JP2014513260A - Particularly suitable for heat storage equipment - Google Patents
Particularly suitable for heat storage equipment Download PDFInfo
- Publication number
- JP2014513260A JP2014513260A JP2013558538A JP2013558538A JP2014513260A JP 2014513260 A JP2014513260 A JP 2014513260A JP 2013558538 A JP2013558538 A JP 2013558538A JP 2013558538 A JP2013558538 A JP 2013558538A JP 2014513260 A JP2014513260 A JP 2014513260A
- Authority
- JP
- Japan
- Prior art keywords
- heat storage
- heat
- heat transfer
- storage facility
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005338 heat storage Methods 0.000 title claims abstract description 45
- 238000012546 transfer Methods 0.000 claims abstract description 30
- 239000013529 heat transfer fluid Substances 0.000 claims abstract description 29
- 229910052751 metal Inorganic materials 0.000 claims abstract description 29
- 239000002184 metal Substances 0.000 claims abstract description 29
- 239000012782 phase change material Substances 0.000 claims abstract description 21
- 230000008018 melting Effects 0.000 claims abstract description 15
- 238000002844 melting Methods 0.000 claims abstract description 15
- 239000007788 liquid Substances 0.000 claims abstract description 7
- 229910000573 alkali metal alloy Inorganic materials 0.000 claims abstract description 6
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 5
- 150000001340 alkali metals Chemical class 0.000 claims abstract description 5
- 238000010248 power generation Methods 0.000 claims abstract description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 10
- 239000000956 alloy Substances 0.000 claims description 10
- 238000003860 storage Methods 0.000 claims description 7
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- 239000011591 potassium Substances 0.000 claims description 5
- 229910000799 K alloy Inorganic materials 0.000 claims description 2
- 229910000528 Na alloy Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 229910001338 liquidmetal Inorganic materials 0.000 claims description 2
- 229910000838 Al alloy Inorganic materials 0.000 claims 1
- 229910000676 Si alloy Inorganic materials 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 5
- 230000004927 fusion Effects 0.000 description 5
- 239000011734 sodium Substances 0.000 description 5
- 238000004146 energy storage Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910052700 potassium Inorganic materials 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- 230000005496 eutectics Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- XXQBEVHPUKOQEO-UHFFFAOYSA-N potassium superoxide Chemical compound [K+].[K+].[O-][O-] XXQBEVHPUKOQEO-UHFFFAOYSA-N 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 239000011232 storage material Substances 0.000 description 2
- 229910000789 Aluminium-silicon alloy Inorganic materials 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000374 eutectic mixture Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S60/00—Arrangements for storing heat collected by solar heat collectors
- F24S60/10—Arrangements for storing heat collected by solar heat collectors using latent heat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K3/00—Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
- F01K3/12—Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having two or more accumulators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K7/00—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
- F01K7/16—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
- F01K7/22—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B1/00—Methods of steam generation characterised by form of heating method
- F22B1/006—Methods of steam generation characterised by form of heating method using solar heat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D20/00—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
- F28D20/02—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D20/00—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
- F28D20/02—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
- F28D20/021—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material and the heat-exchanging means being enclosed in one container
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/46—Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E70/00—Other energy conversion or management systems reducing GHG emissions
- Y02E70/30—Systems combining energy storage with energy generation of non-fossil origin
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
高められた温度において熱エネルギーを貯蔵する蓄熱設備を提供する。前記設備は、蓄熱媒質を保持するためのエンクロージャと、循環する伝熱流体から熱を伝達するための第一の熱伝達面と、前記蓄熱媒質から発電設備に関連する蒸気パイプに熱を伝達するための第二の熱伝達面とを含む。前記蓄熱媒質は金属相変化物質であり、好ましくは500℃を超える融解温度を有し、前記第一の熱伝達面と前記第二の熱伝達面との間に配置される。前記金属伝熱流体は、好ましくは常温から、金属相変化物質の融点を超える最高運転温度までの広い温度範囲において液状である。前記金属伝熱流体は、好ましくは融解アルカリ金属とアルカリ金属の合金とから選択される。本発明は1つ以上のこのような蓄熱設備を備える太陽熱発電所にも及ぶ。
【選択図】 図3A heat storage facility for storing thermal energy at an elevated temperature is provided. The facility transfers heat from the enclosure for holding a heat storage medium, a first heat transfer surface for transferring heat from a circulating heat transfer fluid, and a steam pipe associated with the power generation facility from the heat storage medium. A second heat transfer surface. The heat storage medium is a metal phase change material, preferably has a melting temperature exceeding 500 ° C., and is disposed between the first heat transfer surface and the second heat transfer surface. The metal heat transfer fluid is preferably in a liquid state in a wide temperature range from room temperature to a maximum operating temperature exceeding the melting point of the metal phase change material. The metal heat transfer fluid is preferably selected from molten alkali metals and alkali metal alloys. The invention also extends to a solar power plant comprising one or more such heat storage facilities.
[Selection] Figure 3
Description
本発明は、特に熱エネルギーを貯蔵するために適切であり、さらに、これに限定されないが、特に集光型太陽熱装置を使用して太陽から得られた熱エネルギーに適切である、蓄熱設備に関する。 The present invention relates to a heat storage facility that is particularly suitable for storing thermal energy, and is not limited thereto, but is particularly suitable for thermal energy obtained from the sun using a concentrating solar thermal device.
タワーに設けたソーラーレシーバーを用いて太陽熱を集光すること(CSP)の一つの利点は、熱エネルギーの貯蔵が可能になることである。夜間又は悪天候時に太陽熱発電所が電気エネルギーを提供し得るように快晴日の発電サイクルをバッファーするためには、蓄熱をする必要がある。 One advantage of concentrating solar heat (CSP) using a solar receiver on the tower is that it allows thermal energy storage. In order to buffer the power cycle on a clear day so that the solar thermal power plant can provide electrical energy at night or in bad weather, it is necessary to store heat.
従来の蓄熱システムの多くは顕熱方式において動作し、何らかの融解塩に熱エネルギーを貯蔵するか、熱をコンクリート等の固体物に貯蔵する。融解塩の使用の場合、夜にレシーバーループに塩が固まる可能性があるという不利な点があり、よって夜間等の非運転時中に、又は補助管において、塩を液状に維持するためにトレース加熱をする必要があり、これはメンテナンスの問題に至り得る。 Many conventional heat storage systems operate in a sensible heat system and store thermal energy in some molten salt or store heat in a solid object such as concrete. The use of molten salt has the disadvantage that the receiver loop may solidify at night, so it can be traced to keep the salt in a liquid state during non-operations, such as at night, or in auxiliary pipes. Heating is required, which can lead to maintenance problems.
その他の相変化コンセプトも検討されたが、全て低伝導性の塩に基づくものであり、熱伝導性を向上させるには広範囲な伝熱改善が必要である。 Other phase change concepts were also considered, but all are based on low conductivity salts, and a wide range of heat transfer improvements are needed to improve thermal conductivity.
コンクリート体等の固体貯蔵物質の出力には制限があり、さらにこのような媒質の耐用期間を限定する熱応力にも影響され得る。なお、固体の貯蔵素子を修正することは高価になる。 The output of solid storage materials such as concrete bodies is limited and can also be influenced by thermal stresses that limit the useful life of such media. It is expensive to modify a solid storage element.
他の貯蔵システムにおいて、貯蔵物質及び伝熱流体として油を使用することも可能である。これに関する主要な問題は、油の最高使用温度が約400℃であることである。この事実はレシーバーの最高温度を大きく制限し、発電所の最高効率を制限する。 In other storage systems, it is also possible to use oil as storage material and heat transfer fluid. The main problem with this is that the maximum use temperature of the oil is about 400 ° C. This fact greatly limits the maximum receiver temperature and limits the maximum efficiency of the power plant.
出願人の知る限り、従来の蓄熱方法全てには限界がある。一般的には熱エネルギー貯蔵に関して二つの限定点があり、その一つは温度による限定であり、そしてもう一つは固有の閉塞問題を引き起こす高融解温度の伝熱流体である。 To the best of the applicant's knowledge, all conventional heat storage methods have limitations. There are generally two limitations with regard to thermal energy storage, one is temperature limitation, and the other is a high melting temperature heat transfer fluid that causes inherent plugging problems.
従って、伝熱流体のトレース加熱の必要性を取り除き、そして従来実施されているものよりも高温度で高出力熱エネルギー貯蔵を提供する新たな熱エネルギー貯蔵システムが必要である。 Accordingly, there is a need for a new thermal energy storage system that eliminates the need for trace heating of the heat transfer fluid and provides high power thermal energy storage at higher temperatures than previously practiced.
本発明の第一の形態において、高められた温度で熱エネルギーを貯蔵する蓄熱設備が提供され、前記設備は蓄熱媒質を保持するためのエンクロージャと、循環する伝熱流体から熱を伝達するための第一の熱伝達面と、前記蓄熱媒質から発電設備に関連する蒸気パイプに熱を伝達するための第二の熱伝達面とを含み、前記第一の熱伝達面と前記第二の熱伝達面との間に配置された前記蓄熱媒質が金属相変化物質(PCM)であり、前記伝熱流体が液体金属であることを特徴とする。 In a first aspect of the present invention, a heat storage facility is provided for storing thermal energy at an elevated temperature, said facility being for an enclosure for holding a heat storage medium and for transferring heat from a circulating heat transfer fluid. A first heat transfer surface; and a second heat transfer surface for transferring heat from the heat storage medium to a steam pipe associated with the power generation facility, the first heat transfer surface and the second heat transfer surface. The heat storage medium disposed between the surface and the surface is a metal phase change material (PCM), and the heat transfer fluid is a liquid metal.
本発明のさらなる特徴として、金属相変化物質は高熱伝導性、高融解潜熱、及び融解温度、好ましくは約500℃を超える融解温度、及び高運転温度を有する。材料の一つの候補としては、アルミニウム及びシリコンの合金である金属相変化物質があり、好ましくは87.76%のAl及び12.24%のSiを含む合金(AlSi12、LM6鋳造合金とも呼ばれる)のような市販の合金がある。 As a further feature of the invention, the metal phase change material has a high thermal conductivity, a high latent heat of fusion, and a melting temperature, preferably above about 500 ° C., and a high operating temperature. One candidate material is a metal phase change material that is an alloy of aluminum and silicon, preferably an alloy containing 87.76% Al and 12.24% Si (also called AlSi12, LM6 casting alloy). There are commercially available alloys.
本発明はさらに、常温温度から、金属相変化物質の融点を超える最高運転温度までの広い温度範囲において液状であるような金属伝熱流体を提供し、前記金属伝熱流体は主として融解アルカリ金属又はアルカリ金属の合金であり、特にNaKと知られているナトリウム及びカリウムの合金であり、そして前記熱伝達面は一般には前記エンクロージャを通って伸びる概して平行なパイプ又は前記エンクロージャに隣接する概して平行なパイプの熱伝達面である。 The present invention further provides a metal heat transfer fluid that is liquid in a wide temperature range from room temperature to a maximum operating temperature that exceeds the melting point of the metal phase change material, wherein the metal heat transfer fluid is mainly a molten alkali metal or An alkali metal alloy, in particular a sodium and potassium alloy known as NaK, and the heat transfer surface is generally a generally parallel pipe extending through the enclosure or a generally parallel pipe adjacent to the enclosure The heat transfer surface.
本発明はさらに、蓄熱設備が予熱器、ボイラー、過熱器、再熱器、又はそのいずれかの2つ以上のユニットの機能を果たすようにデザインされた組み合わせユニットのから選択されたユニットの一部を構成する、上記に定義された蓄熱設備を提供する。 The invention further provides a part of a unit selected from a heat storage facility selected from a preheater, boiler, superheater, reheater, or combination unit designed to perform the function of two or more units of any one thereof. A heat storage facility as defined above is provided.
本発明のある形態において、一般には比較的低容量の太陽熱装置の一部が、タワーに搭載された関連のソーラーレシーバーを備える1つのヘリオスタットフィールドにより構成され、この場合、上記に定義した蓄熱設備がタワーに組み込まれていてもよい。 In one form of the invention, in general, a part of a relatively low capacity solar thermal device is constituted by one heliostat field with an associated solar receiver mounted on the tower, in this case the heat storage facility defined above May be built into the tower.
本発明のもう一つの形態において、太陽熱装置はタワーに搭載された関連するソーラーレシーバーを備える、複数のヘリオスタットフィールドを含み得、前記ソーラーレシーバーのそれぞれは、1つ以上の共有の上記の蓄熱設備に接続されている。このような場合には、蓄熱設備は予熱器、ボイラー、過熱器、及び再熱器から選択された1つ以上のユニットにおいて実装されてもよく、一般にはこれら全てにおいて実装され、前記設備のそれぞれへの伝熱流体の流れは、それら設備の関連する目的を達成するように制御される。 In another form of the invention, the solar thermal device may include a plurality of heliostat fields with associated solar receivers mounted on the tower, each of the solar receivers having one or more shared thermal storage facilities as described above. It is connected to the. In such a case, the heat storage facility may be implemented in one or more units selected from preheaters, boilers, superheaters, and reheaters, generally implemented in all of these, each of the facilities The flow of heat transfer fluid to is controlled to achieve the relevant objectives of the equipment.
上述の蓄熱設備の構築において、融解高温アルカリ金属合金と水又は蒸気との間の金属相変化物質の存在が、さもなければ悲惨な結果を招くアルカリ金属と水又は蒸気との接触を防いでいる限り、伝熱流体として適切な融解アルカリ金属合金を使用することが可能であることが理解される。この構成は今までの関連する状況で使用されていない材料の特有な性質を有用に適用することを可能にし、特異的な性質を活用することを可能にする。従って、本発明は、水又は蒸気の加熱器又は発生器を蓄熱設備と組み合わせることを可能にする。 In the construction of the heat storage facility described above, the presence of a metal phase change material between the molten high temperature alkali metal alloy and water or steam prevents contact between the alkali metal and water or steam that would otherwise have disastrous consequences. As far as it is understood, it is possible to use a suitable molten alkali metal alloy as the heat transfer fluid. This configuration makes it possible to usefully apply the unique properties of materials that have not been used in related situations so far, and to take advantage of specific properties. Thus, the present invention allows a water or steam heater or generator to be combined with a heat storage facility.
従って、使用において熱は、一般には(共晶の、又は亜共晶の)NaK等の融解アルカリ金属合金である融解伝熱流体によりタワー上のレシーバーから金属相変化物質に伝達され、金属相変化物質はこの材料の融解潜熱により熱エネルギーを吸収するように溶け、そして熱は貯蔵され、並びに必要に応じて水から蒸気を生成させるため及び発電所での使用のために蒸気を過熱するために、第二の熱伝達面に伝達される。 Thus, in use, heat is transferred from the receiver on the tower to the metal phase change material by a molten heat transfer fluid, typically a molten alkali metal alloy such as NaK (eutectic or hypoeutectic), and the metal phase change. The material melts to absorb the heat energy due to the latent heat of fusion of this material, and the heat is stored and, if necessary, to generate steam from water and to superheat the steam for use in the power plant And transferred to the second heat transfer surface.
本発明の上記又は他の特徴を十分に理解されるために、次に二つの異なる実施形態を、図面を参照して詳しく説明する。 In order that the above and other features of the present invention may be fully understood, two different embodiments will now be described in detail with reference to the drawings.
図1に示される本発明の実施形態において、集光型太陽熱装置は、タワー(3)に搭載されたソーラーレシーバー(2)を備える、実質的に従来型のヘリオスタット(1)を含む。タワーにおけるソーラーレシーバーは、アルカリ金属NaKの形態をとる伝熱流体を加熱するために使用される。 In the embodiment of the invention shown in FIG. 1, the concentrating solar thermal apparatus comprises a substantially conventional heliostat (1) with a solar receiver (2) mounted on the tower (3). Solar receivers in the tower are used to heat the heat transfer fluid in the form of alkali metal NaK.
特にこの実施形態においては、蓄熱部、蒸気発生器、及び循環システムは、全てタワーに含まれる。このような構成は集光型太陽熱装置のあるサイズのものにのみ適用可能であることが予想され、図2を参照して説明される本発明の実施形態により似ている可能性の高いより大きいものには適用されないことが予想される。 In particular, in this embodiment, the heat storage unit, the steam generator, and the circulation system are all included in the tower. Such a configuration is expected to be applicable only to certain sizes of concentrating solar devices and is more likely to be more similar to the embodiment of the invention described with reference to FIG. Is not expected to apply to
図1に示される本発明の実施形態に戻り、伝熱流体はポンプ(4)によりレシーバー及びエンクロージャ(6)に含まれる金属相変化物質(5)を通して循環され、一連の熱伝達パイプ(7)を介してタワーを実質的に満たす。伝熱流体、つまり融解NaK熱伝達液は、よって熱レシーバーにおいて加熱され、第一の熱伝達面を構成する一連の熱伝達パイプ(7)を通して循環する。 Returning to the embodiment of the invention shown in FIG. 1, the heat transfer fluid is circulated by the pump (4) through the metal phase change material (5) contained in the receiver and the enclosure (6) to form a series of heat transfer pipes (7). To substantially fill the tower through. The heat transfer fluid, ie the molten NaK heat transfer liquid, is thus heated in the heat receiver and circulates through a series of heat transfer pipes (7) constituting the first heat transfer surface.
第二の熱伝達面を構成する蒸気パイプ(8)も金属相変化物質と接触するが、熱伝達パイプ(7)に対して間隙をおいて配置されている。蒸気パイプは下のタンク(9)から上の蒸気チャンバ(10)に伸びるか、又は外部の蒸気ドラムが存在してもよい。 The steam pipe (8) constituting the second heat transfer surface is also in contact with the metal phase change material, but is disposed with a gap with respect to the heat transfer pipe (7). The steam pipe may extend from the lower tank (9) to the upper steam chamber (10) or there may be an external steam drum.
集光型太陽熱装置の残部は実質的に従来型であり、通常の蒸気処理装置と、高圧力、中圧力、及び低圧力タービン(11、12、13)と、一般的に番号(14)に示される凝縮再生利用装置とを含む。 The remainder of the concentrating solar thermal device is substantially conventional, with the usual steam treatment devices, high pressure, medium pressure, and low pressure turbines (11, 12, 13), generally numbered (14) And the condensing recycling apparatus shown.
さらに言及すべきことは、この場合において、高圧力タービン(11)から出力される蒸気が中圧力タービン(12)に入る前に加熱するための再熱器(15)を同様に構築することが可能であり、この再熱器が自身のヘリオスタットフィールド(16)、レシーバー、タワー、及び蓄熱設備を有することも可能である。 It should be further noted that in this case, a reheater (15) can also be constructed for heating the steam output from the high pressure turbine (11) before entering the intermediate pressure turbine (12). It is possible that this reheater has its own heliostat field (16), receiver, tower, and heat storage equipment.
次に図2に示される本発明の実施形態に関して、より大きい集光型太陽熱装置において、複数のヘリオスタットフィールド(21)、この場合は4つのヘリオスタットフィールドは、それぞれタワー(23)に設けられた独自のレシーバー(22)を有し、これらの伝熱流体の出力は、全体の太陽熱レシーバーアセンブリが、水又は蒸気の加熱器及び発生器の一部を構成する別個の構成の蓄熱部を提供できるように、互いにつながっている。 Next, with respect to the embodiment of the present invention shown in FIG. 2, in a larger concentrating solar thermal apparatus, a plurality of heliostat fields (21), in this case four heliostat fields, are each provided in the tower (23). With their own receiver (22), the output of these heat transfer fluids provides a separate configuration of heat storage, where the entire solar receiver assembly forms part of the water or steam heater and generator Connected to each other so that you can.
特にこの実施形態においては、蓄熱部と、水及び蒸気の加熱及び発生器とは、高圧力タービン(28)及び中圧力タービン(29)の間に配置された予熱器(24)、ボイラー(25)、過熱器(26)、及び再熱器(27)を含む。各ケースにおいて、適切なユニットは独自のエンクロージャを有し、エンクロージャは以下図3を参照して説明されているものと実質的に同様に構成されているために分かれては示されていない熱伝達パイプと蒸気パイプとを含む。 In particular, in this embodiment, the heat storage section and the water and steam heating and generator are a preheater (24), boiler (25) disposed between a high pressure turbine (28) and a medium pressure turbine (29). ), A superheater (26), and a reheater (27). In each case, the appropriate unit has its own enclosure, which is not shown separately because the enclosure is configured substantially similar to that described below with reference to FIG. Includes pipes and steam pipes.
図3に示されているように、本発明による蓄熱構成が使用されている各場合に、一連の同心円等のような適切なパターンで金属相変化物質により満たされた格納エンクロージャ(33)の内部中にパイプを分布することにより、蒸気パイプ(31)及び伝熱流体パイプ(32)の好ましい一般的な構成が得られる。 As shown in FIG. 3, the interior of the containment enclosure (33) filled with a metal phase change material in a suitable pattern, such as a series of concentric circles, etc., in each case where a heat storage configuration according to the present invention is used. Distributing the pipes therein provides a preferred general configuration of steam pipes (31) and heat transfer fluid pipes (32).
金属伝熱流体の好ましい特性は、低融点(好ましくは室温より低い)と、高熱伝導性と、高密度と、高比熱容量とである。低融点は、レシーバーは少なくとも寿命の半分は低温であるため、信頼性のある集光型太陽熱装置には重要である。レシーバーにおいて、高融点をもつ伝熱流体は、伝熱流体の固体化は重大な問題を引き起こすため、装置の信頼性を低下させることになる。 Preferred properties of the metal heat transfer fluid are a low melting point (preferably below room temperature), high thermal conductivity, high density, and high specific heat capacity. The low melting point is important for a reliable concentrating solar thermal device because the receiver is cold for at least half of its lifetime. In the receiver, the heat transfer fluid having a high melting point reduces the reliability of the apparatus because solidification of the heat transfer fluid causes a serious problem.
NaKはナトリウム及びカリウムの共晶混合物であり、その共晶組成はカリウム78%とナトリウム22%(質量%)である。マイナス12.6℃から785℃の間は液状である。40%から90%カリウム(質量%)を含む組成は室温において液状である。カリウムよりナトリウムの比熱容量が高いため、より多くナトリウムを含む混合物が好ましい。NaKの特性は、水との高い反応性を含み、空気中で保管された場合、カリウムスーパーオキシドが形成され、これは発火し得るものであり、そして有機物との高い反応性を有し、このことは有機溶媒及び鉱油中に保管することを危険とする。共晶NaKは、非常に高い表面張力と、100℃において0.855g/mLの密度と、100℃において23.2Wm-1K-1の熱伝導性とを有する。 NaK is a eutectic mixture of sodium and potassium, and its eutectic composition is 78% potassium and 22% (mass%) sodium. It is liquid between minus 12.6 ° C and 785 ° C. A composition containing 40% to 90% potassium (mass%) is liquid at room temperature. Because sodium has a higher specific heat capacity than potassium, a mixture containing more sodium is preferred. The properties of NaK include high reactivity with water, and when stored in air, potassium superoxide is formed, which can ignite and has high reactivity with organic matter, This makes it dangerous to store in organic solvents and mineral oil. Eutectic NaK has a very high surface tension, a density of 0.855 g / mL at 100 ° C., and a thermal conductivity of 23.2 Wm −1 K −1 at 100 ° C.
原子力産業における何年もの研究の結果、集光型太陽装置において安全にNaKが使用できるようにNaKの標準デザイン及び取り扱いプロトコルが成立された。 After years of research in the nuclear industry, a standard design and handling protocol for NaK has been established so that NaK can be used safely in concentrating solar devices.
金属相変化物質に関して、二つの良い候補は、Al87.76%及びSi12.24%を含む、557℃の融点及び498J/gの融解熱を有する合金と、Al83.14%、Si11.7%、及びMg5.16%を含む、555℃の融点及び485J/gの融解熱を有する合金である。前者は、一般的な低コスト鋳合金で、高熱伝導性を有すつ合金であるため選択された。さらに、非毒性であり、簡単に入手でき、そしてさらなる合金化により融解潜熱を向上させる見込みもある。 For metal phase change materials, two good candidates are alloys with a melting point of 557 ° C. and a heat of fusion of 498 J / g, including Al 87.76% and Si 12.24%, Al 83.14%, Si 11.7%, And an alloy having a melting point of 555 ° C. and a heat of fusion of 485 J / g, including 5.16% Mg. The former was selected because it is a general low-cost cast alloy and a high thermal conductivity alloy. Furthermore, it is non-toxic, readily available, and has the potential to improve latent heat of fusion through further alloying.
770℃を超える上部レシーバーの温度及び557℃のAlSi合金の融点が、蒸気サイクルの使用を可能にする。過熱蒸気は従って金属相変化物質に貯蔵された熱により直接生成され得る。 The upper receiver temperature above 770 ° C. and the melting point of the AlSi alloy at 557 ° C. allow the use of a steam cycle. Superheated steam can therefore be generated directly by the heat stored in the metal phase change material.
熱伝達概念を実施するには幾つかの方法があるが、この概念の最終的な形態は、具体的なデザインの要件による。格納エンクロージャは円筒形状である必要はないが、タワーを用いる場合は、円筒形状は合理的である。 There are several ways to implement the heat transfer concept, but the final form of this concept depends on the specific design requirements. The storage enclosure need not be cylindrical, but if a tower is used, the cylindrical shape is reasonable.
格納エンクロージャに関係する可能なパイプレイアウトに関しては、さらなる具体的な形状が具体的な応用に対して適切であり得る。考慮すべき一つの重要な要因は、伝熱流体パイプの面である第一熱伝達面を介して伝達させる熱である。もう一つの要因は必要な熱流束を提供するための、この伝熱流体パイプと、蒸気パイプの面である第二の熱伝達面との間の距離である。さらにもう一つの要件は、存在する金属相変化物質の体積である。当然、熱伝達要件は、サイズに依存する。 With respect to possible pipe layouts associated with the storage enclosure, more specific shapes may be appropriate for specific applications. One important factor to consider is the heat transferred through the first heat transfer surface, which is the surface of the heat transfer fluid pipe. Another factor is the distance between this heat transfer fluid pipe and the second heat transfer surface, the face of the steam pipe, to provide the necessary heat flux. Yet another requirement is the volume of metal phase change material present. Of course, the heat transfer requirements depend on the size.
多数の可能性が存在すること、及び上述の本発明の実施形態は単に可能な構成を表すものであることが理解される。 It will be appreciated that there are numerous possibilities and that the above-described embodiments of the present invention are merely representative of possible configurations.
従って、本発明は効率の良い蓄熱設備を提供し、特にヘリオスタットフィールドレシーバー式設備との併用に適切な蓄熱設備を提供する。 Accordingly, the present invention provides an efficient heat storage facility, and in particular, provides a heat storage facility suitable for combined use with a heliostat field receiver type facility.
Claims (11)
蓄熱媒質を保持するためのエンクロージャと、
循環する伝熱流体から熱を伝達するための第一の熱伝達面と、
前記蓄熱媒質から発電設備に関連する蒸気パイプに熱を伝達するための第二の熱伝達面とを含み、
前記第一の熱伝達面と前記第二の熱伝達面との間に配置された前記蓄熱媒質が金属相変化物質であり、
前記伝熱流体が液状金属であることを特徴とする蓄熱設備。 A heat storage facility for storing thermal energy at an elevated temperature,
An enclosure for holding a heat storage medium;
A first heat transfer surface for transferring heat from the circulating heat transfer fluid;
A second heat transfer surface for transferring heat from the heat storage medium to a steam pipe associated with the power generation facility,
The heat storage medium disposed between the first heat transfer surface and the second heat transfer surface is a metal phase change material;
The heat storage facility, wherein the heat transfer fluid is a liquid metal.
前記ソーラーレシーバーのそれぞれは、1つ以上の共用の請求項1乃至9の何れか1項に記載の蓄熱設備に接続され、
前記蓄熱設備は、予熱器、ボイラー、過熱器、及び再熱器から選択された1つ以上のユニットにおいて実装され、
前記設備のそれぞれへの伝熱流体の流れは、関連する前記ユニットの関連する目的を達成するように制御される、太陽熱装置。 A solar thermal device having a plurality of heliostat fields, with an associated solar receiver mounted on the tower,
Each of the solar receivers is connected to one or more shared heat storage facilities according to any one of claims 1 to 9,
The heat storage facility is implemented in one or more units selected from a preheater, boiler, superheater, and reheater,
A solar thermal device, wherein the flow of heat transfer fluid to each of the facilities is controlled to achieve an associated purpose of the associated unit.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ZA2011/01869 | 2011-03-11 | ||
ZA201101869 | 2011-03-11 | ||
PCT/IB2012/051038 WO2012123853A1 (en) | 2011-03-11 | 2012-03-06 | Thermal storage facility especially suitable for concentrating solar power installations |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014513260A true JP2014513260A (en) | 2014-05-29 |
Family
ID=46830104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013558538A Pending JP2014513260A (en) | 2011-03-11 | 2012-03-06 | Particularly suitable for heat storage equipment |
Country Status (6)
Country | Link |
---|---|
US (1) | US20140000583A1 (en) |
EP (1) | EP2683983A1 (en) |
JP (1) | JP2014513260A (en) |
AP (1) | AP2013007169A0 (en) |
WO (1) | WO2012123853A1 (en) |
ZA (1) | ZA201307450B (en) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015023847A1 (en) * | 2013-08-16 | 2015-02-19 | Georgia Tech Research Corporation | Systems and methods for thermophotovoltaics with storage |
CN103712501B (en) * | 2014-01-02 | 2017-08-11 | 上海电气集团股份有限公司 | Single tank fused salt heat-storing device in a kind of distributed micro-grid |
TWI519268B (en) * | 2015-04-16 | 2016-02-01 | 羅家慶 | Spraying heat preservation vapor supplying device and generator apparatus using such device |
US10254012B2 (en) * | 2015-09-08 | 2019-04-09 | Peter B. Choi | Sensible thermal energy storage (STES) systems |
WO2018011363A1 (en) * | 2016-07-15 | 2018-01-18 | Ulrich Bech | High-temperature radiation receiver system |
CH713487A1 (en) * | 2017-02-27 | 2018-08-31 | Bech Ulrich | High-temperature radiation receiver system. |
US10870784B2 (en) | 2016-11-30 | 2020-12-22 | Massachusetts Institute Of Technology | System for direct electrical charging and storage of thermal energy for power plants |
IT201800009659A1 (en) * | 2018-10-22 | 2020-04-22 | Spiga Nord Spa | Latent heat thermal energy storage unit |
US12291982B2 (en) | 2020-11-30 | 2025-05-06 | Rondo Energy, Inc. | Thermal energy storage systems for use in material processing |
DE102020107464A1 (en) | 2020-03-18 | 2021-09-23 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | HEAT STORAGE DEVICE |
CN114271668B (en) * | 2020-09-27 | 2023-11-24 | 武汉苏泊尔炊具有限公司 | Cooking utensil and processing method thereof |
US12146424B2 (en) | 2020-11-30 | 2024-11-19 | Rondo Energy, Inc. | Thermal energy storage system coupled with a solid oxide electrolysis system |
US12018596B2 (en) | 2020-11-30 | 2024-06-25 | Rondo Energy, Inc. | Thermal energy storage system coupled with thermal power cycle systems |
US12359591B1 (en) | 2020-11-30 | 2025-07-15 | Rondo Energy, Inc. | Thermal energy storage systems for repowering existing power plants for improving efficiency and safety |
IL303311B1 (en) | 2020-11-30 | 2025-07-01 | Rondo Energy Inc | Energy storage system and applications |
US11913362B2 (en) | 2020-11-30 | 2024-02-27 | Rondo Energy, Inc. | Thermal energy storage system coupled with steam cracking system |
US11913361B2 (en) | 2020-11-30 | 2024-02-27 | Rondo Energy, Inc. | Energy storage system and alumina calcination applications |
FR3128652B1 (en) | 2021-11-03 | 2025-01-17 | Psa Automobiles Sa | Versatile and automated device for removing surface defects by abrasion |
KR20250073279A (en) * | 2022-09-19 | 2025-05-27 | 홀텍 인터내셔날 | Green Energy Heat Storage System |
CN116398865B (en) * | 2023-04-04 | 2024-08-02 | 北京怀柔实验室 | Efficient and flexible peak shaving molten salt system |
WO2024215949A2 (en) | 2023-04-14 | 2024-10-17 | Rondo Energy, Inc. | Thermal energy storage systems with improved seismic stability |
US20240410343A1 (en) * | 2023-06-11 | 2024-12-12 | Holtec International | Solar power generation system |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3999602A (en) * | 1975-10-21 | 1976-12-28 | The United States Of America As Represented By The United States Energy Research And Development Administration | Matrix heat exchanger including a liquid, thermal couplant |
US4146057A (en) * | 1977-11-07 | 1979-03-27 | Rockwell International Corporation | Thermal buffer system |
JPS60149801A (en) * | 1984-01-13 | 1985-08-07 | 三菱重工業株式会社 | Pre-treatment method on inspection of high-temperature liquid metal treating apparatus |
JPS6341701A (en) * | 1986-08-08 | 1988-02-23 | 石川島播磨重工業株式会社 | steam generator |
US20040182081A1 (en) * | 2003-03-17 | 2004-09-23 | Sim Yoon Sub | Steam generator for liquid metal reactor and heat transfer method thereof |
US20040244376A1 (en) * | 2003-06-03 | 2004-12-09 | Litwin Robert Z. | Systems and methods for generating electrical power from solar energy |
US20100024421A1 (en) * | 2006-12-08 | 2010-02-04 | United Technologies Corporation | Supercritical co2 turbine for use in solar power plants |
WO2011077248A2 (en) * | 2009-12-23 | 2011-06-30 | Goebel, Olaf | Combined cycle solar power generation |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3907026A (en) * | 1973-08-21 | 1975-09-23 | Westinghouse Electric Corp | Double tube heat exchanger |
US4403643A (en) * | 1978-10-10 | 1983-09-13 | Sunpower Systems Inc. | Method and apparatus for accumulating, storing and releasing thermal energy |
US4433673A (en) * | 1979-10-04 | 1984-02-28 | Vierling Donald E | Method and apparatus for continuously supplying a load |
JPS5776078A (en) * | 1980-10-29 | 1982-05-12 | Agency Of Ind Science & Technol | Heat accumulator utilizing latent heat |
US4727930A (en) * | 1981-08-17 | 1988-03-01 | The Board Of Regents Of The University Of Washington | Heat transfer and storage system |
CA2515822C (en) * | 2005-08-30 | 2012-07-03 | Joe Ru He Zhao | Method to regulate temperature and reduce heat island effect |
-
2012
- 2012-03-06 WO PCT/IB2012/051038 patent/WO2012123853A1/en active Application Filing
- 2012-03-06 EP EP12757909.2A patent/EP2683983A1/en not_active Withdrawn
- 2012-03-06 AP AP2013007169A patent/AP2013007169A0/en unknown
- 2012-03-06 US US14/004,661 patent/US20140000583A1/en not_active Abandoned
- 2012-03-06 JP JP2013558538A patent/JP2014513260A/en active Pending
-
2013
- 2013-10-07 ZA ZA2013/07450A patent/ZA201307450B/en unknown
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3999602A (en) * | 1975-10-21 | 1976-12-28 | The United States Of America As Represented By The United States Energy Research And Development Administration | Matrix heat exchanger including a liquid, thermal couplant |
JPS5251152A (en) * | 1975-10-21 | 1977-04-23 | Us Government | Matrix heat exchanger |
US4146057A (en) * | 1977-11-07 | 1979-03-27 | Rockwell International Corporation | Thermal buffer system |
JPS60149801A (en) * | 1984-01-13 | 1985-08-07 | 三菱重工業株式会社 | Pre-treatment method on inspection of high-temperature liquid metal treating apparatus |
JPS6341701A (en) * | 1986-08-08 | 1988-02-23 | 石川島播磨重工業株式会社 | steam generator |
US20040182081A1 (en) * | 2003-03-17 | 2004-09-23 | Sim Yoon Sub | Steam generator for liquid metal reactor and heat transfer method thereof |
JP2004279395A (en) * | 2003-03-17 | 2004-10-07 | Korea Atom Energ Res Inst | Steam generator for liquid metal furnace and its heat transfer method |
US20040244376A1 (en) * | 2003-06-03 | 2004-12-09 | Litwin Robert Z. | Systems and methods for generating electrical power from solar energy |
US20100024421A1 (en) * | 2006-12-08 | 2010-02-04 | United Technologies Corporation | Supercritical co2 turbine for use in solar power plants |
JP2011017449A (en) * | 2006-12-08 | 2011-01-27 | United Technologies Corp <Utc> | Turbine system, and system and method for supplying energy to supercritical carbon dioxide turbine |
WO2011077248A2 (en) * | 2009-12-23 | 2011-06-30 | Goebel, Olaf | Combined cycle solar power generation |
Also Published As
Publication number | Publication date |
---|---|
AP2013007169A0 (en) | 2013-10-31 |
US20140000583A1 (en) | 2014-01-02 |
ZA201307450B (en) | 2014-11-26 |
WO2012123853A1 (en) | 2012-09-20 |
EP2683983A1 (en) | 2014-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2014513260A (en) | Particularly suitable for heat storage equipment | |
US9541070B2 (en) | Plant for energy production | |
Heller | Literature review on heat transfer fluids and thermal energy storage systems in CSP plants | |
CN105008840B (en) | Combine the thermal energy storage system of sensible heat solid material and phase-change material | |
US4192144A (en) | Direct contact heat exchanger with phase change of working fluid | |
US20110120669A1 (en) | Liquid metal thermal storage system | |
US20110100356A1 (en) | Reversible hydride thermal energy storage cell optimized for solar applications | |
JP2014092086A (en) | Solar heat power plant, and solar heat storage and radiation apparatus | |
US20150144304A1 (en) | High-temperature thermal storage device with induction heating and molten metal, and thermal storage-composite system | |
CN102162636B (en) | A high-temperature heat storage and evaporation integrated device | |
US20100230075A1 (en) | Thermal Storage System | |
CN107939623A (en) | Solar energy water working medium tower type thermal generation device with fuse salt heat accumulation | |
CN107941064A (en) | A kind of multi-phase change material divides chamber bushing type phase change heat accumulator | |
JP2016217223A (en) | Solar gas turbine power generation system | |
Kotzé et al. | NaK as a primary heat transfer fluid in thermal solar power installations | |
Valenzuela | Thermal energy storage concepts for direct steam generation (DSG) solar plants | |
US20240093950A1 (en) | Green energy thermal storage system | |
White et al. | Phase change salt thermal energy storage for dish stirling solar power systems | |
Liu et al. | Performance of solid particles as thermal storage media in thermal power flexibility retrofits: Effects of charging and discharging flow rates on single piece stacking bed | |
GB2577579A (en) | A heat store for an energy storage system | |
CN101818292B (en) | Al-Cu-Mg-Zn high-temperature phase-change heat storage material | |
CN102914068A (en) | High temperature heat storage and exchange device applied to solar thermal power plant | |
Shatnawi et al. | Solar thermal power: Appraisal of solar power towers | |
CN204829827U (en) | Sun energy reserve heat recovery steam generator | |
CN208817098U (en) | A kind of storage of nuclear reactor steam and heating system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150223 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20151203 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151214 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20160513 |