[go: up one dir, main page]

JP2014212294A - Magnetic field generator - Google Patents

Magnetic field generator Download PDF

Info

Publication number
JP2014212294A
JP2014212294A JP2013183470A JP2013183470A JP2014212294A JP 2014212294 A JP2014212294 A JP 2014212294A JP 2013183470 A JP2013183470 A JP 2013183470A JP 2013183470 A JP2013183470 A JP 2013183470A JP 2014212294 A JP2014212294 A JP 2014212294A
Authority
JP
Japan
Prior art keywords
magnetic
field generator
magnetic field
air gap
adjustment mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013183470A
Other languages
Japanese (ja)
Other versions
JP6252048B2 (en
Inventor
和幸 渡邉
Kazuyuki Watanabe
和幸 渡邉
外山 健太郎
Kentaro Toyama
健太郎 外山
拓 内山
Taku Uchiyama
拓 内山
松添 雄二
Yuji Matsuzoe
雄二 松添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2013183470A priority Critical patent/JP6252048B2/en
Publication of JP2014212294A publication Critical patent/JP2014212294A/en
Application granted granted Critical
Publication of JP6252048B2 publication Critical patent/JP6252048B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]

Landscapes

  • Particle Accelerators (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)

Abstract

【課題】磁気回路の分解や組立を必要とせずに磁束密度を変化させ過渡磁場の発生を可能とする永久磁石を用いた磁場発生装置を提供する。【解決手段】永久磁石1、ヨーク2〜7、エアギャップ8、調整機構側ヨーク23〜26、調整機構側ギャップ28、同じ材料で厚さが異なる磁性体30a〜30c、非磁性並進ステージ31で構成されており、非磁性並進ステージ31は図示の並進方向32aの方向に並進可能にされている。そして非磁性並進ステージ31を図示の並進方向32aに並進させることで、非磁性並進ステージ31上に配置された同じ材料で厚さが異なる磁性体30a〜30cが、調整機構側ギャップ28内に挿入されることにより磁束密度を変化させ過渡磁場を発生させる。【選択図】図1A magnetic field generation apparatus using a permanent magnet that can generate a transient magnetic field by changing a magnetic flux density without requiring disassembly or assembly of a magnetic circuit. SOLUTION: A permanent magnet 1, yokes 2 to 7, an air gap 8, adjustment mechanism side yokes 23 to 26, adjustment mechanism side gaps 28, magnetic materials 30 a to 30 c having the same material and different thicknesses, and a nonmagnetic translation stage 31. The non-magnetic translation stage 31 is configured to be able to translate in the direction of the translation direction 32a shown in the drawing. Then, by translating the nonmagnetic translation stage 31 in the illustrated translational direction 32a, magnetic bodies 30a to 30c of the same material and different thicknesses arranged on the nonmagnetic translation stage 31 are inserted into the adjustment mechanism side gap 28. As a result, the magnetic flux density is changed to generate a transient magnetic field. [Selection] Figure 1

Description

本発明は、磁気回路の分解や組立を必要とせずに磁束密度を変化させ過渡磁場の発生を可能とする永久磁石を用いた磁場発生装置に関する。   The present invention relates to a magnetic field generator using a permanent magnet that can generate a transient magnetic field by changing a magnetic flux density without requiring disassembly or assembly of a magnetic circuit.

図25は、従来の磁場発生装置の構成を示す斜視図であり磁束は矢印が付された破線9のようになり、図26は、図25の等価磁気回路を示す図である。図25において、従来の磁場発生装置は、永久磁石1、永久磁石が発生する磁束の経路となるヨーク2〜7、センサ等の測定物が挿入されるエアギャップ8で構成されている。   FIG. 25 is a perspective view showing the configuration of a conventional magnetic field generator, in which the magnetic flux is as shown by a broken line 9 with an arrow, and FIG. 26 is a diagram showing the equivalent magnetic circuit of FIG. In FIG. 25, the conventional magnetic field generator is composed of a permanent magnet 1, yokes 2 to 7 serving as a path of magnetic flux generated by the permanent magnet, and an air gap 8 into which a measurement object such as a sensor is inserted.

図25及び図26に示すような磁気回路で磁束密度を変化させようとすると、永久磁石1の起磁力10、ヨーク2〜7の磁気抵抗12〜17、エアギャップ8の磁気抵抗18のいずれかを変化させる必要がある。   When the magnetic flux density is changed by the magnetic circuit as shown in FIGS. 25 and 26, any one of the magnetomotive force 10 of the permanent magnet 1, the magnetic resistances 12 to 17 of the yokes 2 to 7, and the magnetic resistance 18 of the air gap 8 is selected. Need to change.

下記に示す特許文献1には、図25のエアギャップ8に相当する空間に磁性体を配置し、エアギャップ8の磁気抵抗18を変化させることで磁束密度を変化させている。   In Patent Document 1 shown below, a magnetic material is arranged in a space corresponding to the air gap 8 in FIG. 25, and the magnetic flux density is changed by changing the magnetic resistance 18 of the air gap 8.

特開平4−242196号公報JP-A-4-242196

上記した特許文献1では、測定物を挿入するエアギャップ8に磁性体を配置するため、連続して磁束密度が変化する過渡磁場を発生させながら測定を行うことは困難であるという課題がある。また、他の磁束密度の変化方法として、永久磁石1そのものを変更し永久磁石の起磁力10を変更する方法、ヨーク2〜7の材料や断面積を変更して、ヨーク2〜7の磁気抵抗を変更する方法、エアギャップ8のギャップの幅を変更し磁気抵抗を変更する方法などが考えられる。   In the above-described Patent Document 1, since a magnetic body is arranged in the air gap 8 into which a measurement object is inserted, there is a problem that it is difficult to perform measurement while generating a transient magnetic field in which the magnetic flux density continuously changes. Further, as another method of changing the magnetic flux density, the permanent magnet 1 itself is changed to change the magnetomotive force 10 of the permanent magnet, the material and the cross-sectional area of the yokes 2 to 7 are changed, and the magnetic resistance of the yokes 2 to 7 is changed. And a method of changing the magnetic resistance by changing the gap width of the air gap 8.

しかしこれらの方法では、磁気回路の分解や組立が必要になるため、連続して磁束密度が変化するような過渡磁場を発生させることは困難である。また永久磁石1に外部磁場として逆向きの磁場を与え減磁する方法も考えられるが、外部磁場として逆向きの磁場を与え減磁する方法では、永久磁石1が減磁してしまう恐れがある。   However, these methods require disassembly and assembly of the magnetic circuit, and it is difficult to generate a transient magnetic field that continuously changes the magnetic flux density. A method of demagnetizing the permanent magnet 1 by applying a reverse magnetic field as an external magnetic field is also conceivable. However, in the method of demagnetizing by applying a reverse magnetic field as the external magnetic field, the permanent magnet 1 may be demagnetized. .

そこで本発明の目的は、磁気回路の分解や組立を必要とせずに磁束密度を変化させ過渡磁場の発生を可能とする永久磁石を用いた磁場発生装置を提供することである。   Accordingly, an object of the present invention is to provide a magnetic field generator using a permanent magnet that can generate a transient magnetic field by changing a magnetic flux density without requiring disassembly or assembly of a magnetic circuit.

上記した課題を解決するための本発明の第1の態様は、永久磁石、該永久磁石から発生する磁束の経路となる磁性体、該磁性体間にエアギャップを有し、該エアギャップに発生する磁束密度を用いる磁場発生装置において、
上記エアギャップを含まずに磁性体を用いたループ磁気回路を形成し、形成した上記ループ磁気回路の磁性体の一部分を磁性体ユニットとして磁気抵抗の異なる磁性体を直線状に配置し、該磁性体ユニットを並進させて上記エアギャップに発生する磁束密度を調整する調整機構を設けたことを特徴とする。
A first aspect of the present invention for solving the above-described problems is a permanent magnet, a magnetic material that serves as a path for magnetic flux generated from the permanent magnet, an air gap between the magnetic materials, and generated in the air gap. In the magnetic field generator using the magnetic flux density to
A loop magnetic circuit using a magnetic material without including the air gap is formed, and a part of the magnetic material of the formed loop magnetic circuit is used as a magnetic material unit, and magnetic materials having different magnetic resistances are linearly arranged. An adjustment mechanism for adjusting the magnetic flux density generated in the air gap by translating the body unit is provided.

また上記した課題を解決するための本発明の第2の態様は、永久磁石、該永久磁石から発生する磁束の経路となる磁性体、該磁性体間にエアギャップを有し、該エアギャップに発生する磁束密度を用いる磁場発生装置において、
上記エアギャップを含まずに磁性体を用いたループ磁気回路を形成し、形成した上記ループ磁気回路の磁性体の一部分に回転台上に磁気抵抗の異なる磁性体を配置した磁性体ユニットを可動してループ結合させて上記エアギャップに発生する磁束密度を調整する調整機構を設けたことを特徴とする。
In addition, a second aspect of the present invention for solving the above-described problem is that a permanent magnet, a magnetic body serving as a path for magnetic flux generated from the permanent magnet, an air gap between the magnetic bodies, and the air gap In the magnetic field generator using the generated magnetic flux density,
A loop magnetic circuit using a magnetic material without including the air gap is formed, and a magnetic material unit in which a magnetic material having a different magnetic resistance is arranged on a rotary table is partially moved in the magnetic material of the formed loop magnetic circuit. And an adjustment mechanism for adjusting the magnetic flux density generated in the air gap by loop coupling.

上記において、上記磁性体ユニットの磁性体を囲むようにコイルが配置され、上記エアギャップを含まずに上記磁性体を用いて構成したループ磁気回路から上記磁性体が離れるときのみ上記コイルの励磁を行い、上記磁性体を通過している磁束を打ち消すことを特徴とする。   In the above, the coil is disposed so as to surround the magnetic body of the magnetic body unit, and the coil is excited only when the magnetic body leaves the loop magnetic circuit configured using the magnetic body without including the air gap. And canceling out the magnetic flux passing through the magnetic body.

本発明によれば、磁性体ユニットを並進させることで、エアギャップの磁束密度を変化させることが可能になるため、永久磁石を用いた磁気回路で過渡磁場を発生させることが可能となる。   According to the present invention, it is possible to change the magnetic flux density of the air gap by translating the magnetic body unit, so that a transient magnetic field can be generated by a magnetic circuit using a permanent magnet.

また本発明によれば、回転台を回転させて磁性体を可動させることで、エアギャップの磁束密度を変化させることが可能になるため、永久磁石を用いた磁気回路で過渡磁場を発生させることが可能となる。   Further, according to the present invention, it is possible to change the magnetic flux density of the air gap by moving the magnetic body by rotating the turntable, so that a transient magnetic field can be generated by a magnetic circuit using a permanent magnet. Is possible.

本発明の実施形態1に係る磁場発生装置の構成を示す斜視図である。It is a perspective view which shows the structure of the magnetic field generator which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る磁場発生装置の構成を示す平面図である。It is a top view which shows the structure of the magnetic field generator which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る磁場発生装置の等価磁気回路を示す図である。It is a figure which shows the equivalent magnetic circuit of the magnetic field generator which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る磁場発生装置の動作を説明する第1の平面図である。It is a 1st top view explaining operation of the magnetic field generator concerning Embodiment 1 of the present invention. 本発明の実施形態1に係る磁場発生装置の動作を説明する第2の平面図である。It is a 2nd top view explaining operation | movement of the magnetic field generator which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る磁場発生装置の動作を説明する第3の平面図である。It is a 3rd top view explaining operation | movement of the magnetic field generator which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る磁場発生装置の異なる動作を説明する斜視図である。It is a perspective view explaining different operation | movement of the magnetic field generator which concerns on Embodiment 1 of this invention. 本発明の実施形態2に係る磁場発生装置の動作を説明する平面図である。It is a top view explaining operation | movement of the magnetic field generator which concerns on Embodiment 2 of this invention. 本発明の実施形態3に係る磁場発生装置の動作を説明する平面図である。It is a top view explaining operation | movement of the magnetic field generator which concerns on Embodiment 3 of this invention. 本発明の実施形態4に係る磁場発生装置の構成を示す斜視図である。It is a perspective view which shows the structure of the magnetic field generator which concerns on Embodiment 4 of this invention. 本発明の実施形態4に係る磁場発生装置の構成を示す平面図である。It is a top view which shows the structure of the magnetic field generator which concerns on Embodiment 4 of this invention. 本発明の実施形態4に係る磁場発生装置の等価磁気回路である。It is an equivalent magnetic circuit of the magnetic field generator which concerns on Embodiment 4 of this invention. 本発明の実施形態4に係る磁場発生装置の調整機構側ギャップ内に磁性体40aが挿入された場合の斜視図である。It is a perspective view at the time of the magnetic body 40a being inserted in the adjustment mechanism side gap of the magnetic field generator which concerns on Embodiment 4 of this invention. 本発明の実施形態4に係る磁場発生装置の調整機構側ギャップ内に磁性体40bが挿入された場合の斜視図である。It is a perspective view at the time of the magnetic body 40b being inserted in the adjustment mechanism side gap of the magnetic field generator which concerns on Embodiment 4 of this invention. 本発明の実施形態4に係る磁場発生装置の調整機構側ギャップ内に磁性体40cが挿入された場合の斜視図である。It is a perspective view at the time of the magnetic body 40c being inserted in the adjustment mechanism side gap of the magnetic field generator which concerns on Embodiment 4 of this invention. 本発明の実施形態5に係る磁場発生装置の構成を示す斜視図である。It is a perspective view which shows the structure of the magnetic field generator which concerns on Embodiment 5 of this invention. 本発明の実施形態6に係る磁場発生装置の構成を示す斜視図である。It is a perspective view which shows the structure of the magnetic field generator which concerns on Embodiment 6 of this invention. 本発明の実施形態7に係る磁場発生装置の構成を示す斜視図である。It is a perspective view which shows the structure of the magnetic field generator which concerns on Embodiment 7 of this invention. 本発明の実施形態7に係る磁場発生装置の構成を示す平面図である。It is a top view which shows the structure of the magnetic field generator which concerns on Embodiment 7 of this invention. 本発明の実施形態7に係る磁場発生装置の等価磁気回路である。It is an equivalent magnetic circuit of the magnetic field generator which concerns on Embodiment 7 of this invention. 本発明の実施形態7に係る磁場発生装置の調整機構側ギャップ内に磁性体30aが挿入された場合の斜視図である。It is a perspective view at the time of the magnetic body 30a being inserted in the adjustment mechanism side gap of the magnetic field generator which concerns on Embodiment 7 of this invention. 本発明の実施形態7に係る磁場発生装置の調整機構側ギャップ内に磁性体30bが挿入された場合の斜視図である。It is a perspective view at the time of the magnetic body 30b being inserted in the adjustment mechanism side gap of the magnetic field generator which concerns on Embodiment 7 of this invention. 本発明の実施形態7に係る磁場発生装置の調整機構側ギャップ内に磁性体30cが挿入された場合の斜視図である。It is a perspective view at the time of the magnetic body 30c being inserted in the adjustment mechanism side gap of the magnetic field generator which concerns on Embodiment 7 of this invention. 本発明の実施形態7に係る磁場発生装置におけるコイル50aを励磁し、調整機構側に流れる磁束29bを打ち消す磁束51を発生させた場合の斜視図である。It is a perspective view at the time of exciting the coil 50a in the magnetic field generator which concerns on Embodiment 7 of this invention, and generating the magnetic flux 51 which cancels out the magnetic flux 29b which flows into the adjustment mechanism side. 従来の磁場発生装置の構成を示す斜視図である。It is a perspective view which shows the structure of the conventional magnetic field generator. 従来の磁場発生装置の等価磁気回路を示す図である。It is a figure which shows the equivalent magnetic circuit of the conventional magnetic field generator.

以下、本発明の実施の形態について、詳細に説明する。
図1は、本発明の実施形態1に係る磁場発生装置の構成を示す斜視図である。図2は、本発明の実施形態1に係る磁場発生装置の構成を示す平面図である。図1及び図2に示される本発明の実施形態に係る磁場発生装置は、永久磁石1、ヨーク2〜7、エアギャップ8、調整機構側ヨーク23〜26、調整機構側ギャップ28、同じ材料で厚さが異なる磁性体30a〜30c、非磁性並進ステージ31で構成されており、非磁性並進ステージ31は図示の並進方向32aの方向に並進可能である。なお上記において従来構成と同じものには同じ番号を付与している。
Hereinafter, embodiments of the present invention will be described in detail.
FIG. 1 is a perspective view showing a configuration of a magnetic field generator according to Embodiment 1 of the present invention. FIG. 2 is a plan view showing the configuration of the magnetic field generator according to Embodiment 1 of the present invention. The magnetic field generator according to the embodiment of the present invention shown in FIGS. 1 and 2 includes a permanent magnet 1, yokes 2 to 7, air gap 8, adjustment mechanism side yokes 23 to 26, adjustment mechanism side gap 28, and the same material. The magnetic bodies 30a to 30c having different thicknesses and a nonmagnetic translation stage 31 are configured, and the nonmagnetic translation stage 31 can translate in the direction of the translation direction 32a shown in the drawing. In addition, in the above, the same number is provided to the same thing as a conventional structure.

図3は、図1及び図2に示した本発明の実施形態1に係る磁場発生装置の等価磁気回路を示す図である。図1及び図2において非磁性並進ステージ31が図示の並進方向32aの方向に並進することにより、調整機構側ギャップ28の磁気抵抗38(図3参照)が変化する。   FIG. 3 is a diagram showing an equivalent magnetic circuit of the magnetic field generator according to Embodiment 1 of the present invention shown in FIGS. 1 and 2. 1 and 2, the non-magnetic translation stage 31 translates in the direction of translation 32a shown in the drawing, so that the magnetic resistance 38 (see FIG. 3) of the adjustment mechanism side gap 28 changes.

図4ないし図6は、本発明の実施形態1に係る磁場発生装置の動作/作用を説明する平面図である。いま図2において、調整機構側ギャップ28に磁性体30a〜30cが存在しない場合は、磁束29aが流れる磁気回路の磁気抵抗は磁束9が流れる磁気回路の磁気抵抗よりも大きくなるように設定されており、磁束9は磁束29aより大きくなる。このためエアギャップ8の磁束密度は調整機構側ギャップ28の磁束密度より大きくなる。   4 to 6 are plan views for explaining the operation / action of the magnetic field generator according to Embodiment 1 of the present invention. In FIG. 2, when the magnetic bodies 30a to 30c are not present in the adjustment mechanism side gap 28, the magnetic resistance of the magnetic circuit through which the magnetic flux 29a flows is set to be larger than the magnetic resistance of the magnetic circuit through which the magnetic flux 9 flows. The magnetic flux 9 is larger than the magnetic flux 29a. For this reason, the magnetic flux density of the air gap 8 becomes larger than the magnetic flux density of the adjustment mechanism side gap 28.

一方、図4に示すように、調整機構側ギャップ28に磁性体30aが存在する場合は、磁束29bが流れる磁気回路の磁気抵抗は磁束9が流れる磁束回路の磁気抵抗よりも小さくなり、磁束9は磁束29bよりも小さくなる。このため、調整機構側ギャップ28に磁性体30a〜30cが存在しないときのエアギャップ8の磁束密度に比べ、調整機構側ギャップ28に磁性体30aが存在する場合のエアギャップ8の磁束密度は小さくなる。   On the other hand, as shown in FIG. 4, when the magnetic body 30a is present in the adjustment mechanism side gap 28, the magnetic resistance of the magnetic circuit through which the magnetic flux 29b flows becomes smaller than the magnetic resistance of the magnetic flux circuit through which the magnetic flux 9 flows. Becomes smaller than the magnetic flux 29b. For this reason, the magnetic flux density of the air gap 8 when the magnetic body 30a exists in the adjustment mechanism side gap 28 is smaller than the magnetic flux density of the air gap 8 when the magnetic bodies 30a to 30c do not exist in the adjustment mechanism side gap 28. Become.

非磁性並進ステージ31に配置する磁性体30a、30b、30cは、磁性体30a、30b、30cの順に厚みが増すため、調整機構側ギャップ28の磁気抵抗38は調整機構側ギャップ28に磁性体がないとき(図2参照)、磁性体30aが存在するとき(図4参照)、磁性体30bが存在するとき(図5参照)、磁性体30cが存在するとき(図6参照)、の順でエアギャップ8の磁束密度は小さくなる。   Since the magnetic bodies 30a, 30b, and 30c arranged on the nonmagnetic translation stage 31 increase in thickness in the order of the magnetic bodies 30a, 30b, and 30c, the magnetic resistance 38 of the adjustment mechanism side gap 28 has a magnetic substance in the adjustment mechanism side gap 28. 2 (see FIG. 2), when the magnetic body 30a is present (see FIG. 4), when the magnetic body 30b is present (see FIG. 5), and when the magnetic body 30c is present (see FIG. 6). The magnetic flux density of the air gap 8 becomes small.

これらのことから、非磁性並進ステージ31を図示の並進方向32aの方向に動かす速度、磁性体30a〜30cの厚さおよび非磁性並進ステージ31に配置する磁性体の数などを適切に選択することで所望の過渡磁場を発生させることが可能となる。なお非磁性並進ステージ31は、ヨーク23,26に平行に永久磁石1に接近または離隔するように並進する。   From these facts, the speed for moving the nonmagnetic translation stage 31 in the direction of the translational direction 32a shown in the figure, the thickness of the magnetic bodies 30a to 30c, the number of magnetic bodies arranged on the nonmagnetic translation stage 31 and the like are appropriately selected. Thus, a desired transient magnetic field can be generated. The nonmagnetic translation stage 31 translates so as to approach or separate from the permanent magnet 1 in parallel with the yokes 23 and 26.

図7は、本発明の実施形態1に係る磁場発生装置の異なる動作を説明する斜視図である。図7に示すように並進方向が上記した図1に示した本発明の実施形態1に係る磁場発生装置と異なっているが、図7に示すような非磁性並進ステージ31の配置、並進方向32bの方向であっても本発明の実施形態1に係る磁場発生装置と同様にエアギャップの磁束密度を変化させることが可能である。なお図7に示す非磁性並進ステージ31は、ヨーク2,7に平行に永久磁石1とは一定の距離を保って並進する。   FIG. 7 is a perspective view illustrating different operations of the magnetic field generator according to Embodiment 1 of the present invention. As shown in FIG. 7, the translation direction is different from the magnetic field generator according to Embodiment 1 of the present invention shown in FIG. 1, but the arrangement of the nonmagnetic translation stage 31 as shown in FIG. Even in this direction, it is possible to change the magnetic flux density of the air gap as in the magnetic field generator according to the first embodiment of the present invention. The non-magnetic translation stage 31 shown in FIG. 7 translates in parallel to the yokes 2 and 7 with a constant distance from the permanent magnet 1.

図8は、本発明の実施形態2に係る磁場発生装置の動作を説明する平面図である。図8に示すように本発明の実施形態2に係る磁場発生装置では、傾斜のついた一体物の磁性体30dを用いて本発明の実施形態1に係る磁場発生装置と同様にエアギャップの磁束密度を変化させるものである。本発明の実施形態2に係る磁場発生装置によれば、本発明の実施形態1に係る磁場発生装置と同様にエアギャップの磁束密度を変化させることが可能である。   FIG. 8 is a plan view for explaining the operation of the magnetic field generator according to Embodiment 2 of the present invention. As shown in FIG. 8, in the magnetic field generator according to the second embodiment of the present invention, the magnetic gap 30d of the air gap is used in the same manner as in the magnetic field generator according to the first embodiment of the present invention using the inclined magnetic body 30d. The density is changed. According to the magnetic field generator according to Embodiment 2 of the present invention, it is possible to change the magnetic flux density of the air gap as in the magnetic field generator according to Embodiment 1 of the present invention.

図9は、本発明の実施形態3に係る磁場発生装置の動作を説明する平面図である。図9に示すように本発明の実施形態3に係る磁場発生装置では、厚みは同じでも透磁率の異なる材料を用いた磁性体30e、30f、30gを使用して本発明の実施形態1に係る磁場発生装置と同様にエアギャップの磁束密度を変化させるものである。本発明の実施形態3に係る磁場発生装置によれば、本発明の実施形態1に係る磁場発生装置と同様にエアギャップの磁束密度を変化させることが可能である。   FIG. 9 is a plan view for explaining the operation of the magnetic field generator according to Embodiment 3 of the present invention. As shown in FIG. 9, in the magnetic field generator according to Embodiment 3 of the present invention, magnetic bodies 30e, 30f, and 30g using materials having the same thickness but different permeability are used according to Embodiment 1 of the present invention. Like the magnetic field generator, the magnetic flux density of the air gap is changed. According to the magnetic field generator according to Embodiment 3 of the present invention, it is possible to change the magnetic flux density of the air gap as in the magnetic field generator according to Embodiment 1 of the present invention.

図10は、本発明の実施形態4に係る磁場発生装置の構成を示す斜視図である。図11は、本発明の実施形態4に係る磁場発生装置の構成を示す平面図である。図10および図11に示されるように、本発明の実施形態4に係る磁場発生装置は、永久磁石1、ヨーク2〜7、エアギャップ8、調整機構側ヨーク23〜26、調整機構側ギャップ28、同じ材料で厚さが異なる磁性体40a〜40c、回転台41で構成されており、回転台41は回転軸42の回りでの回転が可能にされている。上記において従来構成と同じものには同じ番号を付与している。   FIG. 10 is a perspective view showing the configuration of the magnetic field generator according to Embodiment 4 of the present invention. FIG. 11 is a plan view showing a configuration of a magnetic field generator according to Embodiment 4 of the present invention. As shown in FIGS. 10 and 11, the magnetic field generator according to the fourth embodiment of the present invention includes a permanent magnet 1, yokes 2 to 7, an air gap 8, adjustment mechanism side yokes 23 to 26, and an adjustment mechanism side gap 28. The rotating body 41 is made up of magnetic bodies 40a to 40c having the same material and different thicknesses, and the rotating base 41 is capable of rotating around the rotating shaft 42. In the above description, the same reference numerals are assigned to the same components as those in the conventional configuration.

図12は、図10及び図11に示した本発明の実施形態4に係る磁場発生装置の等価磁気回路を示す図である。図10及び図11において回転台41が回転することにより、調整機構側ギャップ28の磁気抵抗38が変化する。   FIG. 12 is a diagram showing an equivalent magnetic circuit of the magnetic field generator according to Embodiment 4 of the present invention shown in FIGS. 10 and 11. 10 and 11, when the turntable 41 rotates, the magnetic resistance 38 of the adjustment mechanism side gap 28 changes.

いま図10及び図11において調整機構側ギャップ28に磁性体40a〜40cが存在しないときは、図11に示されるように磁束29aが流れる磁気回路の磁気抵抗は磁束9が流れる磁気回路の磁気抵抗よりも大きくなるように設定されており、磁束9は磁束29aより大きくなる。このためエアギャップ8の磁束密度は調整機構側ギャップ28の磁束密度より大きくなる。   10 and 11, when the magnetic bodies 40a to 40c are not present in the adjustment mechanism side gap 28, as shown in FIG. 11, the magnetic resistance of the magnetic circuit through which the magnetic flux 29a flows is the magnetic resistance of the magnetic circuit through which the magnetic flux 9 flows. The magnetic flux 9 is larger than the magnetic flux 29a. For this reason, the magnetic flux density of the air gap 8 becomes larger than the magnetic flux density of the adjustment mechanism side gap 28.

一方、図13に示すように、調整機構側ギャップ28に磁性体40aが存在する場合は、磁束29bが流れる磁気回路の磁気抵抗は磁束9が流れる磁束回路の磁気抵抗よりも小さくなり、磁束9は磁束29bよりも小さくなる。このため、調整機構側ギャップ28に磁性体40a〜40cが存在しないときのエアギャップ8の磁束密度に比べ、調整機構側ギャップ28に磁性体40aが存在する場合のエアギャップ8の磁束密度は小さくなる。   On the other hand, as shown in FIG. 13, when the magnetic body 40a exists in the adjustment mechanism side gap 28, the magnetic resistance of the magnetic circuit through which the magnetic flux 29b flows becomes smaller than the magnetic resistance of the magnetic flux circuit through which the magnetic flux 9 flows. Becomes smaller than the magnetic flux 29b. For this reason, the magnetic flux density of the air gap 8 when the magnetic body 40a is present in the adjustment mechanism side gap 28 is smaller than the magnetic flux density of the air gap 8 when the magnetic bodies 40a to 40c are not present in the adjustment mechanism side gap 28. Become.

回転台41に配置する磁性体40a、40b、40cは、磁性体40a、40b、40cの順に厚みが減るため、調整機構側ギャップ28の磁気抵抗38は調整機構側ギャップ28に磁性体がないとき(図10参照)、磁性体40cが存在するとき(図15参照)、磁性体40bが存在するとき(図14参照)、磁性体40aが存在するとき(図13参照)の順に小さくなり、エアギャップ8の磁束密度は調整機構側ギャップ28に磁性体がないとき(図10参照)、磁性体40cが存在するとき(図15参照)、磁性体40bが存在するとき(図14参照)、磁性体40aが存在するとき(図13参照)の順に小さくなる。   When the magnetic bodies 40a, 40b, and 40c arranged on the turntable 41 are reduced in thickness in the order of the magnetic bodies 40a, 40b, and 40c, the magnetic resistance 38 of the adjustment mechanism side gap 28 has no magnetic body in the adjustment mechanism side gap 28. (See FIG. 10), the magnetic body 40c is present (see FIG. 15), the magnetic body 40b is present (see FIG. 14), and the magnetic body 40a is present (see FIG. 13). The magnetic flux density of the gap 8 is such that when there is no magnetic body in the adjustment mechanism side gap 28 (see FIG. 10), when the magnetic body 40c is present (see FIG. 15), when the magnetic body 40b is present (see FIG. 14) When the body 40a is present (see FIG. 13), the order decreases.

これらのことから、回転台41を回転軸42回りで回転させる速度、磁性体40a〜40cの厚さおよび回転台41に配置する磁性体の数などを適切に選択することで所望の過渡磁場を発生させることが可能となる。   From these, a desired transient magnetic field can be obtained by appropriately selecting the speed at which the rotating base 41 is rotated around the rotating shaft 42, the thickness of the magnetic bodies 40a to 40c, the number of magnetic bodies arranged on the rotating base 41, and the like. Can be generated.

図16は、本発明の実施形態5に係る磁場発生装置の動作を説明する斜視図である。図16に示すように本発明の実施形態5に係る磁場発生装置では、傾斜のついた一体物の磁性体40dを用いて本発明の実施形態4に係る磁場発生装置と同様にエアギャップの磁束密度を変化させるものである。本発明の実施形態5に係る磁場発生装置によれば、本発明の実施形態4に係る磁場発生装置と同様にエアギャップの磁束密度を変化させることが可能である。   FIG. 16 is a perspective view for explaining the operation of the magnetic field generator according to the fifth embodiment of the present invention. As shown in FIG. 16, in the magnetic field generator according to Embodiment 5 of the present invention, the magnetic flux 40 in the air gap is used in the same manner as in the magnetic field generator according to Embodiment 4 of the present invention using an inclined magnetic body 40 d. The density is changed. According to the magnetic field generator according to Embodiment 5 of the present invention, it is possible to change the magnetic flux density of the air gap similarly to the magnetic field generator according to Embodiment 4 of the present invention.

また図17は、本発明の実施形態6に係る磁場発生装置の動作を説明する斜視図である。図17に示すように本発明の実施形態6に係る磁場発生装置では、厚みは同じでも透磁率の異なる材料を用いた磁性体40e、40f、40gを使用して本発明の実施形態4に係る磁場発生装置と同様にエアギャップの磁束密度を変化させるものである。本発明の実施形態6に係る磁場発生装置によれば、本発明の実施形態4に係る磁場発生装置と同様にエアギャップの磁束密度を変化させることが可能である。   FIG. 17 is a perspective view for explaining the operation of the magnetic field generator according to Embodiment 6 of the present invention. As shown in FIG. 17, in the magnetic field generator according to Embodiment 6 of the present invention, magnetic bodies 40e, 40f, and 40g using materials having the same thickness but different permeability are used according to Embodiment 4 of the present invention. Like the magnetic field generator, the magnetic flux density of the air gap is changed. According to the magnetic field generator according to Embodiment 6 of the present invention, it is possible to change the magnetic flux density of the air gap similarly to the magnetic field generator according to Embodiment 4 of the present invention.

図18は、本発明の実施形態7に係る磁場発生装置の構成を示す斜視図である。また図19は、本発明の実施形態7に係る磁場発生装置の構成を示す平面図である。図18及び図19に示される本発明の実施形態7に係る磁場発生装置は、永久磁石1、ヨーク2〜7、エアギャップ8、調整機構側ヨーク23〜26、調整機構側ギャップ28、同じ材料で厚さが異なる磁性体30a〜30c、磁性体30a〜30cを囲むように配置されたコイル50a〜50c、回転台41で構成されており、回転台41は回転軸42の回りでの回転が可能にされている。上記において従来構成と同じものには同じ番号を付与している。   FIG. 18 is a perspective view showing the configuration of the magnetic field generator according to Embodiment 7 of the present invention. FIG. 19 is a plan view showing the configuration of the magnetic field generator according to Embodiment 7 of the present invention. The magnetic field generator according to Embodiment 7 of the present invention shown in FIGS. 18 and 19 includes a permanent magnet 1, yokes 2 to 7, air gap 8, adjusting mechanism side yokes 23 to 26, adjusting mechanism side gap 28, and the same material. Are composed of magnetic bodies 30a to 30c having different thicknesses, coils 50a to 50c arranged so as to surround the magnetic bodies 30a to 30c, and a turntable 41. The turntable 41 rotates around a rotation shaft 42. Has been made possible. In the above description, the same reference numerals are assigned to the same components as those in the conventional configuration.

図20は、図18及び図19に示した本本発明の実施形態7に係る磁場発生装置の等価磁気回路である。図18及び図19において回転台41が回転することにより、調整機構側ギャップ28の磁気抵抗38が変化する。   FIG. 20 is an equivalent magnetic circuit of the magnetic field generator according to Embodiment 7 of the present invention shown in FIGS. 18 and 19. In FIG. 18 and FIG. 19, when the turntable 41 rotates, the magnetic resistance 38 of the adjustment mechanism side gap 28 changes.

いま図18及び図19において調整機構側ギャップ28に磁性体30a〜30cが存在しないときは、図19に示されるように磁束29aが流れる磁気回路の磁気抵抗は磁束9が流れる磁気回路の磁気抵抗よりも大きくなるように設定されており、磁束9は磁束29aより大きくなる。このためエアギャップ8の磁束密度は調整機構側ギャップ28の磁束密度より大きくなる。   18 and 19, when the magnetic bodies 30a to 30c are not present in the adjustment mechanism side gap 28, the magnetic resistance of the magnetic circuit through which the magnetic flux 29a flows is as shown in FIG. The magnetic flux 9 is larger than the magnetic flux 29a. For this reason, the magnetic flux density of the air gap 8 becomes larger than the magnetic flux density of the adjustment mechanism side gap 28.

一方、図21に示すように、調整機構側ギャップ28に磁性体30aが存在する場合は、磁束29bが流れる磁気回路の磁気抵抗は磁束9が流れる磁束回路の磁気抵抗よりも小さくなり、磁束9は磁束29bよりも小さくなる。このため、調整機構側ギャップ28に磁性体30a〜30cが存在しないときのエアギャップ8の磁束密度に比べ、調整機構側ギャップ28に磁性体30aが存在する場合のエアギャップ8の磁束密度は小さくなる。   On the other hand, as shown in FIG. 21, when the magnetic body 30a exists in the adjustment mechanism side gap 28, the magnetic resistance of the magnetic circuit through which the magnetic flux 29b flows becomes smaller than the magnetic resistance of the magnetic flux circuit through which the magnetic flux 9 flows. Becomes smaller than the magnetic flux 29b. For this reason, the magnetic flux density of the air gap 8 when the magnetic body 30a exists in the adjustment mechanism side gap 28 is smaller than the magnetic flux density of the air gap 8 when the magnetic bodies 30a to 30c do not exist in the adjustment mechanism side gap 28. Become.

回転台41に配置する磁性体30a、30b、30cは、磁性体30a、30b、30cの順に厚みが減るため、調整機構側ギャップ28の磁気抵抗38は調整機構側ギャップ28に磁性体がないとき(図19参照)、磁性体30cが存在するとき(図23参照)、磁性体30bが存在するとき(図22参照)、磁性体30aが存在するとき(図21参照)の順に小さくなり、エアギャップ8の磁束密度は調整機構側ギャップ28に磁性体がないとき(図19参照)、磁性体30cが存在するとき(図23参照)、磁性体30bが存在するとき(図22参照)、磁性体30aが存在するとき(図21参照)の順に小さくなる。   When the magnetic bodies 30a, 30b, and 30c arranged on the turntable 41 are reduced in thickness in the order of the magnetic bodies 30a, 30b, and 30c, the magnetic resistance 38 of the adjustment mechanism side gap 28 has no magnetic body in the adjustment mechanism side gap 28. (See FIG. 19), the magnetic body 30c is present (see FIG. 23), the magnetic body 30b is present (see FIG. 22), and the magnetic body 30a is present (see FIG. 21). The magnetic flux density of the gap 8 is such that when there is no magnetic body in the adjustment mechanism side gap 28 (see FIG. 19), when the magnetic body 30c is present (see FIG. 23), and when the magnetic body 30b is present (see FIG. 22) When the body 30a exists (see FIG. 21), the order decreases.

これらのことから、回転台41を回転軸42回りで回転させる速度、磁性体30a〜30cの厚さおよび回転台41に配置する磁性体の数などを適切に選択することで所望の過渡磁場を発生させることが可能となる。   From these, a desired transient magnetic field can be obtained by appropriately selecting the speed at which the rotating base 41 is rotated around the rotating shaft 42, the thickness of the magnetic bodies 30a to 30c, the number of magnetic bodies arranged on the rotating base 41, and the like. Can be generated.

磁性体30a〜30cが調整機構側ギャップ28に存在している場合、磁性体30a〜30cには調整側に流れる磁束29b、29c、29dが通過しているため、吸引力が発生し、磁性体30a〜30cが調整機構側ギャップ28から離れようとする際、回転台41の回転を妨げてしまう。このため、磁性体30a〜30cが調整機構側ギャップ28から離れようとする際にコイル50a〜50cを励磁し、調整機構側に流れる磁束29b、29c、29dと逆向きの磁束を発生させることで、吸引力を打ち消し、回転台41の回転をスムーズに回転させることが可能となる。   When the magnetic bodies 30a to 30c are present in the adjustment mechanism side gap 28, the magnetic bodies 30a to 30c pass through the magnetic fluxes 29b, 29c, and 29d flowing on the adjustment side, so that an attractive force is generated and the magnetic body When 30a-30c tries to leave | separate from the adjustment mechanism side gap 28, rotation of the turntable 41 will be prevented. For this reason, when the magnetic bodies 30a to 30c are about to leave the adjustment mechanism side gap 28, the coils 50a to 50c are excited to generate a magnetic flux opposite to the magnetic fluxes 29b, 29c and 29d flowing to the adjustment mechanism side. Thus, the suction force can be canceled and the rotation of the turntable 41 can be smoothly rotated.

図24は、本発明の実施形態7に係る磁場発生装置におけるコイル50aを励磁し、調整機構側に流れる磁束29bを打ち消す磁束51を発生させた場合の斜視図であり、他のコイル50b、50cを励磁した場合も同様であるため図示を省略している。   FIG. 24 is a perspective view of the magnetic field generator according to the seventh embodiment of the present invention in which the coil 50a is excited to generate a magnetic flux 51 that cancels out the magnetic flux 29b flowing to the adjustment mechanism side, and the other coils 50b, 50c are shown. Since the same applies to the case of excitation, the illustration is omitted.

1 永久磁石
2〜7 ヨーク
8 エアギャップ
9 磁束
10 永久磁石の起磁力
11 永久磁石の磁気抵抗
12〜17 ヨーク2〜7の磁気抵抗
18 エアギャップ8の磁気抵抗
23〜26 調整機構側ヨーク
28 調整機構側エアギャップ
29a〜29d 調整機構側に流れる磁束
30a〜30g 磁性体
31 非磁性並進ステージ
32a,32b 並進方向
33〜36 調整機構側ヨーク23〜26の磁気抵抗
38 調整機構側ギャップ28の磁気抵抗
40a〜40g 磁性体
41 回転台
42 回転台の回転軸
50a〜50c コイル
51 磁束
1 Permanent magnet 2-7 Yoke 8 Air gap 9 Magnetic flux
10 Magnetomotive force of permanent magnet
11 Magnetoresistance of permanent magnet
12-17 Magnetoresistance of yokes 2-7
18 Magnetic resistance of air gap 8
23 ~ 26 Adjustment mechanism side yoke
28 Adjustment mechanism air gap
29a to 29d Magnetic flux flowing to the adjustment mechanism
30a-30g Magnetic material
31 Non-magnetic translation stage
32a, 32b Translation direction
33 ~ 36 Magnet resistance of adjusting mechanism side yoke 23 ~ 26
38 Magnetic resistance of adjustment mechanism side gap 28
40a-40g Magnetic material
41 Turntable
42 Rotating axis of turntable
50a-50c coil
51 Magnetic flux

Claims (7)

永久磁石、該永久磁石から発生する磁束の経路となる磁性体、該磁性体間にエアギャップを有し、該エアギャップに発生する磁束密度を用いる磁場発生装置において、
前記エアギャップを含まずに磁性体を用いたループ磁気回路を形成し、形成した前記ループ磁気回路の磁性体の一部分を磁性体ユニットとして磁気抵抗の異なる磁性体を直線状に配置し、該磁性体ユニットを並進させて前記エアギャップに発生する磁束密度を調整する調整機構を設けたことを特徴とする磁場発生装置。
In a magnetic field generator using a permanent magnet, a magnetic body that is a path of magnetic flux generated from the permanent magnet, an air gap between the magnetic bodies, and using a magnetic flux density generated in the air gap,
A loop magnetic circuit using a magnetic material without including the air gap is formed, a part of the magnetic material of the formed loop magnetic circuit is used as a magnetic unit, and magnetic materials having different magnetic resistances are linearly arranged, and the magnetic A magnetic field generator comprising an adjustment mechanism for adjusting a magnetic flux density generated in the air gap by translating a body unit.
請求項1記載の磁場発生装置において、前記磁性体ユニットが非磁性並進ステージ上に配置されることを特徴とする磁場発生装置。   2. The magnetic field generator according to claim 1, wherein the magnetic body unit is disposed on a nonmagnetic translation stage. 請求項2記載の磁場発生装置において、前記非磁性並進ステージ上の前記磁性体ユニットを並進させたとき、該磁性体ユニット個々の磁性体が介在する磁気抵抗が前記エアギャップを含む磁気回路の磁気抵抗よりも大きくなるよう設定されていることを特徴とする磁場発生装置。   3. The magnetic field generator according to claim 2, wherein when the magnetic body unit on the non-magnetic translation stage is translated, the magnetic resistance of the magnetic body of each magnetic body unit includes a magnetic circuit including the air gap. A magnetic field generator characterized by being set to be larger than the resistance. 永久磁石、該永久磁石から発生する磁束の経路となる磁性体、該磁性体間にエアギャップを有し、該エアギャップに発生する磁束密度を用いる磁場発生装置において、
前記エアギャップを含まずに磁性体を用いたループ磁気回路を形成し、形成した前記ループ磁気回路の磁性体の一部分に回転台上に磁気抵抗の異なる磁性体を配置した磁性体ユニットを可動してループ結合させて前記エアギャップに発生する磁束密度を調整する調整機構を設けたことを特徴とする磁場発生装置。
In a magnetic field generator using a permanent magnet, a magnetic body that is a path of magnetic flux generated from the permanent magnet, an air gap between the magnetic bodies, and using a magnetic flux density generated in the air gap,
A loop magnetic circuit using a magnetic material is formed without including the air gap, and a magnetic material unit in which a magnetic material having a different magnetic resistance is arranged on a rotating table is partially moved in the magnetic material of the formed loop magnetic circuit. And a magnetic field generator characterized in that an adjustment mechanism for adjusting a magnetic flux density generated in the air gap is provided.
請求項4記載の磁場発生装置において、前記磁性体ユニットが前記回転台の所定の円周上に配置されることを特徴とする磁場発生装置。   5. The magnetic field generator according to claim 4, wherein the magnetic body unit is disposed on a predetermined circumference of the turntable. 請求項5記載の磁場発生装置において、前記回転台上の前記磁性体ユニットを回転させたとき、該磁性体ユニット個々の磁性体が介在する磁気抵抗が前記エアギャップを含む磁気回路の磁気抵抗よりも大きくなるよう設定されていることを特徴とする磁場発生装置。   6. The magnetic field generator according to claim 5, wherein when the magnetic body unit on the turntable is rotated, the magnetic resistance of the magnetic body of each magnetic body unit is less than the magnetic resistance of the magnetic circuit including the air gap. The magnetic field generator is characterized in that it is set to be larger. 請求項4記載の磁場発生装置において、前記磁性体ユニットの磁性体を囲むようにコイルが配置され、前記エアギャップを含まずに前記磁性体を用いて構成したループ磁気回路から前記磁性体が離れるときのみ前記コイルの励磁を行い、前記磁性体を通過している磁束を打ち消すことを特徴とする磁場発生装置。
5. The magnetic field generator according to claim 4, wherein a coil is disposed so as to surround the magnetic body of the magnetic body unit, and the magnetic body is separated from a loop magnetic circuit configured using the magnetic body without including the air gap. A magnetic field generator characterized by exciting the coil only when the magnetic flux passing through the magnetic material is canceled.
JP2013183470A 2013-04-03 2013-09-04 Magnetic field generator Active JP6252048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013183470A JP6252048B2 (en) 2013-04-03 2013-09-04 Magnetic field generator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013078081 2013-04-03
JP2013078081 2013-04-03
JP2013183470A JP6252048B2 (en) 2013-04-03 2013-09-04 Magnetic field generator

Publications (2)

Publication Number Publication Date
JP2014212294A true JP2014212294A (en) 2014-11-13
JP6252048B2 JP6252048B2 (en) 2017-12-27

Family

ID=51931811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013183470A Active JP6252048B2 (en) 2013-04-03 2013-09-04 Magnetic field generator

Country Status (1)

Country Link
JP (1) JP6252048B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108430149A (en) * 2018-03-20 2018-08-21 中国科学院高能物理研究所 Permanent magnet magnetic field adjusting device and permanent magnet magnetic field adjusting method
CN111751418A (en) * 2020-07-29 2020-10-09 中山大学 An electrolytic cell device capable of external magnetic field and adjustable magnetic field strength

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62209812A (en) * 1986-03-10 1987-09-16 Fujitsu Ltd variable tip coil
JPS6370182A (en) * 1986-09-11 1988-03-30 Toshiba Corp Jig for magnetic resonance imaging apparatus
JPH0381679A (en) * 1989-08-24 1991-04-08 Sumitomo Special Metals Co Ltd Magnetic field generating device
JPH04125410U (en) * 1991-04-26 1992-11-16 住友特殊金属株式会社 ESR device
JPH04125408U (en) * 1991-04-26 1992-11-16 住友特殊金属株式会社 ESR device
JP2008091438A (en) * 2006-09-29 2008-04-17 Sumida Corporation Coil parts and electronic circuits using coil parts
JP2009238966A (en) * 2008-03-26 2009-10-15 Kiyotaka Ueda Power converter, d.c. electric power transmission system using it, and power storage system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62209812A (en) * 1986-03-10 1987-09-16 Fujitsu Ltd variable tip coil
JPS6370182A (en) * 1986-09-11 1988-03-30 Toshiba Corp Jig for magnetic resonance imaging apparatus
JPH0381679A (en) * 1989-08-24 1991-04-08 Sumitomo Special Metals Co Ltd Magnetic field generating device
JPH04125410U (en) * 1991-04-26 1992-11-16 住友特殊金属株式会社 ESR device
JPH04125408U (en) * 1991-04-26 1992-11-16 住友特殊金属株式会社 ESR device
JP2008091438A (en) * 2006-09-29 2008-04-17 Sumida Corporation Coil parts and electronic circuits using coil parts
JP2009238966A (en) * 2008-03-26 2009-10-15 Kiyotaka Ueda Power converter, d.c. electric power transmission system using it, and power storage system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108430149A (en) * 2018-03-20 2018-08-21 中国科学院高能物理研究所 Permanent magnet magnetic field adjusting device and permanent magnet magnetic field adjusting method
CN108430149B (en) * 2018-03-20 2019-10-15 中国科学院高能物理研究所 Permanent magnet magnetic field adjusting device and permanent magnet magnetic field adjusting method
CN111751418A (en) * 2020-07-29 2020-10-09 中山大学 An electrolytic cell device capable of external magnetic field and adjustable magnetic field strength

Also Published As

Publication number Publication date
JP6252048B2 (en) 2017-12-27

Similar Documents

Publication Publication Date Title
JP5465249B2 (en) Magnetic levitation control device and hybrid magnetic bearing
US8482174B2 (en) Electromagnetic actuator
JP2007525937A5 (en)
US9559565B2 (en) Homopolar permanent-magnet-biased action magnetic bearing with an integrated rotational speed sensor
CN106463233B (en) Electromagnetic Dynamic actuator for active unit bearing
JP6449090B2 (en) Magnetic encoder magnetizer
JP2008527958A5 (en)
JP5892771B2 (en) High frequency magnetic field generating element, magnetic head, magnetic head assembly, and magnetic recording apparatus
US20030019700A1 (en) Magnetorheological fluid damper
TW200711192A (en) Super-conducting device and axial gap type super-conducting motor
US10541594B2 (en) Electrical linear machine
JP6252048B2 (en) Magnetic field generator
JP2008169965A (en) Magnetic bearing device
Koechli et al. Analytical model for slotless permanent magnet axial flux motors
JPWO2009031542A1 (en) Magnetic drive
JP2017059618A (en) Magnetization device and method for magnetic encoder
JP2013223417A (en) Fixed permanent magnet generator
Long et al. Modeling and analysis of a novel two-axis rotary electromagnetic actuator for fast steering mirror
JP2003333823A (en) Voice coil type linear motor
JPWO2006098500A1 (en) Magnetic device
Yan et al. Novel tubular switched reluctance motor with double excitation windings: Design, modeling, and experiments
JP2005076792A (en) Magnetic bearing device
CN107251386A (en) Trt
JP2017108505A (en) Power generating device
JP6442253B2 (en) Magnetic encoder magnetizer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171113

R150 Certificate of patent or registration of utility model

Ref document number: 6252048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250