JP2014228486A - Three-dimensional profile acquisition device, pattern inspection device, and three-dimensional profile acquisition method - Google Patents
Three-dimensional profile acquisition device, pattern inspection device, and three-dimensional profile acquisition method Download PDFInfo
- Publication number
- JP2014228486A JP2014228486A JP2013110188A JP2013110188A JP2014228486A JP 2014228486 A JP2014228486 A JP 2014228486A JP 2013110188 A JP2013110188 A JP 2013110188A JP 2013110188 A JP2013110188 A JP 2013110188A JP 2014228486 A JP2014228486 A JP 2014228486A
- Authority
- JP
- Japan
- Prior art keywords
- light
- interference fringe
- unit
- dimensional profile
- scanning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000007689 inspection Methods 0.000 title claims abstract description 59
- 238000000034 method Methods 0.000 title claims abstract description 42
- 238000010191 image analysis Methods 0.000 claims abstract description 32
- 230000003287 optical effect Effects 0.000 claims description 72
- 238000003384 imaging method Methods 0.000 claims description 60
- 230000007547 defect Effects 0.000 claims description 37
- 238000005259 measurement Methods 0.000 claims description 35
- 230000004397 blinking Effects 0.000 claims description 16
- 238000012795 verification Methods 0.000 claims description 15
- 230000003595 spectral effect Effects 0.000 claims description 10
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 238000012545 processing Methods 0.000 abstract description 17
- 238000001514 detection method Methods 0.000 description 15
- 238000005070 sampling Methods 0.000 description 9
- 239000000758 substrate Substances 0.000 description 8
- 230000006870 function Effects 0.000 description 5
- 238000005305 interferometry Methods 0.000 description 5
- 238000012544 monitoring process Methods 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000000018 DNA microarray Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000004556 laser interferometry Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Instruments For Measurement Of Length By Optical Means (AREA)
Abstract
【課題】被測定面の高さ分布を表す三次元プロファイルを比較的簡単な処理で比較的高速に取得できる三次元プロファイル取得装置、パターン検査装置、三次元プロファイル取得方法を提供する。【解決手段】三次元プロファイル取得装置21は、カメラ41を有する干渉計42と、光路の異なる2つの光に分岐させるハーフミラー48と参照ミラー49とを有する走査部55と、カメラ41が撮像した画像を基に画像解析により干渉フリンジのピークが現れた走査位置(Z位置)を画素毎に検出し、三次元プロファイルPDを生成する。発光制御部65は発光駆動部61を介して光源43を、干渉フリンジと同周期かつ同位相で点滅させる。また、カメラ41が配線基板12の被測定面12aを撮像する際の露光時間は、干渉フリンジの周期の自然数倍に設定されている。【選択図】図3A three-dimensional profile acquisition apparatus, a pattern inspection apparatus, and a three-dimensional profile acquisition method capable of acquiring a three-dimensional profile representing the height distribution of a surface to be measured by relatively simple processing at relatively high speed. A three-dimensional profile acquisition device (21) includes an interferometer (42) having a camera (41); Based on the image, the scanning position (Z position) where the peak of the interference fringe appears is detected for each pixel by image analysis, and a three-dimensional profile PD is generated. The light emission control section 65 causes the light source 43 to blink in the same cycle and phase as the interference fringes via the light emission drive section 61 . Also, the exposure time when the camera 41 takes an image of the surface 12a to be measured of the wiring board 12 is set to a natural number multiple of the period of the interference fringes. [Selection drawing] Fig. 3
Description
本発明は、被測定面の高さ分布を光学的に測定して三次元プロファイルを取得する三次元プロファイル取得装置、これを備えたパターン検査装置及び三次元プロファイル取得方法に関する。 The present invention relates to a three-dimensional profile acquisition apparatus that optically measures the height distribution of a surface to be measured to acquire a three-dimensional profile, a pattern inspection apparatus including the same, and a three-dimensional profile acquisition method.
この種の三次元プロファイル取得装置として、干渉計を用いた異物検査装置(例えば特許文献1)、干渉計を用いた深さ測定装置(例えば特許文献2)及び干渉計を用いた表面形状測定装置(例えば特許文献3)が知られている。 As this type of three-dimensional profile acquisition apparatus, a foreign substance inspection apparatus using an interferometer (for example, Patent Document 1), a depth measuring apparatus using an interferometer (for example, Patent Document 2), and a surface shape measuring apparatus using an interferometer (For example, Patent Document 3) is known.
例えば特許文献1に記載の異物検査装置は、レーザ光源を光源とする干渉計を用いてレーザ干渉法により検査する構成なので、光路の異なるレーザ光が合流すれば光路差によらず常に干渉フリンジが発生するため、検査対象面の高さ分布の計測は困難である。 For example, the foreign substance inspection apparatus described in Patent Document 1 is configured to inspect by laser interferometry using an interferometer that uses a laser light source as a light source. Therefore, if laser beams having different optical paths are combined, an interference fringe is always generated regardless of the optical path difference. Therefore, it is difficult to measure the height distribution of the inspection target surface.
これに対して特許文献2及び3に記載の測定装置は、白色光を発光する光源を備えた干渉計を用いて白色干渉法により測定をする。すなわち、特許文献2に記載の深さ測定装置では、白色光の光ビームをビームスプリッタで試料に対物レンズを通して投射する測定ビームと参照ミラーに反射させる参照ビームとに分け、測定ビームと参照ビームとの相対的な光路長差をフリンジスキャン手段により変化させる。そして、信号処理回路が、試料からの反射光と参照ミラーからの反射光とを合成して発生した干渉ビームを受光した光検出手段(例えばラインセンサ)からのフリンジスキャン信号に基づく変位情報と、対物レンズと試料との相対位置情報とに基づいて凹部の深さ情報を出力する。 On the other hand, the measurement apparatuses described in Patent Documents 2 and 3 perform measurement by the white interference method using an interferometer provided with a light source that emits white light. That is, in the depth measuring apparatus described in Patent Document 2, a white light beam is divided into a measurement beam projected onto a sample through an objective lens by a beam splitter and a reference beam reflected by a reference mirror. The relative optical path length difference is changed by the fringe scanning means. And the displacement information based on the fringe scan signal from the light detection means (for example, line sensor) which received the interference beam generated by the signal processing circuit combining the reflected light from the sample and the reflected light from the reference mirror, The depth information of the recess is output based on the relative position information between the objective lens and the sample.
また、特許文献3に記載の表面形状測定装置では、白色光源からの白色光がバンドパスフィルタを通って特定周波数帯域に制限された白色光は駆動部によって相対的距離が変動される参照面と測定対象面とに照射されて、その光路差の変化によって干渉縞が生じる。CCDカメラは、干渉縞とともに測定対象面を撮像する。CPUは、測定対象面の特定箇所で変化する干渉光の強度値を、予め定められたサンプリング間隔でサンプリングする。さらに、その特定周波数帯域の帯域幅に基づいて、干渉光のピーク位置と一致するピーク位置を有する特定関数を推定する。その特性関数のピーク位置の高さを求めることで、測定対象面の凹凸形状を測定する。 Moreover, in the surface shape measuring apparatus described in Patent Document 3, white light from which a white light from a white light source passes through a bandpass filter and is limited to a specific frequency band is a reference surface whose relative distance is changed by a driving unit. Irradiation to the surface to be measured causes interference fringes due to the change in the optical path difference. The CCD camera images the measurement target surface together with the interference fringes. The CPU samples the intensity value of the interference light that changes at a specific location on the measurement target surface at a predetermined sampling interval. Further, a specific function having a peak position that matches the peak position of the interference light is estimated based on the bandwidth of the specific frequency band. By calculating the height of the peak position of the characteristic function, the uneven shape of the measurement target surface is measured.
ところで、特許文献2に記載の白色干渉法を用いた測定装置では、光検出手段により干渉フリンジの波長の3/1以下の短いサンプリング周波数(走査距離で100nm以下)(特許文献2の例では5nm)で干渉フリンジの1周期の間に複数回(3回以上)撮像する必要がある。この場合、被測定面と垂直な方向に走査する走査距離(走査レンジ)を例えば50μmとすると、1回の走査で数100枚〜1000枚程度の画像を撮像する必要があり、測定時間が非常に長くかかるという課題があった。 By the way, in the measuring apparatus using the white light interferometry described in Patent Document 2, a short sampling frequency (scanning distance of 100 nm or less) of 3/1 or less of the interference fringe wavelength by the light detection means (in the example of Patent Document 2 is 5 nm). ), It is necessary to image a plurality of times (three times or more) during one period of the interference fringe. In this case, if the scanning distance (scanning range) for scanning in the direction perpendicular to the surface to be measured is, for example, 50 μm, it is necessary to capture several hundred to 1,000 images in one scan, and the measurement time is very long. There was a problem that it took a long time.
また、特許文献3に記載の白色干渉法を用いた表面形状測定装置では、干渉フリンジの周期よりも長い時間間隔でサンプリングすればよいので、1回の走査でカメラで撮像する画像の枚数を比較的少なくできる。しかし、特定関数を推定する演算に時間を要し、サンプリング回数を少なくできる割に表面形状測定処理をさほど高速化できない。 Moreover, in the surface shape measuring apparatus using the white light interferometry described in Patent Document 3, it is only necessary to sample at a time interval longer than the period of interference fringes, so the number of images captured by the camera in one scan is compared. Can be less. However, the calculation for estimating the specific function takes time, and the surface shape measurement process cannot be accelerated so much that the number of samplings can be reduced.
本発明の目的は、被測定面の高さ分布を表す三次元プロファイルを比較的簡単な処理で比較的高速に取得できる三次元プロファイル取得装置、パターン検査装置及び三次元プロファイル取得方法を提供することにある。 An object of the present invention is to provide a three-dimensional profile acquisition apparatus, a pattern inspection apparatus, and a three-dimensional profile acquisition method capable of acquiring a three-dimensional profile representing the height distribution of a surface to be measured at a relatively high speed by a relatively simple process. It is in.
上記課題を解決するための三次元プロファイル取得装置は、スペクトル幅の広い光を発する光源と、被測定面に対して交差する方向に走査可能に構成され、前記光源からの光を前記被測定面で反射する測定光と参照ミラーで反射する参照光とに分離し、当該分離した二つの光の反射光を合流させて光路差に基づく干渉フリンジを発生可能な走査部と前記二つの反射光の像を前記干渉フリンジの周期以上の露光時間で撮像する撮像部とを有する干渉計と、前記走査部を走査させるとともに前記光源を前記干渉フリンジと同じ周期で点滅させる制御部と、前記撮像部が撮像した複数の画像を基に前記走査部の走査方向における干渉フリンジのピーク位置を画素毎に検出し、当該画素毎の前記ピーク位置を基に三次元プロファイルを生成する画像解析部と、を備えている。なお、スペクトル幅の広い光とは、白色干渉計を構成できる程度にスペクトル幅の広い光を発することが可能な光源であればよく、その発する光は必ずしも白色光に限定されない。 A three-dimensional profile acquisition apparatus for solving the above problems is configured to be capable of scanning in a direction intersecting with a light source that emits light having a wide spectral width and a surface to be measured, and to emit light from the light source to the surface to be measured The measurement light reflected by the reference mirror and the reference light reflected by the reference mirror are separated, and the reflected light of the two separated lights are merged to generate an interference fringe based on the optical path difference between the two reflected lights. An interferometer having an imaging unit that captures an image with an exposure time equal to or longer than the period of the interference fringe, a control unit that scans the scanning unit and causes the light source to blink at the same cycle as the interference fringe, and the imaging unit An image solution for detecting a peak position of interference fringes in the scanning direction of the scanning unit for each pixel based on a plurality of captured images and generating a three-dimensional profile based on the peak position for each pixel. And it includes a part, a. The light having a wide spectral width may be any light source that can emit light having a spectral width that is wide enough to constitute a white interferometer, and the emitted light is not necessarily limited to white light.
この構成によれば、走査部の走査中にスペクトル幅の広い光が分離してそれぞれ被測定面と参照ミラーとに反射した二つの光(測定光と参照光)の光路差が極めて小さくなると、合流した二つの反射光が干渉して干渉フリンジが発生する。このとき光源は干渉フリンジの周期と同期して点滅するので、干渉フリンジの光は光源が点灯している半周期おきに撮像部の画素に当たる。この結果、撮像部は露光時間の間に干渉フリンジを半周期おきに受光し、例えば干渉フリンジの明部のみ又は暗部のみが撮像される。このため、撮像部が干渉フリンジの周期以上の比較的長い露光時間で撮像した比較的少ない数の画像を用いて画素毎の干渉フリンジのピーク位置を検出できる。よって、被測定面の高さ分布を表す三次元プロファイルを比較的簡単にかつ高速に取得できる。 According to this configuration, when the light having a wide spectral width is separated during scanning of the scanning unit and the optical path difference between the two lights (measurement light and reference light) reflected by the measurement surface and the reference mirror is extremely small, Interference fringes occur due to interference between the two reflected lights that have joined. At this time, since the light source blinks in synchronization with the cycle of the interference fringe, the light of the interference fringe strikes the pixels of the imaging unit every half cycle when the light source is turned on. As a result, the imaging unit receives the interference fringe every half cycle during the exposure time, and for example, only the bright part or the dark part of the interference fringe is imaged. For this reason, the peak position of the interference fringe for each pixel can be detected using a relatively small number of images captured by the imaging unit with a relatively long exposure time equal to or longer than the cycle of the interference fringe. Therefore, a three-dimensional profile representing the height distribution of the surface to be measured can be acquired relatively easily and at high speed.
上記三次元プロファイル取得装置では、前記制御部は、前記走査部を往復走査させるとともに往動時と復動時とで前記光源の点滅の位相をずらすことが好ましい。
この構成によれば、干渉計の走査部の往動時と復動時とで、光源を点滅させる位相がずらされるので、往動時と復動時との少なくとも一方で干渉フリンジのピーク位置を確実に検出できる。なお、位相をずらす角度は、特に限定されないが、一例として80〜100度の範囲内の所定角度が望ましい。
In the three-dimensional profile acquisition apparatus, it is preferable that the control unit reciprocates the scanning unit and shifts the blinking phase of the light source between forward movement and backward movement.
According to this configuration, since the phase at which the light source blinks is shifted between the forward movement and the backward movement of the scanning unit of the interferometer, the peak position of the interference fringe is determined at least during the forward movement and the backward movement. It can be detected reliably. The angle for shifting the phase is not particularly limited, but a predetermined angle in the range of 80 to 100 degrees is desirable as an example.
上記三次元プロファイル取得装置では、前記撮像部へ向かう前記二つの反射光の一部を受光する光センサを更に備え、前記制御部は、前記干渉フリンジを受光した前記光センサの受光信号を基に前記光源を前記干渉フリンジと同じ位相で点滅させることが好ましい。 The three-dimensional profile acquisition apparatus further includes an optical sensor that receives a part of the two reflected lights toward the imaging unit, and the control unit is based on a light reception signal of the optical sensor that receives the interference fringe. Preferably, the light source blinks in the same phase as the interference fringe.
この構成によれば、干渉フリンジを受光した光センサの受光信号を基に制御されることで、光源は干渉フリンジと同じ位相で点滅する。このため、光源の点滅と干渉フリンジとの位相のずれに起因する三次元プロファイルの精度の低下が小さく抑えられる。 According to this configuration, the light source blinks in the same phase as the interference fringe by being controlled based on the light reception signal of the photosensor that has received the interference fringe. For this reason, a decrease in the accuracy of the three-dimensional profile due to the phase shift between the blinking of the light source and the interference fringe can be suppressed to a small level.
上記三次元プロファイル取得装置では、前記撮像部の露光時間は、前記干渉フリンジの発生期間の1/4〜1/3の範囲内の値に設定されていることが好ましい。
この構成によれば、サンプリング法に比べ撮像する時間間隔を相対的に長くでき、必要な画像の数が数分の1〜数10分の1で済ませられる。しかも、画像解析部がピーク位置を検出する際の画像解析処理が比較的簡単なので、三次元プロファイルの取得処理を高速化できる。
In the three-dimensional profile acquisition apparatus, it is preferable that the exposure time of the imaging unit is set to a value within a range of ¼ to 3 of the generation period of the interference fringe.
According to this configuration, the time interval for imaging can be made relatively longer than in the sampling method, and the number of necessary images can be reduced to a fraction of 1 to several tens of times. In addition, since the image analysis processing when the image analysis unit detects the peak position is relatively simple, it is possible to speed up the three-dimensional profile acquisition processing.
上記課題を解決するためのパターン検査装置は、配線基板の配線パターンを撮像した画像に基づき配線の欠陥の有無を検査するパターン検査部を備えたパターン検査装置であって、前記三次元プロファイル取得装置と、前記三次元プロファイル取得装置が生成した三次元プロファイルを基に前記パターン検査部により検出された前記欠陥の真偽を検証する検証部と、を備えている。 A pattern inspection apparatus for solving the above problems is a pattern inspection apparatus provided with a pattern inspection unit for inspecting the presence or absence of a wiring defect based on an image obtained by imaging a wiring pattern of a wiring board, wherein the three-dimensional profile acquisition apparatus And a verification unit that verifies the authenticity of the defect detected by the pattern inspection unit based on the three-dimensional profile generated by the three-dimensional profile acquisition apparatus.
この構成によれば、パターン検査で発見された欠陥の真偽を、三次元プロファイルを基に欠陥の高さ分布の情報から検証することができる。
上記課題を解決するための三次元プロファイル取得方法は、干渉計を構成する走査部を被測定面に対して交差する方向に走査させて、光源から発せられたスペクトル幅の広い光を前記被測定面で反射する測定光と参照ミラーで反射する参照光とに分離し、当該分離した二つの光の反射光を合流させて光路差に基づく干渉フリンジを発生させる干渉形成ステップと、前記光源を前記干渉フリンジと同じ周期で点滅させる発光制御ステップと、前記干渉計の撮像部により前記二つの反射光の像を前記干渉フリンジの周期以上の露光時間で撮像する撮像ステップと、前記撮像部が撮像した複数の画像を基に前記走査部の走査方向における干渉フリンジのピーク位置を画素毎に検出し、当該画素毎の前記ピーク位置を基に三次元プロファイルを生成するプロファイル生成ステップと、を備えている。この方法によれば、上記三次元プロファイル取得装置と同様の作用効果が得られる。
According to this configuration, the authenticity of the defect found by the pattern inspection can be verified from the information on the height distribution of the defect based on the three-dimensional profile.
A method for obtaining a three-dimensional profile for solving the above-described problem is to scan light that has a wide spectral width emitted from a light source by causing a scanning unit constituting an interferometer to scan in a direction intersecting the surface to be measured. An interference forming step of separating the measurement light reflected by the surface and the reference light reflected by the reference mirror and combining the reflected light of the two separated lights to generate an interference fringe based on an optical path difference; and A light emission control step of blinking at the same cycle as the interference fringe, an imaging step of imaging the images of the two reflected lights by the imaging unit of the interferometer with an exposure time longer than the cycle of the interference fringe, and the imaging unit A peak position of interference fringes in the scanning direction of the scanning unit is detected for each pixel based on a plurality of images, and a three-dimensional profile is generated based on the peak position for each pixel. It includes a profile generation step. According to this method, the same effect as that of the three-dimensional profile acquisition apparatus can be obtained.
本発明によれば、被測定面の高さ分布を表す三次元プロファイルを比較的簡単な処理で比較的高速に取得することができる。 According to the present invention, a three-dimensional profile representing the height distribution of the surface to be measured can be acquired at a relatively high speed by a relatively simple process.
以下、図1〜図11を用いて一実施形態における三次元プロファイル取得装置(被測定面の面形状計測装置)を備えたパターン検査装置について説明する。
図1に示すように、パターン検査装置11は、配線基板12に形成された配線パターンの欠陥の有無を検査する装置である。パターン検査装置11は、四角箱状の支持台13と、支持台13の上面に設けられた可動式のステージ14と、ステージ14を跨ぐ状態に架設された門型の支持フレーム15と、支持フレーム15の横架バー15aに固定されたレール16に対し配線基板12を撮像可能な懸架状態で取り付けられた撮像ユニット17とを備えている。
Hereinafter, a pattern inspection apparatus including a three-dimensional profile acquisition apparatus (surface shape measuring apparatus for a surface to be measured) according to an embodiment will be described with reference to FIGS.
As shown in FIG. 1, the pattern inspection apparatus 11 is an apparatus that inspects the presence or absence of defects in the wiring pattern formed on the wiring board 12. The pattern inspection apparatus 11 includes a square box-shaped support base 13, a movable stage 14 provided on the upper surface of the support base 13, a gate-type support frame 15 laid across the stage 14, and a support frame And an imaging unit 17 attached in a suspended state capable of imaging the wiring board 12 with respect to the rail 16 fixed to the 15 horizontal bars 15a.
撮像ユニット17は、高分解能レンズ18とカメラ19とを備えている。カメラ19は一例としてエリアカメラを用いている。パターン検査装置11は、カメラ19が撮像した配線基板12の画像を基に配線の欠陥の有無を検査するパターン検査を行うが、パターン検査では欠陥の検出精度に限界があり、パターン検査で欠陥の候補として検出されたものは高さ分布の情報を基に欠陥の真偽を検証する必要がある。 The imaging unit 17 includes a high resolution lens 18 and a camera 19. As an example, the camera 19 uses an area camera. The pattern inspection apparatus 11 performs a pattern inspection for inspecting the presence or absence of a wiring defect based on the image of the wiring board 12 captured by the camera 19. However, the pattern inspection has a limit in defect detection accuracy, and the pattern inspection has a defect. It is necessary to verify the authenticity of the defect detected as a candidate based on the height distribution information.
本実施形態のパターン検査装置11には、この検証のために三次元光学ユニット20が搭載されている。三次元光学ユニット20は、配線基板12の被測定面12aの高さ分布を計測するために用いる画像を撮像する。 The pattern inspection apparatus 11 of this embodiment is equipped with a three-dimensional optical unit 20 for this verification. The three-dimensional optical unit 20 captures an image used for measuring the height distribution of the measurement target surface 12 a of the wiring board 12.
三次元光学ユニット20は、被測定面12aをXY平面とした場合、この被測定面12aの高さ分布を示す三次元プロファイル((x,y,z)座標の群)を取得する三次元プロファイル取得装置21の一部を構成する。三次元光学ユニット20は、配線基板12の検査対象エリア内の被測定面12a(2次元平面)上における高さ分布を示す三次元プロファイルを取得するための画像を撮像する。 The three-dimensional optical unit 20 acquires a three-dimensional profile (a group of (x, y, z) coordinates) indicating the height distribution of the measured surface 12a when the measured surface 12a is an XY plane. A part of the acquisition device 21 is configured. The three-dimensional optical unit 20 captures an image for acquiring a three-dimensional profile indicating a height distribution on the measurement target surface 12 a (two-dimensional plane) in the inspection target area of the wiring board 12.
パターン検査装置11は例えば支持台13内に、各種の構成部分を駆動制御するコントローラ23を有している。コントローラ23は、例えばステージ14の移動制御、カメラ19による撮像制御などのパターン検査に係る制御を司るとともに、三次元光学ユニット20を駆動させる制御を司る。 The pattern inspection apparatus 11 includes, for example, a controller 23 that drives and controls various components in the support base 13. For example, the controller 23 controls the pattern inspection such as the movement control of the stage 14 and the imaging control by the camera 19 and also controls the driving of the three-dimensional optical unit 20.
また、パターン検査装置11は、例えばパーソナルコンピュータなどのコンピュータ25を備えている。コンピュータ25は、本体26と、キーボード及びマウスなどからなる入力装置27と、モニタ28とを備えている。本体26内のハードディスク(不図示)には、配線基板12の配線パターンの検査及び欠陥候補の検証などを行う各種のプログラムが記憶されている。また、本体26には、カメラ19から入力した撮像画像を基に配線基板12の被測定面12aの高さ分布を計測する画像処理回路が設けられている。本体26には、プログラムを実行するCPU及び画像処理回路等により構成される機能部分として、図1に示す検査部31、画像解析部32及び検証部33(ベリファイ部)などが備えられている。 The pattern inspection apparatus 11 includes a computer 25 such as a personal computer. The computer 25 includes a main body 26, an input device 27 including a keyboard and a mouse, and a monitor 28. Various programs for inspecting the wiring pattern of the wiring board 12 and verifying defect candidates are stored in a hard disk (not shown) in the main body 26. Further, the main body 26 is provided with an image processing circuit that measures the height distribution of the measurement target surface 12 a of the wiring board 12 based on the captured image input from the camera 19. The main body 26 includes an inspection unit 31, an image analysis unit 32, a verification unit 33 (verification unit), and the like shown in FIG. 1 as functional units including a CPU that executes a program and an image processing circuit.
図1に示す検査部31は、カメラ19が撮像した画像を基に配線基板12の配線パターンの欠陥の有無を検査するパターン検査を行う。検査部31はパターン検査のための画像処理としてパターンマッチング処理又は遅延自己比較処理などの公知の処理を行って欠陥を検出する。画像解析部32は、三次元光学ユニット20が撮像した複数の画像を解析して被測定面12aの高さ分布を計測することで、その高さ分布が三次元座標で示された三次元プロファイルを生成する。また、検証部33は、検査部31の検査で真偽の疑わしい欠陥の候補について、画像解析部32が取得した三次元プロファイルを基にその真偽を検証(ベリファイ)する。 The inspection unit 31 illustrated in FIG. 1 performs a pattern inspection for inspecting the presence or absence of a defect in the wiring pattern of the wiring board 12 based on the image captured by the camera 19. The inspection unit 31 detects a defect by performing known processing such as pattern matching processing or delayed self-comparison processing as image processing for pattern inspection. The image analysis unit 32 analyzes a plurality of images captured by the three-dimensional optical unit 20 and measures the height distribution of the surface 12a to be measured, whereby a three-dimensional profile in which the height distribution is indicated by three-dimensional coordinates. Is generated. Further, the verification unit 33 verifies (verifies) the authenticity of suspicious defect candidates in the inspection unit 31 based on the three-dimensional profile acquired by the image analysis unit 32.
図2に示すように、配線基板12は、基板35と、基板35の被測定面12aに形成された複数の配線36とを有している。配線36の高密度化の要請により、配線36の幅に対する高さの比率であるアスペクト比が相対的に高くなっている。被測定面12aを撮像した2次元の画像を解析して欠陥を検出するパターン検査では、図2に示すように、配線36の上端面にできた酸化膜36a、配線36の上端部にある凹部36b、配線36の高さ方向の半分以上が欠落した欠落部36cの識別が困難である。例えば酸化膜36aは配線36の電気抵抗が規定以上確保されるので、欠陥ではない。また、凹部36bは非常に浅ければ欠陥ではないが、一定以上の深さがあると配線36の電気抵抗を増大させるため欠陥となる。一方、欠落部36cは配線36の電気抵抗を著しく増大させるため欠陥となる。このため、本実施形態では、パターン検査では識別困難な酸化膜36a、凹部36b及び欠落部36cを、白色干渉法で被測定面12aの高さ分布を測定して得た三次元プロファイルに基づいて欠陥候補が欠陥であるかどうかその真偽を検証する。 As shown in FIG. 2, the wiring substrate 12 includes a substrate 35 and a plurality of wirings 36 formed on the surface to be measured 12 a of the substrate 35. Due to the demand for higher density of the wiring 36, the aspect ratio, which is the ratio of the height to the width of the wiring 36, is relatively high. In the pattern inspection in which a defect is detected by analyzing a two-dimensional image obtained by imaging the surface to be measured 12 a, an oxide film 36 a formed on the upper end surface of the wiring 36 and a concave portion on the upper end portion of the wiring 36, as shown in FIG. It is difficult to identify the missing portion 36c in which 36b and more than half of the wiring 36 in the height direction are missing. For example, the oxide film 36a is not a defect because the electrical resistance of the wiring 36 is ensured more than a specified value. The recess 36b is not a defect if it is very shallow, but if it is deeper than a certain depth, it increases the electrical resistance of the wiring 36 and becomes a defect. On the other hand, the missing portion 36c becomes a defect because the electrical resistance of the wiring 36 is remarkably increased. For this reason, in the present embodiment, the oxide film 36a, the concave portion 36b, and the missing portion 36c, which are difficult to identify by pattern inspection, are obtained based on the three-dimensional profile obtained by measuring the height distribution of the measured surface 12a by the white light interferometry. Whether the defect candidate is a defect is verified.
次に図3を用いて三次元プロファイル取得装置21の詳細を説明する。
図3に示すように、三次元プロファイル取得装置21は、三次元光学ユニット20と制御装置40とを備えている。制御装置40は、三次元光学ユニット20を制御するコントローラ23の一部及び三次元プロファイルの取得に必要な処理を行うコンピュータ25の一部により構成されている。
Next, details of the three-dimensional profile acquisition apparatus 21 will be described with reference to FIG.
As shown in FIG. 3, the three-dimensional profile acquisition device 21 includes a three-dimensional optical unit 20 and a control device 40. The control device 40 includes a part of a controller 23 that controls the three-dimensional optical unit 20 and a part of a computer 25 that performs processing necessary for obtaining a three-dimensional profile.
図3に示すように、三次元光学ユニット20は、撮像部の一例としてカメラ41を有する干渉計42を備えている。干渉計42は、一例としてマイケルソン型干渉計(Michelson Interferometer)である。干渉計42は、スペクトル幅の広い光(例えば白色光)を発する光源43(一例として白色光源)、集光レンズ44、光学フィルタ45、ハーフミラー46、対物レンズ47、ハーフミラー48、参照ミラー49、ピエゾ式のアクチュエータ50、結像レンズ51及び前述のカメラ41を備えている。カメラ41の下部にその光軸と同軸に配置された鏡筒52内には、対物レンズ47側から順番に、ハーフミラー46、結像レンズ51、ハーフミラー53が、光軸方向にそれぞれ所定の間隔を開けて配置されている。 As illustrated in FIG. 3, the three-dimensional optical unit 20 includes an interferometer 42 having a camera 41 as an example of an imaging unit. The interferometer 42 is, for example, a Michelson interferometer. The interferometer 42 includes a light source 43 (a white light source as an example) that emits light having a wide spectral width (for example, white light), a condensing lens 44, an optical filter 45, a half mirror 46, an objective lens 47, a half mirror 48, and a reference mirror 49. A piezoelectric actuator 50, an imaging lens 51, and the camera 41 described above. A half mirror 46, an imaging lens 51, and a half mirror 53 are sequentially arranged in the optical axis direction in the lens barrel 52 arranged coaxially with the optical axis below the camera 41 from the objective lens 47 side. They are arranged at intervals.
図3に示す光源43は、例えば超高輝度LEDからなる。光源43から出射された白色光は集光レンズ44で集光され、さらに光学フィルタ45を通って特定波長領域の光(スペクトル幅の広い光)にフィルタリングされた後、ハーフミラー46の下面で反射し、対物レンズ47及びハーフミラー48を通って配線基板12の被測定面12aに照射される。なお、光学フィルタ45は、後述する干渉フリンジの発生期間(干渉可能距離)を適度な値に調整する機能を有する。また、特に光源43から発せられる光のスペクトル幅が非常に広い場合は干渉フリンジのピーク付近と周辺とで周波数が異なるため、光源43からの光の色をある程度制限して干渉フリンジの周波数をその発生期間(干渉可能距離)の全域で一定周波数に近くする目的で、光学フィルタ45を光源43と干渉計42との間に配置している。特にこの種の調整が不要な場合は光学フィルタ45を無くしてもよい。 The light source 43 shown in FIG. 3 is composed of, for example, an ultra-bright LED. The white light emitted from the light source 43 is collected by the condenser lens 44, further filtered through the optical filter 45 to light of a specific wavelength region (light having a wide spectral width), and then reflected by the lower surface of the half mirror 46. Then, the measurement surface 12 a of the wiring substrate 12 is irradiated through the objective lens 47 and the half mirror 48. The optical filter 45 has a function of adjusting an interference fringe generation period (interference possible distance) described later to an appropriate value. In particular, when the spectrum width of the light emitted from the light source 43 is very wide, the frequency is different between the vicinity of the peak of the interference fringe and the surroundings. Therefore, the color of the light from the light source 43 is limited to some extent to reduce the frequency of the interference fringe. The optical filter 45 is disposed between the light source 43 and the interferometer 42 for the purpose of bringing the frequency close to a constant frequency throughout the generation period (interference possible distance). In particular, if this type of adjustment is not necessary, the optical filter 45 may be omitted.
対物レンズ47と配線基板12との間に配置されたハーフミラー48は、対物レンズ47と共にZ方向に移動可能に支持されている。ハーフミラー48の上面で反射した一部の光の反射方向(図3では左方向)延長線上の位置には、参照ミラー49が対物レンズ47に固定された支持部材54に支持された状態で、ハーフミラー48と共にZ方向に移動可能な状態で配置されている。対物レンズ47、ハーフミラー48及び参照ミラー49は、Z方向に一体的に移動可能な走査部55を構成している。走査部55は、ピエゾ式のアクチュエータ50の駆動により、配線基板12の被測定面12aと垂直な高さ方向(Z方向)に微量な所定のストローク(例えば20〜100μmの範囲内の所定値)を移動可能となっている。 The half mirror 48 disposed between the objective lens 47 and the wiring board 12 is supported so as to be movable in the Z direction together with the objective lens 47. At a position on the extension line of the reflection direction (left direction in FIG. 3) of a part of the light reflected by the upper surface of the half mirror 48, the reference mirror 49 is supported by the support member 54 fixed to the objective lens 47, It arrange | positions with the half mirror 48 in the state which can move to a Z direction. The objective lens 47, the half mirror 48, and the reference mirror 49 constitute a scanning unit 55 that can move integrally in the Z direction. The scanning unit 55 is driven by a piezo-type actuator 50 so that a small amount of a predetermined stroke (for example, a predetermined value within a range of 20 to 100 μm) in the height direction (Z direction) perpendicular to the surface 12a to be measured of the wiring board 12. Can be moved.
対物レンズ47を通って下方へ向かう光の一部はハーフミラー48を透過して配線基板12の被測定面12aで反射し、その反射光は再びハーフミラー48を透過して対物レンズ47へ下側から入射する。また、対物レンズ47を通って下方へ向かいハーフミラー48の上面で反射した他の一部の光は、参照ミラー49で反射し、再びハーフミラー48の上面で反射して対物レンズ47へ下側から入射する。ハーフミラー48の上面で合流したこれら光路の異なる2つの反射光は、走査部55の走査位置に応じて変化する両者の光路差が規定値以下と小さくなると、干渉して干渉フリンジ(干渉縞)を形成する。 A part of the light traveling downward through the objective lens 47 is transmitted through the half mirror 48 and reflected by the measurement surface 12a of the wiring board 12, and the reflected light is transmitted through the half mirror 48 again and travels down to the objective lens 47. Incident from the side. The other part of the light that passes downward through the objective lens 47 and is reflected by the upper surface of the half mirror 48 is reflected by the reference mirror 49, is reflected again by the upper surface of the half mirror 48, and is lowered to the objective lens 47. Incident from. The two reflected lights having different optical paths that merged on the upper surface of the half mirror 48 interfere with each other when the optical path difference between the two, which changes in accordance with the scanning position of the scanning unit 55, becomes smaller than or equal to a specified value, thereby causing interference fringes. Form.
また、図3に示す三次元光学ユニット20には、ハーフミラー48の上面で合流した反射光の一部を受光可能な光センサ56(フォトセンサ)が設けられている。合流した反射光は結像レンズ51とカメラ41との間に配置されたハーフミラー53の下面で一部反射して光センサ56に入射する。光センサ56は、その受光量に比例する値をもつ受光信号を出力する。このため、干渉フリンジの発生時は光センサ56の受光信号には干渉フリンジの明暗に応じた波形が含まれる。 In addition, the three-dimensional optical unit 20 shown in FIG. 3 is provided with an optical sensor 56 (photosensor) that can receive a part of the reflected light that has merged on the upper surface of the half mirror 48. The merged reflected light is partially reflected by the lower surface of the half mirror 53 disposed between the imaging lens 51 and the camera 41 and enters the optical sensor 56. The optical sensor 56 outputs a light reception signal having a value proportional to the amount of light received. For this reason, when the interference fringe occurs, the light reception signal of the optical sensor 56 includes a waveform corresponding to the brightness of the interference fringe.
図3に示す制御装置40は、前述の画像解析部32と、三次元光学ユニット20に対する各種の制御を司る制御部60と、発光駆動部61とピエゾ駆動部62とを備えている。制御部60は、カメラ41を制御する撮像制御部63、光センサ56からの受光信号を基に干渉フリンジの周期及び位相をモニタリングする干渉モニタ部64、及び光源43を制御する発光制御部65を備えている。 The control device 40 shown in FIG. 3 includes the image analysis unit 32 described above, a control unit 60 that controls various types of control for the three-dimensional optical unit 20, a light emission drive unit 61, and a piezo drive unit 62. The control unit 60 includes an imaging control unit 63 that controls the camera 41, an interference monitor unit 64 that monitors the period and phase of the interference fringe based on the light reception signal from the optical sensor 56, and a light emission control unit 65 that controls the light source 43. I have.
本実施形態の光源43の点滅周期は、干渉フリンジと同じ周期である。このため、光源43は干渉フリンジの半周期の時間の間は発光し続ける。干渉モニタ部64は、走査部55の走査中、光源43の発光期間の間、光センサ56の受光信号の波形をサンプリングし、干渉フリンジの周期と位相のうち少なくとも位相を取得する。この干渉フリンジIFの少なくとも位相は、干渉モニタ部64から発光制御部65に送られる。 The blinking cycle of the light source 43 of the present embodiment is the same cycle as the interference fringe. For this reason, the light source 43 continues to emit light during the half period of the interference fringe. During scanning of the scanning unit 55, the interference monitoring unit 64 samples the waveform of the light reception signal of the optical sensor 56 during the light emission period of the light source 43, and acquires at least the phase of the period and phase of the interference fringe. At least the phase of the interference fringe IF is sent from the interference monitor unit 64 to the light emission control unit 65.
図3に示す発光制御部65は、干渉フリンジの周期及び位相のデータ、あるいは光センサ56からの受光信号を基に干渉フリンジの周期及び位相に合わせた周期及び位相を有するLED駆動パルス信号(発光駆動信号)を生成して発光駆動部61に出力する。発光制御部65は、例えば位相同期回路(PLL(phase locked loop)回路)を内蔵する。位相同期回路は、干渉フリンジの周期及び位相のデータを基に生成した干渉フリンジと同位相のパルス信号、あるいは干渉フリンジ発生時の点灯期間における光センサ56の受光信号を基にフィードバック制御を加えて不図示の発振器から位相の同期したパルス波形を有するLED駆動パルス信号を出力する。この場合、発光制御部65は、光源43の点灯期間の半周期の受光信号を基にLED駆動パルス信号を半周期分生成し、生成した半周期分のLED駆動パルス信号と同じ位相で残り半周期分のLED駆動パルス信号を生成する。 The light emission control unit 65 shown in FIG. 3 is an LED drive pulse signal (light emission) having a period and phase that match the period and phase of the interference fringe based on the interference fringe period and phase data or the light reception signal from the optical sensor 56. Drive signal) is generated and output to the light emission drive unit 61. The light emission control unit 65 includes, for example, a phase locked loop (PLL (phase locked loop) circuit). The phase synchronization circuit performs feedback control based on the pulse signal having the same phase as the interference fringe generated based on the interference fringe cycle and phase data, or the light reception signal of the optical sensor 56 during the lighting period when the interference fringe occurs. An LED drive pulse signal having a pulse waveform synchronized in phase is output from an oscillator (not shown). In this case, the light emission control unit 65 generates an LED drive pulse signal for a half cycle based on the light reception signal of the half cycle of the lighting period of the light source 43, and the remaining half with the same phase as the generated LED drive pulse signal for the half cycle. An LED drive pulse signal for a period is generated.
発光駆動部61は、発光制御部65からのLED駆動パルス信号を基に干渉フリンジの周期及び位相に合わせた周期及び位相を有するLED駆動電圧パルスを生成して光源43に出力する。この結果、光源43は干渉フリンジIFと同じ周期及び位相で点滅する。 The light emission drive unit 61 generates an LED drive voltage pulse having a period and phase that match the period and phase of the interference fringe based on the LED drive pulse signal from the light emission control unit 65 and outputs the LED drive voltage pulse to the light source 43. As a result, the light source 43 blinks in the same cycle and phase as the interference fringe IF.
また、制御部60は、走査部55を走査させるためにアクチュエータ50に印加するべき電圧値を規定するピエゾ駆動信号を生成する。ピエゾ駆動部62は、制御部60からのピエゾ駆動信号に基づく電圧をピエゾ式のアクチュエータ50に出力(印加)する。アクチュエータ50は複数のピエゾ素子(例えばPZT素子)を伸縮可能方向に積層して構成され、入力した電圧に基づくピエゾ素子の電歪作用により伸長・収縮する。アクチュエータ50が伸長・収縮することで、走査部55はZ方向に移動する。本実施形態では、走査部55をZ方向に移動させる所定ストロークを。一例として約50μmとしている。これは、配線基板12において計測すべき凹部の深さ及び段差の高さ(例えば配線36の高さ)など想定されるZ方向の最大計測長よりも十分長い距離をストロークとして走査部55を移動させるためである。また、本実施形態では一つの高さ分布の測定に走査部55を2回(一往復)以上移動させる。本例では走査部55を2回(1往復)移動させる。 Further, the control unit 60 generates a piezo drive signal that defines a voltage value to be applied to the actuator 50 in order to cause the scanning unit 55 to scan. The piezo drive unit 62 outputs (applies) a voltage based on the piezo drive signal from the control unit 60 to the piezo actuator 50. The actuator 50 is configured by laminating a plurality of piezo elements (for example, PZT elements) in a stretchable direction, and expands and contracts by the electrostrictive action of the piezo elements based on the input voltage. As the actuator 50 expands and contracts, the scanning unit 55 moves in the Z direction. In the present embodiment, a predetermined stroke for moving the scanning unit 55 in the Z direction. As an example, it is about 50 μm. This is because the scanning unit 55 is moved with a distance that is sufficiently longer than the assumed maximum measurement length in the Z direction, such as the depth of the recess and the height of the step (for example, the height of the wiring 36) to be measured in the wiring board 12. This is to make it happen. In the present embodiment, the scanning unit 55 is moved twice (one reciprocation) or more to measure one height distribution. In this example, the scanning unit 55 is moved twice (one reciprocation).
また、図3に示す撮像制御部63は、カメラ41の撮像制御を行う。この撮像制御において撮像制御部63は、一枚の画像を撮像するときの露光時間Te、すなわち一枚の画像を撮像する際の撮像時間間隔を制御する。カメラ41が撮像した画像データは制御装置40の画像解析部32に逐次送られる。画像解析部32は、カメラ41が撮像した複数の画像を解析して画素毎に干渉フリンジのピーク位置を検出する。画素毎のピーク位置から被測定面12aにおける画素と対応する位置(x、y)のz座標を演算する。 Further, the imaging control unit 63 illustrated in FIG. 3 performs imaging control of the camera 41. In this imaging control, the imaging control unit 63 controls the exposure time Te when imaging one image, that is, the imaging time interval when imaging one image. Image data captured by the camera 41 is sequentially sent to the image analysis unit 32 of the control device 40. The image analysis unit 32 analyzes a plurality of images captured by the camera 41 and detects the peak position of the interference fringe for each pixel. The z coordinate of the position (x, y) corresponding to the pixel on the measured surface 12a is calculated from the peak position for each pixel.
次に干渉計42を用いて被測定面12aの高さ分布を求める原理を簡単に説明する。
図4に示すように、光源43から発せられた光は、集光レンズ44及び光学フィルタ45を通ってハーフミラー46の下面で反射して下方へ向かい、ハーフミラー48で二つの光に分離し、ハーフミラー48を透過した一部の光(測定光)は配線基板12の被測定面12aで反射し、再びハーフミラー48に戻る。一方、ハーフミラー48の上面で反射した他の一部の光(参照光)は、参照ミラー49で反射しハーフミラー48に戻る。これら光路の異なる測定光と参照光は、ハーフミラー48の上面で合流する。走査部55におけるハーフミラー48と参照ミラー49との間は一定の距離Zm(以下、「参照距離Zm」ともいう。)であり、ハーフミラー48と被測定面12aとの距離Zs(以下、「測定距離Zs」ともいう。)は走査部55のZ方向の走査とともに変化する。走査部55の走査中における二つの反射光の光路差は2(Zs−Zm)となる。
Next, the principle of obtaining the height distribution of the measured surface 12a using the interferometer 42 will be briefly described.
As shown in FIG. 4, the light emitted from the light source 43 passes through the condenser lens 44 and the optical filter 45, is reflected by the lower surface of the half mirror 46, travels downward, and is separated into two lights by the half mirror 48. A part of light (measurement light) transmitted through the half mirror 48 is reflected by the measurement surface 12a of the wiring board 12 and returns to the half mirror 48 again. On the other hand, another part of light (reference light) reflected by the upper surface of the half mirror 48 is reflected by the reference mirror 49 and returns to the half mirror 48. The measurement light and the reference light having different optical paths merge at the upper surface of the half mirror 48. The distance between the half mirror 48 and the reference mirror 49 in the scanning unit 55 is a fixed distance Zm (hereinafter also referred to as “reference distance Zm”), and the distance Zs between the half mirror 48 and the measured surface 12a (hereinafter “ The measurement distance Zs ”also changes as the scanning unit 55 scans in the Z direction. The optical path difference between the two reflected lights during scanning by the scanning unit 55 is 2 (Zs−Zm).
本実施形態において光源43の白色光が光学フィルタ45を通った光は、一部の光成分が除去されるもののスペクトル幅の広い光であるため、測定光と参照光は光路差2(Zs−Zm)が規定値以下となる極く小さな範囲(Zs≒Zm)でしか干渉しない。その性質を利用し、制御部60は走査部55をZ方向に走査させて光路差2(Zs−Zm)を変化させ、画像解析部32は複数の画像を基にZs≒Zmになって発生した干渉フリンジの発生期間内で、ピークが現れたとき(つまりZs=Zmのとき)の走査位置(Z位置)をピーク位置として画素毎に求める。このとき、光源43からの光の色を光学フィルタ45を通すことである程度制限し、干渉フリンジの周波数が、干渉フリンジの発生期間(干渉可能距離)の全域でほぼ一定になるように調整される。三次元光学ユニット20のX方向及びY方向の位置(X,Y)及びカメラ41の倍率などの既知情報から、配線基板12の被測定面12aにおけるカメラ41の撮像範囲は既知であり、その撮像範囲内の画素と撮像範囲内の被測定面12a上の位置とは対応付けできる。画像解析部32は、画素毎のZ位置を基に被測定面12aにおけるカメラ41の画素と対応する各位置(x,y)の高さ(z座標)の分布(x,y,z)である三次元プロファイルを求める。 In this embodiment, the white light from the light source 43 that has passed through the optical filter 45 is light having a wide spectral width although some of the light components are removed. Therefore, the measurement light and the reference light have an optical path difference 2 (Zs− Interference occurs only in a very small range (Zs≈Zm) where Zm) is equal to or less than a specified value. Using this property, the control unit 60 scans the scanning unit 55 in the Z direction to change the optical path difference 2 (Zs−Zm), and the image analysis unit 32 generates Zs≈Zm based on a plurality of images. The scanning position (Z position) when the peak appears (that is, when Zs = Zm) within the generation period of the interference fringes is obtained for each pixel. At this time, the color of the light from the light source 43 is limited to some extent by passing through the optical filter 45, and the frequency of the interference fringe is adjusted so as to be substantially constant over the entire period (interference possible distance) of the interference fringe. . From the known information such as the X and Y positions (X, Y) of the three-dimensional optical unit 20 and the magnification of the camera 41, the imaging range of the camera 41 on the measured surface 12a of the wiring board 12 is known. A pixel in the range can be associated with a position on the measured surface 12a in the imaging range. The image analysis unit 32 calculates the distribution (x, y, z) of the height (z coordinate) of each position (x, y) corresponding to the pixel of the camera 41 on the measured surface 12a based on the Z position for each pixel. Find a 3D profile.
図5は、光路差と各画素の明るさとの関係を示す。このグラフに示すように、光路差(=2(Zs−Zm))が所定の規定値(干渉可能距離Lf)以下となる範囲で干渉フリンジIFが発生し、画素毎の輝度波形は光路差の変化に応じて振幅し、光路差が零(つまりZs=Zm)のときに干渉フリンジIFのピークが最大になる。 FIG. 5 shows the relationship between the optical path difference and the brightness of each pixel. As shown in this graph, an interference fringe IF occurs in a range where the optical path difference (= 2 (Zs−Zm)) is equal to or less than a predetermined specified value (interference possible distance Lf), and the luminance waveform for each pixel has an optical path difference. The amplitude is varied according to the change, and the peak of the interference fringe IF is maximized when the optical path difference is zero (that is, Zs = Zm).
本実施形態では、参照距離Zmを例えば対物レンズ47の焦点距離に合わせており、配線基板12の被測定面12a(一例として欠陥のない配線36の上面)に焦点が合った時に、測定距離Zsと参照距離Zmとがほぼ一致して干渉フリンジIFが現れる設定にしている。この設定により走査部55は対物レンズ47が例えば被測定面12aに焦点が合った位置を中心とする所定ストローク(一例として50μm)を移動する。 In the present embodiment, the reference distance Zm is set to the focal length of the objective lens 47, for example, and when the focus is on the measurement target surface 12a of the wiring board 12 (for example, the upper surface of the wiring 36 having no defect), the measurement distance Zs. And the reference distance Zm substantially coincide with each other so that the interference fringe IF appears. With this setting, the scanning unit 55 moves a predetermined stroke (as an example, 50 μm) around the position where the objective lens 47 is focused on, for example, the measured surface 12a.
図6に示すように、段差12bを有する配線基板12を例とし、段差12bを隔てて低い面PAと、高い面PBのそれぞれのZ方向の位置(高さ)を計測する場合を説明する。
例えば走査部55をZ方向に移動させる走査過程で、ハーフミラー48と低い面PAとの間の測定距離Zsと参照距離Zmとの差分の2倍で示される光路差2(Zs−Zm)が規定範囲以内になると、図7に示すように、カメラ41の低い面PAを撮像する画素(図7では「画素A」と称す。)に当たる光に干渉フリンジIFが現れる。このため、干渉フリンジIFの発生エリアでは画素Aに当たる光の明るさが走査位置に応じて変化する。このとき、カメラ41の高い面PBを撮像する画素(図7では「画素B」と称す。)に当たる光に干渉フリンジIFは現れない。
As shown in FIG. 6, the case where the position (height) of each of the low surface PA and the high surface PB in the Z direction is measured with the step 12b as an example will be described using the wiring board 12 having the step 12b as an example.
For example, in the scanning process in which the scanning unit 55 is moved in the Z direction, the optical path difference 2 (Zs−Zm) indicated by twice the difference between the measurement distance Zs between the half mirror 48 and the lower surface PA and the reference distance Zm. Within the specified range, as shown in FIG. 7, an interference fringe IF appears in the light hitting a pixel (referred to as “pixel A” in FIG. 7) that images the low surface PA of the camera 41. For this reason, in the area where the interference fringe IF is generated, the brightness of the light hitting the pixel A changes according to the scanning position. At this time, the interference fringe IF does not appear in the light hitting a pixel (referred to as “pixel B” in FIG. 7) that images the high surface PB of the camera 41.
また、走査部55の走査過程で、ハーフミラー48と高い面PBとの間の測定距離Zsと参照距離Zmとの差分の2倍で示される光路差2(Zs−Zm)が規定範囲以内になると、カメラ41の高い面PBを撮像する画素Bに当たる光に干渉フリンジIFが現れる。このため、干渉フリンジIFの発生エリアで画素Bに当たる光の明るさが走査位置に応じて変化する。このとき、カメラ41の低い面PAを撮像する画素Aに当たる光に干渉フリンジIFは現れない。 In the scanning process of the scanning unit 55, the optical path difference 2 (Zs−Zm) indicated by twice the difference between the measurement distance Zs between the half mirror 48 and the high surface PB and the reference distance Zm is within a specified range. Then, an interference fringe IF appears in the light that strikes the pixel B that images the high surface PB of the camera 41. For this reason, the brightness of the light striking the pixel B in the interference fringe IF generation area changes according to the scanning position. At this time, the interference fringe IF does not appear in the light hitting the pixel A that images the lower surface PA of the camera 41.
画素Aに当たる光に干渉フリンジIFが現れたときの走査部55の走査位置Zaと、画素Bに当たる光に干渉フリンジIFが現れたときの走査部55の走査位置Zbとの間の距離2ΔZは、段差12bの高さΔZの2倍となる。画素A,Bに当たる光の干渉フリンジのZ方向におけるピーク位置Za,Zbをそれぞれ求めれば、各ピーク位置Za,Zb間の距離2ΔZの1/2が、面PAに対する面PBの高さΔZとして求めることができる。 The distance 2ΔZ between the scanning position Za of the scanning unit 55 when the interference fringe IF appears in the light hitting the pixel A and the scanning position Zb of the scanning unit 55 when the interference fringe IF appears in the light hitting the pixel B is This is twice the height ΔZ of the step 12b. If the peak positions Za and Zb in the Z direction of the interference fringes of the light impinging on the pixels A and B are respectively determined, 1/2 of the distance 2ΔZ between the peak positions Za and Zb is determined as the height ΔZ of the surface PB with respect to the surface PA. be able to.
ところで、特許文献2に記載のように干渉フリンジの波形を一周期当たりに複数点のサンプリングをする方法では、干渉フリンジのピークを求めるために、干渉フリンジIFのピッチの少なくとも1/3もしくは1/4に相当する100nm(ナノメーター)以下のサンプリングで多数の画像を取得する必要がある。この場合、仮に走査部55の移動ストローク50μmの範囲で画像データを取得する場合、500枚以上の画像が必要になる。この場合、nmオーダーの精度が得られるものの、撮像に非常に時間がかかり、必要なメモリサイズも膨大になるうえ、画素毎のピーク位置を算出する処理時間が非常に長くなり、実用的でない。さらに走査部55をZ方向に走査しながら100nm以下のサンプリングステップで細かく多数の画像を取得する際に露光時間内の振動を抑えることは困難であり、この点からパターン検査装置11への搭載が困難になる。一方、カメラ41の撮像速度を高速化して振動の影響を軽減させようとすると、画像が暗くなりピーク位置検出精度が低下する。 By the way, in the method of sampling a plurality of interference fringe waveforms per cycle as described in Patent Document 2, in order to obtain the peak of the interference fringe, at least 1/3 or 1 / of the pitch of the interference fringe IF is obtained. It is necessary to acquire a large number of images with sampling of 100 nm (nanometer) or less corresponding to 4. In this case, if the image data is acquired in the range of the movement stroke of the scanning unit 55 of 50 μm, 500 or more images are required. In this case, although accuracy on the order of nm is obtained, it takes a very long time for imaging, the required memory size becomes enormous, and the processing time for calculating the peak position for each pixel becomes very long, which is not practical. Further, it is difficult to suppress vibration within the exposure time when a large number of images are acquired in a sampling step of 100 nm or less while scanning the scanning unit 55 in the Z direction. From this point, mounting on the pattern inspection apparatus 11 is difficult. It becomes difficult. On the other hand, if the imaging speed of the camera 41 is increased to reduce the influence of vibration, the image becomes dark and the peak position detection accuracy decreases.
一方、パターン検査装置11における配線基板12の欠陥の検証には、nmオーダーではなく100nmオーダーの精度で十分である。そのため、撮像する画像の枚数が少なく済むように露光時間を長くすることが好ましい。しかし、干渉フリンジIFは、明部と暗部が周期的に現れる波形であるため、光源43を連続発光させた場合、カメラ41の画素が干渉フリンジIFの周期以上の一定の露光時間Teで受光した場合、各画素に当たる光の干渉フリンジIFの明部と暗部とが平均化されてしまい、ピークの検出が困難になる。 On the other hand, accuracy of 100 nm order instead of nm order is sufficient for verifying defects of the wiring board 12 in the pattern inspection apparatus 11. Therefore, it is preferable to lengthen the exposure time so that the number of images to be captured can be reduced. However, since the interference fringe IF has a waveform in which the bright part and the dark part appear periodically, when the light source 43 is continuously emitted, the pixel of the camera 41 receives light with a constant exposure time Te that is equal to or longer than the period of the interference fringe IF. In this case, the bright part and the dark part of the interference fringe IF of light hitting each pixel are averaged, making it difficult to detect the peak.
そこで、図8に示すように、本実施形態では、光源43(LED)を干渉フリンジIFの波形(以下、「干渉波形」ともいう。)と同じ周期(換言すれば同じ周波数)同じ位相で点滅させる。これにより、カメラ41は干渉波形のうち光源43の点灯期間に対応する一例として明部(図8において入力光波形中心線よりも上側の部分)を選択的に撮像する。図8の例では、カメラ41の画素の入力光波形は、露光時間Teにおいてほぼ明部の波形を選択したに等しい。このため、カメラ41の画素の出力(図8におけるカメラ出力)は、露光時間Teの間で画素が受光した受光量の積算値(積分値)に対応する輝度値をとる。図8の例では、撮像された画像中の対応する画素の輝度値は明部を選択的に積算した受光量に対応する値をとる。この場合、干渉フリンジIFと同周期で点滅する光源43の消灯時のカメラ41への入力光の光量は常に極めて低いほぼ一定値であるため、露光時間Teにおける画素の受光量の積分値であるカメラ出力値(画素の輝度値)は、干渉フリンジIFの包絡線EV(図5における二点鎖線)の高さにほぼ比例する。画像解析部32は、複数の画像を基に異なる画像間の対応する画素の輝度値を用いてこれら輝度値間の補間計算を行って撮像間隔より細かな位置精度で包絡線EV上に載る複数の輝度値を演算し、これらの輝度値を用いて包絡線EVのピーク位置を演算することで干渉フリンジIFのピーク位置を求める。なお、図8ではカメラ出力値(輝度値)を、ドットで示し、露光時間Teの間におけるカメラ41の画素の受光量の経時変化を実線で示している。 Therefore, as shown in FIG. 8, in this embodiment, the light source 43 (LED) blinks in the same cycle (in other words, the same frequency) and the same phase as the interference fringe IF waveform (hereinafter also referred to as “interference waveform”). Let Thereby, the camera 41 selectively images a bright portion (portion above the center line of the input light waveform in FIG. 8) as an example corresponding to the lighting period of the light source 43 in the interference waveform. In the example of FIG. 8, the input light waveform of the pixel of the camera 41 is equivalent to selecting the waveform of the bright part at the exposure time Te. Therefore, the pixel output of the camera 41 (camera output in FIG. 8) takes a luminance value corresponding to the integrated value (integrated value) of the amount of light received by the pixel during the exposure time Te. In the example of FIG. 8, the luminance value of the corresponding pixel in the captured image takes a value corresponding to the amount of received light obtained by selectively integrating the bright part. In this case, since the light quantity of the input light to the camera 41 when the light source 43 blinking in the same cycle as the interference fringe IF is always very low, it is an integral value of the light reception amount of the pixel in the exposure time Te. The camera output value (pixel luminance value) is substantially proportional to the height of the envelope EV (two-dot chain line in FIG. 5) of the interference fringe IF. The image analysis unit 32 performs interpolation calculation between the luminance values using the luminance values of corresponding pixels between different images based on the plurality of images, and puts them on the envelope EV with a position accuracy finer than the imaging interval. Are calculated, and the peak position of the interference fringe IF is obtained by calculating the peak position of the envelope EV using these brightness values. In FIG. 8, the camera output value (luminance value) is indicated by dots, and the temporal change in the amount of light received by the pixels of the camera 41 during the exposure time Te is indicated by a solid line.
また、図8に示すように、光源43(LED)のLED駆動波形の一周期以上の露光時間Teを設定している。特に露光時間Teを、LED駆動波形の一周期の自然数倍としている。図8の例では、露光時間Teを、LED駆動波形の一周期と等しくしている。もちろん、これに限定されず、露光時間Teは、光源43の点滅周期の自然数倍であればよい。例えば露光時間Teは、LED駆動波形の周期の2倍又は3倍でもよい。なお、露光時間を長くする特別な工夫をしなくて済むため、走査部55が干渉フリンジIFが現れる干渉可能距離Lfの区間を移動する間に、画像を3枚以上撮像可能な露光時間Teに設定することが望ましい。すなわち、露光時間Teは、干渉フリンジIFの発生期間(つまり干渉可能距離Lfを走査する時間)の1/4〜1/3の範囲内の値に設定されていることが好ましい。もちろん、露光時間Teは干渉フリンジIFのピークを検出可能な限りにおいて干渉フリンジIFの発生期間の1/3を超えた値を設定することもできる。この場合、干渉フリンジのピーク検出を可能としつつ露光時間Teをなるべく長く設定可能な特別な工夫(ピーク検出解析処理など)を併用してもよい。例えば要求される精度が比較的粗い場合には干渉フリンジIFの発生期間以上の露光時間Teを設定してもよい。 Further, as shown in FIG. 8, an exposure time Te of one cycle or more of the LED drive waveform of the light source 43 (LED) is set. In particular, the exposure time Te is a natural number multiple of one cycle of the LED drive waveform. In the example of FIG. 8, the exposure time Te is made equal to one cycle of the LED drive waveform. Of course, the present invention is not limited to this, and the exposure time Te may be a natural number times the blinking cycle of the light source 43. For example, the exposure time Te may be twice or three times the period of the LED drive waveform. In addition, since it is not necessary to devise a special device for extending the exposure time, the exposure time Te is set so that three or more images can be captured while the scanning unit 55 moves in the interval of the interference possible distance Lf where the interference fringe IF appears. It is desirable to set. That is, the exposure time Te is preferably set to a value within a range of ¼ to 3 of the generation period of the interference fringe IF (that is, the time for scanning the interference possible distance Lf). Of course, the exposure time Te can be set to a value exceeding 1/3 of the generation period of the interference fringe IF as long as the peak of the interference fringe IF can be detected. In this case, a special device (such as a peak detection analysis process) that can set the exposure time Te as long as possible while enabling the peak detection of interference fringes may be used in combination. For example, when the required accuracy is relatively rough, an exposure time Te that is longer than the generation period of the interference fringe IF may be set.
ところで、図8の例では、干渉波形の明部とLED駆動波形の点灯期間とがほぼ一致し、干渉波形とLED駆動波形の位相がほぼ合っているが、制御上の限界から位相がずれる場合が起こりうる。例えば図10(a)に示すように、干渉波形の位相に対してLED駆動波形の位相が約90度ずれた場合、露光時間Te内でLED駆動波形の点灯期間におけるカメラ入力光波形に干渉波形の明部と暗部とがほぼ半分ずつ現れる。この場合、仮に波形の振幅が異なってもそれぞれで明部と暗部は振幅中心に対する差がほぼ等しいので、その明部と暗部とが平均化されてカメラ41に撮像された複数の画像中の対応する画素間で露光時間Teにおける受光量に差が生じなくなる。この結果、カメラ41の画素毎の輝度値から干渉フリンジIFのピーク位置を演算することが困難になる。そこで、本実施形態では、以下の制御を採用する。 By the way, in the example of FIG. 8, the bright part of the interference waveform and the lighting period of the LED drive waveform almost coincide with each other, and the phase of the interference waveform and the LED drive waveform almost coincide with each other. Can happen. For example, as shown in FIG. 10A, when the phase of the LED drive waveform is shifted by about 90 degrees with respect to the phase of the interference waveform, the interference waveform is added to the camera input light waveform during the lighting period of the LED drive waveform within the exposure time Te. Nearly half of the light and dark areas appear. In this case, even if the amplitude of the waveform is different, the difference between the bright part and the dark part with respect to the center of the amplitude is approximately the same, so that the bright part and the dark part are averaged and the correspondence in the plurality of images captured by the camera 41 is obtained. No difference occurs in the amount of received light at the exposure time Te between the pixels to be processed. As a result, it becomes difficult to calculate the peak position of the interference fringe IF from the luminance value for each pixel of the camera 41. Therefore, in the present embodiment, the following control is adopted.
図9に示すグラフは、上から順に、走査部55の走査位置(Z位置)、カメラ41の画素における干渉波形、LED駆動波形、カメラ撮像輝度(カメラ出力)をそれぞれ示している。カメラ撮像輝度は、測定時(撮像時)におけるカメラ41の画素の受光量に応じた輝度値を示す。図9に示すように、走査部55は一つの測定エリアに対し一往復の走査を行い、このとき発光制御部65は往動過程と復動過程とでLED駆動波形の位相を90度ずらす制御を行う。走査部55が走査開始位置である原点(位置0μm)から走査上限位置Zo(位置50μm)まで移動する往動走査過程では、LED駆動波形の位相を予め設定された位相とし、復動走査過程ではLED駆動波形の位相を、往動走査過程の位相に対して90度ずらす制御を行う。 The graph shown in FIG. 9 shows the scanning position (Z position) of the scanning unit 55, the interference waveform at the pixel of the camera 41, the LED driving waveform, and the camera imaging brightness (camera output) in order from the top. The camera imaging luminance indicates a luminance value corresponding to the amount of light received by the pixel of the camera 41 at the time of measurement (at the time of imaging). As shown in FIG. 9, the scanning unit 55 performs one reciprocal scanning with respect to one measurement area, and at this time, the light emission control unit 65 controls the phase of the LED drive waveform to be shifted by 90 degrees between the forward movement process and the backward movement process. I do. In the forward scanning process in which the scanning unit 55 moves from the origin (position 0 μm) that is the scanning start position to the scanning upper limit position Zo (position 50 μm), the phase of the LED driving waveform is set in advance, and in the backward scanning process. Control is performed to shift the phase of the LED drive waveform by 90 degrees with respect to the phase of the forward scanning process.
例えば図10(a)に示す往動走査過程において干渉波形とLED駆動波形との位相が約90度ずれると、前述のように干渉フリンジIFのピーク位置の演算が困難になる。この場合でも、図10(b)に示す復動走査過程では、干渉波形とLED駆動波形との位相が同じになり、露光時間Te内で明部のみが積算されるため、画素の輝度値に基づく干渉フリンジIFのピーク位置の演算が可能となる。このように走査部55の往動時と復動時とで光源43を点滅させる位相を90度ずらすことで、往動時と復動時の少なくとも一方で干渉フリンジIFのピーク位置を演算できる。ここで、画像解析部32は、走査部55の走査中にカメラ41が撮像した複数の画像中の各画素の輝度値を用いて、異なる画像における対応する画素の輝度値間で補間計算を行って、干渉フリンジIFの包絡線EVのピーク位置を演算する。なお、画像解析部32による画素毎の干渉フリンジのピーク位置検出処理は、コンピュータ25内の画像処理回路によりで高速で行われる。 For example, if the phase of the interference waveform and the LED drive waveform is shifted by about 90 degrees in the forward scanning process shown in FIG. 10A, it is difficult to calculate the peak position of the interference fringe IF as described above. Even in this case, in the backward scanning process shown in FIG. 10B, the phases of the interference waveform and the LED drive waveform are the same, and only the bright part is integrated within the exposure time Te. The peak position of the interference fringe IF can be calculated. In this way, by shifting the phase at which the light source 43 blinks by 90 degrees between the forward movement and the backward movement of the scanning unit 55, the peak position of the interference fringe IF can be calculated at least one of the forward movement and the backward movement. Here, the image analysis unit 32 performs an interpolation calculation between the luminance values of the corresponding pixels in different images, using the luminance values of each pixel in the plurality of images captured by the camera 41 during the scanning of the scanning unit 55. Thus, the peak position of the envelope EV of the interference fringe IF is calculated. In addition, the peak position detection process of the interference fringe for each pixel by the image analysis unit 32 is performed at high speed by an image processing circuit in the computer 25.
次にパターン検査装置11及び三次元プロファイル取得装置21の作用を説明する。
まず配線基板12に形成された全ての配線36に対してパターン検査が行われる。検査部31は、撮像ユニット17のカメラ19が撮像した被測定面12aの画像を基にパターン検査を行って真偽の疑わしい欠陥候補を検出した場合は、検証処理を要求する。例えば図2に示す配線36上の酸化膜36a、凹部36b、欠落部36cは、パターン検査で欠陥候補として検出され、検証の対象となる。検証の要求を受け付けた制御部60は、ステージ14を欠陥候補を撮像可能なX方向の位置に移動させるとともに、三次元光学ユニット20を欠陥候補を撮像可能なY方向の位置に移動させる。
Next, operations of the pattern inspection apparatus 11 and the three-dimensional profile acquisition apparatus 21 will be described.
First, a pattern inspection is performed on all the wirings 36 formed on the wiring board 12. The inspection unit 31 requests verification processing when pattern inspection is performed based on the image of the measurement target surface 12a captured by the camera 19 of the imaging unit 17 and a genuine and suspected defect candidate is detected. For example, the oxide film 36a, the concave portion 36b, and the missing portion 36c on the wiring 36 shown in FIG. 2 are detected as defect candidates in the pattern inspection and are to be verified. The control unit 60 that has received the verification request moves the stage 14 to a position in the X direction where the defect candidate can be imaged, and moves the three-dimensional optical unit 20 to a position in the Y direction where the defect candidate can be imaged.
走査開始前に光源43を発光させた状態で走査部55を少なくとも1回走査させて光センサ56の受光信号に基づき干渉フリンジの周期と位相のうち少なくとも位相を求めるキャリブレーションを行う。このキャリブレーションにより走査部55の走査位置に対する干渉フリンジの位相を求める。 Before the start of scanning, the scanning unit 55 is scanned at least once with the light source 43 being lit, and calibration is performed to obtain at least the phase and the phase of the interference fringe based on the light reception signal of the optical sensor 56. The phase of the interference fringe with respect to the scanning position of the scanning unit 55 is obtained by this calibration.
制御装置40は、図11に示す三次元プロファイル取得処理ルーチンのプログラムを実行する。以下、図11のフローチャートに従って三次元プロファイル取得処理ルーチンについて説明する。なお、図11における処理には、光源43の発光制御、走査部55の走査制御及びカメラ41の撮像制御などのコントローラ23内の制御部60が行う制御と、画像解析部32による処理とが含まれている。なお、制御部60が行う制御のうち一部又は全部をコンピュータ25が行ってもよい。また、画像解析部32がコントローラ23内に備えられてもよい。 The control device 40 executes a three-dimensional profile acquisition processing routine program shown in FIG. Hereinafter, the three-dimensional profile acquisition processing routine will be described with reference to the flowchart of FIG. 11 includes control performed by the control unit 60 in the controller 23 such as light emission control of the light source 43, scanning control of the scanning unit 55, and imaging control of the camera 41, and processing by the image analysis unit 32. It is. Note that the computer 25 may perform part or all of the control performed by the control unit 60. Further, the image analysis unit 32 may be provided in the controller 23.
ステップS1では、走査部55を往動させる。すなわち、制御部60がピエゾ駆動部62にピエゾ駆動信号を出力してアクチュエータ50に印加する電圧を変化させることにより、走査部55を走査開始位置(原点=位置0μm)から走査終了位置(位置50μm)まで一定速度で往動させる。 In step S1, the scanning unit 55 is moved forward. That is, the control unit 60 outputs a piezo drive signal to the piezo drive unit 62 to change the voltage applied to the actuator 50, thereby changing the scanning unit 55 from the scan start position (origin = position 0 μm) to the scan end position (position 50 μm). ) At a constant speed.
ステップS2では、光源を干渉フリンジと同じ周期で点滅させる。すなわち、発光制御部65が干渉フリンジIFの周期と同じ周期のLED駆動パルス信号を生成し、このパルス信号を発光駆動部61に出力して光源43にパルス電圧を印加することにより光源43を干渉フリンジIFと同じ周期で点滅させる。 In step S2, the light source is blinked at the same cycle as the interference fringe. That is, the light emission control unit 65 generates an LED drive pulse signal having the same cycle as the cycle of the interference fringe IF, outputs this pulse signal to the light emission drive unit 61, and applies a pulse voltage to the light source 43 to interfere with the light source 43. Flashes in the same cycle as fringe IF.
ステップS3では、カメラにより干渉フリンジの周期の自然数倍の露光時間で被測定面12aを撮像する。すなわち、撮像制御部63は、カメラ41に露光時間Te毎の撮像を行わせる。カメラ41により撮像された画像データは、画像解析部32に逐次送られる。 In step S3, the surface to be measured 12a is imaged with an exposure time that is a natural number times the cycle of the interference fringe. That is, the imaging control unit 63 causes the camera 41 to perform imaging for each exposure time Te. Image data captured by the camera 41 is sequentially sent to the image analysis unit 32.
次のステップS4では、複数の画像を解析して画素毎に干渉フリンジのピークが現れたZ位置を検出する。すなわち、画像解析部32は、干渉フリンジが現れていないときの被測定面12aを撮像する画素の輝度を基準輝度値としてメモリに記憶している。そして、画像解析部32は、画像データの画素毎に輝度値と基準輝度値との差分ΔBを演算し、画素毎の差分ΔBをメモリに逐次記憶する。さらに画像解析部32は、複数回分の画素毎の差分ΔBを用いて補間計算を行って、走査部55が撮像1回分の間に移動する撮像ピッチよりも細かな位置(走査位置)毎に、画素毎の干渉フリンジIFの包絡線EV(図5を参照)上の差分を逐次求める。そして、画像解析部32は、包絡線EV上の差分を逐次比較し、最大値となったときの走査位置をピーク位置(Z位置)として検出する。 In the next step S4, a plurality of images are analyzed to detect a Z position where an interference fringe peak appears for each pixel. That is, the image analysis unit 32 stores the luminance of the pixel that images the measured surface 12a when no interference fringe appears in the memory as the reference luminance value. Then, the image analysis unit 32 calculates a difference ΔB between the luminance value and the reference luminance value for each pixel of the image data, and sequentially stores the difference ΔB for each pixel in the memory. Further, the image analysis unit 32 performs interpolation calculation using the difference ΔB for each pixel for a plurality of times, and for each position (scanning position) finer than the imaging pitch at which the scanning unit 55 moves during one imaging. The difference on the envelope EV (see FIG. 5) of the interference fringe IF for each pixel is sequentially obtained. Then, the image analysis unit 32 sequentially compares the differences on the envelope EV and detects the scanning position when the maximum value is reached as the peak position (Z position).
なお、干渉フリンジIFの出現区間では、光センサ56が点灯期間における受光信号に干渉フリンジの波形が含まれるので、干渉モニタ部64は干渉フリンジの周期及び位相を検出できる。発光制御部65は、光センサ56の受光信号に基づく干渉フリンジの位相に合わせてLED駆動パルス信号を生成する。このため、干渉フリンジIFの発生区間において光源43の点滅波形の位相が干渉フリンジの位相に合い、相対的に大きな差分ΔBが得られ、ピーク位置検出感度が高くなる。 It should be noted that in the appearance period of the interference fringe IF, the interference monitor section 64 can detect the period and phase of the interference fringe because the light reception signal during the lighting period of the optical sensor 56 includes the interference fringe waveform. The light emission control unit 65 generates an LED drive pulse signal in accordance with the phase of the interference fringe based on the light reception signal of the optical sensor 56. For this reason, the phase of the blinking waveform of the light source 43 matches the phase of the interference fringe in the generation period of the interference fringe IF, a relatively large difference ΔB is obtained, and the peak position detection sensitivity is increased.
ステップS5では、走査部の往動終了か否かを判定する。制御部60は、ピエゾ駆動信号の値が、走査部55が所定ストローク(例えば50μm)を移動し終えて走査上限位置Zoにあるときの値に達したか否かを判定する。走査部55の往動終了前であれば、ステップS3に戻り、ステップS3の撮像処理及びS4の画像解析によるピーク位置検出処理を、ステップS5において往動終了と判定されるまで繰り返す。 In step S5, it is determined whether or not the forward movement of the scanning unit has been completed. The control unit 60 determines whether or not the value of the piezo drive signal has reached a value when the scanning unit 55 has finished moving a predetermined stroke (for example, 50 μm) and is at the scanning upper limit position Zo. If it is before the end of the forward movement of the scanning part 55, it will return to step S3 and will repeat the imaging process of step S3 and the peak position detection process by the image analysis of S4 until it determines with the forward movement end in step S5.
例えば図6に示す配線基板12の被測定面12aを測定する場合、走査部55の往動過程において、図7に示す走査位置Zaで低い面PAを撮像する画素Aに当たる光に干渉フリンジIFのピークが現れ、走査位置Zbで高い面PBを撮像する画素Bに当たる光に干渉フリンジIFのピークが現れる。このため、ステップS4では、被測定面12a上の面PA,PBの高さに応じたピーク位置Za,Zbがそれぞれ検出される。そして、走査部55の往動が終了すると、ステップS6に進む。 For example, when measuring the measurement target surface 12a of the wiring board 12 shown in FIG. 6, in the forward movement process of the scanning unit 55, the interference fringe IF is incident on the light hitting the pixel A that images the low surface PA at the scanning position Za shown in FIG. A peak appears, and an interference fringe IF peak appears in the light striking the pixel B that images the high surface PB at the scanning position Zb. For this reason, in step S4, peak positions Za and Zb corresponding to the heights of the surfaces PA and PB on the measured surface 12a are detected. When the forward movement of the scanning unit 55 ends, the process proceeds to step S6.
ステップS6では、走査部55を復動させる。すなわち、制御部60がピエゾ駆動部62にピエゾ駆動信号を出力してアクチュエータ50に印加する電圧を往動時と逆方向に変化させることにより、走査部55を走査終了位置(位置50μm)から走査開始位置(原点=位置0μm)まで一定速度で復動させる。 In step S6, the scanning unit 55 is moved backward. That is, the control unit 60 outputs a piezo drive signal to the piezo drive unit 62 and changes the voltage applied to the actuator 50 in the direction opposite to that in the forward movement, thereby scanning the scan unit 55 from the scan end position (position 50 μm). The actuator is moved backward at a constant speed to the start position (origin = position 0 μm).
ステップS7では、光源を干渉フリンジと同じ周期かつ走査部55の往動時と90度異なる位相で点滅させる。すなわち、先に干渉モニタ部64がモニタリングした干渉フリンジの周期は既知であり、走査部55の走査位置に対する発光制御部65によるLED駆動パルス信号の出力タイミングを、走査部55の往動時の出力タイミングに対して1/4周期分ずらすことで、LED駆動パルス信号の位相を往動時に対して90度ずらす。そして、この位相を90度ずらした干渉フリンジIFと同じ周期のLED駆動パルス信号を発光駆動部61に出力し、光源43を干渉フリンジIFと同じ周期かつ走査部55の往動時と90度異なる位相で点滅させる。 In step S7, the light source is blinked at the same cycle as the interference fringe and at a phase different by 90 degrees from the time when the scanning unit 55 moves forward. That is, the period of the interference fringe previously monitored by the interference monitor unit 64 is known, and the output timing of the LED drive pulse signal by the light emission control unit 65 with respect to the scanning position of the scanning unit 55 is the output during the forward movement of the scanning unit 55. The phase of the LED driving pulse signal is shifted by 90 degrees with respect to the forward movement by shifting the timing by 1/4 period. Then, an LED drive pulse signal having the same cycle as that of the interference fringe IF with the phase shifted by 90 degrees is output to the light emission drive unit 61, and the light source 43 has the same cycle as the interference fringe IF and 90 degrees different from the forward movement of the scanning unit 55. Flashes in phase.
次のステップS8及びS9の各処理は、ステップS2及びS3の各処理と同様の処理である。すなわち、ステップS8では、カメラにより干渉フリンジの周期の自然数倍の露光時間で被測定面12aを撮像する。カメラ41により撮像された画像データは、画像解析部32に逐次送られる。そして、ステップS9では、複数の画像を解析して画素毎に干渉フリンジのピークが現れたZ位置を検出する。 Each process of next step S8 and S9 is a process similar to each process of step S2 and S3. That is, in step S8, the surface to be measured 12a is imaged by the camera with an exposure time that is a natural number times the interference fringe period. Image data captured by the camera 41 is sequentially sent to the image analysis unit 32. In step S9, a plurality of images are analyzed to detect a Z position where an interference fringe peak appears for each pixel.
ステップS10では、走査部の復動終了か否かを判定する。すなわち、制御部60は、ピエゾ駆動信号の値が、走査部55が走査開始位置にあるときの値に達したか否かを判定する。走査部55の復動終了前であれば、ステップS8に戻り、ステップS8の撮像処理及びS9の画像解析によるピーク位置検出処理を、ステップS10において復動終了と判定されるまで繰り返す。そして、走査部55の復動が終了すると、ステップS11に進む。例えば、走査部55の往動時と復動時の一方で干渉フリンジIFの位相に対して光源43の点滅波形の位相がほぼ90度ずれていても、他方で干渉フリンジIFの位相に対して光源43の点滅波形の位相がほぼ合っているかほぼ180度ずれていることになる。このため、他方の走査時において差分ΔBを基に干渉フリンジIFの包絡線EVのピーク位置(Z位置)を検出できる。 In step S10, it is determined whether or not the backward movement of the scanning unit has ended. That is, the control unit 60 determines whether or not the value of the piezo drive signal has reached the value when the scanning unit 55 is at the scanning start position. If it is before the end of the backward movement of the scanning unit 55, the process returns to step S8, and the imaging process in step S8 and the peak position detection process by the image analysis in S9 are repeated until it is determined in step S10 that the backward movement is completed. When the backward movement of the scanning unit 55 ends, the process proceeds to step S11. For example, even if the phase of the flicker waveform of the light source 43 is shifted by approximately 90 degrees with respect to the phase of the interference fringe IF on one side during the forward movement and the backward movement of the scanning unit 55, That is, the phase of the blinking waveform of the light source 43 is substantially matched or shifted by 180 degrees. For this reason, the peak position (Z position) of the envelope EV of the interference fringe IF can be detected based on the difference ΔB during the other scanning.
ステップS11では、画素毎に検出したZ位置を基に三次元プロファイルを生成する。すなわち、画像解析部32は、画素毎に、走査部55の往動時に検出したピークと、走査部55の復動時に検出したピークとの大きさ(差分)を比較し、ピークが大きい方のZ位置を採用する。この場合、全画素のうち一部の画素についてピークの大小を比較し、採用するピーク位置を走査部55の往動時のものか復動時のものかを判定し、判定された一方のピーク位置を採用する構成でもよい。そして、採用する画素毎のZ位置が決まると、Z位置に応じたz座標に基づき三次元プロファイルPDを生成する。 In step S11, a three-dimensional profile is generated based on the Z position detected for each pixel. That is, the image analysis unit 32 compares, for each pixel, the magnitude (difference) between the peak detected when the scanning unit 55 moves forward and the peak detected when the scanning unit 55 moves backward, and the larger peak is detected. Adopt Z position. In this case, the peak size is compared for some of all the pixels, and it is determined whether the peak position to be used is for the forward movement or the backward movement of the scanning unit 55, and one of the determined peaks The structure which employ | adopts a position may be sufficient. When the Z position for each pixel to be adopted is determined, a three-dimensional profile PD is generated based on the z coordinate corresponding to the Z position.
こうして各画素が座標(x,y,z)で表現された三次元プロファイルPDが生成されると、この三次元プロファイルPDは検証部33に送られる。検証部33は三次元プロファイルPDから真偽の疑わしい欠陥の表面の高さ分布を取得し、その高さを基に欠陥の真偽を検証する。例えば図2に示す酸化膜36aである場合は配線36の上面の高さが規定高さ以上あるので、欠陥ではないことが検証される。また、例えば図2に示す凹部36bである場合は配線36の上面の高さが規定高さ以上あれば欠陥ではないことが検証され、規定高さ未満であれば欠陥であると検証される。さらに例えば図2に示す欠落部36cである場合は配線36の上面の高さが規定高さ未満となるので、欠陥であることが検証される。 When the three-dimensional profile PD in which each pixel is expressed by coordinates (x, y, z) is generated in this way, the three-dimensional profile PD is sent to the verification unit 33. The verification unit 33 acquires the height distribution of the surface of the suspicious defect that is genuine from the three-dimensional profile PD, and verifies the authenticity of the defect based on the height. For example, in the case of the oxide film 36a shown in FIG. 2, since the height of the upper surface of the wiring 36 is not less than a specified height, it is verified that it is not a defect. For example, in the case of the recess 36b shown in FIG. 2, if the height of the upper surface of the wiring 36 is equal to or higher than a specified height, it is verified that it is not a defect, and if it is less than the specified height, it is verified as a defect. Further, for example, in the case of the missing portion 36c shown in FIG. 2, the height of the upper surface of the wiring 36 is less than the specified height, so that it is verified that it is a defect.
なお、ステップS4及びS9における複数の画像を基に画素毎の干渉フリンジのピーク位置を検出する演算は、ステップS10で走査部55の走査中にカメラ41で行う撮像を全て終了した(S10で肯定判定)後に行ってもよい。すなわち、上記の例では、ピーク位置の演算処理は、走査部55の往路と復路の撮像中で行った。しかし、走査部55の往路と復路でカメラ41による全ての撮像を終えた後、それまでメモリに保存した複数の画像を基に画素毎の干渉フリンジのピーク位置を往路と復路でそれぞれ演算し、同じ画素の往路と復路でピークの高い方を採用して画素毎のピーク位置を検出するようにしてもよい。 Note that the calculation for detecting the peak position of the interference fringe for each pixel based on the plurality of images in Steps S4 and S9 ended all the imaging performed by the camera 41 during the scanning of the scanning unit 55 in Step S10 (Yes in S10). (Determination) may be performed later. In other words, in the above example, the peak position calculation process is performed during imaging of the forward path and the backward path of the scanning unit 55. However, after all the imaging by the camera 41 is completed in the forward path and the backward path of the scanning unit 55, the peak position of the interference fringe for each pixel is calculated in the forward path and the backward path based on a plurality of images stored in the memory until then, The peak position of each pixel may be detected by adopting the higher peak in the forward path and the backward path of the same pixel.
以上詳述したようにこの第1実施形態によれば、以下の効果が得られる。
(1)干渉計42で生成される干渉フリンジIFの周期と同期して光源43を点滅させるので、カメラ41が干渉計42を通った反射光の像を干渉フリンジIFの周期以上の露光時間Teで撮像した場合に、干渉フリンジの光は光源43が点灯している半周期おきにカメラ41の画素に当たる。このため、カメラ41の画素は干渉フリンジIFを半周期おきに受光する。このとき、例えば干渉フリンジIFの明部のみ又は暗部のみが撮像される。この結果、画像データの画素が干渉フリンジIFの包絡線EVを反映した輝度値をとり、画像解析部32は複数の画像を基に画素毎に干渉フリンジIFのピーク位置を検出できる。よって、画像解析部32は画素毎に検出した干渉フリンジIFのピーク位置から被測定面12aの高さ分布を取得し、三次元プロファイルPDを生成することができる。
As described above in detail, according to the first embodiment, the following effects can be obtained.
(1) Since the light source 43 blinks in synchronism with the period of the interference fringe IF generated by the interferometer 42, the exposure time Te of the reflected light image that the camera 41 has passed through the interferometer 42 is longer than the period of the interference fringe IF. When the image is picked up by (1), the light of the interference fringe hits the pixel of the camera 41 every half cycle when the light source 43 is turned on. For this reason, the pixels of the camera 41 receive the interference fringe IF every half cycle. At this time, for example, only the bright part or only the dark part of the interference fringe IF is imaged. As a result, the pixel of the image data takes a luminance value reflecting the envelope EV of the interference fringe IF, and the image analysis unit 32 can detect the peak position of the interference fringe IF for each pixel based on a plurality of images. Therefore, the image analysis unit 32 can acquire the height distribution of the measured surface 12a from the peak position of the interference fringe IF detected for each pixel, and generate the three-dimensional profile PD.
(2)走査部55を往復走査させ、走査部55の往動時と復動時とで光源43を点滅させる位相を略90度ずらすので、往動時と復動時との少なくとも一方で干渉フリンジIFのピーク位置を検出できる。例えば光源43の点滅と干渉フリンジとの位相を厳密に合わせられなくても、画素毎に干渉フリンジIFのピーク位置を検出し、三次元プロファイルPDを生成できる。また、走査部55を1回だけ走査させる構成に比べ、三次元プロファイルPDを高い精度で生成できる。 (2) Since the scanning unit 55 is reciprocally scanned and the phase at which the light source 43 blinks is shifted by approximately 90 degrees between the forward movement and the backward movement of the scanning section 55, interference occurs in at least one of the forward movement and the backward movement. The peak position of fringe IF can be detected. For example, the peak position of the interference fringe IF can be detected for each pixel and the three-dimensional profile PD can be generated even if the phase of the blinking of the light source 43 and the interference fringe cannot be strictly matched. Further, the three-dimensional profile PD can be generated with higher accuracy than the configuration in which the scanning unit 55 is scanned only once.
(3)干渉計42を通った反射光の一部を受光する光センサ56を設け、光センサ56の受光信号に基づき干渉フリンジIFの位相で光源43を点滅させることができる。このため、撮像時の露光時間Te内で干渉フリンジIFの明部と暗部とが平均化されることに起因する干渉フリンジIFのピーク位置検出エラーを低減できる。 (3) An optical sensor 56 that receives a part of the reflected light that has passed through the interferometer 42 is provided, and the light source 43 can be blinked at the phase of the interference fringe IF based on the light reception signal of the optical sensor 56. For this reason, it is possible to reduce the interference fringe IF peak position detection error caused by averaging the bright and dark portions of the interference fringe IF within the exposure time Te during imaging.
(4)カメラ41の露光時間Teは、走査部55の走査速度から決まる干渉フリンジIFの発生期間の1/4〜1/3の範囲内の値に設定されている。このため、例えばサンプリング法でピークを検出する場合に比べ、数分の1〜数10分の1の比較的少ない数の画像を用いて干渉フリンジIFのピーク位置を検出できる。また、画像データの保存に必要なメモリサイズも比較的少なく済む。しかも画像の枚数が少なく済むうえ、画像解析部32が複数の画像を用いて行うピーク位置検出処理が特別な工夫(複雑なピーク検出解析処理など)をしなくて済む比較的簡単な処理なので、画像解析部32による三次元プロファイルPDの取得処理を高速化できる。 (4) The exposure time Te of the camera 41 is set to a value within a range of ¼ to 3 of the generation period of the interference fringe IF determined from the scanning speed of the scanning unit 55. For this reason, the peak position of the interference fringe IF can be detected using a relatively small number of images, for example, a fraction of 1 to a few tens of times, compared to a case where a peak is detected by a sampling method. Also, the memory size required for storing image data can be relatively small. In addition, since the number of images can be reduced, the peak position detection process performed by the image analysis unit 32 using a plurality of images is a relatively simple process that does not require any special device (such as complicated peak detection analysis process). The acquisition process of the three-dimensional profile PD by the image analysis unit 32 can be speeded up.
(5)パターン検査装置11に三次元プロファイル取得装置21を適用し、配線基板12のパターン検査で検出された欠陥の候補の真偽を、検証部33が、三次元プロファイル取得装置21により取得された三次元プロファイルPDに基づき検証する。よって、配線36の微細化の要請によりそのアスペクト比が高い配線基板12の検査において、配線36の高さの不足した欠陥を精度高く検出できる。 (5) The three-dimensional profile acquisition device 21 is applied to the pattern inspection device 11, and the verification unit 33 acquires the authenticity of the defect candidate detected by the pattern inspection of the wiring board 12 by the three-dimensional profile acquisition device 21. Verification based on the three-dimensional profile PD. Therefore, in the inspection of the wiring board 12 having a high aspect ratio due to the demand for miniaturization of the wiring 36, it is possible to accurately detect a defect in which the wiring 36 is insufficient in height.
(6)光源43の点滅周期を干渉フリンジIFと同じ周期に設定したので、走査部55の走査中に光センサ56の受光信号を基に干渉フリンジIFの半周期毎の波形を検出できるため、受光信号を基にLED駆動パルス信号の位相を干渉フリンジIFの位相に合わせることができる。このため、干渉フリンジIFのピークの検出感度を高め、比較的高い精度の三次元プロファイルPDを取得できる。例えば検証部33による欠陥候補の検証精度を高めることができる。 (6) Since the blinking cycle of the light source 43 is set to the same cycle as the interference fringe IF, the waveform of each half cycle of the interference fringe IF can be detected based on the light reception signal of the optical sensor 56 during the scanning of the scanning unit 55. The phase of the LED drive pulse signal can be matched with the phase of the interference fringe IF based on the received light signal. For this reason, the detection sensitivity of the interference fringe IF peak can be enhanced, and a three-dimensional profile PD with relatively high accuracy can be obtained. For example, the verification accuracy of defect candidates by the verification unit 33 can be increased.
実施形態は上記に限定されず、以下の態様に変更することもできる。
・前記実施形態では、走査部55を被測定面12aと垂直なZ方向に往復動させたが、往動のみ又は復動のみの一走査だけででもよい。例えば光センサ56の受光信号を入力する発光制御部65内の位相同期回路から干渉フリンジと同位相のLED駆動パルス信号を出力できる場合は、走査部55の一走査であっても必要な精度の三次元プロファイルPDを取得できる。また、光センサ56及び干渉モニタ部64により干渉フリンジの波形のサンプリングにより取得した干渉フリンジIFの位相の情報を基に、LED駆動波形の位相を正しく較正できれば、走査部55の一走査でも干渉フリンジIFのピーク位置を精度よく検出し、一定以上の精度をもつ三次元プロファイルPDを取得できる。
Embodiment is not limited above, It can also change into the following aspects.
In the above-described embodiment, the scanning unit 55 is reciprocated in the Z direction perpendicular to the measured surface 12a. However, it is possible to perform only one scanning or only one scanning. For example, when the LED drive pulse signal having the same phase as the interference fringe can be output from the phase synchronization circuit in the light emission control unit 65 that receives the light reception signal of the optical sensor 56, the required accuracy can be obtained even with one scanning of the scanning unit 55. A three-dimensional profile PD can be acquired. Further, if the phase of the LED drive waveform can be correctly calibrated based on the information on the phase of the interference fringe IF acquired by sampling the interference fringe waveform by the optical sensor 56 and the interference monitor unit 64, the interference fringe can be detected even in one scan of the scanning unit 55. It is possible to accurately detect the IF peak position and obtain a three-dimensional profile PD having a certain level of accuracy.
・被測定面の同一エリアの高さ分布を測定する際の走査部55の走査回数は、一往復動(2回走査)に限らず、一往復半(3回走査)、複数回の往復動(4回以上の偶数回走査)、5回以上の奇数回走査でもよい。これらの場合、異なる往動又は復動の際に位相を少しずつずらすことが好ましく、そのずらした位相のうち少なくとも一つに90度位相をずらした場合が含まれていることが好ましい。もちろん、光源43の点滅の位相をずらさない構成でもよい。 The number of scans of the scanning unit 55 when measuring the height distribution of the same area of the surface to be measured is not limited to one reciprocation (two scans), but one reciprocation half (three scans), a plurality of reciprocations (4 or more even-number scans) 5 or more odd-number scans may be used. In these cases, it is preferable to gradually shift the phase during different forward and backward movements, and it is preferable that at least one of the shifted phases includes a case where the phase is shifted by 90 degrees. Of course, a configuration in which the blinking phase of the light source 43 is not shifted may be used.
・光センサ56及び干渉モニタ部64を廃止してもよい。この構成でも、走査部55を往動時と復動時で光源43の点滅の位相を90度変えれば、干渉フリンジIFのピーク位置を検出できるので、三次元プロファイルは生成できる。 The optical sensor 56 and the interference monitor unit 64 may be eliminated. Even in this configuration, the peak position of the interference fringe IF can be detected by changing the blinking phase of the light source 43 by 90 degrees between the forward movement and the backward movement of the scanning section 55, so that a three-dimensional profile can be generated.
・光源43は、スペクトル幅の広い光を発光できるものであればよく、その発光色は必ずしも白色光に限定されない。光源からの光のスペクトルに幅があって光路差の狭い範囲で干渉フリンジIFを生成でき、白色干渉法に使用できるものであればよい。また、光源43は、LEDに限らず、電球、有機EL発光体、蛍光灯でもよい。また、光源43の光は、カメラ41による受光が可能な赤外光又は紫外光を一部含んでもよい。 -The light source 43 should just be what can light-emit light with a wide spectrum width, and the luminescent color is not necessarily limited to white light. Any interference fringe IF can be generated in a range where the spectrum of light from the light source is wide and the optical path difference is narrow, and can be used for white light interferometry. The light source 43 is not limited to an LED, but may be a light bulb, an organic EL light emitter, or a fluorescent lamp. The light from the light source 43 may partially include infrared light or ultraviolet light that can be received by the camera 41.
・光源43を干渉フリンジの暗部に合わせて点灯する位相で点滅させ、干渉フリンジの暗部を積分した輝度値を基に干渉フリンジのピーク位置を求めてもよい。
・往動走査時と復動走査時とで光源43の点滅の位相をずらす角度は、90度に限らず、その他の角度でもよい。例えば80〜100度の範囲内の値が好ましいが、少しの角度ずらすだけでも、往動と復動のうちどちらか一方でよりピーク位置検出精度が上がる。また、位相をずらす場合、走査部55の往動時に対し復動時の位相を進めても遅らせてもよい。この構成でも、走査部55の往動時と復動時との少なくとも一方で干渉フリンジのピーク位置を確実に検出できる。
The light source 43 may be blinked at a phase where the light source 43 is turned on in accordance with the dark part of the interference fringe, and the peak position of the interference fringe may be obtained based on the luminance value obtained by integrating the dark part of the interference fringe.
The angle at which the blinking phase of the light source 43 is shifted between forward scanning and backward scanning is not limited to 90 degrees, but may be other angles. For example, a value in the range of 80 to 100 degrees is preferable, but the peak position detection accuracy can be improved by either a forward movement or a backward movement only by shifting a little angle. Further, when the phase is shifted, the phase at the backward movement may be advanced or delayed with respect to the forward movement of the scanning unit 55. Even in this configuration, it is possible to reliably detect the peak position of the interference fringe at least during the forward movement and the backward movement of the scanning unit 55.
・光源43の点滅時の位相を干渉フリンジに合わせる位相の制御を行わない構成でもよい。位相の制御を行わなくても、干渉フリンジのピーク位置の検出は可能である。
・マイケルソン型干渉計に替え、対物レンズの中心の表面に小さな参照ミラー(反射鏡)を取り付け、焦点面の途中にハーフミラーを置き、被測定面からの光とレンズ上の参照ミラーからの反射光が干渉するようにしたミラウ型干渉計(Mirau interferometer)を用いてもよい。
-The structure which does not control the phase which adjusts the phase at the time of blinking of the light source 43 to interference fringe may be sufficient. The peak position of the interference fringe can be detected without controlling the phase.
・ Instead of the Michelson interferometer, a small reference mirror (reflecting mirror) is attached to the center surface of the objective lens, a half mirror is placed in the middle of the focal plane, and the light from the surface to be measured and the reference mirror on the lens A Mirau interferometer in which reflected light interferes may be used.
・制御部60のうち少なくとも一部をソフトウェアで構成したり、ハードウェアで構成したり、ソフトウェアとハードウェアとの協働により構成したりしてもよい。画像解析部32をソフトウェアで構成してもよいし、ソフトウェアとハードウェアとの協働により構成してもよい。 -At least a part of the control unit 60 may be configured by software, may be configured by hardware, or may be configured by cooperation of software and hardware. The image analysis unit 32 may be configured by software, or may be configured by cooperation of software and hardware.
・配線基板12は、パッケージ、TABテープ、ICチップなどの配線パターンが施された配線基板、フラットディスプレイ用の配線基板でもよい。例えば液晶ディスプレイ用、有機エレクトロルミネッセンス(有機EL)用、プラズマディスプレイ用のフラットパネル配線基板でもよい。また、配線基板はガラス配線基板でもプラスチック配線基板でもよい。また、検査の対象とされる被測定面上のパターンは、配線36に限らず、バンプでもよく、パターン検査装置11により配線基板のバンプのパターンを検査してもよい。 The wiring board 12 may be a wiring board provided with a wiring pattern such as a package, a TAB tape, or an IC chip, or a wiring board for a flat display. For example, it may be a flat panel wiring board for liquid crystal displays, organic electroluminescence (organic EL), and plasma displays. The wiring board may be a glass wiring board or a plastic wiring board. Further, the pattern on the surface to be measured to be inspected is not limited to the wiring 36 but may be a bump, and the pattern of the bump on the wiring board may be inspected by the pattern inspection apparatus 11.
・三次元プロファイル取得装置はパターン検査装置に適用されることに限定されない。測定対象は、配線基板に限定されず、微細な凹部、凸部、段差のうち少なくとも一つを検査の対象として有する被測定面であればよい。この場合、微細な凹部又は凸部が規定の深さ又は高さに満たないことを欠陥とする検査でもよいし、平坦面であるべきところに微細な凹部又は凸部からなる欠陥の有無を検査するものでもよい。また、特許文献1のように異物の検査に用いたり、特許文献2のようにビアホールの検査に用いたりしてもよい。さらに、半導体ウエハ上のマイクロバンプの高さ又は体積を検査するインラインウエハバンプ検査装置に適用してもよい。フリップチップ(FC)のバンプ搭載の個片又はフレーム状のICパッケージのバンプ高さ又は体積を検査するFCバンプ検査装置に適用してもよい。また、ビルドアップ基板における2次元上のパターンのメッキ厚みをモニタリングするビルドアップ基板メッキ厚モニタリング装置に適用してもよい。さらに半田や導電性インクの塗布厚(印刷厚)等を精密にモニタリングしてフィードバックする高精度印刷モニタリング装置に適用してもよい。 -A three-dimensional profile acquisition apparatus is not limited to being applied to a pattern inspection apparatus. The measurement target is not limited to the wiring substrate, and may be any surface to be measured that has at least one of a fine concave portion, a convex portion, and a step as an inspection target. In this case, it may be inspected that the fine concave portion or convex portion is less than the prescribed depth or height, or the presence or absence of a fine concave portion or convex portion on the flat surface should be inspected. You may do it. Further, it may be used for inspection of foreign matters as in Patent Document 1, or may be used for inspection of via holes as in Patent Document 2. Furthermore, the present invention may be applied to an in-line wafer bump inspection apparatus that inspects the height or volume of micro bumps on a semiconductor wafer. You may apply to the FC bump test | inspection apparatus which test | inspects the bump height or volume of the flip chip (FC) bump mounting piece or frame-shaped IC package. Moreover, you may apply to the buildup board | substrate plating thickness monitoring apparatus which monitors the plating thickness of the two-dimensional pattern in a buildup board | substrate. Furthermore, the present invention may be applied to a high-precision print monitoring apparatus that precisely monitors and feeds back the application thickness (printing thickness) of solder or conductive ink.
・三次元プロファイル取得装置による測定対象物は、配線基板などの電子実装部品に限定されず、高さ分布を精密に計測、検査する必要のあるものであればよい。例えばMEMS(Micro Electro Mechanical Systems)における高さ分布を測定してもよい。例えばマイクロマシンを応用した、表示デバイス、センサ、アクチュエータを測定対象としてもよい。さらにバイオチップ(例えばDNAチップ)におけるセンサ機能実現のための微小トレンチの深さを管理してもよい。また、原版を基板に押し当てる転写により微細加工を実現するナノインプリントにおいて、転写した微細構造の高速で精密な検査に適用してもよい。また、光通信デバイスや光IC、光導波路などの深さ分布検査に適用してもよい。 The object to be measured by the three-dimensional profile acquisition apparatus is not limited to an electronic mounting component such as a wiring board, and may be any object that needs to precisely measure and inspect the height distribution. For example, the height distribution in MEMS (Micro Electro Mechanical Systems) may be measured. For example, a display device, a sensor, or an actuator using a micromachine may be set as a measurement target. Further, the depth of a micro trench for realizing a sensor function in a biochip (for example, a DNA chip) may be managed. Further, in nanoimprint that realizes microfabrication by transferring the original plate against the substrate, it may be applied to high-speed and precise inspection of the transferred microstructure. Further, the present invention may be applied to depth distribution inspection of optical communication devices, optical ICs, optical waveguides, and the like.
11…パターン検査装置、12…配線基板、12a…被測定面、21…三次元プロファイル取得装置、31…検査部の一例としてのパターン検査部、32…画像解析部、33…検証部、36…配線、41…撮像部の一例としてのカメラ、42…干渉計、43…光源、48…ハーフミラー、49…参照ミラー、50…アクチュエータ、55…走査部、56…光センサ、60…制御部、65…制御部の一例を構成する発光制御部、IF…干渉フリンジ、Te…露光時間、A,B…画素、Za,Zb…ピーク位置、PD…三次元プロファイル。 DESCRIPTION OF SYMBOLS 11 ... Pattern inspection apparatus, 12 ... Wiring board, 12a ... Measuring surface, 21 ... Three-dimensional profile acquisition apparatus, 31 ... Pattern inspection part as an example of an inspection part, 32 ... Image analysis part, 33 ... Verification part, 36 ... Wiring 41... Camera as an example of imaging unit 42. Interferometer 43. Light source 48. Half mirror 49. Reference mirror 50. Actuator 55 55 Scanning unit 56 Optical sensor 60 Control unit 65: Light emission control unit constituting an example of control unit, IF: interference fringe, Te: exposure time, A, B: pixel, Za, Zb ... peak position, PD: three-dimensional profile.
Claims (6)
被測定面に対して交差する方向に走査可能に構成され、前記光源からの光を前記被測定面で反射する測定光と参照ミラーで反射する参照光とに分離し、当該分離した二つの光の反射光を合流させて光路差に基づく干渉フリンジを発生可能な走査部と前記二つの反射光の像を前記干渉フリンジの周期以上の露光時間で撮像する撮像部とを有する干渉計と、
前記走査部を走査させるとともに前記光源を前記干渉フリンジと同じ周期で点滅させる制御部と、
前記撮像部が撮像した複数の画像を基に前記走査部の走査方向における干渉フリンジのピーク位置を画素毎に検出し、当該画素毎の前記ピーク位置を基に三次元プロファイルを生成する画像解析部と、
を備えた三次元プロファイル取得装置。 A light source that emits light having a wide spectral width;
It is configured to be able to scan in a direction crossing the surface to be measured, and separates the light from the light source into measurement light reflected by the surface to be measured and reference light reflected by a reference mirror, and the two separated lights An interferometer having a scanning unit capable of generating an interference fringe based on an optical path difference by combining the reflected light and an imaging unit that captures an image of the two reflected lights with an exposure time equal to or longer than the period of the interference fringe;
A control unit that scans the scanning unit and blinks the light source at the same cycle as the interference fringe;
An image analysis unit that detects a peak position of interference fringes in the scanning direction of the scanning unit for each pixel based on a plurality of images captured by the imaging unit, and generates a three-dimensional profile based on the peak position for each pixel When,
3D profile acquisition device.
前記制御部は、前記干渉フリンジを受光した前記光センサの受光信号を基に前記光源を前記干渉フリンジと同じ位相で点滅させることを特徴とする請求項1又は2に記載の三次元プロファイル取得装置。 An optical sensor that receives a part of the two reflected lights toward the imaging unit;
3. The three-dimensional profile acquisition apparatus according to claim 1, wherein the control unit causes the light source to blink at the same phase as the interference fringe based on a light reception signal of the optical sensor that has received the interference fringe. .
請求項1乃至4のいずれか一項に記載の前記三次元プロファイル取得装置と、
前記三次元プロファイル取得装置が生成した三次元プロファイルを基に前記パターン検査部により検出された前記欠陥の真偽を検証する検証部と、
を備えたことを特徴とするパターン検査装置。 A pattern inspection apparatus comprising a pattern inspection unit that inspects the presence or absence of a wiring defect based on an image obtained by imaging a wiring pattern of a wiring board,
The three-dimensional profile acquisition device according to any one of claims 1 to 4,
A verification unit that verifies the authenticity of the defect detected by the pattern inspection unit based on the three-dimensional profile generated by the three-dimensional profile acquisition device;
A pattern inspection apparatus comprising:
前記光源を前記干渉フリンジと同じ周期で点滅させる発光制御ステップと、
前記干渉計の撮像部により前記二つの反射光の像を前記干渉フリンジの周期以上の露光時間で撮像する撮像ステップと、
前記撮像部が撮像した複数の画像を基に前記走査部の走査方向における干渉フリンジのピーク位置を画素毎に検出し、当該画素毎の前記ピーク位置を基に三次元プロファイルを生成するプロファイル生成ステップと、
を備えた三次元プロファイル取得方法。 The scanning part that constitutes the interferometer is scanned in the direction intersecting the surface to be measured, and the light having a wide spectral width emitted from the light source is reflected by the surface to be measured and the reference light that is reflected by the reference mirror And an interference formation step of generating an interference fringe based on an optical path difference by combining the separated reflected lights of the two lights, and
A light emission control step of blinking the light source at the same cycle as the interference fringe;
An imaging step of capturing an image of the two reflected lights by an imaging unit of the interferometer with an exposure time equal to or longer than the period of the interference fringe
Profile generation step for detecting a peak position of interference fringes in the scanning direction of the scanning unit for each pixel based on a plurality of images captured by the imaging unit, and generating a three-dimensional profile based on the peak position for each pixel When,
A three-dimensional profile acquisition method comprising:
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013110188A JP2014228486A (en) | 2013-05-24 | 2013-05-24 | Three-dimensional profile acquisition device, pattern inspection device, and three-dimensional profile acquisition method |
TW103117065A TW201445109A (en) | 2013-05-24 | 2014-05-15 | Three-dimensional profile acquisition device, pattern inspection apparatus, and three-dimensional profile acquisition method |
CN201410216798.3A CN104180768A (en) | 2013-05-24 | 2014-05-21 | Three dimensional profile obtaining device, pattern detection device, and three |
KR1020140060960A KR20140138359A (en) | 2013-05-24 | 2014-05-21 | Three-dimensional profile acquisition device, pattern inspection apparatus, and three-dimensional profile acquisition method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013110188A JP2014228486A (en) | 2013-05-24 | 2013-05-24 | Three-dimensional profile acquisition device, pattern inspection device, and three-dimensional profile acquisition method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014228486A true JP2014228486A (en) | 2014-12-08 |
Family
ID=51961983
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013110188A Pending JP2014228486A (en) | 2013-05-24 | 2013-05-24 | Three-dimensional profile acquisition device, pattern inspection device, and three-dimensional profile acquisition method |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP2014228486A (en) |
KR (1) | KR20140138359A (en) |
CN (1) | CN104180768A (en) |
TW (1) | TW201445109A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016164557A (en) * | 2015-02-27 | 2016-09-08 | 株式会社東京精密 | Surface shape measurement device and surface shape measurement method |
JP2017151062A (en) * | 2016-02-26 | 2017-08-31 | 株式会社東京精密 | Surface shape measurement device and surface shape measurement method |
CN109387155A (en) * | 2017-08-10 | 2019-02-26 | 上海微电子装备(集团)股份有限公司 | Shape measure device and Shape measure method |
CN109572554A (en) * | 2017-09-28 | 2019-04-05 | 株式会社小糸制作所 | Sensing system |
CN109819142A (en) * | 2017-11-20 | 2019-05-28 | 宁波舜宇光电信息有限公司 | Seperated pair is taken the photograph mould group and photosensory assembly and manufacturing method and electronic equipment |
CN114827573A (en) * | 2018-03-20 | 2022-07-29 | 魔眼公司 | Adjusting camera exposure for three-dimensional depth sensing and two-dimensional imaging |
WO2022185753A1 (en) * | 2021-03-01 | 2022-09-09 | オムロン株式会社 | Measuring device |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RS61478B1 (en) | 2014-06-11 | 2021-03-31 | Pkc Wiring Systems Oy | Sensor arrangement, measuring device and measuring method |
JP6110897B2 (en) * | 2015-06-23 | 2017-04-05 | Ckd株式会社 | 3D measuring device |
JP6109255B2 (en) * | 2015-07-14 | 2017-04-05 | Ckd株式会社 | 3D measuring device |
JP6737693B2 (en) | 2016-01-13 | 2020-08-12 | Ntn株式会社 | Method for measuring volume of minute projections and method for applying liquid material |
JP2018091807A (en) * | 2016-12-07 | 2018-06-14 | オルボテック リミテッド | Defect pass / fail judgment method and apparatus |
JP7028623B2 (en) * | 2017-12-07 | 2022-03-02 | Ckd株式会社 | 3D measuring device |
CN110456423B (en) * | 2018-05-07 | 2024-03-19 | 特鲁普机械奥地利有限公司及两合公司 | Cutting chip identification for bending units |
KR102112053B1 (en) * | 2018-08-01 | 2020-05-18 | 주식회사 뷰온 | An Apparatus and Method for Inspecting Surface Defect using Image Sensor |
CN109813718A (en) * | 2018-12-30 | 2019-05-28 | 江苏四点灵机器人有限公司 | An LED chip module defect detection device and method |
CN110879050B (en) * | 2019-10-19 | 2021-04-23 | 深圳市贝优全盛有限公司 | Big data analysis system of rule degree |
US10890839B1 (en) * | 2019-11-06 | 2021-01-12 | Himax Technologies Limited | Structured light imaging device |
CN112113511B (en) * | 2020-08-17 | 2021-11-23 | 上海交通大学 | Method, system and terminal for extracting surface contour line of semitransparent object |
US20240426790A1 (en) * | 2021-01-21 | 2024-12-26 | Yamaha Robotics Holdings Co., Ltd. | Defect detection device and defect detection method |
JP2023043534A (en) | 2021-09-16 | 2023-03-29 | キオクシア株式会社 | Measuring method, measuring apparatus, and mark |
KR102611132B1 (en) | 2021-10-29 | 2023-12-06 | 세메스 주식회사 | Fringe information measuring apparatus and substrate treating system including the same |
CN114199524A (en) * | 2021-12-10 | 2022-03-18 | 迈得特光学(安徽)有限公司 | A kind of lens surface shape measuring device and method |
CN114383528A (en) * | 2022-01-10 | 2022-04-22 | 湖南伊鸿健康科技有限公司 | Counting pool depth calibration method and system, intelligent terminal and storage medium |
CN118746557B (en) * | 2024-07-11 | 2025-02-11 | 东莞城市学院 | Shielding cover defect detection system based on multispectral imaging |
-
2013
- 2013-05-24 JP JP2013110188A patent/JP2014228486A/en active Pending
-
2014
- 2014-05-15 TW TW103117065A patent/TW201445109A/en unknown
- 2014-05-21 CN CN201410216798.3A patent/CN104180768A/en active Pending
- 2014-05-21 KR KR1020140060960A patent/KR20140138359A/en not_active Withdrawn
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016164557A (en) * | 2015-02-27 | 2016-09-08 | 株式会社東京精密 | Surface shape measurement device and surface shape measurement method |
JP2017151062A (en) * | 2016-02-26 | 2017-08-31 | 株式会社東京精密 | Surface shape measurement device and surface shape measurement method |
CN109387155A (en) * | 2017-08-10 | 2019-02-26 | 上海微电子装备(集团)股份有限公司 | Shape measure device and Shape measure method |
CN109387155B (en) * | 2017-08-10 | 2020-09-22 | 上海微电子装备(集团)股份有限公司 | Morphology detection device and morphology detection method |
CN109572554A (en) * | 2017-09-28 | 2019-04-05 | 株式会社小糸制作所 | Sensing system |
CN109819142A (en) * | 2017-11-20 | 2019-05-28 | 宁波舜宇光电信息有限公司 | Seperated pair is taken the photograph mould group and photosensory assembly and manufacturing method and electronic equipment |
CN109819142B (en) * | 2017-11-20 | 2021-02-26 | 宁波舜宇光电信息有限公司 | Split double-camera module, photosensitive assembly, manufacturing method and electronic equipment |
CN114827573A (en) * | 2018-03-20 | 2022-07-29 | 魔眼公司 | Adjusting camera exposure for three-dimensional depth sensing and two-dimensional imaging |
WO2022185753A1 (en) * | 2021-03-01 | 2022-09-09 | オムロン株式会社 | Measuring device |
JP7662996B2 (en) | 2021-03-01 | 2025-04-16 | オムロン株式会社 | Measurement equipment |
Also Published As
Publication number | Publication date |
---|---|
TW201445109A (en) | 2014-12-01 |
CN104180768A (en) | 2014-12-03 |
KR20140138359A (en) | 2014-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2014228486A (en) | Three-dimensional profile acquisition device, pattern inspection device, and three-dimensional profile acquisition method | |
CN105301865B (en) | Automatic focusing system | |
TWI405949B (en) | Method for measuring surface shapes and apparatus using the same | |
JP6749814B2 (en) | Height detection device and coating device equipped with the same | |
JP6522344B2 (en) | Height detection device, coating device and height detection method | |
WO2014208362A1 (en) | Applicator device and height detection method | |
KR101659302B1 (en) | Three-dimensional shape measurement apparatus | |
JP5099704B2 (en) | Method for measuring height and height measuring device | |
JP3511097B2 (en) | Shape measuring method and shape measuring device using optical interference | |
JP2016038284A (en) | Shape measurement instrument, coating device, and shape measurement method | |
JP6333351B1 (en) | Measuring device, coating device, and film thickness measuring method | |
JP2005189069A (en) | Surface shape measuring method and surface shape measuring apparatus | |
TW201447286A (en) | Pattern inspection apparatus and pattern inspection method | |
JP6037254B2 (en) | Surface shape measuring apparatus and surface shape measuring method | |
JP5514641B2 (en) | Laser interference bump measuring instrument | |
JP6680552B2 (en) | Shape measuring device and method of manufacturing object to be coated | |
CN110869696A (en) | Vibration-resistant white light interference microscope and vibration influence removing method thereof | |
JP5147065B2 (en) | 3D shape inspection equipment | |
JP2019100753A (en) | Printed circuit board inspection device and printed circuit board inspection method | |
JP2014238299A (en) | Measurement device, calculation device, and measurement method for inspected object, and method for manufacturing articles | |
CN107709923B (en) | Shape measuring device and coating device equipped with shape measuring device | |
JP6362058B2 (en) | Test object measuring apparatus and article manufacturing method | |
JP6604514B2 (en) | Surface shape measuring apparatus and surface shape measuring method | |
TWI606227B (en) | Three-dimensional measuring device | |
JP2002081924A (en) | Three-dimensional measuring device |