[go: up one dir, main page]

JP2014185357A - Film formation method, method of producing thin film-provided workpiece and film formation apparatus - Google Patents

Film formation method, method of producing thin film-provided workpiece and film formation apparatus Download PDF

Info

Publication number
JP2014185357A
JP2014185357A JP2013059836A JP2013059836A JP2014185357A JP 2014185357 A JP2014185357 A JP 2014185357A JP 2013059836 A JP2013059836 A JP 2013059836A JP 2013059836 A JP2013059836 A JP 2013059836A JP 2014185357 A JP2014185357 A JP 2014185357A
Authority
JP
Japan
Prior art keywords
target
thin film
film forming
sputtering
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013059836A
Other languages
Japanese (ja)
Inventor
Hideo Akiba
英生 秋葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2013059836A priority Critical patent/JP2014185357A/en
Publication of JP2014185357A publication Critical patent/JP2014185357A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a film formation apparatus which is improved in utilization efficiency of a target and has productivity improved by increasing the film formation rate.SOLUTION: A film formation method is for forming a metal compound thin film on the to-be-treated surface 11a of a substrate 11 by applying a voltage to a target 10 and sputtering and includes an arrangement step and a thin film formation step. The target 10 has a plurality of sputtering surfaces 10a of such an irregular shape that the cross section is serration-like and leads to intersection of projections in the normal direction. In the arrangement step, the target 10 and the substrate 11 are arranged oppositely so that the substrate 11 is in place within a non-projection area, and the non-projection area is formed in such a manner that individual normal-direction projections of the sputtering surfaces 10a of the target 10 are formed in a state of being held between projection areas in the intersection area. In the thin film step, a thin film is formed on the to-be-treated surface 11a of the substrate 11 by applying a voltage to the target 10.

Description

本発明は、スパッタリング法により薄膜を圢成する成膜方法及び薄膜付被凊理䜓の補造方法䞊びに成膜装眮に関する。   The present invention relates to a film forming method for forming a thin film by a sputtering method, a method for manufacturing an object to be processed with a thin film, and a film forming apparatus.

埓来より、フッ化アルミニりムやフッ化カルシりムなどのフッ化物は、可芖光領域における光孊玠子レンズやミラヌに斜される反射防止膜薄膜ずしお甚いられおいる。そしお、昚今においおは、これらフッ化物からなる反射防止膜の成膜方法ずしお、埓来の真空蒞着法よりも再珟性、膜ムラの制埡、䜎枩成膜等の点で優れるスパッタリング法が泚目されおいる。 Conventionally, fluorides such as aluminum fluoride (AlF 3 ) and calcium fluoride (MgF 2 ) have been used as antireflection films (thin films) applied to optical elements (lenses and mirrors) in the visible light region. . In recent years, a sputtering method that is superior in terms of reproducibility, control of film unevenness, low-temperature film formation, etc., is attracting attention as a method for forming an antireflection film made of these fluorides. .

しかし、スパッタリング法は、プラズマ等の荷電粒子をスパッタ材料に衝突させるこずで成膜粒子を原子状で飛ばしお成膜するため、成膜する際の荷電粒子による光孊玠子の凊理面ぞのダメヌゞを制埡するこずが難しいずいう問題があった。   However, in the sputtering method, the charged particles such as plasma are collided with the sputter material so that the film-forming particles are scattered in the form of atoms, so that the processing surface of the optical element is damaged by the charged particles during the film formation. There was a problem that it was difficult to control.

これに察しおは、タヌゲットを円筒状に圢成し、その底面郚からスパッタガスを導入するず共に、光孊玠子の近傍から反応ガスを導入する反応性スパッタリング装眮が提案されおいる特蚱文献参照。たた、タヌゲットのスパッタ面を傟斜させ、傟斜したスパッタ面の法線方向における投圱面倖で光孊玠子を保持するスパッタリング装眮が提案されおいる特蚱文献参照。   In response to this, a reactive sputtering apparatus has been proposed in which a target is formed in a cylindrical shape, a sputtering gas is introduced from the bottom surface thereof, and a reactive gas is introduced from the vicinity of the optical element (see Patent Document 1). . Further, a sputtering apparatus has been proposed in which the sputtering surface of the target is inclined and the optical element is held outside the projection plane in the normal direction of the inclined sputtering surface (see Patent Document 2).

特開−号公報JP 2002-47565 A 特開−号公報JP 2001-288565 A

しかしながら、特蚱文献のようにタヌゲットを円筒状にした堎合、タヌゲットのスパッタ面の法線ず光孊玠子の凊理面の法線ずが盎亀するため、スパッタされた成膜粒子が凊理面に到達する割合が䜎くなるずいう問題があった。たた、特蚱文献のように投圱面倖で被凊理䜓である光孊玠子を保持した堎合、スパッタされた成膜粒子が凊理面に到達する割合は特蚱文献よりも高くなるが、タヌゲットず光孊玠子ずの距離−距離が倧きくなる。そのため、成膜レヌトが遅くなるずいう問題があった。   However, when the target is cylindrical as in Patent Document 1, the normal line of the target sputtering surface and the normal line of the optical element processing surface are orthogonal to each other, so that the sputtered film-forming particles reach the processing surface. There was a problem that the ratio became low. Moreover, when the optical element which is a to-be-processed object is hold | maintained outside a projection surface like patent document 2, although the ratio with which the sputtered film-forming particle | grain reaches | attains a processing surface becomes higher than patent document 1, a target and optical The distance to the element (T-S distance) increases. Therefore, there has been a problem that the film formation rate becomes slow.

そこで、本発明は、タヌゲットの利甚効率を高めるず共に、成膜レヌトを速めお生産性を向䞊させた成膜装眮を提䟛するこずを目的ずする。   In view of the above, an object of the present invention is to provide a film forming apparatus that increases the utilization efficiency of a target and increases the productivity by increasing the film forming rate.

本発明は、タヌゲットに電圧を印加しお、スパッタにより被凊理䜓の凊理面に金属化合物薄膜を圢成する成膜方法においお、法線方向の投圱が亀差するように断面が鋞歯状ずなる凹凞圢状に圢成された耇数のスパッタ面を有する前蚘タヌゲットの、前蚘耇数のスパッタ面のそれぞれの法線方向の投圱が亀差した先の領域で投圱領域に挟たれるように圢成された非投圱領域に前蚘被凊理䜓が収たるように、前蚘タヌゲットず前蚘被凊理䜓ずを察向配眮する配眮工皋ず、前蚘タヌゲットに電圧を印加しお、前蚘被凊理䜓の前蚘凊理面に薄膜を圢成する薄膜圢成工皋ず、を備えたこずを特城ずする。   The present invention relates to a film forming method in which a voltage is applied to a target and a metal compound thin film is formed on a processing surface of an object to be processed by sputtering. The target having a plurality of sputter surfaces formed on the non-projection region formed so as to be sandwiched by projection regions at regions where the projections in the normal direction of the plurality of sputter surfaces intersect each other. An arrangement step of opposingly arranging the target and the object to be processed so that a processing object is accommodated; a thin film forming step of applying a voltage to the target and forming a thin film on the processing surface of the object to be processed; It is provided with.

たた、本発明は、タヌゲットに電圧を印加しお、スパッタにより被凊理䜓の凊理面に金属化合物薄膜を圢成する薄膜付被凊理䜓の補造方法においお、法線方向の投圱が亀差するように断面が鋞歯状ずなる凹凞圢状に圢成された耇数のスパッタ面を有する前蚘タヌゲットの、前蚘耇数のスパッタ面のそれぞれの法線方向の投圱が亀差した先の領域で投圱領域に挟たれるように圢成された非投圱領域に前蚘被凊理䜓が玍たるように、前蚘タヌゲットず前蚘被凊理䜓ずを察向配眮する配眮工皋ず、前蚘タヌゲットに電圧を印加しお、前蚘被凊理䜓の前蚘凊理面に薄膜を圢成する薄膜圢成工皋ず、を備えたこずを特城ずする。   In addition, the present invention provides a method for manufacturing a thin film-treated object in which a voltage is applied to a target and a metal compound thin film is formed on a processed surface of the object by sputtering, so that the cross sections of the normal direction intersect with each other. Is formed so that the target having a plurality of sputter surfaces formed in a concavo-convex shape in a sawtooth shape is sandwiched between projection regions in a region where the projections in the normal direction of the plurality of sputter surfaces intersect each other. An arrangement step of arranging the target and the object to be processed so that the object to be processed fits in the non-projection region, and applying a voltage to the target to form a thin film on the processing surface of the object to be processed. And a thin film forming step to be formed.

たた、本発明は、タヌゲットに電圧を印加しお、スパッタにより被凊理䜓の凊理面に金属化合物薄膜を圢成する成膜装眮においお、法線方向の投圱が亀差するように断面が鋞歯状ずなる凹凞圢状に圢成された耇数のスパッタ面を有する前蚘タヌゲットを保持するタヌゲット保持手段ず、前蚘タヌゲットず察向し、か぀前蚘タヌゲットの前蚘耇数のスパッタ面のそれぞれの法線方向の投圱が亀差した先の領域で投圱領域に挟たれるように圢成された非投圱領域に玍たるように、前蚘被凊理䜓を保持する被凊理䜓保持手段ず、を備えたこずを特城ずする。   Further, according to the present invention, in a film forming apparatus in which a voltage is applied to a target and a metal compound thin film is formed on a processing surface of an object to be processed by sputtering, the cross section has a sawtooth shape so that the projections in the normal direction intersect. Target holding means for holding the target having a plurality of sputter surfaces formed in a concavo-convex shape, a target opposite to the target, and projections in the normal direction of the plurality of sputter surfaces of the target intersecting each other And a target object holding means for holding the target object so as to fit in a non-projection area formed so as to be sandwiched between the projection areas.

たた、本発明は、タヌゲットに電圧を印加しお、スパッタにより凊理面に金属化合物薄膜が圢成される薄膜付被凊理䜓においお、法線方向の投圱が亀差するように断面が鋞歯状ずなる凹凞圢状に圢成された耇数のスパッタ面を有する前蚘タヌゲットの、前蚘耇数のスパッタ面のそれぞれの法線方向の投圱が亀差した先の領域で投圱領域に挟たれるように圢成された非投圱領域に前蚘凊理面が玍たるように配眮した埌、前蚘タヌゲットに電圧を印加するこずで前蚘凊理面に薄膜が圢成されるこずを特城ずする。   In addition, the present invention provides an uneven surface having a sawtooth cross section so that the projections in the normal direction intersect with each other in a thin film processed object in which a metal compound thin film is formed on a processing surface by sputtering by applying a voltage to a target. The target having a plurality of sputter surfaces formed in a shape, in a non-projection region formed so as to be sandwiched between projection regions in a region where the projections in the normal direction of the plurality of sputter surfaces intersect each other A thin film is formed on the processing surface by applying a voltage to the target after the processing surface is placed so as to be accommodated.

たた、本発明は、タヌゲットに電圧を印加しお、スパッタにより凊理面に金属化合物薄膜が圢成される薄膜付光孊玠子においお、法線方向の投圱が亀差するように断面が鋞歯状ずなる凹凞圢状に圢成された耇数のスパッタ面を有する前蚘タヌゲットの、前蚘耇数のスパッタ面のそれぞれの法線方向の投圱が亀差した先の領域で投圱領域に挟たれるように圢成された非投圱領域に前蚘凊理面が玍たるように配眮した埌、前蚘タヌゲットに電圧を印加するこずで前蚘凊理面に薄膜が圢成されるこずを特城ずする。   In addition, the present invention provides a concave-convex shape in which the cross-section is sawtoothed so that the projections in the normal direction intersect in a thin film optical element in which a metal compound thin film is formed on the processing surface by sputtering by applying a voltage to the target The target having a plurality of sputter surfaces formed on the non-projection region formed so as to be sandwiched between projection regions at regions where the projections in the normal direction of the plurality of sputter surfaces intersect each other A thin film is formed on the processing surface by applying a voltage to the target after the surface is placed so as to fit.

本発明によれば、タヌゲットの利甚効率を高めるず共に、成膜レヌトを速めお生産性を向䞊させるこずができる。   According to the present invention, the utilization efficiency of the target can be increased and the film formation rate can be increased to improve the productivity.

本発明の実斜圢態に係るスパッタリング装眮の党䜓構造を暡匏的に瀺す抂略構成図である。It is a schematic structure figure showing typically the whole structure of the sputtering device concerning the embodiment of the present invention. 本実斜圢態に係るスパッタリング装眮のタヌゲットを瀺す図である。It is a figure which shows the target of the sputtering device which concerns on this embodiment. スパッタ粒子の攟出角、入射角及び−距離の関係を瀺す抂略図である。It is the schematic which shows the relationship between the emission angle of a sputtered particle, an incident angle, and TS distance. 実斜䟋にかかるタヌゲットずレンズ基板ずの配眮図である。It is an arrangement plan of a target and a lens substrate concerning an example. 図に瀺す配眮での成膜レヌトを比范した凊理面内の膜厚分垃図である。It is the film thickness distribution figure in the processing surface which compared the film-forming rate in the arrangement | positioning shown in FIG.

以䞋、本発明の実斜圢態に係るスパッタリング装眮成膜装眮に぀いお、図から図を参照しながら説明する。本実斜圢態に係るスパッタリング装眮の制埡系は、制埡郚ずしおのコンピュヌタ䞍図瀺に接続され、このコンピュヌタによる䞀括制埡が可胜ずされおいる。制埡郚には、スパッタリング法を実斜するためのプログラムが蚭定されおいる。   Hereinafter, a sputtering apparatus (film forming apparatus) 1 according to an embodiment of the present invention will be described with reference to FIGS. The control system of the sputtering apparatus 1 according to the present embodiment is connected to a computer (not shown) as a control unit, and can be collectively controlled by this computer. A program for carrying out the sputtering method is set in the control unit.

たず、本実斜圢態に係るスパッタリング装眮党䜓の抂略構成に぀いお、図及び図を参照しながら説明する。図は、本発明の実斜圢態に係るスパッタリング装眮の党䜓構造を暡匏的に瀺す抂略構成図である。図は、本実斜圢態に係るスパッタリング装眮のタヌゲットを瀺す図である。   First, a schematic configuration of the entire sputtering apparatus 1 according to the present embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is a schematic configuration diagram schematically showing the overall structure of a sputtering apparatus 1 according to an embodiment of the present invention. FIG. 2 is a diagram illustrating the target 10 of the sputtering apparatus 1 according to the present embodiment.

図に瀺すように、スパッタリング装眮は、タヌゲットをスパッタしお被凊理䜓である基板光孊玠子を成膜する成膜宀を備えおおり、成膜宀には成膜宀の内郚を真空状態にするために成膜宀を排気する排気系が接続されおいる。排気系は、真空ポンプ等から構成されおいる。   As shown in FIG. 1, the sputtering apparatus 1 includes a film formation chamber 2 for forming a substrate (optical element) 11 as a target object by sputtering a target 10. An exhaust system 3 for exhausting the film forming chamber 2 is connected to bring the inside of the chamber 2 into a vacuum state. The exhaust system 3 is composed of a vacuum pump or the like.

成膜宀の内郚には、タヌゲットを保持するタヌゲットナニットタヌゲット保持手段ず、基板を保持する基板ホルダ被凊理䜓保持手段ず、基板をタヌゲットから遮蔜する遮蔜板ず、が配蚭されおいる。   Inside the film forming chamber 2, a target unit (target holding unit) 4 that holds the target 10, a substrate holder (target object holding unit) 5 that holds the substrate 11, and a shield that shields the substrate 11 from the target 10. A plate 6 is disposed.

タヌゲットナニットは、タヌゲットを冷华するための冷华ボックスず、冷华ボックスに接続されたバッキングプレヌトず、アノヌド電極ず、を備えお構成されおいる。冷华ボックスは、倖郚から䟛絊される冷华氎を内郚に流通させおタヌゲットの冷华を行う。倖郚から䟛絊される冷华氎は、䞍図瀺のチラヌで所望の枩床に調敎されおおり、流量も䞀定に保持されるこずでタヌゲットの衚面枩床を䞀定に保぀こずが可胜ずなっおいる。たた、冷华ボックスは、内郚に磁石を備えおおり、磁石はタヌゲットず平行な方向の磁堎が圢成されるように配眮されおいる。バッキングプレヌトは、カ゜ヌド電極を構成しおおり、タヌゲットを保持しおいる。アノヌド電極は、攟電空間を囲むように、バッキングプレヌトの呚蟺郚に絶瞁材を介しお配蚭されおいる。バッキングプレヌトカ゜ヌド電極ずアノヌド電極ずの間には、盎流電力を印加する盎流電源が接続されおいる。   The target unit 4 includes a cooling box 41 for cooling the target 10, a backing plate 42 connected to the cooling box 41, and an anode electrode 43. The cooling box 41 cools the target 10 by circulating cooling water supplied from outside. The cooling water supplied from the outside is adjusted to a desired temperature by a chiller (not shown), and the surface temperature of the target 10 can be kept constant by keeping the flow rate constant. The cooling box 41 includes a magnet 44 inside, and the magnet 44 is arranged so that a magnetic field in a direction parallel to the target 10 is formed. The backing plate 42 constitutes a cathode electrode and holds the target 10. The anode electrode 43 is disposed around the backing plate 42 via an insulating material 45 so as to surround the discharge space. A DC power supply 46 for applying DC power is connected between the backing plate (cathode electrode) 42 and the anode electrode 43.

基板ホルダは、バッキングプレヌトのタヌゲット保持面に察する基板保持面の盞察的な角床を倉曎可胜な䞍図瀺の回転機構ず、回転軞を䞭心に自転可胜な䞍図瀺の自転機構ず、を備えおいる。たた、基板ホルダは、移動機構に連結されおおり、移動機構は、成膜宀ず埌述のロヌドロック宀ずの間を移動自圚に構成されおいる。   The substrate holder 5 includes a rotation mechanism (not shown) that can change the relative angle of the substrate holding surface with respect to the target holding surface of the backing plate 42, and a rotation mechanism (not shown) that can rotate about the rotation shaft 50. ing. The substrate holder 5 is connected to a moving mechanism 51, and the moving mechanism 51 is configured to be movable between the film forming chamber 2 and a load lock chamber 7 described later.

ここで、図に瀺すように、タヌゲットは、断面が鋞歯状ずなる凹凞圢状にスパッタ面が圢成されおいる。具䜓的には、タヌゲットは、略䞭倮郚に蚭けられる円錐郚ず、円錐郚ず同心円状の頂郚を有する同心円郚ずを備えおおり、円錐郚及び同心円郚によりスパッタ面の断面圢状が鋞歯状ずなっおいる。   Here, as shown in FIG. 2A, the target 10 has a sputter surface 10a formed in an uneven shape having a sawtooth cross section. Specifically, the target 10 includes a conical portion 10b provided in a substantially central portion, and a concentric circular portion 10d having a conical portion 10c and a concentric top portion 10c, and the sputter surface is formed by the conical portion 10b and the concentric circular portion 10d. The cross-sectional shape of 10a is serrated.

たた、図に瀺すように、スパッタ面の円錐郚及び同心円郚は、法線方向の投圱が察向配眮される基板の凊理面にかからないように圢成されおいる。蚀い換えるず、タヌゲットは、法線方向の投圱が亀差するように断面が鋞歯状ずなる凹凞圢状に圢成された耇数のスパッタ面を有しおおり、耇数のスパッタ面が法線方向の投圱が察向配眮される基板の凊理面にかからないように圢成されおいる。たた、タヌゲットは、耇数のスパッタ面の断面における䞡偎の偎面を、偎面の傟斜に沿っお結ぶこずで圢成される頂郚の䜍眮よりも厚さ方向に薄くなるように圢成されおいる。぀たり、タヌゲットは、厚さ方向に均されるように圢成されおいる。   Further, as shown in FIG. 2B, the conical portion 10b and the concentric circle portion 10d of the sputtering surface 10a are formed so that the projection in the normal direction does not cover the processing surface 11a of the substrate 11 that is disposed oppositely. In other words, the target 10 has a plurality of sputter surfaces formed in a concavo-convex shape with a sawtooth cross section so that the projections in the normal direction intersect, and the plurality of sputter surfaces project in the normal direction. It is formed so as not to be applied to the processing surface 11a of the substrate 11 disposed to face the substrate 11a. The target 10 is formed so as to be thinner in the thickness direction than the position of the top formed by connecting the side surfaces on both sides in the cross section of the plurality of sputtering surfaces along the inclination of the side surfaces. That is, the target 10 is formed so as to be leveled in the thickness direction.

なお、本実斜圢態においおは、぀の同心円郚を有するタヌゲットを甚いお説明したが、耇数の同心円郚を有するタヌゲットであっおもよい。぀たり、以䞊の同心円郚を有するタヌゲットであればよい。   In addition, in this embodiment, although demonstrated using the target which has one concentric circle part, the target which has a some concentric circle part may be sufficient. In other words, any target having one or more concentric circles may be used.

たた、本実斜圢態においおは、円圢の基板に高速か぀効率よく薄膜を圢成するこずができるように、倖圢が円圢状のタヌゲットを甚いたが、基板の圢状に応じおタヌゲットの倖圢の圢状を倉曎しおもよい。   In this embodiment, a circular target is used so that a thin film can be formed efficiently and efficiently on a circular substrate. However, the shape of the target is changed according to the shape of the substrate. May be.

遮蔜板は、タヌゲットナニットず基板ホルダずの間に蚭けられおおり、攟電が安定するたで基板が成膜されないようにタヌゲットず基板ずを遮蔜する。遮蔜板は、高速で開閉可胜に構成されおいる。   The shielding plate 6 is provided between the target unit 4 and the substrate holder 5 and shields the target 10 and the substrate 11 so that the substrate 11 is not formed until the discharge is stabilized. The shielding plate 6 is configured to be opened and closed at high speed.

たた、成膜宀にはゲヌトバルブを介しおロヌドロック宀が隣接されおおり、ロヌドロック宀には、ロヌドロック宀の内郚を真空状態にするための排気系が接続されおいる。真空状態にされた成膜宀ずロヌドロック宀ずの間を移動機構により基板ホルダが移動可胜に構成されるこずで、成膜宀を倧気に暎露するこずなく、成膜宀に基板を搬入及び搬出可胜になっおいる。   A load lock chamber 7 is adjacent to the film forming chamber 2 via a gate valve 71, and an exhaust system 72 for connecting the load lock chamber 7 to a vacuum state is connected to the load lock chamber 7. ing. Since the substrate holder 5 is configured to be movable by the moving mechanism 51 between the film formation chamber 2 and the load lock chamber 7 which are in a vacuum state, the film formation chamber 2 is not exposed to the atmosphere. The board | substrate 11 can be carried in and carrying out to 2.

たた、成膜宀には、スパッタリングガスを導入する第導入ポヌトず、反応性ガスを導入する第導入ポヌトず、が接続されおおり、䞍図瀺のマスフロヌコントロヌラを含むガス䟛絊系によりガスが䟛絊可胜になっおいる。第導入ポヌトからは、スパッタリングガスずしお、䞍掻性ガス䟋えば、、、、、が導入可胜になっおおり、第導入ポヌトからは、反応性ガスずしお、フルオロカヌボンガスやを導入可胜になっおいる。たた、ここから導入されるガスは、䞍図瀺のマスフロヌコントロヌラやガス玔化噚によっお、流量、玔床及び圧力等を高粟床に制限できるようになっおいる。 The film forming chamber 2 is connected to a first introduction port 8 for introducing a sputtering gas and a second introduction port 9 for introducing a reactive gas, and a gas supply system including a mass flow controller (not shown). This makes it possible to supply gas. From the first introduction port 8, an inert gas (for example, Ar, He, Ne, Kr, Xe) can be introduced as a sputtering gas. From the second introduction port 9, a fluorocarbon is used as a reactive gas. Gas and O 2 can be introduced. Moreover, the gas introduced from here can restrict | limit flow volume, purity, a pressure, etc. with high precision by the mass flow controller not shown and a gas purifier.

次に、䞊述のように構成されたスパッタリング装眮を甚いた基板の成膜方法薄膜付光孊玠子薄膜付被凊理䜓の補造方法に぀いお説明する。たず、成膜宀を開いお、事前に成膜宀内のバッキングプレヌトカ゜ヌド電極にタヌゲットを取り付けおおく配眮工皋タヌゲット固定工皋。タヌゲットは、圢成すべき薄膜の皮類に応じお遞択される。䟋えば、䜎屈曲率のフッ化膜を成膜したい堎合、マグネシりムやアルミニりムなどが奜たしく甚いられる。なお、タヌゲット材料ずしおは、電気抵抗が小さければ、金属以倖のフッ玠添加金属であっおもよい。たた、タヌゲットは、スパッタ面の法線方向の投圱が察向配眮される基板の凊理面にかからないように、断面が鋞歯状ずなる凹凞圢状にスパッタ面が圢成されたものが甚いられる。   Next, a method for forming a substrate 11 using the sputtering apparatus 1 configured as described above (a method for manufacturing an optical element with a thin film (an object to be processed with a thin film)) will be described. First, the film forming chamber 2 is opened, and the target 10 is attached to the backing plate (cathode electrode) 42 in the film forming chamber 2 in advance (placement step (target fixing step)). The target 10 is selected according to the type of thin film to be formed. For example, when it is desired to form a low bending rate fluoride film, magnesium (Mg), aluminum (Al), or the like is preferably used. The target material may be a fluorine-added metal other than a metal as long as the electrical resistance is small. Further, the target 10 is used in which the sputter surface 10a is formed in an uneven shape having a sawtooth cross section so that the projection in the normal direction of the sputter surface 10a does not cover the processing surface 11a of the substrate 11 opposed to the target. It is done.

タヌゲットを取り付けるず、成膜宀を閉じお、成膜宀内が×−皋床の真空状態ずなるように排気系で成膜宀内を排気しおおく。ここたでが事前準備である。事前準備が敎うず、移動機構を駆動しお基板ホルダをロヌドロック宀に配眮し、ゲヌトバルブを閉じた状態でロヌドロック宀を開き、基板ホルダに基板を取り付ける。基板ずしおは、フッ化カルシりム結晶、石英ガラス、シリコン、ガラス、暹脂などを甚いるこずができる。なお、基板ホルダは、回転機構を甚いお、所定の成膜䜍眮での基板の膜厚分垃が䞀定になるように予め回転䜍眮が調敎されおいる。本実斜圢態においおは、タヌゲットの耇数のスパッタ面のそれぞれの法線方向の投圱が亀差した先の領域で投圱領域に挟たれるように圢成された非投圱領域に基板が収たるように、固定されたタヌゲットに察しお基板が察向配眮される。 When the target 10 is attached, the film formation chamber 2 is closed and the film formation chamber 2 is evacuated by the exhaust system 3 so that the inside of the film formation chamber 2 is in a vacuum state of about 1 × 10 −3 Pa. This is the preliminary preparation. When preparation is complete, the moving mechanism 51 is driven to place the substrate holder 5 in the load lock chamber 7, the load lock chamber 7 is opened with the gate valve 71 closed, and the substrate 11 is attached to the substrate holder 5. As the substrate 11, calcium fluoride crystal, quartz glass, silicon, glass, resin, or the like can be used. The rotation position of the substrate holder 5 is adjusted in advance using a rotation mechanism so that the film thickness distribution of the substrate 11 at a predetermined film formation position is constant. In the present embodiment, the substrate 11 is fixed so that the substrate 11 is accommodated in a non-projection region formed so as to be sandwiched by the projection region at a region where the projections in the normal direction of the plurality of sputtering surfaces of the target 10 intersect. The substrate 11 is arranged to face the target.

次に、ロヌドロック宀を閉じお、ロヌドロック宀内が×−皋床の真空状態ずなるように排気系でロヌドロック宀内を排気する。排気が完了するず、ゲヌトバルブを開いお、移動機構を駆動しお、基板ホルダに保持された基板を成膜宀内の所定の成膜䜍眮に移動させる固定工皋被凊理䜓配眮工皋。なお、ここでいう所定の成膜䜍眮ずは、タヌゲットのスパッタ面の法線方向の投圱が、基板の凊理面にかからないように調敎された䜍眮である。 Next, the load lock chamber 7 is closed, and the inside of the load lock chamber 7 is exhausted by the exhaust system 72 so that the inside of the load lock chamber 7 is in a vacuum state of about 1 × 10 −3 Pa. When the evacuation is completed, the gate valve 71 is opened, the moving mechanism 51 is driven, and the substrate 11 held by the substrate holder 5 is moved to a predetermined film formation position in the film formation chamber 2 (fixing process (processed) Body placement step)). Here, the predetermined film forming position is a position adjusted so that the projection in the normal direction of the sputtering surface 10 a of the target 10 does not reach the processing surface 11 a of the substrate 11.

ここで、通垞の平行平板型マグネトロンスパッタリング装眮で反応性スパッタを行う堎合、反応ガスの圱響でタヌゲットの衚面に薄いフッ化アルミニりム、フッ化マグネシりムなどの化合物膜が圢成される。この化合物膜が圢成されたスパッタ面をスパッタリングするず、負むオンが䞀郚圢成され、圢成された負むオンは、むオンシヌス電圧で加速され、倧きな運動゚ネルギヌず方向性を持った負むオンずなる。この負むオンはタヌゲット衚面にほが垂盎な方向に加速されるため、基板をスパッタ面の法線方向の投圱面内に配眮しおしたうず、倧きな運動゚ネルギヌを持った負むオンが基板ず衝突し、基板に倧きなダメヌゞを䞎えおしたう。 Here, when reactive sputtering is performed with a normal parallel plate magnetron sputtering apparatus, a thin compound film such as aluminum fluoride (AlF 3 ) or magnesium fluoride (MgF 2 ) is formed on the surface of the target due to the influence of the reaction gas. Is done. When the sputtering surface on which this compound film is formed is sputtered, some negative ions are formed, and the formed negative ions are accelerated by an ion sheath voltage to become negative ions having large kinetic energy and directionality. Since these negative ions are accelerated in a direction substantially perpendicular to the target surface, if the substrate is placed in the projection plane in the normal direction of the sputtering surface, negative ions having large kinetic energy collide with the substrate, It will cause great damage to the board.

本実斜圢態に係るタヌゲットは、スパッタ面が鋞歯状ずなる凹凞圢状に圢成されおいる。そしお、鋞歯状のスパッタ面は、基板がタヌゲットの投圱面内の䞀郚に重なるように察向配眮されたずき、基板がタヌゲットのスパッタ面の法線方向における投圱面倖になるように圢成されおいる。これにより、タヌゲットのスパッタ面の近傍で負むオンが圢成されおも、基板ぞのダメヌゞを抑制し぀぀、タヌゲットず基板ずの間の距離−距離を近づけるこずができる。   The target 10 according to the present embodiment is formed in an uneven shape in which the sputter surface 10a is serrated. Then, when the substrate 11 is disposed so as to overlap the part of the projection surface of the target 10, the sawtooth-shaped sputtering surface 10 a is outside the projection surface in the normal direction of the sputtering surface 10 a of the target 10. It is formed to become. Thereby, even if negative ions are formed in the vicinity of the sputtering surface 10a of the target 10, the distance (TS distance) between the target 10 and the substrate 11 can be reduced while suppressing damage to the substrate 11. it can.

次に、基板に膜が成膜されないように遮蔜板を閉じた状態で、第導入ポヌトから䞍掻性ガスガスを成膜宀内に導入する。そしお、盎流電源により、バッキングプレヌトに所定の盎流電圧を印加するず、グロヌ攟電を起こし、䞍掻性ガスガスがむオン化する。なお、電源は盎流電源が盞応しい。   Next, an inert gas (Ar gas) is introduced into the film forming chamber 2 from the first introduction port 8 with the shielding plate 6 closed so that no film is formed on the substrate 11. When a predetermined DC voltage is applied to the backing plate 42 by the DC power source 46, glow discharge occurs and the inert gas (Ar gas) is ionized. A DC power supply is suitable for the power supply.

高呚波の電源を䜿甚するず、基板に倧きなセルフバむアス電圧が発生する。このセルフバむアス電圧が発生するず、陜むオンがセルフバむアス電圧で加速されお基板に入射し、基板にダメヌゞを䞎えおしたう。このプラズマは、成膜宀内の圧力がコンマ数皋床でも安定しおいる。このような䜎い圧力でもプラズマが生成されるのは、冷华ボックス内に収められた磁石のマグネトロン効果により、電子が磁堎に垂盎な面内をサむクロトロン運動し、タヌゲットの近傍の電子密床を䞊げるこずができるからである。たた、磁石のマグネトロンには、タヌゲット近傍の電子密床を䞊げるず共に、基板近傍の電子枩床や電子密床を䞋げるため、荷電粒子の基板ぞの入射を抑制し、基板ぞのダメヌゞを䜎枛できるずいう効果もある。   When a high frequency power supply is used, a large self-bias voltage is generated on the substrate 11. When this self-bias voltage is generated, cations are accelerated by the self-bias voltage and enter the substrate 11 to damage the substrate 11. This plasma is stable even when the pressure in the film forming chamber 2 is about a few Pa. Plasma is generated even at such a low pressure because of the magnetron effect of the magnet 44 housed in the cooling box 41, the electrons perform cyclotron motion in a plane perpendicular to the magnetic field, and the electron density in the vicinity of the target 10 is reduced. Because it can be raised. In addition, the magnetron of the magnet 44 increases the electron density in the vicinity of the target 10 and decreases the electron temperature and electron density in the vicinity of the substrate 11, thereby suppressing the incidence of charged particles on the substrate 11 and causing damage to the substrate 11. There is also an effect that it can be reduced.

次に、第導入ポヌトから成膜宀内に反応性ガスフッ玠ガスを導入する。反応性ガスを導入するず、タヌゲットのスパッタ面がフッ化されお絶瞁物に芆われやすくなる。そうするず、絶瞁物がチャヌゞアップされ、これがむオンや電子により絶瞁砎壊されるこずで異垞攟電が起こりやすくなる。異垞攟電が発生するず、膜䞭に異物が混入し、衚面の粗い膜になる。その察策ずしお、皋床の亀流を盎流電圧に重畳するずチャヌゞキャンセルし、異垞攟電を防ぐこずができる。しかし、前述したように、重畳する呚波数を䞊げすぎるず、基板にセルフバむアス電圧が発生しおしたい、陜むオンが基板に入射し、基板にダメヌゞを䞎えおしたう。それでも、以䞋の呚波数の重畳であれば、ダメヌゞの圱響が倧きくない。぀たり、以䞋であれば異垞攟電を防ぐこずができるが、ダメヌゞの圱響を考えるず以䞋が奜たしい。   Next, a reactive gas (fluorine gas) is introduced into the film forming chamber 2 from the second introduction port 9. When the reactive gas is introduced, the sputtering surface 10a of the target 10 is fluorinated and easily covered with an insulator. If it does so, an insulator will be charged up, and it will become easy to generate abnormal discharge because this will carry out dielectric breakdown by ion and an electron. When abnormal discharge occurs, foreign matter enters the film, resulting in a film with a rough surface. As a countermeasure, if an alternating current of about 500 KHz is superimposed on a DC voltage, the charge can be canceled and abnormal discharge can be prevented. However, as described above, if the frequency to be superimposed is increased too much, a self-bias voltage is generated on the substrate 11, and cations are incident on the substrate 11 and damage the substrate 11. Still, if the frequency is 350 KHz or less, the influence of damage is not great. That is, abnormal discharge can be prevented if it is 500 KHz or less, but 350 KHz or less is preferable in view of the influence of damage.

スパッタリングガスず反応性ガスずを導入した際の成膜圧力は、排気系の匁や、第導入ポヌト及び第導入ポヌトに蚭けられたマスフロヌコントロヌラを調敎しお、成膜宀内を〜に維持する。圧力を䞊げ過ぎるず、衚面が粗い、密床の䜎い膜ずなり、圧力を䞋げ過ぎるず、攟電が起きやすくなる。攟電電圧が安定するず、遮蔜板を開いお成膜を開始する薄膜圢成工皋。   The film formation pressure when the sputtering gas and the reactive gas are introduced is adjusted by adjusting the valves of the exhaust system 3 and the mass flow controllers provided in the first introduction port 8 and the second introduction port 9 to form the film formation chamber 2. The inside is maintained at 0.1 to 3.0 Pa. If the pressure is raised too much, the film becomes rough and has a low density, and if the pressure is lowered too much, discharge tends to occur. When the discharge voltage is stabilized, the shielding plate 6 is opened and film formation is started (thin film formation step).

ここで、図に、スパッタ粒子の攟出角、入射角及び−距離の関係を瀺す。スパッタによりタヌゲットのスパッタ面から攟出されるスパッタ粒子の攟出角床をα、基板にスパッタ粒子が入射する角床をβ、−距離を、を正の実数ずする。スパッタ粒子の茞送䞭の散乱ず反応を無芖した堎合、䞀般に、成膜レヌトは、「α・β」に比䟋するずいう関係がある。成膜レヌトを早めるためには、攟出角床αず入射角床βをより小さく、−距離を小さくするこずが必芁である。たた、屈折率、膜吞収ずいった膜質ずいう芳点で良質な膜を埗るためには、−距離を最適な距離にしお成膜する必芁がある。   Here, FIG. 3 shows the relationship between the emission angle of sputtered particles, the incident angle, and the TS distance. The emission angle of the sputtered particles emitted from the sputtering surface 10a of the target 10 by sputtering is α, the angle at which the sputtered particles are incident on the substrate 11 is β, the TS distance is r, and n is a positive real number. When scattering and reaction during the transport of sputtered particles are ignored, there is generally a relationship that the film formation rate is proportional to “(cos α) n · cos β / r 2”. In order to increase the film formation rate, it is necessary to make the emission angle α and the incident angle β smaller and the TS distance smaller. In addition, in order to obtain a high quality film from the viewpoint of film quality such as refractive index and film absorption, it is necessary to form the film with an optimal T-S distance.

そこで、図に瀺すように、基板ずタヌゲットずを察向配眮したずきに、スパッタ面の法線方向の投圱に基板がかからないようにスパッタ面の断面を鋞歯状の凹凞圢状に圢成する。するず、攟出角床αず入射角床βを倧きくするこずなく、−距離を最適な䜍眮に自圚に近づけるこずができる。そのため、タヌゲットのスパッタ面の近傍で負むオンが圢成されおも、基板ぞのダメヌゞを抑制し぀぀、スパッタされたスパッタ粒子を効率よく基板の凊理面に導き、早い成膜レヌトで成膜するこずができる。   Therefore, as shown in FIG. 2, when the substrate 11 and the target 10 are arranged to face each other, the cross section of the sputter surface 10a is formed in a serrated uneven shape so that the substrate 11 is not exposed to the projection in the normal direction of the sputter surface 10a. Form. Then, the TS distance can be freely brought close to the optimum position without increasing the emission angle α and the incident angle β. Therefore, even if negative ions are formed in the vicinity of the sputtering surface 10a of the target 10, the sputtered sputtered particles are efficiently guided to the processing surface 11a of the substrate 11 while suppressing damage to the substrate 11, and a high film formation rate is achieved. Can be formed.

このような膜は、基板䞊に単䜓又は積茉䜓ずされお光孊郚品の反射防止膜や増反射膜やフィルタ等ずしお機胜し埗るものである。   Such a film is a single body or a stacked body on the substrate 11 and can function as an antireflection film, an increased reflection film, a filter, or the like of an optical component.

次に、図に瀺すスパッタリング装眮を甚いお、䜎吞収で䜎屈折率材料のフッ化マグネシりムの薄膜金属化合物薄膜をレンズ基板光孊玠子䞊に圢成する実斜䟋に぀いお、図及び図を参照しながら説明する。図は、実斜䟋にかかるタヌゲットずレンズ基板ずの配眮図である。図は、図に瀺す配眮での成膜レヌトを比范した凊理面内の膜厚分垃図である。なお、図に瀺すは本発明に係るタヌゲットの配眮図であり、は䞀般的な平板タヌゲットの配眮図であり、は埓来䟋にかかるタヌゲットの配眮図である。 Next, an example in which a thin film (metal compound thin film) of magnesium fluoride (MgF 2 ), which is a low absorption and low refractive index material, is formed on a lens substrate (optical element) using the sputtering apparatus 1 shown in FIG. This will be described with reference to FIGS. FIG. 4 is a layout diagram of the target and the lens substrate according to the embodiment. FIG. 5 is a film thickness distribution diagram in the processing surface in which the film formation rates in the arrangement shown in FIG. 4 are compared. 4A is a target layout according to the present invention, FIG. 4B is a general plan target layout, and FIG. 4C is a target layout according to a conventional example. .

図に瀺すように、、及びのいずれの堎合も、レンズ基板ずタヌゲットずが最も接近する䜍眮での−距離を同じにし、か぀、スパッタ面の法線方向の投圱にかからないようにレンズ基板を配眮しおある。タヌゲットずレンズ基板ずの配眮以倖の成膜条件を同䞀にしお、、及びの配眮で成膜した堎合の成膜レヌトを比范した。   As shown in FIG. 4, in any of the cases (a), (b), and (c), the TS distance at the position where the lens substrate and the target are closest to each other is made the same (50 mm), and sputtering is performed. The lens substrate is arranged so as not to be projected in the normal direction of the surface. The film formation rates were compared when the film formation conditions other than the arrangement of the target and the lens substrate were the same, and the film formation was performed with the arrangements (a), (b), and (c).

タヌゲットは倖埄がむンチの金属からなるタヌゲットを甚い、レンズ基板は倖埄がのガラスからなるレンズ基板を甚いた。なお、レンズ基板ずタヌゲットずの倖埄比率厚さ方向ず亀差する方向の長さの比率は、レンズ基板タヌゲット以䞋が奜たしく、レンズ基板タヌゲット以䞋が曎に奜たしい。反応性ガスは、ガスをガスで垌釈し、ガスの濃床をに調敎したガスを甚いた。 A target made of metal Mg having an outer diameter of 3 inches was used as the target, and a lens substrate made of BK7 glass having an outer diameter of 30 mm was used. The outer diameter ratio between the lens substrate and the target (the ratio of the length in the direction intersecting the thickness direction) is preferably lens substrate: target = 1: 5 or less, and more preferably lens substrate: target = 1: 3 or less. preferable. As the reactive gas, a gas obtained by diluting F 2 gas with Ar gas and adjusting the concentration of F 2 gas to 10% was used.

たず、掗浄を行ったレンズ基板をロヌドロック宀に移動した基板ホルダに蚭眮し、ゲヌトバルブを閉じた状態でロヌドロック宀内が×−以䞋の真空状態ずなるたでロヌドロック宀内を排気する。排気が完了するず、ゲヌトバルブを開き、移動機構を駆動しおレンズ基板を成膜宀内の成膜䜍眮に搬送する。 First, the cleaned lens substrate is placed on the substrate holder moved to the load lock chamber, and the load lock chamber is exhausted until the load lock chamber is in a vacuum state of 1 × 10 −3 Pa or less with the gate valve closed. To do. When the evacuation is completed, the gate valve is opened and the moving mechanism is driven to transport the lens substrate to the film formation position in the film formation chamber.

次に、遮蔜板を閉じ、第導入ポヌトからガスを導入し、第導入ポヌトから反応性ガスずしお、ガスの濃床をに調敎したガスを導入した。このずきの成膜宀の圧力をに蚭定した。 Next, the shielding plate was closed, 100 SCCM of Ar gas was introduced from the first introduction port, and 200 SCCM of gas having a F 2 gas concentration adjusted to 10% was introduced as the reactive gas from the second introduction port. The pressure in the film forming chamber at this time was set to 0.31 Pa.

次に、バッキングプレヌトカ゜ヌド電極にスパッタ電力ずしお盎流電圧を印加しお、タヌゲットのスパッタ面衚面にマグネトロンプラズマを発生させた。このずき、同時に、タヌゲット衚面の極性が反転する矩圢電圧をで重畳し、タヌゲットのスパッタ面近傍のチャヌゞをキャンセルしお安定しお攟電ができるようにした。ほが盎流攟電ずするこずで高呚波攟電の際に倧きくなっおしたうセルフバむアスを小さくし、陜むオンがセルフバむアス電圧で加速されおレンズ基板に入射し、レンズ基板にダメヌゞを䞎えおしたうこずを䜎枛しおいる。たた、チャヌゞキャンセルするこずで、異垞攟電を抑え、ゎミや異物の混入のない金属化合物薄膜を圢成するこずができる。   Next, a DC voltage of 200 W was applied as sputtering power to the backing plate (cathode electrode) to generate magnetron plasma on the sputtering surface of the target. At the same time, a rectangular voltage that reverses the polarity of the target surface was superimposed at 5 KHz to cancel the charge in the vicinity of the sputtering surface of the target so that stable discharge was possible. The self-bias, which increases during high-frequency discharge, is reduced by using almost direct current discharge, which reduces the possibility that cations are accelerated by the self-bias voltage and enter the lens substrate, causing damage to the lens substrate. ing. In addition, by canceling the charge, abnormal discharge can be suppressed and a metal compound thin film free from dust and foreign matters can be formed.

しばらく攟電を継続し、安定した頃を芋蚈らっお遮蔜板を開き、成膜を開始した。、及びずもに同じ成膜時間で成膜した。   The discharge was continued for a while, and when the time was stable, the shielding plate was opened and film formation was started. Films (a), (b) and (c) were formed at the same film formation time.

図に、、及びでの成膜レヌトを比范した凊理面内の膜厚分垃図を瀺す。図に瀺すように、凊理面内の党膜厚を合蚈した総膜厚を比范するず、はに察しお、倍の総膜厚になっおいるこずが分かる。同様に、はに察しおも、倍の総膜厚になっおいるこずが分かる。このように、本実斜圢態ず同様の構成であるでは、タヌゲットず基板ずの距離−距離を近づけるこずができ、効率よく早い成膜レヌトで成膜するこずができた。   FIG. 5 shows in-plane film thickness distribution charts comparing the film formation rates in (a), (b) and (c). As shown in FIG. 5, when the total film thickness obtained by adding up all the film thicknesses in the processing surface is compared, it can be seen that (a) is 1.7 times as thick as (b). . Similarly, it can be seen that (a) is 1.3 times as thick as (c). As described above, in (a) having the same configuration as that of the present embodiment, the distance between the target and the substrate (TS distance) can be reduced, and the film can be formed efficiently and at a high film formation rate. .

たた、はプラズマ䞭の荷電粒子のレンズ基板ぞの入射が抑制されおいるため、レンズ基板の枩床が℃以䞋で可芖光領域においお透明な膜を圢成するこずができる。圢成された膜は、密着性もよく、膜の硬さも蒞着のハンドコヌト℃加熱䞊みの硬さを持っおいた。パッキングもに近く、ほずんど分光特性の蚈時倉化を生じないものであった。埓っお、レンズ基板ずしおプラスチックなどを甚いるこずも可胜である。 In (a), since the incidence of charged particles in plasma on the lens substrate is suppressed, a transparent MgF 2 film can be formed in the visible light region when the temperature of the lens substrate is 80 ° C. or lower. The formed MgF 2 film had good adhesion, and the hardness of the film was as high as the hand-coating (300 ° C. heating) for vapor deposition. The packing was close to 100%, and almost no change in spectral characteristics was observed. Therefore, it is also possible to use plastic or the like as the lens substrate.

たた、スパッタリングレヌトが安定しおいるため、埓来の蒞着法に比べお高粟床な膜制埡も容易に可胜で、高品質な光孊薄膜を圢成できる。そのため、このような光孊薄膜を積局しお圢成した反射防止膜やミラヌにより、蚭蚈倀通りの特性を備えた光孊郚品を補造するこずができる。   In addition, since the sputtering rate is stable, it is possible to easily control the film with higher accuracy than the conventional vapor deposition method, and it is possible to form a high-quality optical thin film. Therefore, an optical component having characteristics as designed can be manufactured by using an antireflection film or a mirror formed by laminating such optical thin films.

たた、基板サむズを倧きくした堎合においおも、基板サむズに応じたタヌゲットサむズにするず共に、スパッタ面を基板サむズに応じた凹凞圢状にする。これにより、タヌゲットずの−距離を最適な䜍眮に自圚に近づけお成膜できる。そのため、タヌゲット衚面近傍で負むオンが圢成された堎合でもレンズ基板ぞのダメヌゞを抑制し぀぀、スパッタされた粒子を効率よくレンズ基板に導くこずができる。その結果、早い成膜レヌトで成膜するこずができる。   In addition, even when the substrate size is increased, the target size corresponding to the substrate size is set, and the sputter surface is made uneven according to the substrate size. As a result, the film can be formed with the TS distance from the target close to the optimum position. Therefore, even when negative ions are formed near the target surface, sputtered particles can be efficiently guided to the lens substrate while suppressing damage to the lens substrate. As a result, the film can be formed at a high film formation rate.

たた光孊玠子を準備する工皋ず、光孊玠子に察しお䞊述の成膜方法にお成膜する成膜工皋ず、を実行するこずで生産性が良く、優れた光孊玠子を補造するこずができる。   Further, by performing the step of preparing an optical element and the film forming step of forming a film on the optical element by the above-described film forming method, the productivity can be improved and an excellent optical element can be manufactured.

 スパッタリング装眮成膜装眮
 タヌゲットナニットタヌゲット保持手段
 基板ホルダ被凊理䜓保持手段
 タヌゲット
 スパッタ面
 円錐郚
 頂郹
 同心円郚
 基板被凊理䜓、光孊玠子
 凊理面
 盎流電源
1 Sputtering equipment (film deposition equipment)
4 Target unit (target holding means)
5 Substrate holder (processed object holding means)
DESCRIPTION OF SYMBOLS 10 Target 10a Sputtering surface 10b Conical part 10c Top part 10d Concentric circle part 11 Substrate (object to be processed, optical element)
11a Treatment surface 46 DC power supply

Claims (13)

タヌゲットに電圧を印加しお、スパッタにより被凊理䜓の凊理面に金属化合物薄膜を圢成する成膜方法においお、
法線方向の投圱が亀差するように断面が鋞歯状ずなる凹凞圢状に圢成された耇数のスパッタ面を有する前蚘タヌゲットの、前蚘耇数のスパッタ面のそれぞれの法線方向の投圱が亀差した先の領域で投圱領域に挟たれるように圢成された非投圱領域に前蚘被凊理䜓が収たるように、前蚘タヌゲットず前蚘被凊理䜓ずを察向配眮する配眮工皋ず、
前蚘タヌゲットに電圧を印加しお、前蚘被凊理䜓の前蚘凊理面に薄膜を圢成する薄膜圢成工皋ず、を備えた、
こずを特城ずする成膜方法。
In a film forming method in which a voltage is applied to a target and a metal compound thin film is formed on a processing surface of an object to be processed by sputtering.
The target having a plurality of sputter surfaces formed in a concavo-convex shape having a sawtooth cross section so that the projections in the normal direction intersect with each other, the projections in the normal direction of each of the plurality of sputter surfaces intersecting each other An arrangement step of disposing the target and the object to be processed so that the object to be processed fits in a non-projection area formed so as to be sandwiched between the projection areas in the area;
A thin film forming step of applying a voltage to the target to form a thin film on the processing surface of the object to be processed.
A film forming method characterized by the above.
前蚘タヌゲットは、前蚘耇数のスパッタ面の断面における䞡偎の偎面を、偎面の傟斜に沿っお結ぶこずで圢成される頂郚の䜍眮よりも、厚さ方向に薄くなるように圢成される、
こずを特城ずする請求項に蚘茉の成膜方法。
The target is formed to be thinner in the thickness direction than the position of the top formed by tying side surfaces on both sides in the cross section of the plurality of sputtering surfaces along the inclination of the side surfaces.
The film forming method according to claim 1.
前蚘配眮工皋は、
前蚘タヌゲットを固定するタヌゲット固定工皋ず、
前蚘被凊理䜓が前蚘非投圱領域に収たるように、固定した前蚘タヌゲットに察しお前蚘被凊理䜓を配眮する被凊理䜓配眮工皋ず、を有する、
こずを特城ずする請求項又はに蚘茉の成膜方法。
The arrangement step includes
A target fixing step of fixing the target;
A target object arrangement step of arranging the target object with respect to the fixed target so that the target object fits in the non-projection region,
The film forming method according to claim 1, wherein:
前蚘耇数のスパッタ面の凹凞圢状は、円錐郚ず、前蚘円錐郚ず同心円状の頂郚を有する以䞊の同心円郚ず、から構成される、
こずを特城ずする請求項からのいずれか項に蚘茉の成膜方法。
The concavo-convex shape of the plurality of sputter surfaces is composed of a conical portion and one or more concentric circular portions having a top portion concentric with the conical portion.
The film forming method according to claim 1, wherein the film forming method is characterized in that:
前蚘金属化合物薄膜がフッ化膜である、
こずを特城ずする請求項からのいずれか項に蚘茉の成膜方法。
The metal compound thin film is a fluoride film;
The film forming method according to claim 1, wherein the film forming method is characterized in that:
前蚘タヌゲットに印加する盎流電圧に以䞋の呚波数の電圧を重畳しおスパッタする、
こずを特城ずする請求項からのいずれか項に蚘茉の成膜方法。
Sputtering by superimposing a voltage having a frequency of 350 KHz or less on the DC voltage applied to the target,
The film forming method according to claim 1, wherein the film forming method is characterized in that:
前蚘被凊理䜓ず前蚘タヌゲットずの、厚さ方向ず亀差する方向の長さの比が、以䞋である、
こずを特城ずする請求項からのいずれか項に蚘茉の成膜方法。
The length ratio of the object to be processed and the target in the direction intersecting the thickness direction is 1: 5 or less.
The film forming method according to claim 1, wherein:
前蚘被凊理䜓は光孊玠子である、
こずを特城ずする請求項からのいずれか項に蚘茉の成膜方法。
The object to be processed is an optical element.
The film forming method according to claim 1, wherein:
タヌゲットに電圧を印加しお、スパッタにより被凊理䜓の凊理面に金属化合物薄膜を圢成する薄膜付被凊理䜓の補造方法においお、
法線方向の投圱が亀差するように断面が鋞歯状ずなる凹凞圢状に圢成された耇数のスパッタ面を有する前蚘タヌゲットの、前蚘耇数のスパッタ面のそれぞれの法線方向の投圱が亀差した先の領域で投圱領域に挟たれるように圢成された非投圱領域に前蚘被凊理䜓が玍たるように、前蚘タヌゲットず前蚘被凊理䜓ずを察向配眮する配眮工皋ず、
前蚘タヌゲットに電圧を印加しお、前蚘被凊理䜓の前蚘凊理面に薄膜を圢成する薄膜圢成工皋ず、を備えた、
こずを特城ずする薄膜付被凊理䜓の補造方法。
In the method of manufacturing a target object with a thin film in which a voltage is applied to the target and a metal compound thin film is formed on the processing surface of the target object by sputtering.
The target having a plurality of sputter surfaces formed in a concavo-convex shape having a sawtooth cross section so that the projections in the normal direction intersect with each other, the projections in the normal direction of each of the plurality of sputter surfaces intersecting each other An arrangement step of disposing the target and the object to be processed so that the object to be processed fits in a non-projection area formed so as to be sandwiched between the projection areas in the area;
A thin film forming step of applying a voltage to the target to form a thin film on the processing surface of the object to be processed.
A manufacturing method of a to-be-processed object with a thin film characterized by things.
前蚘光孊玠子を準備する工皋ず、
前蚘光孊玠子に察しお請求項に蚘茉の成膜方法にお成膜する成膜工皋ず、を備えた、
こずを特城ずする薄膜付光孊玠子の補造方法。
Preparing the optical element;
A film forming step of forming a film by the film forming method according to claim 8 with respect to the optical element.
A method for producing an optical element with a thin film.
タヌゲットに電圧を印加しお、スパッタにより被凊理䜓の凊理面に金属化合物薄膜を圢成する成膜装眮においお、
法線方向の投圱が亀差するように断面が鋞歯状ずなる凹凞圢状に圢成された耇数のスパッタ面を有する前蚘タヌゲットを保持するタヌゲット保持手段ず、
前蚘タヌゲットず察向し、か぀前蚘タヌゲットの前蚘耇数のスパッタ面のそれぞれの法線方向の投圱が亀差した先の領域で投圱領域に挟たれるように圢成された非投圱領域に玍たるように、前蚘被凊理䜓を保持する被凊理䜓保持手段ず、を備えた、
こずを特城ずする成膜装眮。
In a film forming apparatus that applies a voltage to a target and forms a metal compound thin film on the processing surface of the object to be processed by sputtering.
Target holding means for holding the target having a plurality of sputter surfaces formed in a concavo-convex shape with a sawtooth cross section so that the projections in the normal direction intersect,
The object to be covered is placed in a non-projection area formed so as to face the target and be sandwiched by the projection area at the area where the projections in the normal direction of the plurality of sputtering surfaces of the target intersect each other. A processing object holding means for holding the processing object,
A film forming apparatus.
タヌゲットに電圧を印加しお、スパッタにより凊理面に金属化合物薄膜が圢成される薄膜付被凊理䜓においお、
法線方向の投圱が亀差するように断面が鋞歯状ずなる凹凞圢状に圢成された耇数のスパッタ面を有する前蚘タヌゲットの、前蚘耇数のスパッタ面のそれぞれの法線方向の投圱が亀差した先の領域で投圱領域に挟たれるように圢成された非投圱領域に前蚘凊理面が玍たるように配眮した埌、前蚘タヌゲットに電圧を印加するこずで前蚘凊理面に薄膜が圢成される、
こずを特城ずする薄膜付被凊理䜓。
In a target object with a thin film in which a metal compound thin film is formed on the processing surface by sputtering by applying a voltage to the target,
The target having a plurality of sputter surfaces formed in a concavo-convex shape having a sawtooth cross section so that the projections in the normal direction intersect with each other, the projections in the normal direction of each of the plurality of sputter surfaces intersecting each other A thin film is formed on the processing surface by applying a voltage to the target after placing the processing surface in a non-projection region formed so as to be sandwiched between projection regions in the region.
An object to be treated with a thin film.
タヌゲットに電圧を印加しお、スパッタにより凊理面に金属化合物薄膜が圢成される薄膜付光孊玠子においお、
法線方向の投圱が亀差するように断面が鋞歯状ずなる凹凞圢状に圢成された耇数のスパッタ面を有する前蚘タヌゲットの、前蚘耇数のスパッタ面のそれぞれの法線方向の投圱が亀差した先の領域で投圱領域に挟たれるように圢成された非投圱領域に前蚘凊理面が玍たるように配眮した埌、前蚘タヌゲットに電圧を印加するこずで前蚘凊理面に薄膜が圢成される、
こずを特城ずする薄膜付光孊玠子。
In the optical element with a thin film in which a voltage is applied to the target and a metal compound thin film is formed on the processing surface by sputtering,
The target having a plurality of sputter surfaces formed in a concavo-convex shape having a sawtooth cross section so that the projections in the normal direction intersect with each other, the projections in the normal direction of each of the plurality of sputter surfaces intersecting each other A thin film is formed on the processing surface by applying a voltage to the target after placing the processing surface in a non-projection region formed so as to be sandwiched between projection regions in the region.
An optical element with a thin film.
JP2013059836A 2013-03-22 2013-03-22 Film formation method, method of producing thin film-provided workpiece and film formation apparatus Pending JP2014185357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013059836A JP2014185357A (en) 2013-03-22 2013-03-22 Film formation method, method of producing thin film-provided workpiece and film formation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013059836A JP2014185357A (en) 2013-03-22 2013-03-22 Film formation method, method of producing thin film-provided workpiece and film formation apparatus

Publications (1)

Publication Number Publication Date
JP2014185357A true JP2014185357A (en) 2014-10-02

Family

ID=51833202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013059836A Pending JP2014185357A (en) 2013-03-22 2013-03-22 Film formation method, method of producing thin film-provided workpiece and film formation apparatus

Country Status (1)

Country Link
JP (1) JP2014185357A (en)

Similar Documents

Publication Publication Date Title
US6458253B2 (en) Thin film production process and optical device
KR101529578B1 (en) Apparatus and method for treating substrate using plasma
CN103031529B (en) Magnetron sputtering apparatus and method
JP5875462B2 (en) Sputtering method
JP2921874B2 (en) High efficiency sheet plasma sputtering equipment
Wasa Sputtering systems
US20230228914A1 (en) Optical device and manufacturing method therefor
CN108441838A (en) A kind of method of Large diameter optical element surface ion beam sputter depositing film
CN1693531B (en) Sputtering target and sputtering method using same
US10114150B2 (en) Optical multilayer coating, optical lens, and method of manufacturing optical multilayer coating
JP2001335924A (en) Sputtering system
JP5932251B2 (en) Fluoride film forming method and optical element manufacturing method
JP2014185357A (en) Film formation method, method of producing thin film-provided workpiece and film formation apparatus
JP3639795B2 (en) Thin film manufacturing method
TWI870430B (en) Apparatus and method for enhanced plasma control
JP2001207260A (en) Film deposition method and film deposition system
JP2010242174A (en) Thin film deposition method
JP2010116613A (en) Cluster ion-assisted vapor deposition apparatus and method
JP2007224335A (en) Film deposition method and film deposition system
WO2021230017A1 (en) Magnetron sputtering device, and film forming method using said magnetron sputtering device
JPH0940441A (en) Working device and working method for aspherical lens
JP2019007041A (en) Method for producing optical element having fluoride film and method for producing fluoride film
JP3740301B2 (en) Method for forming fluoride thin film, optical member having the thin film, and sputtering apparatus
JP2020200520A (en) Film deposition apparatus, sputtering target mechanism and film deposition method
JP2013185158A (en) Film deposition method