方法において、一日当たりの免疫抑制剤の投与量の例として腹腔内投与の場合0.6〜50mg/kg body weight、好ましくは0.8〜10mg/kg
body weight、
より好ましくは0.9〜5mg/kg body weightを挙げることができる。また、免疫抑制剤の投与期間の例として5〜25日間、好ましくは10〜21日間を挙げることができる。免疫抑制剤の投与は連続した投与でもよく、間欠投与であってもよい。
本発明の方法において、使用する投与経路は使用する非ヒト哺乳動物の種類や、評価する病態の程度、免疫抑制剤の種類などにより適宜調整することができる。例えば、経口投与、腹腔内投与、皮下投与、筋肉内投与、静脈内投与など、いずれを使用してもかまわない。
In the method of the present invention, the dose, administration frequency, and administration period of the immunosuppressive agent should be appropriately adjusted depending on the type of immunosuppressive agent, the type of non-human mammal used, the degree of the pathological condition to be evaluated, the administration route, etc. Can do. For example, in the examples described below, using ICR mice, FK506 is 1 mg / kg.
When administered intraperitoneally at a body weight dose of once a day for 14 days, diarrhea symptoms suddenly worsened from the fourth day of administration, and the symptoms worsened as the number of administration days increased. Furthermore, on the 14th day after administration of FK506, the intestinal barrier function decreased, the blood IL-6 concentration increased, the blood Th1-type cytokine (IL-12, IFNγ) decreased, the helper T cell count decreased, the intestinal total Increase in the number of bacteria, decrease in the intestinal Lactobacillus occupancy rate, intestinal Bacteroides
Increased fragilis group, decreased ileal Reg3γ level and decreased blood granulysin level were observed.
In the method of the present invention, the dose of the immunosuppressive agent per day is 0.6 to 50 mg / kg body weight in the case of intraperitoneal administration, preferably 0.8 to 10 mg / kg.
body weight,
More preferably, 0.9-5 mg / kg body weight can be mentioned. Further, examples of the administration period of the immunosuppressive agent include 5 to 25 days, preferably 10 to 21 days. The immunosuppressive agent may be administered continuously or intermittently.
In the method of the present invention, the administration route to be used can be appropriately adjusted depending on the type of non-human mammal used, the degree of the pathological condition to be evaluated, the type of immunosuppressive agent, and the like. For example, any of oral administration, intraperitoneal administration, subcutaneous administration, intramuscular administration, intravenous administration, and the like may be used.

本発明の方法では、非ヒト哺乳動物に免疫抑制剤を投与することで、腸内細菌の異常増殖を誘導することもできる。本発明の方法において、細菌の異常増殖を誘導することができる腸の例として、小腸(十二指腸、空腸、回腸)、大腸(結腸、直腸)を挙げることができる。さらに、非ヒト哺乳動物に免疫抑制剤を投与することで、腸内細菌の異常増殖を誘導して、過敏性腸症候群下痢型モデル動物を作製することもできる。   In the method of the present invention, abnormal growth of intestinal bacteria can also be induced by administering an immunosuppressive agent to a non-human mammal. Examples of the intestine capable of inducing abnormal bacterial growth in the method of the present invention include the small intestine (duodenum, jejunum, ileum) and the large intestine (colon, rectum). Furthermore, by administering an immunosuppressive agent to a non-human mammal, abnormal growth of intestinal bacteria can be induced to produce an irritable bowel syndrome diarrhea model animal.

本発明では、免疫抑制剤の投与に加えて、他の方法を組み合わせて慢性の下痢を起こすこともできる。例えば、公知のストレス負荷(恐怖条件付けストレス誘発排便亢進モデル、拘束ストレス誘発排便亢進モデルなど)、一酸化窒素合成酵素阻害剤(L-NAMEなど)の投与、デキストラン硫酸ナトリウムの投与などの方法と組み合わせることが可能である。   In the present invention, chronic diarrhea can be caused by combining other methods in addition to administration of the immunosuppressive agent. For example, combined with known stress loads (fear-conditioned stress-induced defecation model, restraint stress-induced defecation model, etc.), administration of nitric oxide synthase inhibitors (such as L-NAME), administration of dextran sulfate sodium, etc. It is possible.

さらに、本発明は、非ヒト哺乳動物に免疫抑制剤を投与することで慢性の下痢が誘導された過敏性腸症候群下痢型モデル動物を作製し、その過敏性腸症候群下痢型モデル動物に被検物質を投与し、これを評価することを特徴とする、過敏性腸症候群下痢型を促進又は抑制する物質のスクリーニング方法に関する。
過敏性腸症候群下痢型の病態として、下痢症状(糞便の性状の悪化、糞便量の増加、排便回数の増加など)、腸運動性の異常、内臓痛覚過敏などがある。本発明において、過敏性腸症候群下痢型を促進又は抑制する物質を評価する項目の例に、下痢症状、腸運動性および内臓痛覚過敏などを挙げることができるが、この例に限定されない。本発明において、被検物質を投与することによって、下痢症状の改善、腸運動性の改善および内臓痛覚過敏の改善のうち少なくとも1つが満たされた場合、被検物質が過敏性腸症候群下痢型を抑制したということができる。
Furthermore, the present invention produces an irritable bowel syndrome diarrhea model animal in which chronic diarrhea is induced by administering an immunosuppressant to a non-human mammal, and the irritable bowel syndrome diarrhea model animal is tested. The present invention relates to a method for screening a substance that promotes or suppresses irritable bowel syndrome diarrhea, which comprises administering a substance and evaluating the substance.
Irritable bowel syndrome Diarrhea-type pathological conditions include diarrhea symptoms (deterioration of stool properties, increase in stool volume, increase in the number of defecations, etc.), abnormal intestinal motility, and visceral hyperalgesia. In the present invention, examples of items for evaluating substances that promote or inhibit irritable bowel syndrome diarrhea types include diarrhea symptoms, intestinal motility and visceral hyperalgesia, but are not limited to these examples. In the present invention, when at least one of the improvement of diarrhea symptoms, the improvement of intestinal motility and the improvement of visceral hyperalgesia is satisfied by administering the test substance, the test substance has an irritable bowel syndrome diarrhea type. It can be said that it was suppressed.

免疫は、ストレス、炎症性疾患、免疫不全疾患などの様々な要因で抑制されることが知られている。免疫不全疾患は、先天性免疫不全疾患および後天性免疫不全疾患(薬剤療法(免疫抑制剤、癌の化学療法剤、放射線療法など)や慢性疾患(HIV感染、肝炎、癌など)などで生じる)に分類することができる。いずれも免疫システムに異常を来たすため、患者は感染症を起こしやすく、癌に対する抵抗力も低下する。免疫不全疾患の症状の1つに重篤な下痢が知られている。本発明のモデル動物は、免疫が抑制された状態で起きる下痢を再現することもできる。また、本発明のモデル動物を用いて、免疫が抑制された状態で起きる下痢を対象とし、これを促進又は抑制する物質をスクリーニングすることもできる。   It is known that immunity is suppressed by various factors such as stress, inflammatory diseases, and immunodeficiency diseases. Immunodeficiency diseases are congenital and acquired immunodeficiency diseases (due to drug therapy (immunosuppressants, cancer chemotherapeutic agents, radiation therapy, etc.) and chronic diseases (HIV infection, hepatitis, cancer, etc.) Can be classified. Both cause abnormalities in the immune system, so patients are more susceptible to infections and their resistance to cancer is reduced. Severe diarrhea is known as one of the symptoms of immunodeficiency diseases. The model animal of the present invention can also reproduce diarrhea that occurs in a state in which immunity is suppressed. In addition, the model animal of the present invention can be used to screen for substances that promote or suppress diarrhea that occurs in a state in which immunity is suppressed.

本発明者らは本発明のスクリーニング方法を用いて、Propionibacterium freudenreichii ET-3株(以降、ET-3ともいう)に過敏性腸症候群下痢型を抑制する効果があることを見出した。具体的には、ET-3の生菌体を経口投与したマウスでは、FK506の投与で生じた下痢症状が改善された。他に、ET-3生菌体の投与によって、腸管バリア機能の回復、血中Th1型サイトカインレベルの回復、腸内細菌叢の改善、内因性抗菌ペプチドの産生改善および自然免疫機能の回復などの効果が得られた。
本発明者らは、Propionibacterium freudenreichii ET-3株を独立行政法人産業技術総
合研究所特許生物寄託センターに寄託した。以下に、寄託を特定する内容を記載する。
(1)寄託機関名:独立行政法人産業技術総合研究所 特許生物寄託センター
(2)連絡先:〒305-8566 茨城県つくば市東1丁目1番1 中央第6
(3)受託番号:FERM BP-8115
(4)識別のための表示: ET-3
(5)原寄託日:平成13年8月9日
(6)ブタペスト条約に基づく寄託への移管日:平成14年7月11日
上記Propionibacterium freudenreichii ET-3株はエメンタールチーズから単離されたグラム陽性短桿菌であり、DHNA(2,4-dihydroxy-2-naphthoicacid)やACNQ(2-amino-3-carboxy-1,4-naphthoquinone)の生産能を有することを特徴とする。
Using the screening method of the present invention, the present inventors have found that Propionibacterium freudenreichii ET-3 strain (hereinafter also referred to as ET-3) has an effect of suppressing irritable bowel syndrome diarrhea type. Specifically, diarrhea symptoms caused by administration of FK506 were improved in mice that were orally administered with live cells of ET-3. In addition, administration of live ET-3 cells restored intestinal barrier function, restored blood Th1-type cytokine levels, improved intestinal flora, improved production of endogenous antimicrobial peptides, and restored innate immune function. The effect was obtained.
The inventors deposited the Propionibacterium freudenreichii ET-3 strain at the Patent Organism Depositary, National Institute of Advanced Industrial Science and Technology. The contents specifying the deposit are described below.
(1) Depositary name: National Institute of Advanced Industrial Science and Technology, Patent Biological Depositary Center (2) Contact: Chuo 6th 1-1 1-1 Higashi 1-chome Tsukuba City, Ibaraki Prefecture 305-8566
(3) Accession number: FERM BP-8115
(4) Display for identification: ET-3
(5) Date of original deposit: August 9, 2001 (6) Date of transfer to deposit under the Budapest Treaty: July 11, 2002 The above Propionibacterium freudenreichii ET-3 strain was isolated from Emmental cheese It is a positive bacilli and has the ability to produce DHNA (2,4-dihydroxy-2-naphthoicacid) and ACNQ (2-amino-3-carboxy-1,4-naphthoquinone).

ET-3の生菌体の1日当たりの摂取量は年齢、症状、体重、用途、投与経路などによって異なるため、特に限定されないが、あえて挙げるなら、ET-3菌体の乾燥重量に換算して経口投与の場合成人1日当たり0.1〜10000mgを摂取することができ、好ましくは1〜5000mg、さらに好ましくは10〜500mgを摂取することができる。   The daily intake of live ET-3 cells varies depending on age, symptoms, body weight, application, route of administration, etc., but is not particularly limited. In the case of oral administration, 0.1 to 10000 mg can be ingested per day for an adult, preferably 1 to 5000 mg, more preferably 10 to 500 mg.

ET-3の生菌体は医薬品または飲食品いずれの形態でも利用することができる。例えば、本発明の栄養組成物を医薬品として直接投与することにより、または特定保健用食品などの特別用途食品、栄養機能食品、栄養補助食品、流動食やサプリメントとして直接摂取ことにより、慢性の下痢、免疫が抑制された状態で起きる下痢、または過敏性腸症候群下痢型を改善することが期待される。   The live cells of ET-3 can be used in the form of pharmaceuticals or foods and drinks. For example, chronic diarrhea by directly administering the nutritional composition of the present invention as a pharmaceutical or by directly ingesting as a special-purpose food such as a food for specified health use, a nutritional functional food, a nutritional supplement, a liquid food or a supplement, It is expected to improve diarrhea that occurs when immunity is suppressed, or irritable bowel syndrome.

以下、本発明に関して実施例を挙げて説明するが、本発明は、これにより限定されるも
のではない。
Hereinafter, although an example is given and explained about the present invention, the present invention is not limited by this.

[実施例1:免疫抑制剤による下痢の誘導]
(免疫抑制剤)FK506 (Tacrolimus)
FK506(アステラス製薬)を生理食塩水で懸濁して20、40、80μg/mlの濃度に調製し、これを動物に投与した。
[Example 1: Induction of diarrhea by immunosuppressant]
(Immunosuppressant) FK506 (Tacrolimus)
FK506 (Astellas Pharma) was suspended in physiological saline to adjust the concentration to 20, 40, 80 μg / ml, and this was administered to animals.

(動物実験)
5週齢雄性ICRマウス(日本クレア)20匹を、CRF-1飼料給餌にて1週間個別飼育し、環境馴化させた。馴化期間後、体重を指標にマウスをcontrol群、0.5mg/kg(低用量)投与群、1.0mg/kg(中用量)投与群および2.0mg/kg(高用量)投与群の4群(各群n=5)に群分けした。群分けしたマウスは、床敷きを用いず、ポリ濾紙(ワットマンベンチコートプラス)及びステンレス製金網(16mesh、目開き1.2mm)を敷いたケージ内で飼育した。
群分けした日(day0)より、各群に表1に示す免疫抑制剤を14日間投与した。control群には、免疫抑制剤の投与容量と同容量の生理食塩水を投与した。
各マウスの糞便はステンレス製金網を通してポリ濾紙で受け、金網に付着した糞便及び金網を通過して濾紙に付着した糞便の全てを目視にて毎日観察した。
(Animal experimentation)
Twenty 5-week-old male ICR mice (CLEA Japan) were individually housed for 1 week on the CRF-1 diet and acclimated to the environment. After the acclimatization period, mice were grouped into 4 groups (control group, 0.5 mg / kg (low dose) administration group, 1.0 mg / kg (medium dose) administration group, and 2.0 mg / kg (high dose) administration group). Groups were divided into groups n = 5). The grouped mice were bred in cages laid with poly filter paper (Whatman bench coat plus) and stainless steel wire mesh (16 mesh, mesh opening 1.2 mm) without using flooring.
From the day of grouping (day 0), the immunosuppressive agents shown in Table 1 were administered to each group for 14 days. In the control group, physiological saline having the same volume as that of the immunosuppressant was administered.
The stool of each mouse was received by poly filter paper through a stainless steel wire mesh, and all of the stool adhered to the wire mesh and the stool adhered to the filter paper through the wire mesh were visually observed every day.

(測定)
・糞便の性状:day1〜14の各日の糞便目視観察し、下記4段階の便性スコアで評価した。
1.通常便
2.軟便(便形状を保つが、水分含量の多い便)
3.泥状便(便形状を保たず、金網の隙間に付着する便)
4.水様便(ほぼ液体状で、金網を通過する便)
(Measurement)
-Fecal properties: Feces were visually observed on each day of days 1 to 14, and evaluated with the following four grades of fecal properties.
1. Normal flights Soft stool (stool with a high moisture content)
3. Mud stool (stool that does not maintain the shape of the stool and adheres to the gaps in the wire mesh)
4). Watery stool (nearly liquid and passes through a wire mesh)

・血中LPS濃度:
day14の血液から無菌的に血清を調製し、エンドスペシーES-50Mセット(生化学バイオビジネス社製)およびトキシカラーDIA-MPセット(生化学バイオビジネス社製)を用い、付属のプロトコルに従ってリポ多糖(LPS)の濃度を測定した。
・血中サイトカイン濃度:
day14の血液から血清を調製し、Bio-plexTM(登録商標) Pro Mouse
Cytokine 23-plex Assay、M60-009RDPD (BIO-RAD社製)を用い、付属のプロトコルに従ってIL-6を測定した。
・ Blood LPS concentration:
Serum is aseptically prepared from day 14 blood, and using Lipopolysaccharide (Endospecy ES-50M set (Seikagaku Biobusiness) and Toxicolor DIA-MP set (Seikagaku Biobusiness) according to the attached protocol. LPS) concentration was measured.
・ Blood cytokine concentration:
Serum was prepared from day 14 blood, and Bio-plex TM (registered trademark) Pro Mouse
IL-6 was measured using Cytokine 23-plex Assay, M60-009RDPD (manufactured by BIO-RAD) according to the attached protocol.

(結果)
糞便の性状に関する結果を図1に示す。FK506を1mg/kg body weightおよび2mg/kg body weightの投与でday14に顕著な下痢症状が誘導された。
血中LPS濃度に関する結果および血中IL-6濃度に関する結果を図2に示す。FK506を1mg/kg body weightを投与した群はcontrol群よりも有意に高いLPS濃度を示した。
また、血中IL-6はFK506を2mg/kg body weightを投与した群はcontrol群よりも有意に高いIL-6濃度を示した。
(result)
The result regarding the property of feces is shown in FIG. The administration of 1 mg / kg body weight and 2 mg / kg body weight with FK506 induced significant diarrhea symptoms on day 14.
The results regarding the blood LPS concentration and the blood IL-6 concentration are shown in FIG. The group administered 1 mg / kg body weight with FK506 showed significantly higher LPS concentration than the control group.
In addition, blood IL-6 showed a significantly higher IL-6 concentration in the group administered with 2 mg / kg body weight of FK506 than in the control group.

[実施例2:プロピオン酸菌の有効性試験]
(被検物質)Propionibacterium freudenreichii ET-3株の生菌体
ET-3を嫌気条件下GAM培地で30℃、72時間、静置培養し、遠心分離(8000×g、15分間)で集菌した。生理食塩水で2回、蒸留水で1回洗浄した生菌体を蒸留水に懸濁し、速やかに‐80℃で保存して凍結乾燥し、生菌体の乾燥重量を算出した。乾燥した生菌体を蒸留水で懸濁して6mg/mlの濃度に調製し、これを動物に投与した。
(免疫抑制剤)FK506 (Tacrolimus)
FK506(和光純薬)を生理食塩水で懸濁して40μg/mlの濃度に調製し、これを動物に投与した。
[Example 2: Effectiveness test of propionic acid bacteria]
(Test substance) Viable cells of Propionibacterium freudenreichii ET-3 strain
ET-3 was statically cultured in an GAM medium at 30 ° C. for 72 hours under anaerobic conditions, and collected by centrifugation (8000 × g, 15 minutes). The viable cells washed twice with physiological saline and once with distilled water were suspended in distilled water, immediately stored at −80 ° C. and freeze-dried, and the dry weight of the viable cells was calculated. The dried live cells were suspended in distilled water to a concentration of 6 mg / ml and administered to animals.
(Immunosuppressant) FK506 (Tacrolimus)
FK506 (Wako Pure Chemical Industries) was suspended in physiological saline to prepare a concentration of 40 μg / ml, and this was administered to animals.

(動物実験)
5週齢雄性ICRマウス(日本クレア)15匹を、CRF-1飼料給餌にて1週間個別飼育し、環境馴化させた。馴化期間後、体重を指標にマウスをcontrol群、FK506群およびFK506+ET-3群の3群(各群n=5)に群分けした。群分けしたマウスは、床敷きを用いず、ポリ濾紙(ワットマンベンチコートプラス)及びステンレス製金網(16mesh、目開き1.2mm)を敷いたケージ内で飼育した。
群分けした日(day0)より、各群に表2に示す免疫抑制剤および被検物質を1日1回14日間投与した。免疫抑制剤又は被検物質を投与しない群には、免疫抑制剤又は被検物質の投与容量と同容量の生理食塩水又は蒸留水を投与した。
各マウスの糞便はステンレス製金網を通してポリ濾紙で受け、金網に付着した糞便及び金網を通過して濾紙に付着した糞便の全てを目視にて毎日観察した。
免疫抑制剤および被検物質の投与開始から2週間後(day14)に、マウスをイソフルラン麻酔下で全採血した後に屠殺した。解剖して脾臓、腸間膜リンパ節、盲腸、および回腸を摘出した。
(Animal experimentation)
Fifteen 5-week-old male ICR mice (CLEA Japan) were individually housed for 1 week on CRF-1 feed and acclimated to the environment. After the acclimatization period, the mice were divided into three groups (each group n = 5) of control group, FK506 group and FK506 + ET-3 group using body weight as an index. The grouped mice were bred in cages laid with poly filter paper (Whatman bench coat plus) and stainless steel wire mesh (16 mesh, mesh opening 1.2 mm) without using flooring.
From the day of grouping (day 0), the immunosuppressive agents and test substances shown in Table 2 were administered to each group once a day for 14 days. To the group not administered with the immunosuppressant or test substance, physiological saline or distilled water having the same volume as the dose of the immunosuppressant or test substance was administered.
The stool of each mouse was received by poly filter paper through a stainless steel wire mesh, and all of the stool adhered to the wire mesh and the stool adhered to the filter paper through the wire mesh were visually observed every day.
Two weeks after the start of administration of the immunosuppressant and test substance (day 14), the mice were sacrificed after whole blood collection under isoflurane anesthesia. The spleen, mesenteric lymph nodes, cecum, and ileum were removed by dissection.

(測定)
・糞便の性状:
day1〜14の各日の糞便の性状を目視観察し、下記4段階の便性スコアで評価した。
1.通常便
2.軟便(便形状を保つが、水分含量の多い便)
3.泥状便(便形状を保たず、金網の隙間に付着する便)
4.水様便(ほぼ液体状で、金網を通過する便)
・血中サイトカイン濃度:
day14の血液から血清を調製し、Bio-plexTM(登録商標) Pro Mouse Cytokine 23-plex Assay、M60-009RDPD
(BIO-RAD社製)を用い、付属のプロトコルに従って各種サイトカイン濃度を測定した。測定項目は、IL-1α、IL-1β、IL-2、IL-3、IL-4、IL-5、IL-6、IL-9、IL-10、IL-12(p40)、IL-12(p70)、IL-13、IL-17、eotaxin、G-CSF、GM-CSF、IFN-γ、KC、MCP-1、MIP-1α、MIP-1β、RANTES、TNF-αの23種類である。
・血中LPS濃度:
day14の血液から無菌的に血清を調製し、エンドスペシーES-50Mセット(生化学バイオビジネス社製)およびトキシカラーDIA-MPセット(生化学バイオビジネス社製)を用い、付属のプロトコルに従ってリポ多糖(LPS)の濃度を測定した。
(Measurement)
・ Fecal properties:
The stool properties of each day from day 1 to 14 were visually observed and evaluated with the following four stool scores.
1. Normal flights Soft stool (stool with a high moisture content)
3. Mud stool (stool that does not maintain the shape of the stool and adheres to the gaps in the wire mesh)
4). Watery stool (nearly liquid and passes through a wire mesh)
・ Blood cytokine concentration:
Serum was prepared from day 14 blood and Bio-plex TM Pro Mouse Cytokine 23-plex Assay, M60-009RDPD
(BIO-RAD) was used, and various cytokine concentrations were measured according to the attached protocol. Measurement items are IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12 (p40), IL-12 (p70), IL-13, IL-17, eotaxin, G-CSF, GM-CSF, IFN-γ, KC, MCP-1, MIP-1α, MIP-1β, RANTES, TNF-α .
・ Blood LPS concentration:
Serum is aseptically prepared from day 14 blood, and using Lipopolysaccharide (Endospecy ES-50M set (Seikagaku Biobusiness) and Toxicolor DIA-MP set (Seikagaku Biobusiness) according to the attached protocol. LPS) concentration was measured.

・脾臓の免疫細胞ポピュレーション:
day14の脾臓から細胞を調製し、NK細胞、ヘルパーT細胞、キラーT細胞、B細胞、マクロファージ、及び樹状細胞のマーカーをそれぞれDX5、CD4、CD8、B220、CD11b、及びCD11cとして各表面抗原陽性細胞数をFACS
CaliburTMフローサイトメーター(Becton, Dickinson and Company製)でカウントして各免疫細胞の比率を検出した。
・Bacterial Translocation:
無菌的に採取したday14の腸間膜リンパ節をホモジナイズし、嫌気性菌検査用BL培地で混尺し、37℃嫌気条件下で72時間(BL培地)培養した。さらに、次式に従って嫌気性菌の陽性率を算出した。
陽性率(%)=(嫌気性菌を検出した検体数/全ての検体数)×100
Spleen immune cell population:
Cells were prepared from the spleen of day 14 and positive for each surface antigen as DX5, CD4, CD8, B220, CD11b, and CD11c markers for NK cells, helper T cells, killer T cells, B cells, macrophages, and dendritic cells, respectively. FACS for cell number
The ratio of each immune cell was detected by counting with a Calibur flow cytometer (Becton, Dickinson and Company).
・ Bacterial Translocation:
Aseptically collected day 14 mesenteric lymph nodes were homogenized, mixed with BL medium for anaerobic bacteria test, and cultured for 72 hours (BL medium) under anaerobic conditions at 37 ° C. Furthermore, the positive rate of anaerobic bacteria was calculated according to the following formula.
Positive rate (%) = (number of samples in which anaerobic bacteria were detected / number of all samples) × 100

・回腸におけるタイトジャンクションに係る遺伝子発現量:
タイトジャンクションを構成する膜タンパク質であるoccludinについて、遺伝子発現量を測定した。
常法に従ってday14の回腸からRNAを抽出し、PrimeScript RT reagent Kit、及びSYBR Premix Ex Taq,
Perfect Real Time(タカラバイオ社製)を用い、付属のプロトコルに従ってcDNA合成及びq-PCR法による解析を行った。ハウスキーピング遺伝子としてGAPDHを用いた。
-Gene expression level related to tight junctions in the ileum:
The gene expression level of occludin, which is a membrane protein constituting a tight junction, was measured.
Extract RNA from day 14 ileum according to standard methods, PrimeScript RT reagent Kit, and SYBR Premix Ex Taq,
Using Perfect Real Time (manufactured by Takara Bio Inc.), cDNA synthesis and analysis by q-PCR were performed according to the attached protocol. GAPDH was used as a housekeeping gene.

(結果)
図3に、糞便の性状を評価した結果を示す。図3(a)に示されるように、FK506群では下痢が誘導され、投与4日目(day4)以降はさらに便性スコアが高くなった。その結果、投与期間全体の平均においても、FK506群はcontrol群よりも有意に高い便性スコアを示した(図3(b))。一方で、FK506+ET-3群ではFK506群よりも便性スコアの上昇が抑えられ、投与期間全体の平均においても有意に低い便性スコアを示した。
このことから、FK506を1mg/kg body weight投与した群では顕著な下痢が誘導され、ET-3生菌を3mg/body共投与することによって、FK506で誘導された下痢が抑制されることがわかった。
(result)
In FIG. 3, the result of having evaluated the property of feces is shown. As shown in FIG. 3 (a), diarrhea was induced in the FK506 group, and the fecal score further increased after the fourth day of administration (day 4). As a result, the FK506 group showed a significantly higher stool score than the control group in the average of the whole administration period (FIG. 3 (b)). On the other hand, in the FK506 + ET-3 group, the increase in the stool score was suppressed compared to the FK506 group, and the stool score was significantly lower in the mean of the whole administration period.
From this, it was found that remarkable diarrhea was induced in the group administered with 1 mg / kg body weight of FK506, and that diarrhea induced with FK506 was suppressed by co-administration of 3 mg / body of live ET-3 bacteria. It was.

図4に、血中サイトカイン濃度の測定結果を示す。FK506群はcontrol群よりも有意に低いIL-12(p70)値を示し、IL-12(p40)、IFN-γについてもcontrol群より低い傾向を示した。一方で、FK506+ET-3群ではFK506群よりもIL-12(p40)、IL-12(p70)およびIFN-γが有意に高くなった。
このことから、FK506を投与した群ではTh1型サイトカインが低下し、ET-3生菌を共投与することによって、FK506で低下したTh1型サイトカインが回復することがわかった。
FIG. 4 shows the measurement results of blood cytokine concentration. The FK506 group showed significantly lower IL-12 (p70) values than the control group, and IL-12 (p40) and IFN-γ also showed lower tendencies than the control group. On the other hand, IL-12 (p40), IL-12 (p70) and IFN-γ were significantly higher in the FK506 + ET-3 group than in the FK506 group.
From this, it was found that in the group administered with FK506, Th1-type cytokines decreased, and by co-administration of live ET-3 bacteria, the Th1-type cytokines decreased with FK506 were recovered.

図5に、脾臓の免疫細胞ポピュレーションの解析結果を示す。FK506群はcontrol群よりもCD4+T細胞数が有意に低くなったが、他の群では有意な差を認めなかった。
このことから、FK506を投与した群ではヘルパーT細胞の割合が低下することがわかった。
FIG. 5 shows the analysis results of spleen immune cell population. The number of CD4 + T cells in the FK506 group was significantly lower than that in the control group, but no significant difference was observed in other groups.
From this, it was found that the proportion of helper T cells decreased in the group administered with FK506.

図6に、血中LPS濃度の測定結果を示す。FK506群はcontrol群よりも有意に高いLPS濃度を示したが、FK506+ET-3群では有意な差を認めなかった。
このことから、FK506を投与した群では腸管バリア機能が低下することがわかった。
FIG. 6 shows the measurement result of blood LPS concentration. The FK506 group showed significantly higher LPS concentration than the control group, but there was no significant difference in the FK506 + ET-3 group.
From this, it was found that the intestinal barrier function decreased in the group administered with FK506.

図7に、Bacterial Translocationの検出結果を示す。
嫌気性菌について、FK506群はcontrol群の約4倍高いBacterial Translocation陽性率を示した。
一方で、FK506+ET-3群ではFK506群の約1/2まで陽性率が低下した。
このことから、FK506を投与した群では腸管バリア機能が低下し、ET-3生菌を共投与することによって、腸管バリア機能が一部回復することがわかった。
FIG. 7 shows the detection result of Bacterial Translocation.
Regarding anaerobic bacteria, FK506 group showed Bacterial Translocation positive rate about 4 times higher than control group.
On the other hand, in the FK506 + ET-3 group, the positive rate decreased to about half that of the FK506 group.
From these results, it was found that in the group administered with FK506, the intestinal barrier function was lowered, and the intestinal barrier function was partially recovered by co-administration with live ET-3 bacteria.

図8に、回腸組織におけるoccludinの遺伝子発現量を測定した結果を示す。
occludinは腸管のタイトジャンクションの構成因子である。
FK506群はcontrol群よりも遺伝子発現量が有意に低くなったがが、FK506+ET-3群では有意な差を認めなかった。
このことから、FK506を投与した群では腸管バリア機能が低下し、ET-3生菌の共投与によって腸管バリア機能の低下が抑制されることがわかった。
FIG. 8 shows the results of measuring the gene expression level of occludin in the ileal tissue.
occludin is a component of the intestinal tight junction.
The gene expression level in the FK506 group was significantly lower than that in the control group, but no significant difference was observed in the FK506 + ET-3 group.
From this, it was found that in the group administered with FK506, the intestinal barrier function was lowered, and the decrease in the intestinal barrier function was suppressed by co-administration of viable ET-3 bacteria.

[実施例3:プロピオン酸菌の有効性試験]
(被検物質)Propionibacterium freudenreichii ET-3株の生菌体
ET-3を嫌気条件下GAM培地で30℃、72時間、静置培養し、遠心分離(8000×g、15分間)で集菌した。生理食塩水で2回、蒸留水で1回洗浄した生菌体を蒸留水に懸濁し、速やかに‐80℃で保存して凍結乾燥し、生菌体の乾燥重量を算出した。乾燥した生菌体を蒸留水で懸濁して6mg/mlの濃度に調製し、これを動物に投与した。
(免疫抑制剤)FK506 (Tacrolimus)
FK506(和光純薬)を生理食塩水で懸濁して40μg/mlの濃度に調製し、これを動物に投与した。
[Example 3: Effectiveness test of propionic acid bacteria]
(Test substance) Viable cells of Propionibacterium freudenreichii ET-3 strain
ET-3 was statically cultured in an GAM medium at 30 ° C. for 72 hours under anaerobic conditions, and collected by centrifugation (8000 × g, 15 minutes). The viable cells washed twice with physiological saline and once with distilled water were suspended in distilled water, immediately stored at −80 ° C. and freeze-dried, and the dry weight of the viable cells was calculated. The dried live cells were suspended in distilled water to a concentration of 6 mg / ml and administered to animals.
(Immunosuppressant) FK506 (Tacrolimus)
FK506 (Wako Pure Chemical Industries) was suspended in physiological saline to prepare a concentration of 40 μg / ml, and this was administered to animals.

(動物実験)
5週齢雄性ICRマウス(日本クレア)21匹を、CRF-1飼料給餌にて1週間個別飼育し、環境馴化させた。馴化期間後、体重を指標にマウスをcontrol群、FK506群およびFK506+ET-3群の3群(各群n=7)に群分けした。群分けしたマウスは、床敷きを用いず、ポリ濾紙(ワットマンベンチコートプラス)及びステンレス製金網(16mesh、目開き1.2mm)を敷いたケージ内で飼育した。
群分けした日(day0)より、各群に表2に示す免疫抑制剤および被検物質を1日1回14日間投与した。免疫抑制剤又は被検物質を投与しない群には、免疫抑制剤又は被検物質の投与容量と同容量の生理食塩水又は蒸留水を投与した。
各マウスの糞便はステンレス製金網を通してポリ濾紙で受け、金網に付着した糞便及び金網を通過して濾紙に付着した糞便の全てを目視にて毎日観察した。
免疫抑制剤および被検物質の投与開始から約2週間後(day15)に、マウスをペントバルビタール麻酔下で全採血した後に屠殺した。解剖して脾臓、腸間膜リンパ節、盲腸、回腸および結腸を摘出した。
(Animal experimentation)
Twenty-one 5-week-old male ICR mice (CLEA Japan) were individually housed for 1 week on CRF-1 diet and acclimated to the environment. After the acclimatization period, the mice were divided into 3 groups (each group n = 7) of control group, FK506 group and FK506 + ET-3 group using body weight as an index. The grouped mice were bred in cages laid with poly filter paper (Whatman bench coat plus) and stainless steel wire mesh (16 mesh, mesh opening 1.2 mm) without using flooring.
From the day of grouping (day 0), the immunosuppressive agents and test substances shown in Table 2 were administered to each group once a day for 14 days. To the group not administered with the immunosuppressant or test substance, physiological saline or distilled water having the same volume as the dose of the immunosuppressant or test substance was administered.
The stool of each mouse was received by poly filter paper through a stainless steel wire mesh, and all of the stool adhered to the wire mesh and the stool adhered to the filter paper through the wire mesh were visually observed every day.
About 2 weeks after the start of administration of the immunosuppressant and test substance (day 15), the mice were sacrificed after whole blood collection under pentobarbital anesthesia. The spleen, mesenteric lymph nodes, cecum, ileum and colon were removed by dissection.

(測定)
・糞便の性状:
day1〜15の各日の糞便の性状を目視観察し、下記4段階の便性スコアで評価した。
1.通常便
2.軟便(便形状を保つが、水分含量の多い便)
3.泥状便(便形状を保たず、金網の隙間に付着する便)
4.水様便(ほぼ液体状で、金網を通過する便)
・糞便中の菌叢:
day15の糞便を採取し、Miseqモデルの次世代シーケンサー(Illumina)により、Lactobacillus、Bacteroides
fragilis groupの占有率(%)を測定し、さらに各菌属特異的プライマーを用いたq-PCR法により表3に示す菌の菌数を測定した。
(Measurement)
・ Fecal properties:
The stool properties of each day from day 1 to 15 were visually observed and evaluated with the following four stool scores.
1. Normal flights Soft stool (stool with a high moisture content)
3. Mud stool (stool that does not maintain the shape of the stool and adheres to the gaps in the wire mesh)
4). Watery stool (nearly liquid and passes through a wire mesh)
・ Microflora in feces:
Day 15 stool was collected, and the next generation sequencer (Illumina) of the Miseq model used Lactobacillus, Bacteroides
The occupancy rate (%) of the fragilis group was measured, and the number of bacteria shown in Table 3 was measured by q-PCR using each genus-specific primer.

・盲腸内容物中の分泌型IgA量:
day15の盲腸内容物を採取し、
Macielらの方法(Maciel M. et al, Braz J Med Biol Res
37(6): 817-826, 2004)
を参考にして、抽出を行った。
マウスの盲腸内容物20mgを1.5mlチューブに採取してPBS 1mlを添加して混合、遠心分離(3000×g 10min)した。
上清800μlにprotease inhibitor cocktail(SIGMA)を2μl添加し混合し、測定まで-80℃保存した。
この混合液を希釈したものについて、Secretory IgA ELISA(Eagle
Biosciences)を用い、
付属のプロトコルに従って分泌型IgA(sIgA)を測定した。
・ Amount of secretory IgA in cecal contents:
Collect the cecal contents of day15,
Maciel et al. (Maciel M. et al, Braz J Med Biol Res
37 (6): 817-826, 2004)
The extraction was performed with reference to FIG.
20 mg of mouse cecal contents were collected in a 1.5 ml tube, 1 ml of PBS was added, mixed and centrifuged (3000 × g 10 min).
2 μl of protease inhibitor cocktail (SIGMA) was added to 800 μl of the supernatant, mixed, and stored at −80 ° C. until measurement.
A dilution of this mixture was used for the Secretory IgA ELISA (Eagle
Biosciences)
Secretory IgA (sIgA) was measured according to the attached protocol.

・回腸におけるReg3γ遺伝子発現量:
常法に従ってday15の回腸からRNAを抽出し、PrimeScript RT reagent Kit、及び
SYBR Premix Ex Taq, Perfect Real Time(タカラバイオ)を用い、付属のプロトコルに従って
cDNA合成及びq-PCR法による解析を行った。ハウスキーピング遺伝子としてGAPDHを用いた。
・ Reg3γ gene expression level in the ileum:
Extract RNA from day 15 ileum according to standard methods, PrimeScript RT reagent Kit, and
Use SYBR Premix Ex Taq, Perfect Real Time (Takara Bio) and follow the attached protocol.
cDNA synthesis and q-PCR analysis were performed. GAPDH was used as a housekeeping gene.

・回腸におけるタイトジャンクションに係るタンパク質量:
Allprotect Tissue Reagent(QIAGEN)を用い、付属のプロトコルに従って各組織からタンパク質を抽出した。Pierce
BCA Protein Assay Kit (Thermo scientific)で総タンパク質量を測定し、タンパク質量を揃えてSDS-PAGEを行った。Rabbit
anti-Occludin抗体 (Invitrogen)でoccludinを、Rabbit polyclonal Antibody to beta Actin
(IMGENEX)でβ−actinを、それぞれ付属のプロトコルに従ってWestern Blotting法にて測定した。Occludinタンパク質量は、occludinの測定値をβ−actinの測定値で除して表した。
・ Amount of protein related to tight junction in the ileum:
Protein was extracted from each tissue using Allprotect Tissue Reagent (QIAGEN) according to the attached protocol. Pierce
The total protein amount was measured with BCA Protein Assay Kit (Thermo scientific), and SDS-PAGE was performed after aligning the protein amount. Rabbit
Anti-Occludin antibody (Invitrogen) to occludin, Rabbit polyclonal antibody to beta Actin
Β-actin was measured by (IMGENEX) by Western Blotting according to the attached protocol. The amount of Occludin protein was expressed by dividing the measured value of occludin by the measured value of β-actin.

・血中のgranulysin濃度:
day15の血液から血清を調製し、Mouse Granulysin ELISA Kit(TSZ ELISA)を用い、付属のプロトコルに従ってgranulysinの濃度を測定した。
得られた結果の統計解析は、Student's t-testで行った。
・ The concentration of granulysin in the blood:
Serum was prepared from day 15 blood, and the concentration of granulysin was measured using the Mouse Granulinsin ELISA Kit (TSZ ELISA) according to the attached protocol.
Statistical analysis of the obtained results was performed by Student's t-test.

(結果)
図9に、糞便の性状を評価した結果を示す。図9(a)に示されるように、FK506群では下痢が誘導され、投与4日目(day4)以降はさらに便性スコアが高くなった。その結果、投与期間全体の平均においても、FK506群はcontrol群よりも有意に高い便性スコアを示した(図9(b))。一方で、FK506+ET-3群ではFK506群よりも便性スコアの上昇が抑えられ、投与期間全体の平均においてもFK506群に対して有意に低い便性スコアを示した。
このことから、FK506を1mg/kg body weight投与した群では顕著な下痢が誘導され、ET-3生菌を3mg/body共投与することによって、FK506で誘導された下痢が抑制されることがわかった。
(result)
FIG. 9 shows the results of evaluating the properties of stool. As shown in FIG. 9 (a), diarrhea was induced in the FK506 group, and the fecal score further increased after the fourth day of administration (day 4). As a result, the FK506 group also showed a significantly higher stool score than the control group in the average over the entire administration period (FIG. 9 (b)). On the other hand, in the FK506 + ET-3 group, the increase in the stool score was suppressed compared to the FK506 group, and the stool score was significantly lower than that in the FK506 group in the average of the whole administration period.
From this, it was found that remarkable diarrhea was induced in the group administered with 1 mg / kg body weight of FK506, and that diarrhea induced with FK506 was suppressed by co-administration of 3 mg / body of live ET-3 bacteria. It was.

図10および図11に、day15の糞便中の菌叢を解析した結果を示す。FK506群は、control群と比較して総菌数が有意に高くなった(図11)。また、Bacteroides
fragilis groupの占有率および菌数においても、FK506群はcontrol群と比較して有意に高い値を示したが、FK506+ET-3群では有意な差を認めなかった(図10および図11)。一方で、Lactobacillus属の占有率において、FK506群は、control群と比較して有意に低い値を示した(図10)。ビフィズス菌の菌数についは、FK506+ET-3群はcontrol群と比較して有意に高い値を示した(図11)。
このことから、FK506を投与した群では腸内細菌叢の乱れが生じ、ET-3生菌を共投与することによって、腸内細菌叢が改善することがわかった。
FIG. 10 and FIG. 11 show the results of analyzing the flora in the stool of day15. The total number of bacteria in the FK506 group was significantly higher than that in the control group (FIG. 11). Also Bacteroides
The FK506 group also showed significantly higher values in the fragilis group occupancy and the number of bacteria compared to the control group, but no significant difference was observed in the FK506 + ET-3 group (FIGS. 10 and 11). . On the other hand, in the occupation rate of Lactobacillus genus, the FK506 group showed a significantly lower value compared to the control group (FIG. 10). As for the number of bifidobacteria, the FK506 + ET-3 group showed a significantly higher value than the control group (FIG. 11).
From this, it was found that in the group administered with FK506, disturbance of the intestinal flora occurred, and the intestinal flora improved by co-administration of live ET-3 bacteria.

図12に、盲腸内容物中の分泌型IgA量の測定結果を示す。FK506+ET-3群は、control群およびFK506群と比較して有意に高いsIgA量を示した。このことから、ET-3生菌を投与することによって、sIgAの分泌が高まることがわかった。   FIG. 12 shows the measurement results of the secretory IgA content in the cecal contents. The FK506 + ET-3 group showed significantly higher sIgA levels compared to the control group and the FK506 group. From this, it was found that the secretion of sIgA was increased by administering live ET-3 bacteria.

図13に、回腸組織のReg3γの遺伝子発現量を測定した結果を示す。Reg3γは、腸管上皮細胞が産生する抗菌ペプチドである。FK506群は、control群と比較してReg3γの遺伝子発現量が有意に低くなった。一方で、FK506+ET-3群は、FK506群に対して有意に高いg
Reg3γ遺伝子発現量を示した。
このことから、FK506を投与した群では内因性抗菌ペプチドReg3γの遺伝子発現量が低下し、ET-3生菌を共投与することによって回復することがわかった。
図14に、回腸組織のoccludinタンパク質量を測定した結果を示す。いずれの群間においても、有意な差を認めなかった。
FIG. 13 shows the results of measuring the expression level of Reg3γ gene in ileal tissue. Reg3γ is an antibacterial peptide produced by intestinal epithelial cells. The expression level of Reg3γ gene in the FK506 group was significantly lower than that in the control group. On the other hand, the FK506 + ET-3 group has a significantly higher g than the FK506 group.
Reg3γ gene expression level was shown.
From these results, it was found that the gene expression level of the endogenous antibacterial peptide Reg3γ decreased in the group administered with FK506 and recovered by co-administration with live ET-3 bacteria.
FIG. 14 shows the results of measuring the amount of occludin protein in the ileal tissue. There was no significant difference between any groups.

図15に、血清中のgranulysin濃度を測定した結果を示す。
granulysinは、ナチュラルキラー(NK)細胞、細胞障害性T細胞が産生する細胞障害性顆粒内タンパク質であって、NK活性と強く相関することが知られている。FK506群は、control群と比較してgranulysinの濃度が有意に低くなった。一方で、FK506+ET-3群は、FK506群に対して有意に高いgranulysin濃度を示した。
このことから、FK506を投与した群では自然免疫機能が低下し、ET-3生菌を共投与することによって、自然免疫機能が回復することがわかった。
FIG. 15 shows the results of measuring the concentration of granulysin in serum.
Granulysin is a cytotoxic intragranular protein produced by natural killer (NK) cells and cytotoxic T cells, and is known to correlate strongly with NK activity. The concentration of granulysin was significantly lower in the FK506 group than in the control group. On the other hand, the FK506 + ET-3 group showed a significantly higher granulysin concentration than the FK506 group.
From this, it was found that the innate immunity function decreased in the group administered with FK506, and the innate immunity function was recovered by co-administration with live ET-3 bacteria.

以上の結果から、FK506の投与により、下痢症状の誘導、腸管バリア機能の低下、血中Th1型サイトカイン(IL-12、IFNγ)レベルの低下、ヘルパーT細胞数の減少、腸内細菌叢の乱れ、腸内細菌の増加、内因性抗菌ペプチドの産生低下および自然免疫機能の低下が生じることがわかった。また、FK506と共にET-3生菌を共投与することで、下痢症状の改善、腸管バリア機能の回復、血中Th1型サイトカインレベルの回復、免疫賦活、腸内細菌叢の改善、内因性抗菌ペプチドの産生改善および自然免疫機能の回復などの効果が得られた。   From the above results, administration of FK506 induced diarrhea symptoms, decreased intestinal barrier function, decreased blood Th1-type cytokine (IL-12, IFNγ) level, decreased helper T cell count, disturbed gut microbiota It has been found that an increase in intestinal bacteria, a decrease in endogenous antimicrobial peptide production and a decrease in innate immune function occur. In addition, co-administration of live ET-3 with FK506 improves diarrhea symptoms, recovery of intestinal barrier function, recovery of blood Th1-type cytokine levels, immune activation, improvement of intestinal microflora, endogenous antimicrobial peptide Effects such as improved production and recovery of innate immune function were obtained.

本発明の方法によって、慢性的な下痢を誘導することができるので、過敏性腸症候群や免疫不全症候群等の慢性下痢を予防・治療するために有効な物質をスクリーニングすることができる。   Since chronic diarrhea can be induced by the method of the present invention, a substance effective for preventing and treating chronic diarrhea such as irritable bowel syndrome and immunodeficiency syndrome can be screened.

Claims (6)

非ヒト哺乳動物に、免疫抑制剤を投与することを特徴とする、慢性の下痢を誘導する方法。   A method for inducing chronic diarrhea, comprising administering an immunosuppressive agent to a non-human mammal. 請求項1に記載の方法により得られる、慢性の下痢が誘導された、過敏性腸症候群下痢型モデル動物。   A diarrhea model animal of irritable bowel syndrome, wherein chronic diarrhea is induced, obtained by the method according to claim 1. 請求項1に記載の方法により、慢性の下痢が誘導された非ヒト哺乳動物を取得することを含む、過敏性腸症候群下痢型モデル動物の作製方法。   A method for producing an irritable bowel syndrome diarrhea model animal, comprising obtaining a non-human mammal in which chronic diarrhea has been induced by the method according to claim 1. 請求項3に記載の方法により過敏性腸症候群下痢型モデル動物を作製し、その過敏性腸症候群下痢型モデル動物に被験物質を投与し、さらに該動物における、下痢症状、腸運動性、内臓痛覚過敏からなる群から選ばれた少なくとも1種類以上を評価することを特徴とする、過敏性腸症候群下痢型を促進又は抑制する物質のスクリーニング方法。   An irritable bowel syndrome diarrhea model animal is prepared by the method according to claim 3, a test substance is administered to the irritable bowel syndrome diarrhea model animal, and diarrhea symptoms, intestinal motility, visceral pain sensation in the animal A screening method for a substance that promotes or inhibits irritable bowel syndrome diarrhea, characterized by evaluating at least one selected from the group consisting of hypersensitivity. 請求項1に記載の方法により得られる、慢性の下痢が誘導された、免疫不全疾患による下痢のモデル動物。   A model animal of diarrhea caused by an immunodeficiency disease, wherein chronic diarrhea is induced, obtained by the method according to claim 1. 請求項1に記載の方法により得られる、慢性の下痢が誘導された非ヒト哺乳動物を取得することを含む、免疫不全疾患による下痢のモデル動物の作製方法。   A method for producing a model animal of diarrhea due to an immunodeficiency disease, comprising obtaining a non-human mammal in which chronic diarrhea has been induced, obtained by the method according to claim 1.
JP2013124206A 2013-06-12 2013-06-12 Method for producing irritable bowel syndrome model animal Pending JP2015000001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013124206A JP2015000001A (en) 2013-06-12 2013-06-12 Method for producing irritable bowel syndrome model animal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013124206A JP2015000001A (en) 2013-06-12 2013-06-12 Method for producing irritable bowel syndrome model animal

Publications (1)

Publication Number Publication Date
JP2015000001A true JP2015000001A (en) 2015-01-05

Family

ID=52294940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013124206A Pending JP2015000001A (en) 2013-06-12 2013-06-12 Method for producing irritable bowel syndrome model animal

Country Status (1)

Country Link
JP (1) JP2015000001A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114045326A (en) * 2021-11-29 2022-02-15 广东药科大学 A gut microbial marker for diarrhea-predominant irritable bowel syndrome and its application
CN115624010A (en) * 2022-09-07 2023-01-20 江西中医药大学 Construction method of spleen deficiency diarrhea type irritable bowel syndrome rat model

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07258111A (en) * 1994-03-18 1995-10-09 Toshiichi Nakamura Side effect reducer by immunosuppressant
JP2004510694A (en) * 2000-05-08 2004-04-08 ヘインズ デイビッド Immunosuppressive composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07258111A (en) * 1994-03-18 1995-10-09 Toshiichi Nakamura Side effect reducer by immunosuppressant
JP2004510694A (en) * 2000-05-08 2004-04-08 ヘインズ デイビッド Immunosuppressive composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114045326A (en) * 2021-11-29 2022-02-15 广东药科大学 A gut microbial marker for diarrhea-predominant irritable bowel syndrome and its application
CN115624010A (en) * 2022-09-07 2023-01-20 江西中医药大学 Construction method of spleen deficiency diarrhea type irritable bowel syndrome rat model

Similar Documents

Publication Publication Date Title
He et al. Lactobacillus reuteri reduces the severity of experimental autoimmune encephalomyelitis in mice by modulating gut microbiota
Jang et al. Evidence for interplay among antibacterial-induced gut microbiota disturbance, neuro-inflammation, and anxiety in mice
Liu et al. Fusobacterium nucleatum aggravates the progression of colitis by regulating M1 macrophage polarization via AKT2 pathway
Li et al. Bifidobacterium adolescentis CGMCC 15058 alleviates liver injury, enhances the intestinal barrier and modifies the gut microbiota in D-galactosamine-treated rats
Lee et al. Alleviation of cognitive impairment by gut microbiota lipopolysaccharide production-suppressing Lactobacillus plantarum and Bifidobacterium longum in mice
US20210275605A1 (en) Compositions comprising bacterial strains
Foo et al. Probiotics prevent the development of 1, 2-dimethylhydrazine (DMH)-induced colonic tumorigenesis through suppressed colonic mucosa cellular proliferation and increased stimulation of macrophages
Shamekhi et al. An overview of yeast probiotics as cancer biotherapeutics: possible clinical application in colorectal cancer
CA2842379C (en) Production and use of bacterial histamine
Zuo et al. Bifidobacterium infantis attenuates colitis by regulating T cell subset responses
Zhou et al. Regulatory effect of Zuojin Pill on correlation with gut microbiota and Treg cells in DSS-induced colitis
CN114650833A (en) Compositions and methods for treating autism spectrum group disorders
JP7119273B2 (en) Compositions for preventing, treating or ameliorating inflammatory or allergic diseases or conditions, or for maintaining intestinal health
CN116709924A (en) Engineered bacterial compositions for treating graft versus host disease
Guo et al. The microbiota in systemic lupus erythematosus: an update on the potential function of probiotics
Allain et al. High-fat diet increases the severity of Giardia infection in association with low-grade inflammation and gut microbiota dysbiosis
Zhuge et al. The synergy of dietary supplements Lactobacillus salivarius LI01 and Bifidobacterium longum TC01 in alleviating liver failure in rats treated with D-galactosamine
JP2024518084A (en) Compositions and methods for treating disease
Vassilopoulou et al. A systematic review and meta‐analysis of nutritional and dietary interventions in randomized controlled trials for skin symptoms in children with atopic dermatitis and without food allergy: An EAACI task force report
JP2022540576A (en) Compositions containing bacterial strains
He et al. Chemotherapy-induced microbiota exacerbates the toxicity of chemotherapy through the suppression of interleukin-10 from macrophages
Shimoyama et al. Study of the mechanisms of a J apanese traditional fermented medicine in the improvement of constipation
JP2015000001A (en) Method for producing irritable bowel syndrome model animal
US20100028263A1 (en) Methods for inhibiting mast cell activation and treating mast cell-dependent inflammatory diseases and disorders using lactobacillus
JP2024529325A (en) Compositions and Methods for Treating Disease II

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170301

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170913