[go: up one dir, main page]

JP2014196868A - Cascade refrigeration system - Google Patents

Cascade refrigeration system Download PDF

Info

Publication number
JP2014196868A
JP2014196868A JP2013072802A JP2013072802A JP2014196868A JP 2014196868 A JP2014196868 A JP 2014196868A JP 2013072802 A JP2013072802 A JP 2013072802A JP 2013072802 A JP2013072802 A JP 2013072802A JP 2014196868 A JP2014196868 A JP 2014196868A
Authority
JP
Japan
Prior art keywords
refrigerant
temperature side
circuit
refrigeration circuit
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013072802A
Other languages
Japanese (ja)
Other versions
JP6181401B2 (en
Inventor
峻 豊岡
Shun Toyooka
峻 豊岡
治郎 湯澤
Jiro Yuzawa
治郎 湯澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PHC Corp
Original Assignee
Panasonic Healthcare Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Healthcare Co Ltd filed Critical Panasonic Healthcare Co Ltd
Priority to JP2013072802A priority Critical patent/JP6181401B2/en
Publication of JP2014196868A publication Critical patent/JP2014196868A/en
Application granted granted Critical
Publication of JP6181401B2 publication Critical patent/JP6181401B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lubricants (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

【課題】地球温暖化係数(GWP)が小さく地球に優しい冷媒組成物であり、かつ−80℃という低温を達成でき、冷凍能力や他の性能面でも優れた性能を有する冷媒組成物を使用した二元冷凍装置の提供。【解決手段】高温側冷凍回路と低温側冷凍回路を備え、前記低温側冷凍回路中の冷媒の凝縮を前記高温側冷媒回路中のカスケードコンデンサを通過する冷媒により行う二元冷凍装置において、前記低温側冷凍回路中の冷媒として、エタン(R170)とパーフロロエタン(R116)とを混合した共沸混合物を含有する冷媒組成物を使用し、前記パーフロロエタン(R116)を前記冷媒組成物に対して50%以上60質量%以下を加えることを特徴とする二元冷凍装置によって課題を解決できる。【選択図】図1[PROBLEMS] To use a refrigerant composition having a low global warming potential (GWP) and being gentle to the earth, capable of achieving a low temperature of -80 ° C, and having excellent refrigeration capacity and other performance aspects. Provision of dual refrigeration equipment. A dual refrigeration apparatus comprising a high temperature side refrigeration circuit and a low temperature side refrigeration circuit, wherein the refrigerant in the low temperature side refrigeration circuit is condensed by a refrigerant passing through a cascade condenser in the high temperature side refrigerant circuit. As a refrigerant in the side refrigeration circuit, a refrigerant composition containing an azeotropic mixture of ethane (R170) and perfluoroethane (R116) is used, and the perfluoroethane (R116) is used as the refrigerant composition. The problem can be solved by a binary refrigeration apparatus characterized by adding 50% to 60% by mass. [Selection] Figure 1

Description

本発明は、二元冷凍装置に関するものであり、さらに、詳しくは、地球温暖化係数(Global−warming potential:以下、GWPと称す)が小さく地球に優しい冷媒組成物であり、かつ−80℃という低温を達成でき、冷凍能力や他の性能面でも優れた性能を有する冷媒として使用できる冷媒組成物およびそれを使用した、実際に低温を達成できる二元冷凍装置に関するものである。   The present invention relates to a binary refrigeration apparatus. More specifically, the present invention is a refrigerant composition that has a small global warming potential (hereinafter referred to as GWP) and is friendly to the earth, and is -80 ° C. The present invention relates to a refrigerant composition that can be used as a refrigerant that can achieve low temperatures and has excellent performance in terms of refrigeration capacity and other performances, and a binary refrigeration apparatus that uses the refrigerant composition and that can actually achieve low temperatures.

従来、冷凍機の冷媒として用いられているものに、オゾン層を破壊する危険が大きい規制冷媒を使用することなく、−80℃という低温を達成でき、冷凍能力や他の性能面でもR503の代替冷媒として使用できる冷媒組成物およびそれを使用した二元冷凍装置が提案されている(特許文献1参照1)。
この冷媒組成物は、比熱比が高めのトリフルオロメタン(R23)を39重量%、比熱比が低めのヘキサフルオロエタン(R116)を61重量%混合した共沸混合物(R508A、沸点−85.7℃)からなる冷媒組成物あるいは、この共沸混合物と、n−ペンタンまたはプロパンとの混合物からなり、このn−ペンタンまたはプロパンを、トリフルオロメタンとヘキサフルオロエタンの総重量に対して14%以下の割合で混合した冷媒組成物を組成したものであり、オゾン層を破壊する危険が少なく、−80℃という低温を達成でき、冷凍能力や他の性能面でもR503の代替冷媒として使用できるものである。
A low temperature of -80 ° C. can be achieved without using a regulated refrigerant that has a high risk of destroying the ozone layer in the refrigerant used in the past, and it is an alternative to R503 in terms of refrigeration capacity and other performance. A refrigerant composition that can be used as a refrigerant and a binary refrigeration apparatus using the same have been proposed (see Patent Document 1).
This refrigerant composition is an azeotropic mixture (R508A, boiling point-85.7 ° C.) in which 39% by weight of trifluoromethane (R23) having a high specific heat ratio and 61% by weight of hexafluoroethane (R116) having a low specific heat ratio are mixed. Or a mixture of this azeotrope and n-pentane or propane, and the n-pentane or propane is in a proportion of 14% or less with respect to the total weight of trifluoromethane and hexafluoroethane. The refrigerant composition mixed with the above is composed of the refrigerant composition, has a low risk of destroying the ozone layer, can achieve a low temperature of −80 ° C., and can be used as an alternative refrigerant for R503 in terms of refrigeration capacity and other performance.

しかし、前記R508AおよびR508BのGWPは、それぞれ13200、13300と大きく、問題となっている。
二酸化炭素(R744)はGWP1と小さいが、圧力の上昇、吐出温度の上昇によるオイルの劣化やスラッジ発生の問題があるため、二酸化炭素に、プロパン、シクロプロパン、イソブタン、ブタンなどの炭化水素類を全体の30から70%程度混合した混合冷媒およびそれを用いた冷凍サイクル装置(特許文献2参照)が提案されている。
また、イソブタン40〜60%、残部がトリフロロメタン(R23)である混合冷媒(特許文献3参照)、ジフルオロメタンとペンタフルオロエタンとの混合物にプロパンを65%以上混合した混合冷媒(特許文献4参照)などが提案されている。
However, the GWP of R508A and R508B is large as 13200 and 13300, respectively, which is a problem.
Carbon dioxide (R744) is as small as GWP1, but because there is a problem of oil deterioration and sludge generation due to pressure increase and discharge temperature increase, hydrocarbons such as propane, cyclopropane, isobutane and butane are added to carbon dioxide. A mixed refrigerant in which about 30 to 70% of the whole is mixed and a refrigeration cycle apparatus using the mixed refrigerant (see Patent Document 2) have been proposed.
Also, a mixed refrigerant in which isobutane is 40 to 60% and the balance is trifluoromethane (R23) (see Patent Document 3), and a mixed refrigerant in which 65% or more of propane is mixed with a mixture of difluoromethane and pentafluoroethane (Patent Document 4). Have been proposed).

特許第3244296号公報Japanese Patent No. 3244296 特開2005−15633号公報JP 2005-15633 A 特許第5009530号公報Japanese Patent No. 5009530 特許第4085897号公報Japanese Patent No. 4085897

前記従来技術はプロパンなどの炭化水素類は可燃性であり、かつ冷媒全体の30から70%程度混合しているので、爆発の危険性がある。
本発明の目的は、従来の問題を解決し、GWPが小さく地球に優しい冷媒組成物であって、かつCOPが高く、オイルの劣化やスラッジを引き起こすことがなく、n−ペンタンまたはプロパンをオイルキャリアとして使用すればオイルセパレータを使用するまでもなく圧縮機にオイルを戻すことができ、爆発の危険性がなく、−80℃という低温を達成でき、冷凍能力や他の性能面でも優れた性能を有する冷媒として使用できる冷媒組成物を使用した、実際に低温を達成できる二元冷凍装置を提供することである。
In the prior art, hydrocarbons such as propane are flammable, and there is a risk of explosion because 30 to 70% of the total refrigerant is mixed.
An object of the present invention is to solve the conventional problems, a refrigerant composition having a small GWP, which is friendly to the earth, has a high COP, does not cause oil deterioration and sludge, and uses n-pentane or propane as an oil carrier. As a result, oil can be returned to the compressor without using an oil separator, there is no danger of explosion, a low temperature of -80 ° C can be achieved, and excellent performance in terms of refrigeration capacity and other performances An object of the present invention is to provide a binary refrigeration apparatus that uses a refrigerant composition that can be used as a refrigerant and that can actually achieve a low temperature.

前記課題を解決するために発明者は鋭意研究した結果、例えば、低温側冷媒回路に封入される冷媒として、地球温暖化係数(GWP)が3のエタン(R170)と地球温暖化係数(GWP)が12200のパーフロロエタン(R116)を混合した共沸混合物あるいはさらに地球温暖化係数(GWP)が1の二酸化炭素(R744)を20質量%以下混合した共沸混合物からなる冷媒組成物と、所定量以下のn−ペンタンまたはプロパンとの混合物を使用し、高温側冷媒回路に封入される冷媒として、地球温暖化係数(GWP)が6の1,1,1,2,3−ペンタフロロペンテン(HFO−1234ze)を含むフッ化炭化水素混合冷媒であって地球温暖化係数(GWP)が1500以下である冷媒組成物と、所定量以下のn−ペンタンとの混合物を使用することにより課題を解決できることを見いだし、本発明を成すに至った。   As a result of intensive research conducted by the inventors to solve the above problems, for example, ethane (R170) having a global warming potential (GWP) of 3 and a global warming potential (GWP) as a refrigerant sealed in a low-temperature refrigerant circuit. A refrigerant composition comprising an azeotropic mixture of 12200 perfluoroethane (R116) or an azeotropic mixture of 20% by mass or less of carbon dioxide (R744) having a global warming potential (GWP) of 1, 1,1,1,2,3-pentafluoropentene having a global warming potential (GWP) of 6 as a refrigerant sealed in the high-temperature side refrigerant circuit using a mixture of n-pentane or propane of a fixed quantity or less A mixture of a refrigerant composition containing HFO-1234ze) having a global warming potential (GWP) of 1500 or less and a predetermined amount or less of n-pentane. It found that can solve the problem by, and accomplished the present invention.

前記課題を解決するための請求項1記載の発明は、高温側冷凍回路と低温側冷凍回路を備え、前記低温側冷凍回路中の冷媒の凝縮を前記高温側冷媒回路中のカスケードコンデンサを通過する冷媒により行う二元冷凍装置において、
前記低温側冷凍回路中の冷媒として、エタン(R170)とパーフロロエタン(R116)とを混合した共沸混合物を含有する冷媒組成物を使用し、
前記パーフロロエタン(R116)を前記冷媒組成物に対して50%以上60質量%以下を加えることを特徴とする二元冷凍装置である。
The invention according to claim 1 for solving the above-mentioned problem comprises a high temperature side refrigeration circuit and a low temperature side refrigeration circuit, and condenses the refrigerant in the low temperature side refrigeration circuit through the cascade capacitor in the high temperature side refrigerant circuit. In a binary refrigeration system that uses a refrigerant,
A refrigerant composition containing an azeotropic mixture obtained by mixing ethane (R170) and perfluoroethane (R116) is used as the refrigerant in the low-temperature refrigeration circuit,
It is a binary refrigeration apparatus characterized by adding 50% to 60% by mass of the perfluoroethane (R116) to the refrigerant composition.

請求項2記載の発明は、高温側冷凍回路と低温側冷凍回路を備え、前記低温側冷凍回路中の冷媒の凝縮を前記高温側冷媒回路中のカスケードコンデンサを通過する冷媒により行う二元冷凍装置において、
前記低温側冷凍回路中の冷媒として、エタン(R170)と二酸化炭素(R744)とを含有する冷媒組成物を使用し、
前記二酸化炭素(R744)を前記冷媒組成物に対して20質量%以下を加えることを特徴とする二元冷凍装置である。
The invention according to claim 2 includes a high temperature side refrigeration circuit and a low temperature side refrigeration circuit, and condenses the refrigerant in the low temperature side refrigeration circuit by the refrigerant passing through the cascade condenser in the high temperature side refrigerant circuit. In
As a refrigerant in the low temperature side refrigeration circuit, a refrigerant composition containing ethane (R170) and carbon dioxide (R744) is used,
In the binary refrigeration apparatus, 20% by mass or less of the carbon dioxide (R744) is added to the refrigerant composition.

請求項3記載の発明は、高温側冷凍回路と低温側冷凍回路を備え、前記低温側冷凍回路中の冷媒の凝縮を前記高温側冷媒回路中のカスケードコンデンサを通過する冷媒により行う二元冷凍装置において、
前記低温側冷凍回路中の冷媒として、エタン(R170)とパーフロロエタン(R116)とを混合した共沸混合物と、二酸化炭素(R744)と、を含有する冷媒組成物を使用し、
前記パーフロロエタン(R116)を前記冷媒組成物に対して50質量%以上60質量%以下とし、
前記二酸化炭素(R744)を前記冷媒組成物に対して20質量%以下を加えることを特徴とする二元冷凍装置である。
The invention according to claim 3 includes a high temperature side refrigeration circuit and a low temperature side refrigeration circuit, and condenses the refrigerant in the low temperature side refrigeration circuit with the refrigerant passing through the cascade condenser in the high temperature side refrigerant circuit. In
As a refrigerant in the low temperature side refrigeration circuit, a refrigerant composition containing an azeotropic mixture of ethane (R170) and perfluoroethane (R116) and carbon dioxide (R744) is used.
The perfluoroethane (R116) is 50% by mass to 60% by mass with respect to the refrigerant composition,
In the binary refrigeration apparatus, 20% by mass or less of the carbon dioxide (R744) is added to the refrigerant composition.

請求項4記載の発明は、請求項1から請求項3のいずれか一項に記載の二元冷凍装置において、オイルキャリアとして、n−ペンタンまたはプロパンを前記冷媒組成物の総質量に対して14質量%以下の割合で含有することを特徴とする。   According to a fourth aspect of the present invention, in the binary refrigeration apparatus according to any one of the first to third aspects, n-pentane or propane is used as the oil carrier with respect to the total mass of the refrigerant composition. It contains in the ratio of the mass% or less.

請求項5記載の発明は、高温側冷凍回路と低温側冷凍回路を備え、前記低温側冷凍回路中の冷媒の凝縮を前記高温側冷媒回路中のカスケードコンデンサを通過する冷媒により行う二元冷凍装置において、
高温側冷凍回路中の冷媒として、ジフロロメタン(R32)、ペンタフロロエタン(R125)、1,1,1,2−テトラフロロエタン(R134a)、1,1,3−トリフロロエタン(R143a)の冷媒群からなる非共沸混合物あるいは、それらの冷媒群に1,1,1,2,3−ペンタフロロペンテン(HFO−1234ze)を含むフッ化炭化水素混合冷媒を加えることを特徴とする二元冷凍装置である。
The invention according to claim 5 includes a high temperature side refrigeration circuit and a low temperature side refrigeration circuit, and performs condensation of the refrigerant in the low temperature side refrigeration circuit by the refrigerant passing through the cascade condenser in the high temperature side refrigerant circuit. In
As refrigerant in the high-temperature side refrigeration circuit, refrigerants of difluoromethane (R32), pentafluoroethane (R125), 1,1,1,2-tetrafluoroethane (R134a), 1,1,3-trifluoroethane (R143a) Binary refrigeration characterized by adding a non-azeotropic mixture comprising a group or a fluorinated hydrocarbon mixed refrigerant containing 1,1,1,2,3-pentafluoropentene (HFO-1234ze) to the refrigerant group Device.

請求項6記載の発明は、請求項5記載の二元冷凍装置において、高温側冷凍回路中の冷媒として、前期1,1,1,2,3−ペンタフロロペンテン(HFO−1234ze)の替わりに1,1,1,2−テトラフロロペンテン(HFO−1234yf)を含むフッ化炭化水素混合冷媒を加えることを特徴とする。   According to a sixth aspect of the present invention, in the binary refrigeration apparatus according to the fifth aspect, the refrigerant in the high-temperature side refrigeration circuit is replaced with 1,1,1,2,3-pentafluoropentene (HFO-1234ze) in the previous period. A fluorinated hydrocarbon mixed refrigerant containing 1,1,1,2-tetrafluoropentene (HFO-1234yf) is added.

請求項7記載の発明は、請求項5記載の二元冷凍装置において、前記高温側冷凍回路中の冷媒に、オイルキャリアとしてn−ペンタンを前記フッ化炭化水素混合冷媒の総質量に対して6質量%以下の割合で含有することを特徴とする。   The invention according to claim 7 is the binary refrigeration apparatus according to claim 5, wherein n-pentane is used as an oil carrier for the refrigerant in the high-temperature side refrigeration circuit with respect to the total mass of the fluorinated hydrocarbon mixed refrigerant. It contains in the ratio of the mass% or less.

本発明の請求項1記載の発明は、高温側冷凍回路と低温側冷凍回路を備え、前記低温側冷凍回路中の冷媒の凝縮を前記高温側冷媒回路中のカスケードコンデンサを通過する冷媒により行う二元冷凍装置において、
前記低温側冷凍回路中の冷媒として、エタン(R170)とパーフロロエタン(R116)とを混合した共沸混合物を含有する冷媒組成物を使用し、
前記パーフロロエタン(R116)を前記冷媒組成物に対して50%以上60質量%以下を加えることを特徴とする二元冷凍装置であり、
地球温暖化係数(GWP)が3のエタン(R170)と地球温暖化係数(GWP)が12200のパーフロロエタン(R116)を混合した共沸混合物を用い、GWPが3のエタン(R170)の沸点は−88.6℃と低く、GWPが12200のパーフロロエタン(R116)の沸点は−78.1℃と低く、その共沸混合物の沸点は−88.8℃と低く、パーフロロエタン(R116)単独の場合よりGWPが半分以下と小さいので地球に優しく、−80℃という低温を達成でき、爆発の危険性がなく、冷凍能力や他の性能面でも優れた性能を有する、という顕著な効果を奏する。
The invention according to claim 1 of the present invention includes a high temperature side refrigeration circuit and a low temperature side refrigeration circuit, and performs condensation of the refrigerant in the low temperature side refrigeration circuit by the refrigerant passing through the cascade condenser in the high temperature side refrigerant circuit. In the original refrigeration system,
A refrigerant composition containing an azeotropic mixture obtained by mixing ethane (R170) and perfluoroethane (R116) is used as the refrigerant in the low-temperature refrigeration circuit,
The perfluoroethane (R116) is a binary refrigeration apparatus characterized by adding 50% or more and 60% by mass or less of the refrigerant composition,
Using an azeotropic mixture of ethane (R170) with a global warming potential (GWP) of 3 and perfluoroethane (R116) with a global warming potential (GWP) of 12200, the boiling point of ethane (R170) with a GWP of 3 Perfluoroethane (R116) with a GWP of 12200 is as low as -78.1 ° C, and the boiling point of the azeotrope is as low as -88.8 ° C. ) The GWP is less than half that of a single case, so it is gentle to the earth, can achieve a low temperature of -80 ° C, has no danger of explosion, and has outstanding performance in terms of refrigerating capacity and other performance. Play.

本発明の請求項2記載の発明は、高温側冷凍回路と低温側冷凍回路を備え、前記低温側冷凍回路中の冷媒の凝縮を前記高温側冷媒回路中のカスケードコンデンサを通過する冷媒により行う二元冷凍装置において、
前記低温側冷凍回路中の冷媒として、エタン(R170)と二酸化炭素(R744)とを含有する冷媒組成物を使用し、
前記二酸化炭素(R744)を前記冷媒組成物に対して20質量%以下を加えることを特徴とする二元冷凍装置であり、
GWPが3のエタン(R170)の沸点は−88.6℃と低く、GWPが12200のパーフロロエタン(R116)の沸点は−78.1℃と低く、その共沸混合物の沸点は−88.8℃と低く、パーフロロエタン(R116)単独の場合よりGWPが半分以下と小さいので地球に優しく、−80℃という低温を達成でき、冷凍能力や他の性能面でも優れた性能を有する上、二酸化炭素(R744)の添加量が20質量%以下と少ないので、吐出圧力や吐出温度が高くならず、したがってCOPが低下せず、オイルの劣化やスラッジを引き起こすことがなく、爆発の危険性がない、という顕著な効果を奏する。
The invention according to claim 2 of the present invention includes a high-temperature side refrigeration circuit and a low-temperature side refrigeration circuit, and condenses the refrigerant in the low-temperature side refrigeration circuit by the refrigerant passing through the cascade condenser in the high-temperature side refrigerant circuit. In the original refrigeration system,
As a refrigerant in the low temperature side refrigeration circuit, a refrigerant composition containing ethane (R170) and carbon dioxide (R744) is used,
The carbon dioxide (R744) is a binary refrigeration apparatus characterized by adding 20% by mass or less to the refrigerant composition,
The boiling point of ethane (R170) with a GWP of 3 is as low as -88.6 ° C, the boiling point of perfluoroethane (R116) with a GWP of 12200 is as low as -78.1 ° C, and the boiling point of the azeotrope is -88. It is as low as 8 ° C, and GWP is less than half that of perfluoroethane (R116) alone, so it is gentle to the earth, can achieve a low temperature of -80 ° C, has excellent refrigeration capacity and other performance aspects, Since the amount of carbon dioxide (R744) added is as small as 20% by mass or less, the discharge pressure and temperature are not increased, so COP does not decrease, oil deterioration and sludge do not occur, and there is a risk of explosion. There is a remarkable effect of not.

請求項3記載の発明は、高温側冷凍回路と低温側冷凍回路を備え、前記低温側冷凍回路中の冷媒の凝縮を前記高温側冷媒回路中のカスケードコンデンサを通過する冷媒により行う二元冷凍装置において、
前記低温側冷凍回路中の冷媒として、エタン(R170)とパーフロロエタン(R116)とを混合した共沸混合物と、二酸化炭素(R744)と、を含有する冷媒組成物を使用し、
前記パーフロロエタン(R116)を前記冷媒組成物に対して50質量%以上60質量%以下とし、
前記二酸化炭素(R744)を前記冷媒組成物に対して20質量%以下を加えることを特徴とする二元冷凍装置であり、
地球温暖化係数(GWP)が3のエタン(R170)と地球温暖化係数(GWP)が12200のパーフロロエタン(R116)を混合した共沸混合物を用い、GWPが3のエタン(R170)の沸点は−88.6℃と低く、GWPが12200のパーフロロエタン(R116)の沸点は−78.1℃と低く、その共沸混合物の沸点は−88.8℃と低く、パーフロロエタン(R116)単独の場合よりGWPが半分以下と小さいので地球に優しく、−80℃という低温を達成でき、爆発の危険性がなく、冷凍能力や他の性能面でも優れた性能を有する上、二酸化炭素(R744)の添加量が20質量%以下と少ないので、吐出圧力や吐出温度が高くならず、したがってCOPが低下せず、オイルの劣化やスラッジを引き起こすことがなく、爆発の危険性がない、という顕著な効果を奏する。
The invention according to claim 3 includes a high temperature side refrigeration circuit and a low temperature side refrigeration circuit, and condenses the refrigerant in the low temperature side refrigeration circuit with the refrigerant passing through the cascade condenser in the high temperature side refrigerant circuit. In
As a refrigerant in the low temperature side refrigeration circuit, a refrigerant composition containing an azeotropic mixture of ethane (R170) and perfluoroethane (R116) and carbon dioxide (R744) is used.
The perfluoroethane (R116) is 50% by mass to 60% by mass with respect to the refrigerant composition,
The carbon dioxide (R744) is a binary refrigeration apparatus characterized by adding 20% by mass or less to the refrigerant composition,
Using an azeotropic mixture of ethane (R170) with a global warming potential (GWP) of 3 and perfluoroethane (R116) with a global warming potential (GWP) of 12200, the boiling point of ethane (R170) with a GWP of 3 Perfluoroethane (R116) with a GWP of 12200 is as low as -78.1 ° C, and the boiling point of the azeotrope is as low as -88.8 ° C. ) GWP is less than half that of a single case, so it is gentle to the earth, can achieve a low temperature of -80 ° C, has no danger of explosion, has excellent refrigeration capacity and other performance aspects, and has carbon dioxide ( Since the amount of R744) added is as small as 20% by mass or less, the discharge pressure and temperature are not increased, so COP does not decrease, oil deterioration and sludge do not occur, and there is no risk of explosion It exhibits the remarkable effect that.

請求項4記載の発明は、請求項1から請求項3のいずれか一項に記載の二元冷凍装置において、オイルキャリアとして、n−ペンタンまたはプロパンを前記冷媒組成物の総質量に対して14質量%以下の割合で含有することを特徴とするものであり、
n−ペンタンまたはプロパンがオイルキャリアとして作用するためオイルセパレータを使用するまでもなく圧縮機にオイルを戻すことができ、n−ペンタンの添加量が14質量%以下と少ないので、爆発の危険性がない、という顕著な効果を奏する。
According to a fourth aspect of the present invention, in the binary refrigeration apparatus according to any one of the first to third aspects, n-pentane or propane is used as the oil carrier with respect to the total mass of the refrigerant composition. It is characterized by containing at a ratio of mass% or less,
Since n-pentane or propane acts as an oil carrier, the oil can be returned to the compressor without using an oil separator, and the amount of n-pentane added is as small as 14% by mass or less, so there is a risk of explosion. There is a remarkable effect of not.

本発明の請求項5記載の発明は、高温側冷凍回路と低温側冷凍回路を備え、前記低温側冷凍回路中の冷媒の凝縮を前記高温側冷媒回路中のカスケードコンデンサを通過する冷媒により行う二元冷凍装置において、
高温側冷凍回路中の冷媒として、ジフロロメタン(R32)、ペンタフロロエタン(R125)、1,1,1,2−テトラフロロエタン(R134a)、1,1,3−トリフロロエタン(R143a)の冷媒群からなる非共沸混合物あるいは、それらの冷媒群に1,1,1,2,3−ペンタフロロペンテン(HFO−1234ze)を含むフッ化炭化水素混合冷媒を加えることを特徴とする二元冷凍装置であり、
地球温暖化係数(GWP)が6の1,1,1,2,3−ペンタフロロペンテン(HFO−1234ze)とジフロロメタン(R32)、ペンタフロロエタン(R125)、1,1,1,2−テトラフロロエタン(R134a)などのフッ化炭化水素を含む混合冷媒は、GWPが1500以下であるので、GWPが小さく地球に優しく、吐出圧力や吐出温度が高くならず、COPが低下せず、オイルの劣化やスラッジを引き起こすことがなく、爆発の危険性がない、という顕著な効果を奏する。
The invention according to claim 5 of the present invention includes a high-temperature side refrigeration circuit and a low-temperature side refrigeration circuit, and condenses the refrigerant in the low-temperature side refrigeration circuit by the refrigerant passing through the cascade condenser in the high-temperature side refrigerant circuit. In the original refrigeration system,
As refrigerant in the high-temperature side refrigeration circuit, refrigerants of difluoromethane (R32), pentafluoroethane (R125), 1,1,1,2-tetrafluoroethane (R134a), 1,1,3-trifluoroethane (R143a) Binary refrigeration characterized by adding a non-azeotropic mixture comprising a group or a fluorinated hydrocarbon mixed refrigerant containing 1,1,1,2,3-pentafluoropentene (HFO-1234ze) to the refrigerant group Device,
1,1,1,2,3-pentafluoropentene (HFO-1234ze), difluoromethane (R32), pentafluoroethane (R125), 1,1,1,2-tetra with a global warming potential (GWP) of 6 Since the mixed refrigerant containing fluorocarbon such as fluoroethane (R134a) has a GWP of 1500 or less, the GWP is small and friendly to the earth, the discharge pressure and the discharge temperature are not increased, the COP is not lowered, and the oil There is a remarkable effect that it does not cause deterioration and sludge and there is no danger of explosion.

本発明の請求項6記載の発明は、請求項5記載の冷媒組成物において、前記1,1,1,2,3−ペンタフロロペンテン(HFO−1234ze)の替わりに1,1,1,2−テトラフロロペンテン(HFO−1234yf)を用いたことを特徴とするものであり、
HFO−1234zeの替わりにHFO−1234yfを用いても請求項5記載の冷媒組成物と同じ作用効果を得ることができる、というさらなる顕著な効果を奏する。
The invention according to claim 6 of the present invention is the refrigerant composition according to claim 5, wherein 1,1,1,2 instead of 1,1,1,2,3-pentafluoropentene (HFO-1234ze). -Tetrafluoropentene (HFO-1234yf) is used,
Even if it uses HFO-1234yf instead of HFO-1234ze, there exists the further remarkable effect that the same effect as the refrigerant composition of Claim 5 can be acquired.

請求項7記載の発明は、請求項5あるいは請求項6の冷媒組成物において、さらにn−ペンタンを冷媒組成物の総質量に対して6質量%以下の割合で混合してなることを特徴とするものであり、
n−ペンタンがオイルキャリアとして作用するためオイルセパレータを使用するまでもなく圧縮機にオイルを戻すことができ、n−ペンタンの添加量が6質量%以下と少ないので、爆発の危険性がない、というさらなる顕著な効果を奏する。
The invention described in claim 7 is characterized in that in the refrigerant composition of claim 5 or 6, n-pentane is further mixed at a ratio of 6% by mass or less with respect to the total mass of the refrigerant composition. Is what
Since n-pentane acts as an oil carrier, oil can be returned to the compressor without using an oil separator, and since the amount of n-pentane added is as small as 6% by mass or less, there is no risk of explosion. There is a further remarkable effect.

図1は本発明の冷媒組成物を封入してなる二元冷凍装置の冷媒回路図である。FIG. 1 is a refrigerant circuit diagram of a binary refrigeration apparatus in which the refrigerant composition of the present invention is enclosed.

以下、図面に基づき本発明の実施例を詳述する。
図1は本発明の冷媒組成物を封入してなる二元冷凍装置の冷媒回路図である。S1は高温側冷媒サイクルを、また、S2は低温側冷媒サイクルを示している。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a refrigerant circuit diagram of a binary refrigeration apparatus in which the refrigerant composition of the present invention is enclosed. S1 shows a high temperature side refrigerant cycle, and S2 shows a low temperature side refrigerant cycle.

高温側冷媒サイクルS1を構成する圧縮機1の吐出側配管2は補助凝縮器3に接続され、補助凝縮器3は圧縮機1のオイルクーラー4、補助凝縮器5、低温側冷媒サイクルS2を構成する圧縮機6のオイルクーラー7、凝縮機8、乾燥器9、キャピラリーチューブ10を順次経て、カスケードコンデンサ11に接続され、受液器12を経て吸込側配管13により圧縮機1に接続されている。14は各凝縮器3,5及び8の冷却用ファンである。   The discharge side pipe 2 of the compressor 1 constituting the high temperature side refrigerant cycle S1 is connected to the auxiliary condenser 3, and the auxiliary condenser 3 constitutes the oil cooler 4, the auxiliary condenser 5, and the low temperature side refrigerant cycle S2 of the compressor 1. The compressor 6 is connected to the cascade condenser 11 through the oil cooler 7, the condenser 8, the dryer 9, and the capillary tube 10 in order, and is connected to the compressor 1 through the liquid receiver 12 through the suction side pipe 13. . Reference numeral 14 denotes a cooling fan for the condensers 3, 5 and 8.

低温側冷媒サイクルS2の圧縮機6の吐出側配管15は、オイルセパレータ16に接続され、そこで分離された圧縮機オイルは、リターン配管17にて圧縮機6に戻される。一方、冷媒は、配管18に流入して吸込側熱交換器19と熱交換した後、カスケードコンデンサ11内の配管20内を通過して凝縮し、乾燥器21、キャピラリーチューブ22を経て入口管23より蒸発器24に流入し、出口管25より出て吸込側熱交換器19を経て圧縮機6の吸込側配管26より圧縮機6に戻る構成である。27は膨張タンクであり、キャピラリーチューブ28を介して吸込側配管26に接続されている。   The discharge side pipe 15 of the compressor 6 in the low temperature side refrigerant cycle S2 is connected to the oil separator 16, and the separated compressor oil is returned to the compressor 6 through the return pipe 17. On the other hand, the refrigerant flows into the pipe 18 and exchanges heat with the suction-side heat exchanger 19, passes through the pipe 20 in the cascade condenser 11, condenses, and enters the inlet pipe 23 through the dryer 21 and the capillary tube 22. Further, the refrigerant flows into the evaporator 24, exits from the outlet pipe 25, passes through the suction side heat exchanger 19, and returns to the compressor 6 from the suction side pipe 26 of the compressor 6. An expansion tank 27 is connected to the suction side pipe 26 via a capillary tube 28.

高温側冷媒サイクルS1には、ジフロロメタン(R32)/ペンタフロロエタン(R125)/1,1,1,2−テトラフロロエタン(R134a)共沸混合物(R407D)あるいはペンタフロロエタン(R125)/1,1,1−トリフロロエタン(R143a)/1,1,1,2−テトラフロロエタン(R134a)共沸混合物(R404A)、あるいは、地球温暖化係数(Global−warming potential:GWP)が1500以下である冷媒組成物として、ジフロロメタン(R32)、ペンタフロロエタン(R125)、1,1,1,2−テトラフロロエタン(R134a)、1,1,3−トリフロロエタン(R143a)の冷媒群に、1,1,1,2,3−ペンタフロロペンテン(HFO−1234ze、GWP6、沸点−19℃)を含むフッ化炭化水素混合冷媒を含む混合冷媒が封入される。沸点は大気圧で約−40℃であり、この混合冷媒が各凝縮器3,5及び8にて凝縮し、キャピラリーチューブ10にて減圧されてカスケードコンデンサ11に流入して蒸発する。ここで、カスケードコンデンサ11は−36℃程となる。   The high temperature side refrigerant cycle S1 includes difluoromethane (R32) / pentafluoroethane (R125) / 1,1,1,2-tetrafluoroethane (R134a) azeotrope (R407D) or pentafluoroethane (R125) / 1, 1,1-trifluoroethane (R143a) / 1,1,1,2-tetrafluoroethane (R134a) azeotrope (R404A), or global warming potential (GWP) of 1500 or less As a refrigerant composition, a refrigerant group of difluoromethane (R32), pentafluoroethane (R125), 1,1,1,2-tetrafluoroethane (R134a), 1,1,3-trifluoroethane (R143a), 1,1,1,2,3-pentafluoropentene (HFO-1234ze, GWP6, boiling point) Mixed refrigerant containing fluorinated hydrocarbon mixed refrigerant containing 9 ° C.) is sealed. The boiling point is about −40 ° C. at atmospheric pressure, and this mixed refrigerant is condensed in the condensers 3, 5 and 8, depressurized in the capillary tube 10, flows into the cascade condenser 11 and evaporates. Here, the cascade capacitor 11 is about −36 ° C.

GWPが3のエタン(R170)の沸点は−88.6℃と低く、GWPが12200のパーフロロエタン(R116)の沸点は−78.1℃と低く、その共沸混合物の沸点は−88.8℃と低い。
低温側冷媒サイクルS2には、GWPが3のエタン(R170)45質量%とGWPが12200のパーフロロエタン(R116)42質量%と二酸化炭素(R744)13質量%を混合した混合冷媒(GWP5119、沸点−85℃以下)とn−ペンタンを混合した冷媒組成物が封入される。ここで、n−ペンタンは、混合冷媒の総質量に対して14質量%以下(この例では、6.4質量%)の割合で混合して組成される。この結果、沸点が−85℃以下のかなり低温の冷媒組成物を封入することとなる。そして、圧縮機6から吐出された冷媒及び圧縮機オイルは、オイルセパレータ16に流入する。そこで、気相部分と液相部分とに分離され、オイルの大部分は液相であるため、リターン配管17より圧縮機6に戻れる。気相の冷媒とオイルは、配管18を通り吸込側熱交換器19と熱交換し、更に、カスケードコンデンサ11にて高温側冷媒サイクルS1内の冷媒の蒸発によって冷却されて凝縮する。その後、キャピラリーチューブ22にて減圧された後、蒸発器24に流入して蒸発する。この蒸発器24は、図示しない冷凍庫の壁面に熱交換関係に取り付けられて庫内を冷却する。ここで、蒸発器24での蒸発温度は−85℃以下に達する。
The boiling point of ethane (R170) with a GWP of 3 is as low as -88.6 ° C, the boiling point of perfluoroethane (R116) with a GWP of 12200 is as low as -78.1 ° C, and the boiling point of the azeotrope is -88. As low as 8 ° C.
In the low-temperature side refrigerant cycle S2, a mixed refrigerant (GWP5119, 45% by mass of ethane (R170) having a GWP of 3, 42% by mass of perfluoroethane (R116) having a GWP of 12200 and 13% by mass of carbon dioxide (R744) is mixed. A refrigerant composition in which n-pentane is mixed with a boiling point of −85 ° C. or lower) is enclosed. Here, n-pentane is mixed and composed at a ratio of 14% by mass or less (in this example, 6.4% by mass) with respect to the total mass of the mixed refrigerant. As a result, a considerably low-temperature refrigerant composition having a boiling point of −85 ° C. or lower is enclosed. The refrigerant and compressor oil discharged from the compressor 6 flows into the oil separator 16. Therefore, it is separated into a gas phase portion and a liquid phase portion, and most of the oil is in the liquid phase, so that it can be returned to the compressor 6 through the return pipe 17. The gas-phase refrigerant and oil pass through the pipe 18 and exchange heat with the suction-side heat exchanger 19, and are further cooled and condensed by evaporation of the refrigerant in the high-temperature side refrigerant cycle S1 in the cascade condenser 11. Thereafter, the pressure is reduced in the capillary tube 22 and then flows into the evaporator 24 to evaporate. The evaporator 24 is attached to a wall surface of a freezer (not shown) in a heat exchange relationship to cool the inside of the refrigerator. Here, the evaporation temperature in the evaporator 24 reaches −85 ° C. or lower.

このように構成された二元冷凍装置において、低温側冷媒サイクルS2に封入される前記冷媒組成物は、沸点は−85℃以下程度となることから、R508AおよびR508Bの代替冷媒として十分に冷凍能力を発揮できる。   In the binary refrigeration apparatus configured as described above, the refrigerant composition enclosed in the low-temperature side refrigerant cycle S2 has a boiling point of about −85 ° C. or less, and thus is sufficiently refrigeration capacity as an alternative refrigerant for R508A and R508B. Can be demonstrated.

更に、前記冷媒組成物はオイルとの相溶性が悪いが、n−ペンタンを14重量%以下混合することにより解決できる。即ち、n−ペンタンは沸点が+36.07℃と高いが、圧縮機オイルとの相溶性が良好であり、n−ペンタンを14重量%の範囲で混合することにより、n−ペンタンにオイルを溶け込ませた状態で圧縮機まで帰還させることができ、圧縮機の油上がりによるロック等の弊害を防止できる。この結果、特にオイルセパレータ16にて完全にオイルを分離するまでもなく、圧縮機6にオイルを戻すことができる。ここで、n−ペンタンは沸点が高いため、あまり多量に混合すると蒸発温度が上昇して目的とする低温が得られないが、n−ペンタンを、14重量%以下の割合で混合することにより、蒸発温度を上昇させずしかもn−ペンタンが不燃域に維持しつつオイルを圧縮機へ帰還させることができる。   Furthermore, although the refrigerant composition has poor compatibility with oil, it can be solved by mixing n-pentane in an amount of 14% by weight or less. That is, although n-pentane has a high boiling point of + 36.07 ° C., it has good compatibility with the compressor oil. By mixing n-pentane in the range of 14% by weight, the oil is dissolved in n-pentane. In this state, the compressor can be returned to the compressor, and adverse effects such as locking due to the oil rising of the compressor can be prevented. As a result, the oil can be returned to the compressor 6 without particularly separating the oil completely by the oil separator 16. Here, since n-pentane has a high boiling point, if it is mixed too much, the evaporation temperature rises and the desired low temperature cannot be obtained, but by mixing n-pentane at a ratio of 14% by weight or less, The oil can be returned to the compressor without increasing the evaporation temperature and maintaining n-pentane in the non-combustible region.

このように、本実施例の二元冷凍装置によれば、オイル戻りを良好とし、爆発等の危険を伴うことなく、蒸発器にて−85℃以下程度の低温を達成することができ、規制冷媒を使用せずに血液保冷等の医療用フリーザーとして実用化できる。   Thus, according to the binary refrigeration apparatus of the present embodiment, the oil return is good and a low temperature of about −85 ° C. or less can be achieved in the evaporator without risk of explosion or the like. It can be put to practical use as a medical freezer such as blood cold storage without using a refrigerant.

また、n−ペンタンは市販されており、フリーザー等で使用する場合には容易に入手でき、実用的である。   In addition, n-pentane is commercially available, and is easily available and practical when used in a freezer or the like.

尚、本実施例では二酸化炭素(R744)を20質量%以下混合した混合冷媒とn−ペンタンとの混合物にて説明したが、n−ペンタンの代わりに同様の割合で混合しても同様の効果が得られる。即ち、プロパンも圧縮機オイルとの相溶性が良好であり、プロパンを14重量%混合することにより、プロパンにオイルを溶け込ませた状態で圧縮機6まで帰還させることができ、圧縮機6の油上がりによるロック等の弊害を防止できる。ここで、プロパンは蒸発温度に与える影響はそれ程ないが、可燃性であるため、爆発の危険があり取扱に難点がある。しかし、プロパンの混合割合を14質量%以下とすることにより、プロパンを不燃域に維持することができ、爆発等の心配は無くなる。   In addition, although the present Example demonstrated by the mixture of the mixed refrigerant | coolant which mixed 20 mass% or less of carbon dioxide (R744), and n-pentane, even if it mixes in the same ratio instead of n-pentane, the same effect Is obtained. That is, propane has good compatibility with the compressor oil. By mixing 14% by weight of propane, the propane can be returned to the compressor 6 in a state where the oil is dissolved in the propane. It is possible to prevent bad effects such as locking due to rising. Here, propane has little influence on the evaporation temperature, but because it is flammable, there is a risk of explosion and there is a difficulty in handling. However, by setting the mixing ratio of propane to 14% by mass or less, propane can be maintained in an incombustible region, and there is no concern about explosion.

なお、上記実施形態の説明は、本発明を説明するためのものであって、特許請求の範囲に記載の発明を限定し、或は範囲を減縮するものではない。又、本発明の各部構成は上記実施形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。   The description of the above embodiment is for explaining the present invention, and does not limit the invention described in the claims or reduce the scope. Moreover, each part structure of this invention is not restricted to the said embodiment, A various deformation | transformation is possible within the technical scope as described in a claim.

次に実施例および比較例により本発明を詳しく説明するが、本発明の主旨を逸脱しない限りこれらの実施例に限定されるものではない。   EXAMPLES Next, although an Example and a comparative example demonstrate this invention in detail, unless it deviates from the main point of this invention, it is not limited to these Examples.

(実施例1)
図1に示した二元冷凍装置の冷媒回路に本発明の下記の冷媒組成物を封入して運転し、二元冷凍装置の庫内温度および、蒸発器24入口、また出口温度を測定して冷却能力を評価した。
低温側冷媒組成物:
エタン(R170)にパーフロロエタン(R116)60質量%(共沸混合物)と冷媒組成物全体に対してn−ペンタン6.0質量%を混合した冷媒組成物。
高温側冷媒組成物:
ジフロロメタン(R32)/ペンタフロロエタン(R125)/1,1,1,2−テトラフロロエタン(R134a)共沸混合物(R407D)あるいはペンタフロロエタン(R125)/1,1,1−トリフロロエタン(R143a)/1,1,1,2−テトラフロロエタン(R134a)共沸混合物(R404A)、あるいは、ジフロロメタン(R32)、ペンタフロロエタン(R125)、1,1,1,2−テトラフロロエタン(R134a)、1,1,3−トリフロロエタン(R143a)の冷媒群に、1,1,1,2,3−ペンタフロロペンテン(HFO−1234ze(E)、GWP6、沸点−19℃)を含むフッ化炭化水素混合冷媒であり、または、1,1,1,2−テトラフロロペンテン(HFO−1234yf)を含むフッ化炭化水素混合冷媒を加えた混合冷媒。
Example 1
The refrigerant circuit of the binary refrigeration apparatus shown in FIG. 1 is encapsulated with the following refrigerant composition of the present invention, and the internal temperature of the binary refrigeration apparatus and the evaporator 24 inlet and outlet temperatures are measured. The cooling capacity was evaluated.
Low temperature side refrigerant composition:
A refrigerant composition comprising ethane (R170) mixed with 60% by mass of perfluoroethane (R116) (azeotropic mixture) and 6.0% by mass of n-pentane with respect to the entire refrigerant composition.
High temperature side refrigerant composition:
Difluoromethane (R32) / pentafluoroethane (R125) / 1,1,1,2-tetrafluoroethane (R134a) azeotrope (R407D) or pentafluoroethane (R125) / 1,1,1-trifluoroethane ( R143a) / 1,1,1,2-tetrafluoroethane (R134a) azeotrope (R404A), or difluoromethane (R32), pentafluoroethane (R125), 1,1,1,2-tetrafluoroethane ( R134a), 1,1,3-trifluoroethane (R143a) refrigerant group includes 1,1,1,2,3-pentafluoropentene (HFO-1234ze (E), GWP6, boiling point −19 ° C.). Fluorohydrocarbon mixed refrigerant or fluorinated hydrocarbon mixed containing 1,1,1,2-tetrafluoropentene (HFO-1234yf) Mixed refrigerant with combined refrigerant added.

(実施例2)
低温側冷媒組成物として下記の冷媒組成物を用いた以外は実施例1と同様にして運転し、二元冷凍装置の庫内温度および、蒸発器24入口、また出口温度を測定して冷却能力を評価した。
低温側冷媒組成物:
エタン(R170)に二酸化炭素(R744)を20質量%以下と冷媒組成物全体に対してn−ペンタン8.7質量%を混合した冷媒組成物。
(Example 2)
A cooling capacity is measured by operating in the same manner as in Example 1 except that the following refrigerant composition is used as the low-temperature side refrigerant composition, and measuring the internal temperature of the binary refrigeration apparatus and the inlet and outlet temperatures of the evaporator 24. Evaluated.
Low temperature side refrigerant composition:
A refrigerant composition in which ethane (R170) is mixed with 20% by mass or less of carbon dioxide (R744) and 8.7% by mass of n-pentane with respect to the whole refrigerant composition.

(実施例3)
低温側冷媒組成物として下記の冷媒組成物を用いた以外は実施例1と同様にして運転し、二元冷凍装置の庫内温度および、蒸発器24入口、また出口温度を測定して冷却能力を評価した。
低温側冷媒組成物:
パーフロロエタン(R116)に二酸化炭素(R744)を20質量%以下と冷媒組成物全体に対してn−ペンタン13.0質量%を混合した冷媒組成物。
(Example 3)
A cooling capacity is measured by operating in the same manner as in Example 1 except that the following refrigerant composition is used as the low-temperature side refrigerant composition, and measuring the internal temperature of the binary refrigeration apparatus and the inlet and outlet temperatures of the evaporator 24. Evaluated.
Low temperature side refrigerant composition:
A refrigerant composition obtained by mixing 20% by mass or less of carbon dioxide (R744) and 13.0% by mass of n-pentane with respect to the whole refrigerant composition in perfluoroethane (R116).

(実施例4)
低温側冷媒組成物として下記の冷媒組成物を用いた以外は実施例1と同様にして運転し、二元冷凍装置の庫内温度および、蒸発器24入口、また出口温度を測定して冷却能力およびCOPを評価した。
低温側冷媒組成物:
エタン(R170)にパーフロロエタン(R116)50質量%と二酸化炭素(R744)15.0質量%と冷媒組成物全体に対してn−ペンタン6.4質量%を混合した冷媒組成物。
Example 4
A cooling capacity is measured by operating in the same manner as in Example 1 except that the following refrigerant composition is used as the low-temperature side refrigerant composition, and measuring the internal temperature of the binary refrigeration apparatus and the inlet and outlet temperatures of the evaporator 24. And COP were evaluated.
Low temperature side refrigerant composition:
A refrigerant composition in which ethane (R170) is mixed with 50% by mass of perfluoroethane (R116), 15.0% by mass of carbon dioxide (R744), and 6.4% by mass of n-pentane with respect to the entire refrigerant composition.

(比較例1)
低温側冷媒組成物としてエタン(R170)のみを使用し、冷媒組成物全体に対してn−ペンタン9.77質量%を混合した冷媒組成物を用いた以外は実施例1と同様にして運転し、二元冷凍装置の庫内温度および、蒸発器24入口、また出口温度を測定して冷却能力を評価した。
(Comparative Example 1)
Operation was carried out in the same manner as in Example 1 except that only ethane (R170) was used as the low-temperature refrigerant composition, and a refrigerant composition in which 9.77% by mass of n-pentane was mixed with the whole refrigerant composition was used. The cooling capacity was evaluated by measuring the internal temperature of the binary refrigeration system and the inlet and outlet temperatures of the evaporator 24.

(比較例2)
低温側冷媒組成物としてパーフロロエタン(R116)のみを使用し、冷媒組成物全体に対してn−ペンタン14.0質量%を混合した冷媒組成物を用いた以外は実施例1と同様にして運転し、二元冷凍装置の庫内温度および、蒸発器24入口、また出口温度を測定して冷却能力を評価した。
(Comparative Example 2)
As in Example 1, except that only perfluoroethane (R116) was used as the low-temperature side refrigerant composition, and a refrigerant composition in which 14.0% by mass of n-pentane was mixed with the whole refrigerant composition was used. The cooling capacity was evaluated by measuring the internal temperature of the binary refrigeration unit and the inlet and outlet temperatures of the evaporator 24.

実施例1は、エタン(R170)にパーフロロエタン(R116)を混合することで、その共沸効果によって冷却性能が向上した。その効果は、パーフロロエタン(R116)の質量%が50%以上60%以下にて得られ、パーフロロエタン(R116)の質量%が、15.3%、35.4%、52.6%、59.7%において、比較例1の結果と対比して、蒸発器24入口、また出口温度が低下し、二元冷凍装置の庫内温度が、−0.5℃、−1.2℃、−1.7℃,−1.8℃程低下した。その時の最大低下温度は−2.0℃程となった。例えば、比較例1の二元冷凍装置の庫内温度が−85℃の場合、−85.5℃、−86.2℃、−86.7℃、−86.8℃程となり、その時の最大低下温度は−87.0℃程となった。
実施例2は、エタン(R170)に二酸化炭素(R744)を混合することで、その高い熱伝達効果によって冷却性能が向上した。その効果は、二酸化炭素(R744)の質量%が20%以下において、比較例1の結果と対比して、蒸発器24入口、また出口温度が低下し、二元冷凍装置の庫内温度が、−0.9℃程低下した。その時の最大低下温度は−1.0℃程となった。
実施例3は、パーフロロエタン(R116)に二酸化炭素(R744)を混合することで、その高い熱伝達効果と、共沸作用と推定される効果によって冷却性能が向上した。その効果は、二酸化炭素(R744)の質量%が20%以下において、比較例2の結果と対比して、蒸発器24入口、また出口温度が低下し、二元冷凍装置の庫内温度が、−4.4℃程低下した。その時の最大低下温度は−4.5℃程となった。
実施例4は、実施例1〜3で証明したように、共沸効果および二酸化炭素(R744)の高い熱伝達効果によって冷却性能がさらに向上した。その効果は、二酸化炭素(R744)の質量%が20%以下において、比較例1の結果と対比して、蒸発器24入口、また出口温度が低下し、二元冷凍装置の庫内温度が、−2.3℃程低下した。その時の最大低下温度は−2.5℃程となった。この実施例4の形態では、エタン(R170)の特性である可燃性を、パーフロロエタン(R116)、および二酸化炭素(R744)を混合することで、その可燃特性を抑えることができる。また、パーフロロエタン(R116)はGWP値が高いため、エタン(R170)および二酸化炭素(R744)を混合することで、GWP値を抑えることができる。また、パーフロロエタン(R116)は比熱比が低いため、二酸化炭素(R744)の高圧特性における吐出温度の上昇を抑えることができる。よって、実施例4の形態は、本発明の目的を満足すると考えられる。
In Example 1, by mixing perfluoroethane (R116) with ethane (R170), the cooling performance was improved by the azeotropic effect. The effect is obtained when the mass% of perfluoroethane (R116) is 50% or more and 60% or less, and the mass% of perfluoroethane (R116) is 15.3%, 35.4%, 52.6%. 59.7%, compared with the result of Comparative Example 1, the temperature at the inlet and outlet of the evaporator 24 is lowered, and the internal refrigeration unit temperature is -0.5 ° C, -1.2 ° C. , -1.7 ° C and -1.8 ° C. The maximum temperature drop at that time was about -2.0 ° C. For example, when the internal temperature of the binary refrigeration apparatus of Comparative Example 1 is −85 ° C., it is about −85.5 ° C., −86.2 ° C., −86.7 ° C., −86.8 ° C., and the maximum at that time The temperature drop was about -87.0 ° C.
In Example 2, the cooling performance was improved by mixing ethane (R170) with carbon dioxide (R744) due to its high heat transfer effect. The effect is that, when the mass% of carbon dioxide (R744) is 20% or less, the inlet and outlet temperatures of the evaporator 24 are lowered compared to the result of Comparative Example 1, and the internal temperature of the binary refrigeration system is It decreased by about -0.9 ° C. The maximum decrease temperature at that time was about -1.0 ° C.
In Example 3, by mixing carbon dioxide (R744) with perfluoroethane (R116), the cooling performance was improved by its high heat transfer effect and the effect estimated to be azeotropic. The effect is that when the mass% of carbon dioxide (R744) is 20% or less, the temperature at the inlet and outlet of the evaporator 24 is lowered compared to the result of Comparative Example 2, and the internal temperature of the binary refrigeration system is It decreased by about -4.4 ° C. The maximum temperature drop at that time was about -4.5 ° C.
In Example 4, as demonstrated in Examples 1 to 3, the cooling performance was further improved by the azeotropic effect and the high heat transfer effect of carbon dioxide (R744). The effect is that, when the mass% of carbon dioxide (R744) is 20% or less, the inlet and outlet temperatures of the evaporator 24 are lowered compared to the result of Comparative Example 1, and the internal temperature of the binary refrigeration system is -2.3 degree C. The maximum decrease temperature at that time was about -2.5 ° C. In the form of Example 4, the flammability that is the characteristic of ethane (R170) can be suppressed by mixing perfluoroethane (R116) and carbon dioxide (R744). Further, since perfluoroethane (R116) has a high GWP value, the GWP value can be suppressed by mixing ethane (R170) and carbon dioxide (R744). In addition, since perfluoroethane (R116) has a low specific heat ratio, an increase in discharge temperature in the high-pressure characteristics of carbon dioxide (R744) can be suppressed. Therefore, the form of Example 4 is considered to satisfy the object of the present invention.

本発明は、高温側冷凍回路と低温側冷凍回路を備え、前記低温側冷凍回路中の冷媒の凝縮を前記高温側冷媒回路中のカスケードコンデンサを通過する冷媒により行う二元冷凍装置において、前記低温側冷凍回路中の冷媒として、エタン(R170)とパーフロロエタン(R116)とを混合した共沸混合物を含有する冷媒組成物を使用し、前記パーフロロエタン(R116)を前記冷媒組成物に対して50%以上60質量%以下を加えることを特徴とする二元冷凍装置であり、
地球温暖化係数(GWP)が3のエタン(R170)と地球温暖化係数(GWP)が12200のパーフロロエタン(R116)を混合した共沸混合物を用い、GWPが3のエタン(R170)の沸点は−88.6℃と低く、GWPが12200のパーフロロエタン(R116)の沸点は−78.1℃と低く、その共沸混合物の沸点は−88.8℃と低く、パーフロロエタン(R116)単独の場合よりGWPが半分以下と小さいので地球に優しく、−80℃という低温を達成でき、爆発の危険性がなく、冷凍能力や他の性能面でも優れた性能を有する、という顕著な効果を奏するので、産業上の利用価値が高い。
The present invention relates to a binary refrigeration apparatus comprising a high temperature side refrigeration circuit and a low temperature side refrigeration circuit, wherein the refrigerant in the low temperature side refrigeration circuit is condensed by the refrigerant passing through a cascade condenser in the high temperature side refrigerant circuit. As a refrigerant in the side refrigeration circuit, a refrigerant composition containing an azeotropic mixture of ethane (R170) and perfluoroethane (R116) is used, and the perfluoroethane (R116) is used as the refrigerant composition. 50% or more and 60% by mass or less is added,
Using an azeotropic mixture of ethane (R170) with a global warming potential (GWP) of 3 and perfluoroethane (R116) with a global warming potential (GWP) of 12200, the boiling point of ethane (R170) with a GWP of 3 Perfluoroethane (R116) with a GWP of 12200 is as low as -78.1 ° C, and the boiling point of the azeotrope is as low as -88.8 ° C. ) The GWP is less than half that of a single case, so it is gentle to the earth, can achieve a low temperature of -80 ° C, has no danger of explosion, and has outstanding performance in terms of refrigerating capacity and other performance. Therefore, the industrial utility value is high.

S1 高温側冷媒サイクル
S2 低温側冷媒サイクル
1,6 圧縮機
11 カスケードコンデンサ
24 蒸発器
S1 High temperature side refrigerant cycle S2 Low temperature side refrigerant cycle 1, 6 Compressor 11 Cascade condenser 24 Evaporator

Claims (7)

高温側冷凍回路と低温側冷凍回路を備え、前記低温側冷凍回路中の冷媒の凝縮を前記高温側冷媒回路中のカスケードコンデンサを通過する冷媒により行う二元冷凍装置において、
前記低温側冷凍回路中の冷媒として、エタン(R170)とパーフロロエタン(R116)とを混合した共沸混合物を含有する冷媒組成物を使用し、
前記パーフロロエタン(R116)を前記冷媒組成物に対して50%以上60質量%以下を加えることを特徴とする二元冷凍装置。
In a binary refrigeration apparatus comprising a high temperature side refrigeration circuit and a low temperature side refrigeration circuit, wherein the refrigerant in the low temperature side refrigeration circuit is condensed by the refrigerant passing through the cascade condenser in the high temperature side refrigerant circuit,
A refrigerant composition containing an azeotropic mixture obtained by mixing ethane (R170) and perfluoroethane (R116) is used as the refrigerant in the low-temperature refrigeration circuit,
A binary refrigeration apparatus, wherein the perfluoroethane (R116) is added in an amount of 50% to 60% by mass with respect to the refrigerant composition.
高温側冷凍回路と低温側冷凍回路を備え、前記低温側冷凍回路中の冷媒の凝縮を前記高温側冷媒回路中のカスケードコンデンサを通過する冷媒により行う二元冷凍装置において、
前記低温側冷凍回路中の冷媒として、エタン(R170)と二酸化炭素(R744)とを含有する冷媒組成物を使用し、
前記二酸化炭素(R744)を前記冷媒組成物に対して20質量%以下を加えることを特徴とする二元冷凍装置。
In a binary refrigeration apparatus comprising a high temperature side refrigeration circuit and a low temperature side refrigeration circuit, wherein the refrigerant in the low temperature side refrigeration circuit is condensed by the refrigerant passing through the cascade condenser in the high temperature side refrigerant circuit,
As a refrigerant in the low temperature side refrigeration circuit, a refrigerant composition containing ethane (R170) and carbon dioxide (R744) is used,
The binary refrigeration apparatus characterized by adding 20% by mass or less of the carbon dioxide (R744) to the refrigerant composition.
高温側冷凍回路と低温側冷凍回路を備え、前記低温側冷凍回路中の冷媒の凝縮を前記高温側冷媒回路中のカスケードコンデンサを通過する冷媒により行う二元冷凍装置において、
前記低温側冷凍回路中の冷媒として、エタン(R170)とパーフロロエタン(R116)とを混合した共沸混合物と、二酸化炭素(R744)と、を含有する冷媒組成物を使用し、
前記パーフロロエタン(R116)を前記冷媒組成物に対して50質量%以上60質量%以下とし、
前記二酸化炭素(R744)を前記冷媒組成物に対して20質量%以下を加えることを特徴とする二元冷凍装置。
In a binary refrigeration apparatus comprising a high temperature side refrigeration circuit and a low temperature side refrigeration circuit, wherein the refrigerant in the low temperature side refrigeration circuit is condensed by the refrigerant passing through the cascade condenser in the high temperature side refrigerant circuit,
As a refrigerant in the low temperature side refrigeration circuit, a refrigerant composition containing an azeotropic mixture of ethane (R170) and perfluoroethane (R116) and carbon dioxide (R744) is used.
The perfluoroethane (R116) is 50% by mass to 60% by mass with respect to the refrigerant composition,
The binary refrigeration apparatus characterized by adding 20% by mass or less of the carbon dioxide (R744) to the refrigerant composition.
オイルキャリアとして、n−ペンタンまたはプロパンを前記冷媒組成物の総質量に対して14質量%以下の割合で含有する、
請求項1から請求項3のいずれか一項に記載の二元冷凍装置。
As an oil carrier, n-pentane or propane is contained at a ratio of 14% by mass or less with respect to the total mass of the refrigerant composition.
The binary refrigeration apparatus according to any one of claims 1 to 3.
高温側冷凍回路と低温側冷凍回路を備え、前記低温側冷凍回路中の冷媒の凝縮を前記高温側冷媒回路中のカスケードコンデンサを通過する冷媒により行う二元冷凍装置において、
高温側冷凍回路中の冷媒として、ジフロロメタン(R32)、ペンタフロロエタン(R125)、1,1,1,2−テトラフロロエタン(R134a)、1,1,3−トリフロロエタン(R143a)の冷媒群からなる非共沸混合物あるいは、それらの冷媒群に1,1,1,2,3−ペンタフロロペンテン(HFO−1234ze)を含むフッ化炭化水素混合冷媒を加えることを特徴とする二元冷凍装置。
In a binary refrigeration apparatus comprising a high temperature side refrigeration circuit and a low temperature side refrigeration circuit, wherein the refrigerant in the low temperature side refrigeration circuit is condensed by the refrigerant passing through the cascade condenser in the high temperature side refrigerant circuit,
As refrigerant in the high-temperature side refrigeration circuit, refrigerants of difluoromethane (R32), pentafluoroethane (R125), 1,1,1,2-tetrafluoroethane (R134a), 1,1,3-trifluoroethane (R143a) Binary refrigeration characterized by adding a non-azeotropic mixture comprising a group or a fluorinated hydrocarbon mixed refrigerant containing 1,1,1,2,3-pentafluoropentene (HFO-1234ze) to the refrigerant group apparatus.
高温側冷凍回路中の冷媒として、前期1,1,1,2,3−ペンタフロロペンテン(HFO−1234ze)の替わりに1,1,1,2−テトラフロロペンテン(HFO−1234yf)を含むフッ化炭化水素混合冷媒を加えることを特徴とする請求項5記載の二元冷凍装置。   As a refrigerant in the high temperature side refrigeration circuit, fluorine containing 1,1,1,2-tetrafluoropentene (HFO-1234yf) instead of 1,1,1,2,3-pentafluoropentene (HFO-1234ze) in the previous period. 6. A binary refrigeration apparatus according to claim 5, wherein a mixed hydrocarbon refrigerant is added. 前記高温側冷凍回路中の冷媒に、オイルキャリアとしてn−ペンタンを前記フッ化炭化水素混合冷媒の総質量に対して6質量%以下の割合で含有する、
請求項5に記載の二元冷凍装置。
The refrigerant in the high temperature side refrigeration circuit contains n-pentane as an oil carrier in a ratio of 6% by mass or less based on the total mass of the fluorinated hydrocarbon mixed refrigerant.
The binary refrigeration apparatus according to claim 5.
JP2013072802A 2013-03-29 2013-03-29 Dual refrigeration equipment Active JP6181401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013072802A JP6181401B2 (en) 2013-03-29 2013-03-29 Dual refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013072802A JP6181401B2 (en) 2013-03-29 2013-03-29 Dual refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2014196868A true JP2014196868A (en) 2014-10-16
JP6181401B2 JP6181401B2 (en) 2017-08-16

Family

ID=52357775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013072802A Active JP6181401B2 (en) 2013-03-29 2013-03-29 Dual refrigeration equipment

Country Status (1)

Country Link
JP (1) JP6181401B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017138046A (en) * 2016-02-03 2017-08-10 株式会社マック Refrigeration device
CN109135677A (en) * 2018-08-22 2019-01-04 安徽工业大学 A kind of CO2/ R170 azeotrope refrigerant
EP4137754A4 (en) * 2020-06-04 2023-10-11 PHC Holdings Corporation BINARY COOLER

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05239448A (en) * 1991-12-06 1993-09-17 Peter Kaminsky Improvement in refrigeration cycle
JPH05287263A (en) * 1992-04-10 1993-11-02 Sanyo Electric Co Ltd Refrigerant composition and dual refrigerating equipment using the same
JPH0748563A (en) * 1993-08-03 1995-02-21 Tabai Espec Corp Mixed refrigerant
JPH0867870A (en) * 1994-08-29 1996-03-12 Daikin Ind Ltd Refrigerant composition
JP2001019944A (en) * 1999-07-09 2001-01-23 Matsushita Electric Ind Co Ltd Low-temperature working fluid and refrigeration cycle device using it
JP2004177045A (en) * 2002-11-28 2004-06-24 Sanyo Electric Co Ltd Binary refrigerating plant
JP2004286289A (en) * 2003-03-20 2004-10-14 Sanyo Electric Co Ltd Refrigerant cycle device
JP2007303792A (en) * 2006-05-15 2007-11-22 Sanyo Electric Co Ltd Refrigerating device
JP2008089220A (en) * 2006-09-29 2008-04-17 Denso Corp Pressure control valve
JP2012145302A (en) * 2011-01-14 2012-08-02 Hitachi Appliances Inc Refrigeration cycle device
JP2012526179A (en) * 2009-05-08 2012-10-25 ハネウェル・インターナショナル・インコーポレーテッド Hydrofluorocarbon refrigerant composition for heat pump water heater

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05239448A (en) * 1991-12-06 1993-09-17 Peter Kaminsky Improvement in refrigeration cycle
JPH05287263A (en) * 1992-04-10 1993-11-02 Sanyo Electric Co Ltd Refrigerant composition and dual refrigerating equipment using the same
JPH0748563A (en) * 1993-08-03 1995-02-21 Tabai Espec Corp Mixed refrigerant
JPH0867870A (en) * 1994-08-29 1996-03-12 Daikin Ind Ltd Refrigerant composition
JP2001019944A (en) * 1999-07-09 2001-01-23 Matsushita Electric Ind Co Ltd Low-temperature working fluid and refrigeration cycle device using it
JP2004177045A (en) * 2002-11-28 2004-06-24 Sanyo Electric Co Ltd Binary refrigerating plant
JP2004286289A (en) * 2003-03-20 2004-10-14 Sanyo Electric Co Ltd Refrigerant cycle device
JP2007303792A (en) * 2006-05-15 2007-11-22 Sanyo Electric Co Ltd Refrigerating device
JP2008089220A (en) * 2006-09-29 2008-04-17 Denso Corp Pressure control valve
JP2012526179A (en) * 2009-05-08 2012-10-25 ハネウェル・インターナショナル・インコーポレーテッド Hydrofluorocarbon refrigerant composition for heat pump water heater
JP2012145302A (en) * 2011-01-14 2012-08-02 Hitachi Appliances Inc Refrigeration cycle device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017138046A (en) * 2016-02-03 2017-08-10 株式会社マック Refrigeration device
CN109135677A (en) * 2018-08-22 2019-01-04 安徽工业大学 A kind of CO2/ R170 azeotrope refrigerant
US12326285B2 (en) * 2020-04-06 2025-06-10 Phc Holdings Corporation Binary refrigeration apparatus
EP4137754A4 (en) * 2020-06-04 2023-10-11 PHC Holdings Corporation BINARY COOLER

Also Published As

Publication number Publication date
JP6181401B2 (en) 2017-08-16

Similar Documents

Publication Publication Date Title
JP5927339B2 (en) Dual refrigeration equipment
JP5936604B2 (en) Heat transfer fluids and their use in countercurrent heat exchangers
JP5674157B2 (en) Trans-chloro-3,3,3-trifluoropropene for use in cooler applications
JP6392272B2 (en) Heat transfer fluids and their use in countercurrent heat exchangers
JP5936605B2 (en) Three-way heat transfer fluid based on difluoromethane, pentafluoroethane, and tetrafluoropropene
WO2015147338A1 (en) Two-stage cascade refrigeration device
KR100652080B1 (en) Refrigeration apparatus
JPH07504889A (en) Refrigerant composition and method of use thereof
JPH06506015A (en) A non-azeotropic refrigerant composition comprising difluoromethane, 1,1,1-trifluoroethane, or propane
JP2022087163A (en) Working media for thermal cycles, compositions for thermal cycle systems and thermal cycle systems
JP2019073624A (en) REFRIGERANT COMPOSITION INCLUDING HFO-1234ze(E) AND HFC-134, AND USE THEREOF
JPH05287263A (en) Refrigerant composition and dual refrigerating equipment using the same
JP6181401B2 (en) Dual refrigeration equipment
WO2015083834A1 (en) Composition including difluoromethane (hfc-32), pentafluoroethane (hfc-125), and 1,1,1,2-tetrafluoroethane (hfc-134a)
CN102803429B (en) For the refrigerant of high temperature heat transfer
JP4651255B2 (en) Refrigerant composition and refrigeration circuit using the same
CN115087717A (en) Refrigerant composition and use thereof
US20090049856A1 (en) Working fluid of a blend of 1,1,1,3,3-pentafluoropane, 1,1,1,2,3,3-hexafluoropropane, and 1,1,1,2-tetrafluoroethane and method and apparatus for using
JP2014196869A (en) Cascade refrigeration system
JP3863831B2 (en) Refrigerant composition and refrigeration circuit using the refrigerant composition
JP2001072966A (en) Mixed refrigerant and refrigeration cycle device using it
CN101161757A (en) An environmentally friendly azeotropic refrigerant suitable for single-stage compression refrigeration systems
JP2024169419A (en) Mixed refrigerant composition and heat pump containing same
JP2001040340A (en) Binary refrigerating equipment
JPH11158460A (en) Refrigerant composition and binary refrigerator using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150916

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150916

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170720

R150 Certificate of patent or registration of utility model

Ref document number: 6181401

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250