[go: up one dir, main page]

JP2014192133A - Active material, and secondary battery arranged by use thereof - Google Patents

Active material, and secondary battery arranged by use thereof Download PDF

Info

Publication number
JP2014192133A
JP2014192133A JP2013069247A JP2013069247A JP2014192133A JP 2014192133 A JP2014192133 A JP 2014192133A JP 2013069247 A JP2013069247 A JP 2013069247A JP 2013069247 A JP2013069247 A JP 2013069247A JP 2014192133 A JP2014192133 A JP 2014192133A
Authority
JP
Japan
Prior art keywords
active material
secondary battery
tip
negative electrode
crystal phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013069247A
Other languages
Japanese (ja)
Inventor
Fumito Kouchi
史人 古内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2013069247A priority Critical patent/JP2014192133A/en
Publication of JP2014192133A publication Critical patent/JP2014192133A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an active material which is high in energy density, small in the deterioration in discharge capacity owing to the repetition of charge and discharge, and superior in cycle characteristics, and to provide a secondary battery arranged by use thereof.SOLUTION: An active material comprises a compound including Ti and P. The compound has, as a main crystal phase, a TiPOcrystal phase having a pseudo hexagonal structure. The TiPOcrystal phase having the pseudo hexagonal structure is small in volume change involved in acceptance and desorption of ions in charge of electrical conduction. Therefore, the active material like this is used for at least one of positive and negative electrodes of a secondary battery. The compound including Ti and P includes at least one crystal phase different from the TiPOcrystal phase having the pseudo hexagonal structure. A secondary battery comprises: a positive electrode; a negative electrode; and an electrolyte. In the secondary battery, at least one of the positive and negative electrodes includes the active material, and the electrolyte consists of an aqueous electrolytic solution.

Description

本発明は、活物質およびそれを用いた二次電池に関する。   The present invention relates to an active material and a secondary battery using the active material.

近年、二次電池は、携帯電話やノートPCだけでなく、電気自動車用バッテリーとしてもその用途を広げており、さらに風力や太陽光発電の電圧安定化など大型用途での利用も期待されている。   In recent years, secondary batteries have been used not only for mobile phones and notebook PCs but also as batteries for electric vehicles, and are expected to be used for large-scale applications such as voltage stabilization for wind power and solar power generation. .

二次電池は、一般に正極と負極と電解液(質)とから構成されており、正極および負極には、電気伝導を担うイオンの挿入または吸着、および脱離が可能な活物質が含まれている。二次電池の開発においては、充放電条件および使用条件に応じて、容量が大きく、寿命が長い電極を製作することが可能な活物質を開発することが特に重要である。   A secondary battery is generally composed of a positive electrode, a negative electrode, and an electrolyte (quality), and the positive electrode and the negative electrode contain an active material capable of inserting or adsorbing and desorbing ions that conduct electric conduction. Yes. In the development of a secondary battery, it is particularly important to develop an active material capable of producing an electrode having a large capacity and a long life depending on charge / discharge conditions and use conditions.

従来より、負極用の活物質としては黒鉛やハードカーボンなどの炭素系材料や合金系材料が、正極用の活物質としては電気伝導を担うイオン(Li、Naなど)とCo、Niなどの複合酸化物が検討され、利用されてきた。また、近年では、レアメタルの資源リスクの増大により、低コストのFe、Mn、Ti、Pなどを主成分とする活物質が盛んに検討されている。中でもTiPは、電気伝導を担うイオンを構成元素として含まないにもかかわらず、活物質としての有用性が報告されている。 Conventionally, carbon-based materials and alloy materials such as graphite and hard carbon are used as the active material for the negative electrode, and ions (Li, Na, etc.) that are responsible for electric conduction and composite materials such as Co and Ni are used as the active material for the positive electrode. Oxides have been investigated and utilized. In recent years, active materials mainly composed of low-cost Fe, Mn, Ti, P, and the like have been actively studied due to an increase in the resource risk of rare metals. Among them, TiP 2 O 7 has been reported to be useful as an active material even though it does not contain ions responsible for electrical conduction as constituent elements.

例えば、特許文献1では、LiFe1-X(式中、Mは4価でも安定に
存在する遷移金属を表し、Xは0≦X<1、Yは0≦Y≦1を表す)で表される化合物からなる非水系電解質二次電池用電極活物質が提案されており、TiPを正極用活物質として用いた例が示されている。
For example, in Patent Document 1, Li Y Fe X M 1-X P 2 O 7 (wherein M represents a transition metal that is stably present even in a tetravalent state, X is 0 ≦ X <1, Y is 0 ≦ Y An electrode active material for a non-aqueous electrolyte secondary battery comprising a compound represented by ≦ 1 has been proposed, and an example using TiP 2 O 7 as a positive electrode active material is shown.

一方、特許文献2および非特許文献1においては、水系電解液を用いたリチウム二次電池の負極用活物質として、TiPを用いることが提案されている。 On the other hand, Patent Document 2 and Non-Patent Document 1 propose using TiP 2 O 7 as an active material for a negative electrode of a lithium secondary battery using an aqueous electrolyte.

特開2002−246025号公報Japanese Patent Application Laid-Open No. 2002-246025 特開2008−282665号公報JP 2008-282665 A

Haibo Wang, Kelong Huang, Yuqun Zeng, Sai Yang, Liquan Chen, Electrochimica Acta, Volume 52, Issue 9, 15 February 2007, Pages 3280-3285Haibo Wang, Kelong Huang, Yuqun Zeng, Sai Yang, Liquan Chen, Electrochimica Acta, Volume 52, Issue 9, 15 February 2007, Pages 3280-3285

しかしながら、特許文献1に記載されているTiPを含有する正極では、電位が低いためエネルギー密度が低いという問題があった。また、特許文献2および非特許文献1に記載されているようにTiPを負極用活物質として用いた場合は、充放電の繰り返しにより容量が低下するという問題があった。 However, the positive electrode containing TiP 2 O 7 described in Patent Document 1 has a problem that the energy density is low because the potential is low. Further, as described in Patent Document 2 and Non-Patent Document 1, when TiP 2 O 7 is used as the negative electrode active material, there is a problem in that the capacity decreases due to repeated charge and discharge.

本発明は、上記の課題を鑑みてなされたもので、エネルギー密度が高く、充放電の繰り返しによる放電容量の低下が小さくサイクル特性に優れた活物質およびそれを用いた二次電池を提供することを目的とする。   The present invention has been made in view of the above problems, and provides an active material having high energy density, small reduction in discharge capacity due to repeated charge and discharge, and excellent cycle characteristics, and a secondary battery using the active material. With the goal.

本発明の活物質は、TiおよびPを含む化合物からなり、該化合物を構成する主たる結晶相として、擬六方晶構造を有するTiP結晶相を含むことを特徴とする。 The active material of the present invention is composed of a compound containing Ti and P, and includes a TiP 2 O 7 crystal phase having a pseudo hexagonal crystal structure as a main crystal phase constituting the compound.

本発明の二次電池は、正極と、負極と、電解質とを有し、前記正極および前記負極のうち少なくともいずれか一方が、上述の活物質を含むことを特徴とする。   The secondary battery of the present invention includes a positive electrode, a negative electrode, and an electrolyte, and at least one of the positive electrode and the negative electrode includes the above-described active material.

本発明によれば、エネルギー密度が高く、充放電の繰り返しによる放電容量の低下が小さくサイクル特性に優れた活物質およびそれを用いた二次電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the energy density is high, the fall of the discharge capacity by repetition of charging / discharging is small, and the active material excellent in cycling characteristics and a secondary battery using the same can be provided.

本発明の一実施形態である二次電池の概略断面図である。It is a schematic sectional drawing of the secondary battery which is one Embodiment of this invention. 二次電池の外観を示す斜視図である。It is a perspective view which shows the external appearance of a secondary battery. 実施例の負極に用いた活物質のX線回折チャートの一例である。It is an example of the X-ray-diffraction chart of the active material used for the negative electrode of an Example.

本発明の一実施形態である二次電池について、図1および図2を用いて説明する。本実施形態の二次電池は、正極1と負極3との間に電解質層2を有し、これらは発電要素4を構成している。また、正極1および負極3の電解質層2に面する側とは反対側の面には、それぞれ正極側集電層5Pおよび負極側集電層5Nが設けられている。図1に示した発電要素4を、図2に示すような電池ケースに収納することにより二次電池が形成される。電池ケースの形態はラミネートタイプやチューブ型、コイン型、箱型など多種多様であるが、いずれの形態であっても良い。図2に示す6Nおよび6Pは、それぞれ外部回路と負極3および正極1とを電気的に接続する負極端子および正極端子であり、7はラミネートフィルムである。   A secondary battery according to an embodiment of the present invention will be described with reference to FIGS. The secondary battery of this embodiment has an electrolyte layer 2 between the positive electrode 1 and the negative electrode 3, and these constitute a power generation element 4. Further, on the surface opposite to the side facing the electrolyte layer 2 of the positive electrode 1 and the negative electrode 3, a positive electrode side current collecting layer 5P and a negative electrode side current collecting layer 5N are provided, respectively. A secondary battery is formed by housing the power generation element 4 shown in FIG. 1 in a battery case as shown in FIG. There are various types of battery cases such as a laminate type, a tube type, a coin type, and a box type, but any form may be used. 6N and 6P shown in FIG. 2 are a negative electrode terminal and a positive electrode terminal for electrically connecting the external circuit, the negative electrode 3 and the positive electrode 1, respectively, and 7 is a laminate film.

本実施形態においては、負極3の活物質として、TiおよびPを含む化合物を用いる。このTiおよびPを含む化合物は、主たる結晶相として擬六方晶構造を有するTiP結晶相を含んでいる。なお、主たる結晶相とは、化合物のX線回折プロファイルにおいて最大の強度を有する回折ピークの回折強度をIoとしたとき、このIoに対し、50%以上の回折強度を有する回折ピークが存在する結晶相を指すものとする。 In the present embodiment, a compound containing Ti and P is used as the active material of the negative electrode 3. The compound containing Ti and P includes a TiP 2 O 7 crystal phase having a pseudo hexagonal crystal structure as a main crystal phase. The main crystal phase is a crystal having a diffraction peak having a diffraction intensity of 50% or more with respect to this Io, where Io is the diffraction intensity of the diffraction peak having the maximum intensity in the X-ray diffraction profile of the compound. It shall refer to the phase.

擬六方晶構造を有するTiP結晶相は、立方晶のTiP結晶相と同様に120mAh/g程度の理論容量を有しているだけでなく、電気伝導を担うイオンの挿入および脱離に伴う体積変化が小さいため、充放電サイクルにおいても優れた特性を示す。 TiP 2 O 7 crystal phase having a pseudo-hexagonal structure is not only a theoretical capacity of about 120 mAh / g as with TiP 2 O 7 crystal phase of cubic, insertion of ions and responsible for electrical conduction Since the volume change accompanying desorption is small, excellent characteristics are exhibited even in the charge / discharge cycle.

さらに、擬六方晶構造を有するTiP結晶相(以下、擬六方晶TiP、または単に擬六方晶という場合もある)においては、標準水素電極電位に対して、−0.5V程度の電位を持つ立方晶のTiP結晶相(以下、立方晶TiP、または単に立方晶という場合もある)よりも0.1〜0.2V高い充放電電位を示す。これは、水系電解液を用いた電池の負極における水素の発生電位(−1.0V程度)より十分に高い値であるため、水系電解液を用いた電池においては、負極の活物質として擬六方晶TiPを用いることにより、水素発生の危険性を低減することが可能である。また、正極の活物質として擬六方晶TiPを用いた場合には、より高いエネルギー密度を得ることができる。 Furthermore, in a TiP 2 O 7 crystal phase having a pseudo hexagonal crystal structure (hereinafter sometimes referred to as pseudo hexagonal TiP 2 O 7 or simply pseudo hexagonal crystal), −0.5 V with respect to the standard hydrogen electrode potential. The charge / discharge potential is 0.1 to 0.2 V higher than a cubic TiP 2 O 7 crystal phase having a potential of about (hereinafter, sometimes referred to as cubic TiP 2 O 7 or simply cubic). This is a value sufficiently higher than the hydrogen generation potential (about −1.0 V) in the negative electrode of the battery using the aqueous electrolyte, and therefore, in the battery using the aqueous electrolyte, pseudo-hexagonal as an active material of the negative electrode. By using crystalline TiP 2 O 7 , it is possible to reduce the risk of hydrogen generation. Further, when pseudo hexagonal TiP 2 O 7 is used as the positive electrode active material, a higher energy density can be obtained.

さらにまた、擬六方晶TiPは、イオン伝導性だけでなく電子伝導性も高いため、これを活物質として用いることで二次電池としての内部抵抗を低減することができる。
立方晶TiPや、LiTi(POは電子伝導性が低いため、これらを活物質として用いる場合、活物質の表面に導電性の被膜を形成する必要があるとともに、この被膜による不可逆容量が発生するという懸念がある。これに対し、電子伝導性が高い擬六方晶TiPを活物質として用いる場合は、活物質の表面に被膜を形成することなく優れた性能を発現することができる。
Furthermore, since pseudo hexagonal TiP 2 O 7 has not only ion conductivity but also high electron conductivity, the use of this as an active material can reduce the internal resistance as a secondary battery.
Since cubic TiP 2 O 7 and LiTi 2 (PO 4 ) 3 have low electron conductivity, when these are used as an active material, it is necessary to form a conductive film on the surface of the active material. There is concern that irreversible capacity will be generated. On the other hand, when pseudo hexagonal TiP 2 O 7 having high electron conductivity is used as an active material, excellent performance can be expressed without forming a film on the surface of the active material.

活物質中に擬六方晶TiPが存在することは、X線回折(XRD)測定により確認できる。たとえば、CuKα線を用いて測定した場合、擬六方晶TiPのX線回折プロファイルでは、2θが22.8〜23.4°の範囲に最大の回折強度を有する回折ピーク(以下、擬六方晶TiPのメインピークという場合もある)が現れる。これは、3.8〜3.9Åの面間隔を有する結晶構造であることを示している。 The presence of pseudo hexagonal TiP 2 O 7 in the active material can be confirmed by X-ray diffraction (XRD) measurement. For example, when measured using CuKα rays, in the X-ray diffraction profile of pseudo-hexagonal TiP 2 O 7 , the diffraction peak having the maximum diffraction intensity in the range of 2θ to 22.8 to 23.4 ° (hereinafter referred to as pseudo-hexagonal TiP 2 O 7 ). A main peak of hexagonal TiP 2 O 7 ). This indicates that the crystal structure has a surface spacing of 3.8 to 3.9 mm.

本実施形態におけるTiおよびPを含む化合物は、上述した擬六方晶TiPとは異なる結晶相を含んでいてもよく、このような結晶相を1種または2種以上含む化合物であってもよい。このような結晶相としては、たとえば立方晶TiPや、Ti20、Ti25、LiTi(PO、NaTi(POなどが挙げられる。特に、LiTi(PO、NaTi(PO等、電気伝導を担うイオンを構成元素とする結晶相を含む場合は、容量の増大が可能なため好ましい。 The compound containing Ti and P in the present embodiment may contain a crystal phase different from the pseudo hexagonal TiP 2 O 7 described above, and is a compound containing one or more of such crystal phases. Also good. Examples of such a crystal phase include cubic TiP 2 O 7 , Ti 5 P 4 O 20 , Ti 5 P 6 O 25 , LiTi 2 (PO 4 ) 3 , and NaTi 2 (PO 4 ) 3. . In particular, it is preferable to include a crystal phase whose constituent element is an ion responsible for electrical conduction, such as LiTi 2 (PO 4 ) 3 or NaTi 2 (PO 4 ) 3 , because the capacity can be increased.

活物質中における擬六方晶TiPの割合は、活物質のX線回折プロファイルにおいて、最大の回折強度を有する回折ピーク(以下、活物質のメインピークという場合もある)の回折強度をIoとし、上述した、Cukα線を用いたX線回折測定において2θが22.8〜23.4°の範囲に現れる擬六方晶TiPのメインピークの回折強度をIpとしたとき、IoとIpとの強度比Ip/Ioが0.7以上となる割合であることが好ましい。活物質中における擬六方晶TiPの割合が、このような強度比を示す割合であることにより、擬六方晶TiPによる充放電サイクル特性の向上効果がより顕著になるとともに、擬六方晶TiPが有する電子伝導性やイオン伝導性を十分に活用することができる。なお、活物質のメインピークと、擬六方晶TiPのメインピークとが一致していてもよい。また、活物質を構成する結晶の面間隔は充放電によりわずかに変動するため、本明細書におけるX線回折測定はすべて、電気伝導を担うイオンを脱離した状態で測定するものとする。 The ratio of quasi-hexagonal TiP 2 O 7 in the active material indicates the diffraction intensity of the diffraction peak having the maximum diffraction intensity (hereinafter sometimes referred to as the main peak of the active material) in the X-ray diffraction profile of the active material. When the diffraction intensity of the main peak of pseudo hexagonal TiP 2 O 7 that appears in the range of 2θ of 22.8 to 23.4 ° in the X-ray diffraction measurement using the Cukα ray is Ip, It is preferable that the intensity ratio Ip / Io with Ip is 0.7 or more. When the ratio of the pseudo hexagonal TiP 2 O 7 in the active material is such a ratio that shows such an intensity ratio, the effect of improving charge / discharge cycle characteristics by the pseudo hexagonal TiP 2 O 7 becomes more prominent, The electron conductivity and ionic conductivity of the pseudo hexagonal TiP 2 O 7 can be fully utilized. Note that the main peak of the active material and the main peak of pseudo-hexagonal TiP 2 O 7 may coincide with each other. In addition, since the interplanar spacing of the crystals constituting the active material varies slightly due to charge and discharge, all X-ray diffraction measurements in this specification are performed in a state where ions responsible for electrical conduction are desorbed.

なお、本実施形態においては、負極3に、上述のTiおよびPを含む化合物以外の活物質を含んでいても構わない。また、工程上の不可避不純物としてたとえばAl、Zr、Mg、Mn、Fe、V、Co、Crなどを0.5質量%以下の割合で含有していてもよい。   In the present embodiment, the negative electrode 3 may contain an active material other than the compound containing Ti and P described above. Moreover, you may contain Al, Zr, Mg, Mn, Fe, V, Co, Cr etc. in the ratio of 0.5 mass% or less as an inevitable impurity on a process.

このような活物質は、固相反応法、水熱合成法など既知の種々の方法で作製することができる。たとえば、所定の組成のTiおよびPが含まれる混合原料粉末や、共沈法により得られるTi、Pが含まれる前駆体を、大気中にて300〜600℃の範囲の温度で加熱処理することにより、目的の活物質を合成することができる。なお、加熱処理を300℃より低い温度で行うと、未反応の物質が多く残留する場合がある。また、600℃より高い温度で行うと、立方晶TiPが生成しやすくなる場合がある。 Such an active material can be produced by various known methods such as a solid phase reaction method and a hydrothermal synthesis method. For example, a mixed raw material powder containing Ti and P having a predetermined composition and a precursor containing Ti and P obtained by a coprecipitation method are heated in the atmosphere at a temperature in the range of 300 to 600 ° C. Thus, a target active material can be synthesized. Note that when the heat treatment is performed at a temperature lower than 300 ° C., a large amount of unreacted substances may remain. Moreover, when performed at a temperature higher than 600 ° C., cubic TiP 2 O 7 may be easily formed.

得られた活物質は、必要に応じボールミルやビーズミル等の手法により粉砕するなどして粒度調整を行ってもよい。粒度調整を行う場合、活物質の粉末の平均粒径は、それを用いる二次電池の使用条件や電極の作製方法に応じて適正な範囲に調整すればよく、たとえば0.1〜50μmの範囲から目的に応じた適正な範囲を選択して調整すればよい。粉末の平均粒径は、たとえば回折散乱法による粒度分布測定などにより確認できる。   The obtained active material may be adjusted in particle size by pulverization by a technique such as a ball mill or a bead mill, if necessary. When adjusting the particle size, the average particle size of the powder of the active material may be adjusted to an appropriate range according to the use condition of the secondary battery using the active material and the method for producing the electrode, for example, in the range of 0.1 to 50 μm. It is sufficient to select and adjust an appropriate range according to the purpose. The average particle size of the powder can be confirmed by, for example, particle size distribution measurement by a diffraction scattering method.

得られた活物質を用いて電極を作製する。たとえば、得られた活物質を80質量%、導
電助剤としてアセチレンブラックを10質量%およびバインダーとしてポリフッ化ビニリデンを10質量%に、さらに溶媒として15質量%のNMP(N−メチルピロリドン)を添加してスラリーを作製する。作製したスラリーを、ドクターブレード法などの周知のシート成形法により、たとえばAlやステンレス、Ni、Cu等の金属箔上に塗布し溶剤を乾燥することで、擬六方晶TiPを主たる結晶相として含む活物質と、導電助剤と結着剤とを含む電極を作製できる。
An electrode is produced using the obtained active material. For example, 80% by mass of the obtained active material, 10% by mass of acetylene black as a conductive assistant, 10% by mass of polyvinylidene fluoride as a binder, and 15% by mass of NMP (N-methylpyrrolidone) as a solvent are added. To prepare a slurry. The prepared slurry is applied to a metal foil such as Al, stainless steel, Ni, Cu, etc. by a well-known sheet forming method such as a doctor blade method, and the solvent is dried, so that pseudo hexagonal TiP 2 O 7 is a main crystal. An electrode containing an active material contained as a phase, a conductive additive, and a binder can be produced.

バインダーは、ポリフッ化ビニリデン以外にも、たとえばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン、フッ素系ゴム、スチレンブタジエンゴム、ポリイミド樹脂(PI)、ポリアミド樹脂、ポリアミドイミド樹脂など、用途によって適したものを選んで使用できる。また、導電助剤も、アセチレンブラックの代わりにケッチェンブラックやカーボンナノチューブ、黒鉛、ハードカーボン、金属(アルミニウム、金、白金など)の粉末、無機導電性酸化物(酸化インジウムスズ(ITO)ガラス、酸化スズなど)など、使用電圧範囲において化学的に安定で導電性を示すものであればその材料はいずれでも良い。   In addition to polyvinylidene fluoride, for example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride, fluorine rubber, styrene butadiene rubber, polyimide resin (PI), polyamide resin, polyamideimide resin, etc. Can be used. In addition, the conductive auxiliary agent is ketjen black, carbon nanotube, graphite, hard carbon, metal (aluminum, gold, platinum, etc.) powder instead of acetylene black, inorganic conductive oxide (indium tin oxide (ITO) glass, Any material may be used as long as it is chemically stable and exhibits conductivity in the operating voltage range, such as tin oxide.

また、得られた活物質の粉末を用いて、押し出し成形やロールコンパクション法などの成形法によって圧粉体を作製し、電極を形成してもよい。また、活物質の粉末を焼成し、導電助剤やバインダーを含まない焼結体として用いてもよい。   The obtained active material powder may be used to form an electrode by forming a green compact by a molding method such as extrusion molding or a roll compaction method. Alternatively, the active material powder may be fired and used as a sintered body that does not contain a conductive additive or a binder.

電極中における活物質の粒子の平均粒径は、これを用いる二次電池の電圧範囲や温度などの使用条件に応じて、たとえば0.1〜50μmの範囲から適正な範囲を選んで調整すればよい。たとえば高出力が必要な二次電池用途に用いる場合、活物質の粒子の平均粒径は0.5〜1.0μmの比較的微小な範囲とすることが好ましい。   The average particle size of the active material particles in the electrode can be adjusted by selecting an appropriate range from a range of 0.1 to 50 μm, for example, depending on the use conditions such as the voltage range and temperature of the secondary battery using the active material. Good. For example, when used in a secondary battery application that requires high output, the average particle size of the active material particles is preferably in a relatively small range of 0.5 to 1.0 μm.

なお、電極中における活物質の粒子の平均粒径の制御は、シート成形や圧粉体により電極を形成する場合には活物質の粉末の粒度調整により行うことができ、焼結体を用いて電極を形成する場合には、活物質の粉末の粒度調整および焼成温度の調整により行うことができる。電極中における活物質の粒子の平均粒径は、たとえば電極の断面において、走査型電子顕微鏡(SEM)と波長分散型X線分析(WDS)により活物質の粒子を判別し、撮影した写真を画像解析して算出するなどして求めることができる。   The average particle size of the active material particles in the electrode can be controlled by adjusting the particle size of the active material powder when the electrode is formed by sheet molding or green compact. When forming an electrode, it can be performed by adjusting the particle size of the active material powder and adjusting the firing temperature. The average particle diameter of the active material particles in the electrode is determined by, for example, distinguishing the active material particles in the cross section of the electrode using a scanning electron microscope (SEM) and wavelength dispersive X-ray analysis (WDS), and taking a photograph. It can be obtained by analyzing and calculating.

正極1に用いる活物質は、例えば、リチウムコバルト複合酸化物、リチウムマンガン複合酸化物、二酸化マンガン、リチウムニッケル複合酸化物、リチウムニッケルコバルト複合酸化物、リチウムバナジウム複合酸化物、酸化バナジウムなどや、ナトリウムコバルト複合酸化物、ナトリウムマンガン複合酸化物、二酸化マンガン、ナトリウムニッケル複合酸化物、ナトリウムニッケル鉄複合酸化物、ナトリウム鉄複合酸化物、ナトリウムクロム複合酸化物などが挙げられる。これらの活物質の粒子を用いて上述したような製法により電極を作製することにより、正極1が得られる。   Examples of the active material used for the positive electrode 1 include lithium cobalt composite oxide, lithium manganese composite oxide, manganese dioxide, lithium nickel composite oxide, lithium nickel cobalt composite oxide, lithium vanadium composite oxide, vanadium oxide, and sodium. Examples include cobalt composite oxide, sodium manganese composite oxide, manganese dioxide, sodium nickel composite oxide, sodium nickel iron composite oxide, sodium iron composite oxide, sodium chromium composite oxide, and the like. The positive electrode 1 is obtained by producing an electrode by the above-described manufacturing method using these active material particles.

なお、本実施形態では、擬六方晶TiPを主たる結晶相として含む化合物を、負極活物質として負極3に用いたが、これは、正極活物質として正極1に用いることもできる。この化合物を正極1に用いる場合、負極3に用いる負極活物質としては、電気伝導を担うイオンを吸蔵・放出できるとともに、これらのイオンの吸蔵・放出を、正極1に用いる正極活物質よりも卑な電位で行うことができる負極活物質、例えば、リチウム金属やナトリウム金属、人造および天然黒鉛、難黒鉛化カーボン、易黒鉛化低温焼成カーボン等の炭素質材料などを用いればよい。 In the present embodiment, a compound containing pseudo hexagonal TiP 2 O 7 as a main crystal phase is used for the negative electrode 3 as a negative electrode active material, but this can also be used for the positive electrode 1 as a positive electrode active material. When this compound is used for the positive electrode 1, the negative electrode active material used for the negative electrode 3 can occlude / release ions that are responsible for electrical conduction, and the occlusion / release of these ions is lower than that of the positive electrode active material used for the positive electrode 1. A negative electrode active material that can be performed at a low potential, for example, a carbonaceous material such as lithium metal or sodium metal, artificial and natural graphite, non-graphitizable carbon, and graphitizable low-temperature calcined carbon may be used.

電解質層2としては、水系電解液や、有機電解液やイオン液体等の非水系電解液をセパレータに含浸させたものや、高分子固体電解質、無機固体電解質、溶融塩等のいずれも用
いることができる。
As the electrolyte layer 2, any one of an aqueous electrolyte, a non-aqueous electrolyte such as an organic electrolyte or an ionic liquid impregnated in a separator, a polymer solid electrolyte, an inorganic solid electrolyte, or a molten salt may be used. it can.

水系電解液や非水系電解液を含浸させるセパレータには、イオンを通し、かつ正負極のショートを防止することが求められる。具体的には、ポリオレフィン繊維性の不織布やポリオレフィン製の微多孔膜、ガラスフィルター、セラミックの多孔質材料などを用いることができる。ここで、ポリオレフィンとしてはポリエチレン、ポリプロピレンを挙げることができ、一般的にリチウムイオン電池などの二次電池に用いられるセパレータが適用可能である。   The separator impregnated with the aqueous electrolyte solution or the non-aqueous electrolyte solution is required to pass ions and prevent the positive and negative electrodes from being short-circuited. Specifically, a polyolefin fibrous nonwoven fabric, a polyolefin microporous film, a glass filter, a ceramic porous material, or the like can be used. Here, examples of the polyolefin include polyethylene and polypropylene, and a separator generally used for a secondary battery such as a lithium ion battery is applicable.

水系電解液としては、たとえば1〜2mol/Lの硫酸リチウムや硝酸リチウム、硫酸
ナトリウム、硝酸ナトリウムなどの水溶液を用いることができる。このような水系電解液は、pHの調整により水の電気分解電位を変化させることができるため、二次電池の充電電位を変えることも可能である。
As the aqueous electrolyte, for example, an aqueous solution of 1 to 2 mol / L lithium sulfate, lithium nitrate, sodium sulfate, sodium nitrate, or the like can be used. Such an aqueous electrolyte solution can change the electrolysis potential of water by adjusting the pH, and thus can change the charging potential of the secondary battery.

有機電解液は、有機溶媒と電解質塩によって構成され、必要に応じて電極表面への被膜形成、過充電防止、難燃性の付与等を目的とした添加剤を加えてもよい。有機溶媒としては、高誘電率を有し、低粘性、低蒸気圧のものが好適に用いられ、このような材料としては、たとえば、エチレンカーボネート(EC)、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、スルホラン、1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ジメチルエーテル、テトラヒドロフラン、2−メチルテトラヒドロフラン、メチルエチルカーボネート、ジメチルカーボネート、ジエチルカーボネートから選ばれる1種もしくは2種以上を混合した溶媒が挙げられる。電解質塩としては、たとえばLiBF4,LiPF6,LiClO4,LiCF3SO3,LiAsF6,LiN(CF3SO2)2,LiN(C2F5SO2)等のリチウム塩や、過塩素酸ナトリウム(NaClO)、四フッ化ホウ酸ナトリウム(NaBF)、六フッ化リン酸ナトリウム(NaPF)、NaN(FSO、NaN(CFSO、NaN(CSO等のナトリウム塩が挙げられる。このうち、NaN(SOF)、NaN(CFSOおよびNaN(CSOは、他のアルカリ金属塩と混合して一定温度以上の環境で使用することで、溶融塩としても用いることができる。 The organic electrolyte is composed of an organic solvent and an electrolyte salt, and an additive for the purpose of forming a film on the electrode surface, preventing overcharge, imparting flame retardancy, or the like may be added as necessary. As the organic solvent, those having a high dielectric constant, low viscosity and low vapor pressure are preferably used. Examples of such materials include ethylene carbonate (EC), propylene carbonate, butylene carbonate, and γ-butyrolactone. , Sulfolane, 1,2-dimethoxyethane, 1,3-dimethoxypropane, dimethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, methyl ethyl carbonate, dimethyl carbonate, diethyl carbonate, or a mixture of two or more thereof. It is done. As the electrolyte salt, for example LiBF4, LiPF6, LiClO4, LiCF3SO3, LiAsF6, LiN (CF3SO2) 2, LiN (C2F5SO2) and the lithium salt of 2, etc., sodium perchlorate (NaClO 4), tetrafluoride sodium borate (NaBF 4 ), sodium salts such as sodium hexafluorophosphate (NaPF 6 ), NaN (FSO 2 ) 2 , NaN (CF 3 SO 2 ) 2 , and NaN (C 2 F 5 SO 2 ) 2 . Among these, NaN (SO 2 F) 2 , NaN (CF 3 SO 2 ) 2, and NaN (C 2 F 5 SO 2 ) 2 are mixed with other alkali metal salts and used in an environment at a certain temperature or higher. Therefore, it can also be used as a molten salt.

電解質層2として高分子固体電解質や無機固体電解質を用いる場合は、その厚みをたとえば10μm以下、さらには3μm以下と薄くすることができ、同一体積の二次電池と比較して活物質をより多く詰め込めるため、高容量化が進み、結果としてエネルギー密度向上にも寄与することができる。ただし、固体電解質は、ショートを防止するために絶縁破壊やピンホールによるショートを起こさない必要最低限の厚みを確保する必要がある。   When a polymer solid electrolyte or an inorganic solid electrolyte is used as the electrolyte layer 2, the thickness can be reduced to, for example, 10 μm or less, and further 3 μm or less, and more active materials can be used compared to a secondary battery having the same volume. Since packing can be performed, the capacity can be increased, and as a result, the energy density can be improved. However, in order to prevent a short circuit, the solid electrolyte needs to have a necessary minimum thickness that does not cause a dielectric breakdown or a short circuit due to a pinhole.

また、本実施形態における活物質は、特にナトリウムイオンをやり取りすることにより充放電を行う二次電池(ナトリウム二次電池)に用いることが好ましい。ナトリウム二次電池は、リチウム二次電池に比べ低容量となる傾向があるが、活物質として擬六方晶TiPを含む化合物を用いることで、サイクル特性の改善とともに、容量の向上効果が得られる。 Moreover, it is preferable to use the active material in this embodiment for the secondary battery (sodium secondary battery) which charges / discharges especially by exchanging sodium ion. A sodium secondary battery tends to have a lower capacity than a lithium secondary battery. However, by using a compound containing pseudo-hexagonal TiP 2 O 7 as an active material, the cycle characteristics are improved and the capacity is improved. can get.

正極側集電層5Pには、正極の電位において溶解などの反応が発生しない耐食性を有する材料を用いればよい。このような材料としては、たとえば、アルミニウム、タンタル、ニオブ、チタン、金、白金等を含む金属材料や合金、黒鉛、ハードカーボン、ガラス状炭素等の炭素質材料、ITOガラス、酸化すずなどの無機導電性酸化物材料などを用いることができる。その中でもアルミニウム、金、白金は耐食性に優れ、容易に入手できるため好ましい。特にアルミニウムは、表面に酸化被膜を形成して不動態化し、高い電位においても耐食性に優れる点から好ましい。   A material having corrosion resistance that does not cause a reaction such as dissolution at the potential of the positive electrode may be used for the positive current collecting layer 5P. Examples of such materials include metal materials and alloys including aluminum, tantalum, niobium, titanium, gold, platinum, etc., carbonaceous materials such as graphite, hard carbon, and glassy carbon, inorganic materials such as ITO glass and tin oxide. A conductive oxide material or the like can be used. Among these, aluminum, gold, and platinum are preferable because they are excellent in corrosion resistance and easily available. Aluminum is particularly preferable because it is passivated by forming an oxide film on the surface and excellent in corrosion resistance even at a high potential.

負極側集電層5Nには、負極の電位においてLiやNaとの合金化などの副反応が発生しない材料を用いればよい。このような材料としては、たとえば、銅、ニッケル、真鍮、亜鉛、アルミニウム、ステンレス、タングステン、金、白金等を含む金属材料や合金、黒鉛、ハードカーボン、ガラス状炭素等の炭素質材料、ITOガラス、酸化すずなどの無機導電性酸化物材料などを用いることができる。特に、導電性が高く比較的安価な点から、アルミニウムまたはニッケルを用いることが好ましい。特にアルミニウムは、銅やニッケルと同様に導電性が高く比較的安価であり、リチウムに対しては合金を形成するため使用できないが、ナトリウムに対しては不活性であるため、正極および負極のいずれにも集電体として用いることが可能である。   A material that does not cause side reactions such as alloying with Li or Na at the potential of the negative electrode may be used for the negative current collecting layer 5N. Examples of such materials include metal materials and alloys including copper, nickel, brass, zinc, aluminum, stainless steel, tungsten, gold, platinum, carbonaceous materials such as graphite, hard carbon, and glassy carbon, ITO glass. An inorganic conductive oxide material such as tin oxide can be used. In particular, it is preferable to use aluminum or nickel from the viewpoint of high conductivity and relatively low cost. Aluminum, in particular, has high conductivity and is relatively inexpensive, like copper and nickel, and cannot be used because it forms an alloy with lithium, but is inactive with sodium. Also, it can be used as a current collector.

正極側集電層5Pおよび負極側集電層5Nは、これらの金属材料からなる金属箔やメッシュを用いてもよいし、金属材料、炭素質材料またはITOガラスや酸化すずなどの無機導電性酸化物材料などをフィラーとした導電性インクなどを電極材料表面に塗布し、乾燥させたものを用いてもよい。また、白金やアルミニウム、チタンなどの金属を電極材料表面に蒸着したものであってもよい。   The positive electrode side current collecting layer 5P and the negative electrode side current collecting layer 5N may use a metal foil or mesh made of these metal materials, or an inorganic conductive oxide such as a metal material, a carbonaceous material, ITO glass or tin oxide. A conductive ink or the like using a material material as a filler may be applied to the electrode material surface and dried. Moreover, what vapor-deposited metals, such as platinum, aluminum, and titanium, on the electrode material surface may be used.

なお、金属箔またはメッシュを用いる場合、その厚みは5〜20μmとすることが好ましい。また、金属箔を使用する場合は、電極材料との接着力向上のために、金属箔の表面を粗面化処理したものを用いてもよい。この場合、金属箔の表面粗さは、算術平均粗さ(Ra)にして0.5〜2μmであることが好ましい。金属箔の表面粗さは、触針式、光干渉式等の表面粗さ計や、レーザー顕微鏡、原子間力顕微鏡(AFM)等を用いて測定する。一般的に使用される触針式表面粗さ計を用いる場合は、JIS B0601に基づいて、たとえば、触針先端径を2μm、測定長を4.8mm、カットオフ値を0.8mmという条件で測定すればよい。   In addition, when using metal foil or a mesh, it is preferable that the thickness shall be 5-20 micrometers. Moreover, when using metal foil, you may use what roughened the surface of metal foil in order to improve the adhesive force with electrode material. In this case, the surface roughness of the metal foil is preferably 0.5 to 2 μm in terms of arithmetic average roughness (Ra). The surface roughness of the metal foil is measured using a surface roughness meter such as a stylus type or a light interference type, a laser microscope, an atomic force microscope (AFM), or the like. When using a stylus-type surface roughness meter that is generally used, based on JIS B0601, for example, on the condition that the stylus tip diameter is 2 μm, the measurement length is 4.8 mm, and the cutoff value is 0.8 mm Just measure.

以上、本実施形態の二次電池について説明したが、本発明は本実施形態に限定されるものではなく、本発明を逸脱しない範囲で種々変更したものにも適用することができる。   The secondary battery of the present embodiment has been described above, but the present invention is not limited to the present embodiment, and can be applied to various modifications without departing from the present invention.

以下、本発明の活物質およびそれを用いた二次電池について、実施例に基づき詳細に説明する。まず、活物質の素原料としてアナターゼ型TiO(東邦チタニウム製)と(NHHPO(リン酸水素二アンモニウム)を、TiとPの比率が1:2となるように配合し、イソプロピルアルコール(IPA)を溶媒としてスラリー化し、ZrOボールを用いてボールミルにて20時間混合した。混合後のスラリーを乾燥した後、大気中で加熱処理を行い、活物質を合成した。加熱処理は表1に示した条件で行った。 Hereinafter, an active material of the present invention and a secondary battery using the active material will be described in detail based on examples. First, anatase TiO 2 (manufactured by Toho Titanium) and (NH 4 ) 2 HPO 4 (diammonium hydrogen phosphate) are blended so that the ratio of Ti and P is 1: 2, as raw materials for the active material, Slurry with isopropyl alcohol (IPA) as a solvent was mixed with a ball mill using ZrO 2 balls for 20 hours. After drying the mixed slurry, heat treatment was performed in the air to synthesize an active material. The heat treatment was performed under the conditions shown in Table 1.

合成した活物質について、CuKα線を用いてX線回折(XRD)測定を行い、回折パターンを解析して活物質に含まれる結晶相を同定した。得られた活物質のX線回折プロファイルにおける最大の強度を有する回折ピーク(活物質のメインピーク)の回折強度をIoとし、2θが22.8〜23.4°の範囲に現れる擬六方晶TiPの回折ピーク(擬六方晶のメインピーク)の回折強度をIpとした。活物質に含まれる主たる結晶相、およびX線回折ピークの強度比Ip/Ioを表1に示す。なお、本実施例における活物質のメインピークは、JCPDSのNo.00−038−1468で同定されるTiP
の結晶相のメインピークである(600)面を示すピークおよび擬六方晶TiPのメインピークのうちいずれか一方であり、活物質A、BおよびCのメインピークは擬六方晶TiPのメインピークであったため、これらのIp/Ioは1とした。
The synthesized active material was measured by X-ray diffraction (XRD) using CuKα rays, and the diffraction pattern was analyzed to identify the crystal phase contained in the active material. Pseudo hexagonal TiP appearing in the range of 22.8 to 23.4 °, where Io is the diffraction intensity of the diffraction peak having the maximum intensity in the X-ray diffraction profile of the obtained active material (main peak of the active material) The diffraction intensity of the diffraction peak of 2 O 7 (a pseudo hexagonal main peak) was defined as Ip. Table 1 shows the main crystal phase contained in the active material and the intensity ratio Ip / Io of the X-ray diffraction peak. The main peak of the active material in this example is TiP 2 O identified by JCPDS No. 00-038-1468.
7 is the main peak of the crystalline phase of ( 7) and the main peak of pseudo hexagonal TiP 2 O 7 , and the main peaks of the active materials A, B and C are pseudo hexagonal TiP. Since this was the main peak of 2 O 7 , these Ip / Io were set to 1.

Figure 2014192133
Figure 2014192133

合成した活物質を用いて負極を作製した。合成した活物質の粉末を80質量%、導電助剤としてアセチレンブラックを10質量%、バインダーとしてポリフッ化ビニリデンを10質量%、溶媒としてNMP(N−メチルピロリドン)を15質量%混合してスラリーを作製した。このスラリーを、負極側集電層となる金属箔の上にドクターブレード法により塗布し、溶媒を乾燥することにより、厚さ50μmの負極を形成した。   A negative electrode was produced using the synthesized active material. 80% by mass of the synthesized active material powder, 10% by mass of acetylene black as a conductive assistant, 10% by mass of polyvinylidene fluoride as a binder, and 15% by mass of NMP (N-methylpyrrolidone) as a solvent were mixed to prepare a slurry. Produced. This slurry was applied onto a metal foil serving as a negative electrode side current collecting layer by a doctor blade method, and the solvent was dried to form a negative electrode having a thickness of 50 μm.

正極は、市販のLiMn粉末(戸田工業製)または合成したNa0.7MnO2.05粉末を活物質として用いた。これらの活物質の粉末を80質量%、導電助剤としてアセチレンブラックを10質量%、バインダーとしてポリフッ化ビニリデンを10質量%、溶媒としてNMP(N−メチルピロリドン)を15質量%混合してスラリー作製し、正極側集電層となる金属箔の上にドクターブレード法により塗布し、溶媒を乾燥することにより、厚さ50μmの正極を形成した。 As the positive electrode, a commercially available LiMn 2 O 4 powder (manufactured by Toda Kogyo) or a synthesized Na 0.7 MnO 2.05 powder was used as an active material. A slurry was prepared by mixing 80% by mass of these active material powders, 10% by mass of acetylene black as a conductive additive, 10% by mass of polyvinylidene fluoride as a binder, and 15% by mass of NMP (N-methylpyrrolidone) as a solvent. And it apply | coated with the doctor blade method on the metal foil used as a positive electrode side current collection layer, and the positive electrode with a thickness of 50 micrometers was formed by drying a solvent.

得られた正極および負極を、集電層である金属箔と共に10×10cmの正方形状に切断し、さらに集電層である金属箔の電極が形成されていない側の面の端部に、同一の材質からなる金属箔を正極端子または負極端子として、スポット溶接で取り付けた。   The positive electrode and the negative electrode obtained were cut into a 10 × 10 cm square shape together with the metal foil as the current collecting layer, and the same as the end of the surface on the side where the electrode of the metal foil as the current collecting layer was not formed A metal foil made of the above material was attached as a positive electrode terminal or a negative electrode terminal by spot welding.

作製した正極と負極との間に、電解液を含んだポリプロピレン/ポリエチレン製のセパレータを配置し、外装体である袋状のアルミニウムラミネートフィルムに収納し、電解液を注入した。電解液には、有機溶媒であるプロピレンカーボネート(PC)にLiClOまたはNaN(CFSO(NaTFSIともいう)を1mol/Lで溶解したもの、あるいはLiSOまたはNaSOを2mol/L溶解した水溶液を用いた。正極、負極に用いた活物質、集電層の材質、電解液の種類を表2に示す。 Between the produced positive electrode and negative electrode, a separator made of polypropylene / polyethylene containing an electrolytic solution was placed, housed in a bag-like aluminum laminate film as an exterior body, and the electrolytic solution was injected. As the electrolytic solution, LiClO 4 or NaN (CF 3 SO 2 ) 2 (also referred to as NaTFSI) dissolved in 1 mol / L in propylene carbonate (PC), which is an organic solvent, or Li 2 SO 4 or Na 2 SO 4 An aqueous solution in which 2 mol / L was dissolved was used. Table 2 shows the active material used for the positive electrode and the negative electrode, the material of the current collecting layer, and the type of the electrolytic solution.

電解液を注入した後、正極端子および負極端子の端部が外装体の開口部から露出した状態で外装体の開口部を熱溶着により密閉し、二次電池とした。   After injecting the electrolytic solution, the opening of the outer package was sealed by thermal welding in a state where the ends of the positive electrode terminal and the negative electrode terminal were exposed from the opening of the outer package, thereby obtaining a secondary battery.

作製した二次電池の充放電特性を、0.2Cの条件で評価した。表2に初期放電容量と、放電−充電1回を1サイクルとした100サイクルの充放電試験後の放電容量維持率を示す。   The charge / discharge characteristics of the produced secondary battery were evaluated under the condition of 0.2C. Table 2 shows the initial discharge capacity and the discharge capacity retention rate after a 100-cycle charge / discharge test with one discharge-charge cycle.

Figure 2014192133
Figure 2014192133

表1および表2に示すように、擬六方晶TiPを主たる結晶相の一つとして含む、すなわちIp/Ioが0.5以上である活物質を用いることにより、サイクル特性が改善され、100サイクルの充放電試験後の容量維持率が大幅に向上した。特に、Ip/Ioが0.7以上の場合は、容量維持率が80%を超える優れた特性を示した(試料No.1〜4、7〜10、13〜16、19〜22を参照)。 As shown in Table 1 and Table 2, cycle characteristics are improved by using an active material containing pseudo hexagonal TiP 2 O 7 as one of the main crystal phases, that is, Ip / Io is 0.5 or more. The capacity maintenance rate after the 100-cycle charge / discharge test was greatly improved. In particular, when Ip / Io was 0.7 or more, the capacity retention rate showed excellent characteristics exceeding 80% (see Sample Nos. 1-4, 7-10, 13-16, 19-22). .

また、ナトリウム二次電池を形成した場合には、擬六方晶TiPを主たる結晶相として含むことにより、初期放電容量が大きく向上した。 Further, when the sodium secondary battery was formed, the initial discharge capacity was greatly improved by including pseudo hexagonal TiP 2 O 7 as the main crystal phase.

1・・・・正極
2・・・・電解質層
3・・・・負極
4・・・・発電要素
5N・・・負極側集電層
5P・・・正極側集電層
6N・・・負極端子
6P・・・正極端子
7・・・・ラミネートフィルム
DESCRIPTION OF SYMBOLS 1 .... Positive electrode 2 .... Electrolyte layer 3 .... Negative electrode 4 .... Electric power generation element 5N ... Negative electrode side current collecting layer 5P ... Positive electrode side current collecting layer 6N ... Negative electrode terminal 6P ... Positive terminal 7 ... Laminate film

Claims (7)

TiおよびPを含む化合物からなり、
該化合物が、主たる結晶相として、擬六方晶構造を有するTiP結晶相を含むことを特徴とする活物質。
A compound containing Ti and P,
An active material, wherein the compound contains a TiP 2 O 7 crystal phase having a pseudo hexagonal crystal structure as a main crystal phase.
前記擬六方晶構造を有するTiP結晶相は、Cukα線を用いたX線回折測定において、2θが22.8〜23.4°の範囲に最大の回折強度を有することを特徴とする請求項1に記載の活物質。 The TiP 2 O 7 crystal phase having the quasi-hexagonal structure has a maximum diffraction intensity in a range of 2θ of 22.8 to 23.4 ° in X-ray diffraction measurement using Cukα rays. The active material according to claim 1. 前記TiおよびPを含む化合物が、前記擬六方晶構造を有するTiP結晶相とは異なる少なくとも1種の結晶相を含むことを特徴とする請求項1または2に記載の活物質。 3. The active material according to claim 1, wherein the compound containing Ti and P contains at least one crystal phase different from the TiP 2 O 7 crystal phase having the pseudo hexagonal crystal structure. Cukα線を用いたX線回折測定により得られる前記活物質のX線回折プロファイルにおいて、最大の強度を有する回折ピークの回折強度Ioと、2θが22.8〜23.4°の範囲に現れる前記擬六方晶構造を有するTiP結晶相の回折ピークの回折強度Ipとの強度比Ip/Ioが、0.7以上であることを特徴とする請求項1乃至3のうちいずれかに記載の活物質。 In the X-ray diffraction profile of the active material obtained by X-ray diffraction measurement using Cukα rays, the diffraction intensity Io of the diffraction peak having the maximum intensity and 2θ appearing in the range of 22.8 to 23.4 ° The intensity ratio Ip / Io of the diffraction intensity Ip of the diffraction peak of the TiP 2 O 7 crystal phase having a pseudo hexagonal crystal structure is 0.7 or more, or any one of claims 1 to 3, Active material. 正極と、負極と、電解質とを有し、前記正極および前記負極のうち少なくともいずれか一方が、請求項1乃至4のうちいずれかに記載の活物質を含むことを特徴とする二次電池。   A secondary battery comprising a positive electrode, a negative electrode, and an electrolyte, wherein at least one of the positive electrode and the negative electrode includes the active material according to any one of claims 1 to 4. 前記電解質が、水系の電解液であることを特徴とする請求項5に記載の二次電池。   The secondary battery according to claim 5, wherein the electrolyte is an aqueous electrolyte. 前記正極と前記負極との間で、ナトリウムイオンをやり取りすることにより充放電を行うことを特徴とする請求項5または6に記載の二次電池。   The secondary battery according to claim 5, wherein charging and discharging are performed by exchanging sodium ions between the positive electrode and the negative electrode.
JP2013069247A 2013-03-28 2013-03-28 Active material, and secondary battery arranged by use thereof Pending JP2014192133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013069247A JP2014192133A (en) 2013-03-28 2013-03-28 Active material, and secondary battery arranged by use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013069247A JP2014192133A (en) 2013-03-28 2013-03-28 Active material, and secondary battery arranged by use thereof

Publications (1)

Publication Number Publication Date
JP2014192133A true JP2014192133A (en) 2014-10-06

Family

ID=51838179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013069247A Pending JP2014192133A (en) 2013-03-28 2013-03-28 Active material, and secondary battery arranged by use thereof

Country Status (1)

Country Link
JP (1) JP2014192133A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017026228A1 (en) * 2015-08-11 2017-02-16 日本電気硝子株式会社 Negative electrode active material for electricity storage devices
JPWO2016114141A1 (en) * 2015-01-14 2017-12-07 国立大学法人 東京大学 Aqueous electrolyte for power storage device and power storage device including the aqueous electrolyte
JP2018088395A (en) * 2016-11-29 2018-06-07 トヨタ自動車株式会社 Negative electrode material for lithium ion battery and negative electrode for lithium ion battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016114141A1 (en) * 2015-01-14 2017-12-07 国立大学法人 東京大学 Aqueous electrolyte for power storage device and power storage device including the aqueous electrolyte
WO2017026228A1 (en) * 2015-08-11 2017-02-16 日本電気硝子株式会社 Negative electrode active material for electricity storage devices
CN107925081A (en) * 2015-08-11 2018-04-17 日本电气硝子株式会社 Negative electrode active material for electricity storage device
JPWO2017026228A1 (en) * 2015-08-11 2018-05-31 日本電気硝子株式会社 Negative electrode active material for electricity storage devices
US10833314B2 (en) 2015-08-11 2020-11-10 Nippon Electric Glass Co., Ltd. Negative electrode active material for electricity storage devices
CN107925081B (en) * 2015-08-11 2021-07-13 日本电气硝子株式会社 Negative electrode active material for electricity storage device
JP2018088395A (en) * 2016-11-29 2018-06-07 トヨタ自動車株式会社 Negative electrode material for lithium ion battery and negative electrode for lithium ion battery

Similar Documents

Publication Publication Date Title
JP4595987B2 (en) Cathode active material
CN108718535B (en) Negative electrode active material, method for producing negative electrode active material, material containing negative electrode active material, and lithium ion secondary battery
Wang et al. An improved solid-state reaction to synthesize Zr-doped Li4Ti5O12 anode material and its application in LiMn2O4/Li4Ti5O12 full-cell
JP5601536B2 (en) Nonaqueous electrolyte secondary battery
JP2004319129A (en) Anode active material and nonaqueous electrolyte secondary battery using it
KR20160141676A (en) Lithium ion secondary battery
JP6039269B2 (en) Positive electrode active material for sodium ion secondary battery and sodium ion secondary battery using the same
JP5245201B2 (en) Negative electrode, secondary battery
WO2011118302A1 (en) Active material for battery, and battery
TWI623132B (en) Negative electrode material for lithium ion secondary battery and method of manufacturing the same, negative electrode material for lithium ion secondary battery and lithium ion secondary battery
WO2014069117A1 (en) Anode active material for non-aqueous secondary battery and non-aqueous secondary battery
JP6121726B2 (en) Active material and secondary battery using the same
JP4354723B2 (en) Method for producing graphite particles
JP6010447B2 (en) Active material and secondary battery using the same
JP5944810B2 (en) Active material and secondary battery using the same
JP2014192133A (en) Active material, and secondary battery arranged by use thereof
Sun et al. Effectively enhance high voltage stability of LiNi1/3Co1/3Mn1/3O2 cathode material with excellent energy density via La2O3 surface modified
JP2012084554A (en) Anode, secondary battery, and method for manufacturing anode
JP6127817B2 (en) Non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery using the same
JP6096517B2 (en) Active material and secondary battery using the same
JP2014093189A (en) Secondary battery and using method thereof, and power storage device
CN103872317B (en) Battery active material and battery
KR102046418B1 (en) Cathode active materials for lithium ion capacitor
JP6247051B2 (en) Secondary battery active material and secondary battery using the same
JP2015002069A (en) Secondary battery