JP2014185222A - Resin composition, prepreg, laminate, and printed wiring board - Google Patents
Resin composition, prepreg, laminate, and printed wiring board Download PDFInfo
- Publication number
- JP2014185222A JP2014185222A JP2013060291A JP2013060291A JP2014185222A JP 2014185222 A JP2014185222 A JP 2014185222A JP 2013060291 A JP2013060291 A JP 2013060291A JP 2013060291 A JP2013060291 A JP 2013060291A JP 2014185222 A JP2014185222 A JP 2014185222A
- Authority
- JP
- Japan
- Prior art keywords
- formula
- resin composition
- mass
- resin
- parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Reinforced Plastic Materials (AREA)
- Laminated Bodies (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
Abstract
【課題】以下の問題を解決することを課題とする。(1)樹脂組成物の体積比率が小さくなって流動性が低下し、その結果、樹脂組成物をガラスクロス等の基材に含浸させて半硬化して得られるプリプレグの粘度が悪化する問題。
(2)そのようなプリプレグを金属箔と重ねて硬化させた金属箔張積層板にはクラックやボイドが発生するという成型性の問題。
(3)金属箔張積層板の吸湿耐熱性、弾性率、銅箔と積層板の絶縁層との密着強度が悪化する問題。
【解決手段】式(1)で表されるエポキシ樹脂(A)、シアン酸エステル化合物(B)、マレイミド化合物(C)及び無機充填材(D)を含有し、該無機充填材(D)の樹脂組成物における含有量が、成分(A)〜(C)の合計100質量部に対して、50〜600質量部含まれる、樹脂組成物。
【選択図】なしAn object of the present invention is to solve the following problems. (1) A problem that the volume ratio of the resin composition is reduced and the fluidity is lowered, and as a result, the viscosity of the prepreg obtained by impregnating the resin composition into a substrate such as glass cloth and semi-curing is deteriorated.
(2) A moldability problem in which cracks and voids are generated in a metal foil-clad laminate in which such a prepreg is cured by overlapping with a metal foil.
(3) The problem that the moisture absorption heat resistance of a metal foil clad laminated board, an elasticity modulus, and the adhesive strength of copper foil and the insulating layer of a laminated board deteriorate.
An epoxy resin (A) represented by the formula (1), a cyanate ester compound (B), a maleimide compound (C) and an inorganic filler (D) are contained, and the inorganic filler (D) The resin composition whose content in a resin composition is contained 50-600 mass parts with respect to a total of 100 mass parts of component (A)-(C).
[Selection figure] None
Description
本発明は、樹脂組成物、プリプレグ、積層板及びプリント配線板に関する。 The present invention relates to a resin composition, a prepreg, a laminated board, and a printed wiring board.
電子機器や通信機、パーソナルコンピューター等に広く用いられている半導体パッケージの高機能化・小型化が進むに従い、高集積化や高密度実装化が近年益々加速している。それに伴い、半導体パッケージに使用されている積層板に対しての要求も多岐にわたり、耐熱性や信頼性に加え、低熱膨張、高熱伝導性、高弾性など様々な特性が要求されている。 As semiconductor packages widely used in electronic devices, communication devices, personal computers, and the like have become more advanced and smaller in size, higher integration and higher density mounting have been increasingly accelerated in recent years. Along with this, there are various requirements for laminated boards used in semiconductor packages, and various characteristics such as low thermal expansion, high thermal conductivity, and high elasticity are required in addition to heat resistance and reliability.
積層板に低熱膨張や高熱伝導性を付与する方法として、種々の特性に優れた無機充填材を高充填させる方法がある(特許文献1〜3)。また、無機充填材の高充填は低熱膨張や高熱伝導性を付与する以外にも弾性率などの機械特性や耐燃性、電気特性、白色度を向上させる事ができることから、積層板の高機能化に有用な手法として用いられている。 As a method for imparting low thermal expansion and high thermal conductivity to a laminate, there is a method of highly filling an inorganic filler excellent in various properties (Patent Documents 1 to 3). In addition to providing low thermal expansion and high thermal conductivity, high filling with inorganic fillers can improve mechanical properties such as elastic modulus, flame resistance, electrical properties, and whiteness. It is used as a useful technique.
しかし、本発明者らは低熱膨張や高熱伝導性等の特性を付与するために無機充填材を高充填すると、以下の問題が生じることを見出した。
(1)樹脂組成物の体積比率が小さくなって流動性が低下し、その結果、樹脂組成物をガラスクロス等の基材に含浸させて半硬化して得られるプリプレグの粘度が悪化する問題。
(2)そのようなプリプレグを金属箔と重ねて硬化させた金属箔張積層板にはクラックやボイドが発生するという成型性の問題。
(3)金属箔張積層板の吸湿耐熱性、弾性率、銅箔と積層板の絶縁層との密着強度が悪化する問題。
However, the present inventors have found that the following problems arise when the inorganic filler is highly filled to impart characteristics such as low thermal expansion and high thermal conductivity.
(1) A problem that the volume ratio of the resin composition is reduced and the fluidity is lowered, and as a result, the viscosity of the prepreg obtained by impregnating the resin composition into a substrate such as glass cloth and semi-curing is deteriorated.
(2) A moldability problem in which cracks and voids are generated in a metal foil-clad laminate in which such a prepreg is cured by overlapping with a metal foil.
(3) The problem that the moisture absorption heat resistance of a metal foil clad laminated board, an elasticity modulus, and the adhesive strength of copper foil and the insulating layer of a laminated board deteriorate.
また、平均粒子径が大きい無機充填材を使用すると粒子径が小さい無機充填材に比べ表面積が小さいため、樹脂成分との接触面積が小さく、粘度の向上を抑えられるが、平均粒子径が大きい無機充填材には、粗粒と呼ばれる粒子径が平均よりも特に大きい粒子が存在し、これらがボイドの発生や積層板の絶縁信頼性に悪影響も与える。 In addition, when an inorganic filler having a large average particle diameter is used, the surface area is smaller than that of an inorganic filler having a small particle diameter, so that the contact area with the resin component is small and the improvement in viscosity can be suppressed. In the filler, there are particles called coarse particles whose particle diameter is particularly larger than the average, and these adversely affect the generation of voids and the insulation reliability of the laminate.
本発明は、上記課題に鑑みてなされたものであり、その目的は、樹脂組成物中における無機充填材の割合が多いながらも、プリプレグ粘度が金属箔張積層板を作製するのに都合が良いほど低く、硬化物を簡易かつ再現性良く作製可能な、プリプレグ用樹脂組成物を提供することにある。また本発明の他の目的は、金属箔張積層板の成型性が良好で、かつ耐熱性や吸湿耐熱性が良好なプリプレグ、積層板及びプリント配線板等を提供することにある。 The present invention has been made in view of the above problems, and its purpose is convenient for producing a metal foil-clad laminate with a high prepreg viscosity, although the proportion of the inorganic filler in the resin composition is large. An object of the present invention is to provide a resin composition for prepreg that is so low that a cured product can be prepared easily and with good reproducibility. Another object of the present invention is to provide a prepreg, a laminate, a printed wiring board and the like that have good moldability of the metal foil-clad laminate and good heat resistance and moisture absorption heat resistance.
本発明者らは、かかる問題点の解決のため鋭意検討した結果、式(1)で表されるエポキシ樹脂(A)、シアン酸エステル化合物(B)、マレイミド化合物(C)及び無機充填材(D)を含有し、該無機充填材(D)の樹脂組成物における含有量が、成分(A)〜(C)の合計100質量部に対して、100〜1000質量部含まれる、樹脂組成物が上記課題を解決できることを見出し本発明に到達した。 As a result of intensive studies for solving such problems, the present inventors have found that the epoxy resin (A) represented by the formula (1), the cyanate ester compound (B), the maleimide compound (C), and the inorganic filler ( D), and the resin composition containing 100 to 1000 parts by mass of the inorganic filler (D) in the resin composition with respect to a total of 100 parts by mass of the components (A) to (C). Has found that the above problems can be solved, and has reached the present invention.
(式中、Rは各々独立に炭素数1〜6のアルキル基であり、mは0〜4の整数を表し、nは1以上の整数を表す。)
(In the formula, each R is independently an alkyl group having 1 to 6 carbon atoms, m represents an integer of 0 to 4, and n represents an integer of 1 or more.)
本発明によれば、プリプレグ粘度が金属箔張積層板を作製するのに都合が良いほど低く、硬化物を簡易かつ再現性良く作製可能な、プリプレグ用樹脂組成物が得られ、金属箔張積層板の成型性が良好で、かつ耐熱性や吸湿耐熱性が良好なプリプレグ、積層板及びプリント配線板等を得ることができる。 According to the present invention, a prepreg resin composition having a prepreg viscosity which is low enough to be convenient for producing a metal foil-clad laminate and capable of producing a cured product easily and with good reproducibility is obtained. It is possible to obtain a prepreg, a laminated board, a printed wiring board and the like having good moldability of the board and good heat resistance and moisture absorption heat resistance.
以下、本発明の実施の形態について説明する。なお、以下の実施の形態は、本発明を説明するための例示であり、本発明はその実施の形態のみに限定されない。 Embodiments of the present invention will be described below. In addition, the following embodiment is an illustration for demonstrating this invention, and this invention is not limited only to the embodiment.
本実施形態の一態様は、式(1)で表されるエポキシ樹脂(A)、シアン酸エステル化合物(B)、マレイミド化合物(C)及び無機充填材(D)を含有し、該無機充填材(D)の樹脂組成物における含有量が、成分(A)〜(C)の合計100質量部に対して、100〜1000質量部含まれる、樹脂組成物である。 One aspect of this embodiment contains an epoxy resin (A) represented by formula (1), a cyanate ester compound (B), a maleimide compound (C), and an inorganic filler (D), and the inorganic filler Content in (D) resin composition is a resin composition contained 100-1000 mass parts with respect to a total of 100 mass parts of component (A)-(C).
また、本実施形態の別の態様としては、エポキシ樹脂(A)、シアン酸エステル化合物(B)とマレイミド化合物(C)をプレポリマー化してなるBT樹脂(E)及び無機充填材(D)を含有する樹脂組成物である。 Further, as another aspect of the present embodiment, an epoxy resin (A), a BT resin (E) obtained by prepolymerizing a cyanate ester compound (B) and a maleimide compound (C), and an inorganic filler (D) are used. It is a resin composition to contain.
また、本発明の別の態様としては、前記樹脂組成物成分に加え、式(1)以外のエポキシ樹脂(F)を含有する樹脂組成物である。 Moreover, as another aspect of this invention, in addition to the said resin composition component, it is a resin composition containing epoxy resins (F) other than Formula (1).
また、本実施形態の別の態様としては、前記樹脂組成物成分に加え、イミダゾール化合物を含有する樹脂組成物である。 Another aspect of this embodiment is a resin composition containing an imidazole compound in addition to the resin composition components.
さらに本実施形態の別の態様においては、前記樹脂組成物と基材からなるプリプレグ及び該プリプレグを用いた積層板、前記樹脂組成物を用いた樹脂シート、プリント配線板も提供される。 Furthermore, in another aspect of the present embodiment, a prepreg composed of the resin composition and a base material, a laminate using the prepreg, a resin sheet using the resin composition, and a printed wiring board are also provided.
[式(1)で表されるエポキシ樹脂(A)]
本発明において使用されるエポキシ樹脂(A)は、式(1)で表される。nは特に限定されないが、1〜20の整数であることが好ましく、1〜10の整数であることがより好ましい。mは0〜4の整数を表す。Rは炭素数1〜6のアルキル基を表す。式(1)で表されるエポキシ樹脂(A)の質量平均分子量は特に限定されないが、GPC法によるポリスチレン換算の質量平均分子量として、100〜1000であることがプリプレグの溶融粘度を低下させるという観点から好ましく、その上限値としては、900以下がより好ましく、800以下が更に好ましく、700以下が更に一層好ましく、600以下が殊更好ましく、500以下が特に好ましい。
[Epoxy resin represented by formula (1) (A)]
The epoxy resin (A) used in the present invention is represented by the formula (1). Although n is not specifically limited, It is preferable that it is an integer of 1-20, and it is more preferable that it is an integer of 1-10. m represents an integer of 0 to 4. R represents an alkyl group having 1 to 6 carbon atoms. The mass average molecular weight of the epoxy resin (A) represented by the formula (1) is not particularly limited, but the viewpoint that the melt average viscosity of the prepreg is reduced to 100 to 1000 as the polystyrene-reduced mass average molecular weight by the GPC method. The upper limit is more preferably 900 or less, still more preferably 800 or less, still more preferably 700 or less, still more preferably 600 or less, and particularly preferably 500 or less.
また、式(1)で表されるエポキシ樹脂(A)は、市販のものを用いる事もでき、市販されているものとしては、EXA−7250(エポキシ当量162、質量平均分子量462)(DIC(株)製)、EPPN−501H(エポキシ当量162〜172)、EPPN−501HY(エポキシ当量163〜175、質量平均分子量800〜950)、EPPN−502H(エポキシ当量158〜178)(日本化薬(株)製)などが挙げられる。これらは1種又は2種以上組み合わせて使用してもよい。 In addition, as the epoxy resin (A) represented by the formula (1), a commercially available product can be used. EXA-7250 (epoxy equivalent 162, mass average molecular weight 462) (DIC ( ), EPPN-501H (epoxy equivalents 162 to 172), EPPN-501HY (epoxy equivalents 163 to 175, mass average molecular weight 800 to 950), EPPN-502H (epoxy equivalents 158 to 178) (Nippon Kayaku Co., Ltd.) ))). These may be used alone or in combination of two or more.
本実施形態の樹脂組成物における式(1)で表されるエポキシ樹脂(A)の含有量は特に限定されないが、樹脂組成物成分が、式(1)で表されるエポキシ樹脂(A)、シアン酸エステル化合物(B)、マレイミド化合物(C)及び無機充填材(D)が含まれる系においては、成分(A)〜(C)及び任意成分として含有される式(1)以外のエポキシ樹脂(F)の合計100質量部に対し、10〜50質量部であることが好ましく、より好ましくは20〜40質量部である。
また、樹脂組成物成分が、式(1)で表されるエポキシ樹脂(A)、BT樹脂(E)及び無機充填材(D)が含まれる系においては、成分(A)、(E)及び任意成分として含有される式(1)以外のエポキシ樹脂(F)の合計100質量部に対し、10〜90質量部であることが好ましく、より好ましくは20〜80質量部である。
式(1)で表されるエポキシ樹脂(A)の含有量を好ましい範囲内とすることで、プリプレグ粘度が低下することで成形性が向上し、難燃性、ガラス転移温度、吸水率、及び弾性率に優れたプリント配線板を得ることができる。
The content of the epoxy resin (A) represented by the formula (1) in the resin composition of the present embodiment is not particularly limited, but the resin composition component is an epoxy resin (A) represented by the formula (1), In a system including a cyanate ester compound (B), a maleimide compound (C) and an inorganic filler (D), an epoxy resin other than the components (A) to (C) and the formula (1) contained as an optional component It is preferable that it is 10-50 mass parts with respect to a total of 100 mass parts of (F), More preferably, it is 20-40 mass parts.
In the system in which the resin composition component includes the epoxy resin (A) represented by the formula (1), the BT resin (E), and the inorganic filler (D), the components (A), (E) and It is preferable that it is 10-90 mass parts with respect to a total of 100 mass parts of epoxy resins (F) other than Formula (1) contained as an arbitrary component, More preferably, it is 20-80 mass parts.
By making content of the epoxy resin (A) represented by Formula (1) into a preferable range, a moldability improves because a prepreg viscosity falls, a flame retardance, a glass transition temperature, a water absorption rate, and A printed wiring board having an excellent elastic modulus can be obtained.
本発明に使用されるシアン酸エステル化合物(B)は、耐薬品性、接着性などに優れた特性を有するため、本発明における樹脂組成物の成分として好適に使用することができる。シアン酸エステル化合物(B)としては、例えば式(2)で表されるナフトールアラルキル型シアン酸エステル化合物、式(3)で表されるノボラック型シアン酸エステル、ビフェニルアラルキル型シアン酸エステル化合物、ビス(3,5−ジメチル4−シアナトフェニル)メタン、ビス(4−シアナトフェニル)メタン、1,3−ジシアナトベンゼン、1,4−ジシアナトベンゼン、1,3,5−トリシアナトベンゼン、1,3−ジシアナトナフタレン、1,4−ジシアナトナフタレン、1,6−ジシアナトナフタレン、1,8−ジシアナトナフタレン、2,6−ジシアナトナフタレン、2、7−ジシアナトナフタレン、1,3,6−トリシアナトナフタレン、4、4’−ジシアナトビフェニル、ビス(4−シアナトフェニル)エーテル、ビス(4−シアナトフェニル)チオエーテル、ビス(4−シアナトフェニル)スルホン、2、2−ビス(4−シアナトフェニル)プロパン、等が挙げられる。これらは1種又は2種以上組み合わせて使用してもよい。
この中でも式(2)で表されるナフトールアラルキル型シアン酸エステル化合物、式(3)で表されるノボラック型シアン酸エステル、ビフェニルアラルキル型シアン酸エステル化合物が難燃性に優れ、硬化性が高く、かつ硬化物の熱膨張係数が低いことから特に好ましい。
Since the cyanate ester compound (B) used in the present invention has excellent properties such as chemical resistance and adhesiveness, it can be suitably used as a component of the resin composition in the present invention. Examples of the cyanate ester compound (B) include a naphthol aralkyl cyanate ester compound represented by the formula (2), a novolak cyanate ester, a biphenylaralkyl cyanate ester compound represented by the formula (3), and a bis (3,5-dimethyl-4-cyanatophenyl) methane, bis (4-cyanatophenyl) methane, 1,3-dicyanatobenzene, 1,4-dicyanatobenzene, 1,3,5-tricyanatobenzene, 1,3-dicyanatonaphthalene, 1,4-dicyanatonaphthalene, 1,6-dicyanatonaphthalene, 1,8-dicyanatonaphthalene, 2,6-dicyanatonaphthalene, 2,7-dicyanatonaphthalene, 1, 3,6-tricyanatonaphthalene, 4,4′-dicyanatobiphenyl, bis (4-cyanatophenyl) ether, bi Su (4-cyanatophenyl) thioether, bis (4-cyanatophenyl) sulfone, 2,2-bis (4-cyanatophenyl) propane, and the like. These may be used alone or in combination of two or more.
Among them, the naphthol aralkyl cyanate ester compound represented by the formula (2), the novolak cyanate ester and the biphenyl aralkyl cyanate ester compound represented by the formula (3) have excellent flame retardancy and high curability. Further, it is particularly preferable because the cured product has a low coefficient of thermal expansion.
式中、R1は各々独立に水素原子又はメチル基を表し、中でも水素原子が好ましい。
式中、nは1以上の整数を示す。nの上限値は、通常は10、好ましくは6である。
In the formula, each R 1 independently represents a hydrogen atom or a methyl group, and among them, a hydrogen atom is preferable.
In the formula, n represents an integer of 1 or more. The upper limit value of n is usually 10, preferably 6.
式中、R2は各々独立に水素原子又はメチル基を表し、中でも水素原子が好ましい。
式中、nは1以上の整数を示す。nの上限値は、通常は10、好ましくは7である。
In the formula, each R 2 independently represents a hydrogen atom or a methyl group, and among them, a hydrogen atom is preferable.
In the formula, n represents an integer of 1 or more. The upper limit of n is usually 10, preferably 7.
これらのシアン酸エステル化合物の製法は、特に限定されず、シアン酸エステル合成として現存するいかなる方法で製造してもよい。具体的に例示すると、例えば特開2009−35728に記載されているように、式(4)で表されるナフトールアラルキル型フェノール樹脂とハロゲン化シアンを不活性有機溶媒中で、塩基性化合物存在下反応させることにより得ることができる。また、同様なナフトールアラルキル型フェノール樹脂と塩基性化合物による塩を、水を含有する溶液中にて形成させ、その後、ハロゲン化シアンと2相系界面反応を行い、合成する方法を採ることもできる。 The method for producing these cyanate ester compounds is not particularly limited, and may be produced by any existing method as cyanate ester synthesis. Specifically, for example, as described in JP-A-2009-35728, naphthol aralkyl type phenol resin represented by formula (4) and cyanogen halide are contained in an inert organic solvent in the presence of a basic compound. It can be obtained by reacting. In addition, it is possible to adopt a method of synthesizing a salt of a naphthol aralkyl type phenolic resin and a basic compound in a solution containing water and then performing a two-phase interface reaction with cyanogen halide. .
(式中、R3は各々独立に水素原子又はメチル基を表し、nは1以上の整数を示す。)
(In the formula, each R 3 independently represents a hydrogen atom or a methyl group, and n represents an integer of 1 or more.)
また、ナフトールアラルキル型シアン酸エステル化合物は、α−ナフトールあるいはβ−ナフトール等のナフトール類とp−キシリレングリコール、α,α’−ジメトキシ−p−キシレン、1,4−ジ(2−ヒドロキシ−2−プロピル)ベンゼン等との反応により得られるナフトールアラルキル樹脂とシアン酸とを縮合させて得られるものから選択することができる。 Naphthol aralkyl cyanate compounds include naphthols such as α-naphthol and β-naphthol, p-xylylene glycol, α, α'-dimethoxy-p-xylene, 1,4-di (2-hydroxy- It can be selected from those obtained by condensing naphthol aralkyl resin obtained by reaction with 2-propyl) benzene or the like and cyanic acid.
また、シアン酸エステル化合物(B)のシアネート基数と本実施形態の樹脂組成物に含まれるすべてのエポキシ樹脂のエポキシ基数の比(CN/Ep)は、特に限定されないが、耐熱性、難燃性、吸水率の観点から、0.4〜2.5となるように含有させることが好ましく、さらに好ましくは0.7〜2.0である。 Further, the ratio (CN / Ep) of the number of cyanate groups of the cyanate ester compound (B) and the number of epoxy groups of all epoxy resins contained in the resin composition of the present embodiment is not particularly limited, but heat resistance and flame retardancy are not limited. From the viewpoint of the water absorption rate, it is preferably contained so as to be 0.4 to 2.5, and more preferably 0.7 to 2.0.
本実施形態の樹脂組成物におけるシアン酸エステル化合物(B)の含有量は特に限定されないが、成分(A)〜(C)及び任意成分として含有される式(1)以外のエポキシ樹脂(F)の合計100質量部に対し、10〜50質量部であることが好ましく、より好ましくは20〜40質量部である。
シアン酸エステル化合物(B)合計含有量を好ましい範囲内とすることで、硬化度が上がり、難燃性、ガラス転移温度、吸水率、及び弾性率を有するプリント配線板を得ることができる。
The content of the cyanate ester compound (B) in the resin composition of the present embodiment is not particularly limited, but is an epoxy resin (F) other than the components (A) to (C) and the formula (1) contained as an optional component. It is preferable that it is 10-50 mass parts with respect to a total of 100 mass parts, More preferably, it is 20-40 mass parts.
By setting the total content of the cyanate ester compound (B) within a preferable range, the degree of cure is increased, and a printed wiring board having flame retardancy, glass transition temperature, water absorption, and elastic modulus can be obtained.
[マレイミド化合物(C)]
本実施形態の樹脂組成物におけるマレイミド化合物(C)は、1分子中に1個以上のマレイミド基を有する化合物であれば、特に限定されるものではない。その具体例としては、N−フェニルマレイミド、N−ヒドロキシフェニルマレイミド、ビス(4−マレイミドフェニル)メタン、2,2−ビス{4−(4−マレイミドフェノキシ)−フェニル}プロパン、ビス(3,5−ジメチル−4−マレイミドフェニル)メタン、ビス(3−エチル−5−メチル−4−マレイミドフェニル)メタン、ビス(3,5−ジエチル−4−マレイミドフェニル)メタン、式(5)で表されるマレイミド化合物、これらマレイミド化合物のプレポリマー、もしくはマレイミド化合物とアミン化合物のプレポリマーなどが挙げられ、1種もしくは2種以上を適宜混合して使用することも可能である。
その中でも、ビス(4−マレイミドフェニル)メタン、2,2−ビス{4−(4−マレイミドフェノキシ)−フェニル}プロパン、ビス(3−エチル−5−メチル−4−マレイミドフェニル)メタン、式(5)で表されるマレイミド化合物が好ましく、とりわけ、式(5)に例示されるマレイミド化合物が好ましい。
[Maleimide compound (C)]
The maleimide compound (C) in the resin composition of the present embodiment is not particularly limited as long as it is a compound having one or more maleimide groups in one molecule. Specific examples thereof include N-phenylmaleimide, N-hydroxyphenylmaleimide, bis (4-maleimidophenyl) methane, 2,2-bis {4- (4-maleimidophenoxy) -phenyl} propane, bis (3,5 -Dimethyl-4-maleimidophenyl) methane, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane, bis (3,5-diethyl-4-maleimidophenyl) methane, represented by formula (5) Examples thereof include maleimide compounds, prepolymers of these maleimide compounds, or prepolymers of maleimide compounds and amine compounds, and it is also possible to use one kind or a mixture of two or more kinds as appropriate.
Among them, bis (4-maleimidophenyl) methane, 2,2-bis {4- (4-maleimidophenoxy) -phenyl} propane, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane, The maleimide compound represented by 5) is preferable, and the maleimide compound exemplified by the formula (5) is particularly preferable.
式中、R4は各々独立に水素原子又はメチル基を表し、中でも水素原子が好ましい。
式中、nは1以上の整数を表す。nの上限値は、通常は10、好ましくは7である。
In the formula, each R 4 independently represents a hydrogen atom or a methyl group, and among them, a hydrogen atom is preferable.
In the formula, n represents an integer of 1 or more. The upper limit of n is usually 10, preferably 7.
本実施形態の樹脂組成物におけるマレイミド化合物(C)の含有量は特に限定されないが、成分(A)〜(C)及び任意成分として含有される式(1)以外のエポキシ樹脂(F)の合計100質量部に対し、10〜50質量部であることが好ましく、より好ましくは20〜40質量部である。
マレイミド化合物(C)の含有量を好ましい範囲内とすることで、硬化度が上がり、優れた難燃性、ガラス転移温度、吸水率、及び弾性率に優れたプリント配線板を得ることができる。
The content of the maleimide compound (C) in the resin composition of the present embodiment is not particularly limited, but the sum of the components (A) to (C) and the epoxy resin (F) other than the formula (1) contained as an optional component. It is preferable that it is 10-50 mass parts with respect to 100 mass parts, More preferably, it is 20-40 mass parts.
By setting the content of the maleimide compound (C) within a preferable range, the degree of cure is increased, and a printed wiring board having excellent flame retardancy, glass transition temperature, water absorption, and elastic modulus can be obtained.
[無機充填材(D)]
本実施形態の樹脂組成物における無機充填材(D)は、当業界において通常用いられるものであれば特に限定されない。例えば、天然シリカ、溶融シリカ、アモルファスシリカ、中空シリカ等のシリカ類、水酸化アルミニウム、水酸化アルミニウム加熱処理品(水酸化アルミニウムを加熱処理し、結晶水の一部を減じたもの)、ベーマイト、水酸化マグネシウム等の金属水和物、酸化モリブデン、モリブデン酸亜鉛等のモリブデン化合物、ホウ酸亜鉛、錫酸亜鉛、アルミナ、クレー、カオリン、タルク、焼成クレー、焼成カオリン、焼成タルク、マイカ、ガラス短繊維(EガラスやDガラスなどのガラス微粉末類)、中空ガラス、球状ガラスなどが挙げられ、1種もしくは2種以上を適宜混合して使用することが可能である。
その中でも、熱膨張率、耐燃性の観点から、シリカ、ベーマイト、水酸化マグネシウム、アルミナ、タルクが好ましく、ドリル加工性の観点からモリブデン化合物や無機酸化物をコートしたモリブデン酸化合物が好ましい。
[Inorganic filler (D)]
The inorganic filler (D) in the resin composition of this embodiment will not be specifically limited if it is normally used in this industry. For example, natural silica, fused silica, amorphous silica, hollow silica, etc., aluminum hydroxide, aluminum hydroxide heat-treated product (aluminum hydroxide is heat-treated to reduce part of crystal water), boehmite, Metal hydrates such as magnesium hydroxide, molybdenum compounds such as molybdenum oxide and zinc molybdate, zinc borate, zinc stannate, alumina, clay, kaolin, talc, calcined clay, calcined kaolin, calcined talc, mica, short glass Examples thereof include fibers (glass fine powders such as E glass and D glass), hollow glass, spherical glass, and the like, and one or two or more kinds can be appropriately mixed and used.
Among these, silica, boehmite, magnesium hydroxide, alumina, and talc are preferable from the viewpoint of the coefficient of thermal expansion and flame resistance, and a molybdate compound coated with a molybdenum compound or an inorganic oxide is preferable from the viewpoint of drill workability.
無機充填材(D)の平均粒子径(D50)は特に限定されないが、分散性を考慮すると平均粒子径(D50)が0.2〜5μmであることが好ましい。さらに、上述した通り、無機充填材の平均粒子径が小さいほどその表面積が大きくなって樹脂組成物の粘度上昇が起こりやすくなることから、本願発明の効果が得られやすく、平均粒子径の上限が3μmであることがさらに好ましく、とりわけ1μmであることが特に好ましい。
なお、本明細書において、平均粒子径(D50)とは、メジアン径(D50)を意味し、測定した粉体の粒度分布を2つに分けたときの大きい側と小さい側が等量となる値である。より具体的には、レーザー回折散乱式の粒度分布測定装置により、水分散媒中に所定量投入された粉体の粒度分布を測定し、小さい粒子から体積積算して、全体積の50%に達したときの値を意味する。
The average particle diameter (D50) of the inorganic filler (D) is not particularly limited, but the average particle diameter (D50) is preferably 0.2 to 5 μm in consideration of dispersibility. Furthermore, as described above, the smaller the average particle diameter of the inorganic filler, the greater the surface area and the viscosity increase of the resin composition is likely to occur. Therefore, the effect of the present invention is easily obtained, and the upper limit of the average particle diameter is More preferably, it is 3 μm, and particularly preferably 1 μm.
In the present specification, the average particle diameter (D50) means the median diameter (D50), and is a value in which the larger side and the smaller side are equivalent when the particle size distribution of the measured powder is divided into two. It is. More specifically, the particle size distribution of a predetermined amount of powder introduced into the aqueous dispersion medium is measured by a laser diffraction scattering type particle size distribution measuring device, and the volume is integrated from small particles to 50% of the total volume. Means the value when reached.
本実施形態の樹脂組成物における無機充填材(D)の含有量は特に限定されないが、樹脂組成物成分が、式(1)で表されるエポキシ樹脂(A)、シアン酸エステル化合物(B)、マレイミド化合物(C)及び無機充填材(D)が含まれる系においては、成分(A)〜(C)及び任意成分として含有される式(1)以外のエポキシ樹脂(F)の合計100質量部に対し、100〜1000質量部であることが好ましく、より好ましくは150〜800質量部、さらに好ましくは150〜600質量部、とりわけ好ましくは150〜400質量部である。
また、樹脂組成物成分が、式(1)で表されるエポキシ樹脂(A)、BT樹脂(E)及び無機充填材(D)が含まれる系においては、成分(A)、(E)及び任意成分として含有される式(1)以外のエポキシ樹脂(F)の合計100質量部に対し、100〜1000質量部であることが好ましく、より好ましくは150〜800質量部、さらに好ましくは150〜600質量部、とりわけ好ましくは150〜400質量部である。
無機充填材(D)の含有量を好ましい範囲内とすることで、難燃性、成形性、ドリル加工性に優れたプリント配線板を得ることができる。
The content of the inorganic filler (D) in the resin composition of the present embodiment is not particularly limited, but the resin composition component is an epoxy resin (A) represented by the formula (1), a cyanate ester compound (B). In the system including the maleimide compound (C) and the inorganic filler (D), the total of 100 masses of the epoxy resin (F) other than the components (A) to (C) and the formula (1) contained as an optional component. The amount is preferably 100 to 1000 parts by mass, more preferably 150 to 800 parts by mass, still more preferably 150 to 600 parts by mass, and particularly preferably 150 to 400 parts by mass with respect to parts.
In the system in which the resin composition component includes the epoxy resin (A) represented by the formula (1), the BT resin (E), and the inorganic filler (D), the components (A), (E) and It is preferable that it is 100-1000 mass parts with respect to a total of 100 mass parts of epoxy resins (F) other than Formula (1) contained as an arbitrary component, More preferably, it is 150-800 mass parts, More preferably, 150- 600 parts by mass, particularly preferably 150 to 400 parts by mass.
By making content of an inorganic filler (D) into a preferable range, the printed wiring board excellent in the flame retardance, a moldability, and drill workability can be obtained.
前記無機充填材(D)に加えて、無機充填材の分散性、樹脂と無機充填材やガラスクロスの接着強度を向上させるために、シランカップリング剤や湿潤分散剤を併用することも可能である。
これらのシランカップリング剤としては、一般に無機物の表面処理に使用されているシランカップリング剤であれば、特に限定されるものではない。具体例としては、γ−アミノプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシランなどのアミノシラン系、γ−グリシドキシプロピルトリメトキシシランなどのエポキシシラン系、γ−メタアクリロキシプロピルトリメトキシシランなどのビニルシラン系、N−β−(N−ビニルベンジルアミノエチル)−γ−アミノプロピルトリメトキシシラン塩酸塩などのカチオニックシラン系、フェニルシラン系などが挙げられ、1種もしくは2種以上を適宜組み合わせて使用することも可能である。
また湿潤分散剤としては、塗料用に使用されている分散安定剤であれば、特に限定されるものではない。例えばビッグケミー・ジャパン(株)製のDisperbyk−110、111、180、161、BYK−W996、W9010、W903等の湿潤分散剤が挙げられる。
In addition to the inorganic filler (D), in order to improve the dispersibility of the inorganic filler and the adhesive strength between the resin and the inorganic filler or the glass cloth, a silane coupling agent or a wetting dispersant can be used in combination. is there.
These silane coupling agents are not particularly limited as long as they are silane coupling agents generally used for inorganic surface treatment. Specific examples include aminosilanes such as γ-aminopropyltriethoxysilane, N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, epoxysilanes such as γ-glycidoxypropyltrimethoxysilane, γ -Vinyl silanes such as methacryloxypropyltrimethoxysilane, cationic silanes such as N-β- (N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane hydrochloride, phenylsilanes, etc. It is also possible to use one kind or a combination of two or more kinds as appropriate.
The wetting and dispersing agent is not particularly limited as long as it is a dispersion stabilizer used for coatings. For example, wet dispersers such as Disperbyk-110, 111, 180, 161, BYK-W996, W9010, W903 manufactured by Big Chemie Japan Co., Ltd. may be mentioned.
[BT樹脂(E)]
本実施形態の樹脂組成物におけるBT樹脂(E)とは、シアン酸エステル化合物及びマレイミド化合物を、無溶剤又はメチルエチルケトン、Nメチルピロドリン、ジメチルホルムアミド、ジメチルアセトアミド、トルエン、キシレン等の有機溶剤に溶解して加熱混合し、プレポリマー化したものである。
[BT resin (E)]
The BT resin (E) in the resin composition of the present embodiment is a solution of a cyanate ester compound and a maleimide compound in a solvent-free or organic solvent such as methyl ethyl ketone, N-methyl pyrodrine, dimethylformamide, dimethylacetamide, toluene, and xylene. Then, they are mixed by heating and prepolymerized.
用いるシアン酸エステル化合物は特に限定されず、例えば式(2)で表されるナフトールアラルキル型シアン酸エステル化合物、式(3)で表されるノボラック型シアン酸エステル、ビフェニルアラルキル型シアン酸エステル、ビス(3,5−ジメチル4−シアナトフェニル)メタン、ビス(4−シアナトフェニル)メタン、1,3−ジシアナトベンゼン、1,4−ジシアナトベンゼン、1,3,5−トリシアナトベンゼン、1,3−ジシアナトナフタレン、1,4−ジシアナトナフタレン、1,6−ジシアナトナフタレン、1,8−ジシアナトナフタレン、2,6−ジシアナトナフタレン、2、7−ジシアナトナフタレン、1,3,6−トリシアナトナフタレン、4、4’−ジシアナトビフェニル、ビス(4−シアナトフェニル)エーテル、ビス(4−シアナトフェニル)チオエーテル、ビス(4−シアナトフェニル)スルホン、2、2−ビス(4−シアナトフェニル)プロパン、等が挙げられ、1種もしくは2種以上を適宜混合して使用することも可能である。
この中でも式(2)で表されるナフトールアラルキル型シアン酸エステル化合物、式(3)で表されるノボラック型シアン酸エステル、ビフェニルアラルキル型シアン酸エステルが、得られるプリント配線板の難燃性、硬化性、低熱膨張係数の観点から好ましい。
また、マレイミド化合物も特に限定されないが、N−フェニルマレイミド、N−ヒドロキシフェニルマレイミド、ビス(4−マレイミドフェニル)メタン、2,2−ビス{4−(4−マレイミドフェノキシ)−フェニル}プロパン、ビス(3,5−ジメチル−4−マレイミドフェニル)メタン、ビス(3−エチル−5−メチル−4−マレイミドフェニル)メタン、ビス(3,5−ジエチル−4−マレイミドフェニル)メタン、式(5)で表されるマレイミド化合物、これらマレイミド化合物のプレポリマー、もしくはマレイミド化合物とアミン化合物のプレポリマーなどが挙げられ、1種もしくは2種以上を適宜混合して使用することも可能である。
その中でも、ビス(4−マレイミドフェニル)メタン、2,2−ビス{4−(4−マレイミドフェノキシ)−フェニル}プロパン、ビス(3−エチル−5−メチル−4−マレイミドフェニル)メタン、式(5)で表されるマレイミド化合物が好ましく、とりわけ、式(5)に例示されるマレイミド化合物が好ましい。
The cyanate ester compound used is not particularly limited. For example, a naphthol aralkyl cyanate ester compound represented by the formula (2), a novolac cyanate ester, a biphenylaralkyl cyanate ester represented by the formula (3), a bis (3,5-dimethyl-4-cyanatophenyl) methane, bis (4-cyanatophenyl) methane, 1,3-dicyanatobenzene, 1,4-dicyanatobenzene, 1,3,5-tricyanatobenzene, 1,3-dicyanatonaphthalene, 1,4-dicyanatonaphthalene, 1,6-dicyanatonaphthalene, 1,8-dicyanatonaphthalene, 2,6-dicyanatonaphthalene, 2,7-dicyanatonaphthalene, 1, 3,6-tricyanatonaphthalene, 4,4′-dicyanatobiphenyl, bis (4-cyanatophenyl) ether, Bis (4-cyanatophenyl) thioether, bis (4-cyanatophenyl) sulfone, 2,2-bis (4-cyanatophenyl) propane, etc. may be mentioned, and one or two or more may be mixed as appropriate It is also possible to use it.
Among these, the naphthol aralkyl cyanate ester compound represented by the formula (2), the novolak cyanate ester and the biphenyl aralkyl cyanate ester represented by the formula (3) are obtained from the flame retardancy of the printed wiring board, It is preferable from the viewpoints of curability and a low thermal expansion coefficient.
The maleimide compound is not particularly limited, but N-phenylmaleimide, N-hydroxyphenylmaleimide, bis (4-maleimidophenyl) methane, 2,2-bis {4- (4-maleimidophenoxy) -phenyl} propane, bis (3,5-dimethyl-4-maleimidophenyl) methane, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane, bis (3,5-diethyl-4-maleimidophenyl) methane, formula (5) Or a prepolymer of these maleimide compounds, or a prepolymer of a maleimide compound and an amine compound, or a mixture of one or more of them may be used as appropriate.
Among them, bis (4-maleimidophenyl) methane, 2,2-bis {4- (4-maleimidophenoxy) -phenyl} propane, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane, The maleimide compound represented by 5) is preferable, and the maleimide compound exemplified by the formula (5) is particularly preferable.
BT樹脂(E)におけるマレイミド化合物の割合は特に限定されないが、ガラス転移温度、難燃性、硬化性の観点から、BT樹脂(E)の総量に対し、5〜75質量%の範囲が好ましく、10〜70質量%の範囲が特に好ましい。
また、プレポリマーであるBT樹脂(E)の分子量の範囲は特に限定されるものではないが、ハンドリング性、ガラス転移温度、硬化性の観点から、数平均分子量で約100〜100000の範囲であることが好ましい。
The ratio of the maleimide compound in the BT resin (E) is not particularly limited, but from the viewpoint of glass transition temperature, flame retardancy, and curability, a range of 5 to 75% by mass is preferable with respect to the total amount of the BT resin (E). A range of 10 to 70% by mass is particularly preferable.
Further, the range of the molecular weight of the prepolymer BT resin (E) is not particularly limited, but it is in the range of about 100 to 100,000 in terms of number average molecular weight from the viewpoints of handling properties, glass transition temperature, and curability. It is preferable.
本発明の樹脂組成物におけるBT樹脂(E)の含有量は特に限定されないが、成分(A)、(E)及び任意成分として含有される式(1)以外のエポキシ樹脂(F)の合計100質量部に対し、10〜90質量部であることが好ましく、より好ましくは20〜80質量部である。
BT樹脂(E)の含有量を好ましい範囲内とすることで、硬化度が上がり、難燃性、ガラス転移温度、吸水率、及び弾性率に優れたプリント配線板を得ることができる。
Although content of BT resin (E) in the resin composition of this invention is not specifically limited, A total of 100 epoxy resins (F) other than Formula (1) contained as a component (A), (E) and an arbitrary component. It is preferable that it is 10-90 mass parts with respect to a mass part, More preferably, it is 20-80 mass parts.
By setting the content of the BT resin (E) within a preferable range, the degree of cure is increased, and a printed wiring board excellent in flame retardancy, glass transition temperature, water absorption rate, and elastic modulus can be obtained.
本実施形態の樹脂組成物は、式(6)で表されるイミダゾール化合物を含有していてもよい。このイミダゾール化合物は硬化促進の作用を有し、硬化物のガラス転移温度を上げる作用を有する。式(6)における置換基Arは置換基を有してもよいフェニル基、ナフタレン基、ビフェニル基、アントラセン基又はその水酸基変性物等が挙げられるが、その中でもフェニル基が好適である。
また、式(6)における置換基R5は水素原子、アルキル基又はその水酸基変性物、置換基を有してもよいフェニル基等のアリール基が好適であり、さらに、Ar、R5ともにフェニル基であることがさらに好ましい。
(式中、Arは各々独立に、置換基を有してもよいフェニル基、ナフタレン基、ビフェニル基、アントラセン基又はその水酸基変性物、R5は水素原子、アルキル基又はその水酸基変性物、置換基を有してもよいアリール基を表す。)
The resin composition of this embodiment may contain an imidazole compound represented by formula (6). This imidazole compound has an effect of accelerating curing and has an effect of increasing the glass transition temperature of the cured product. Examples of the substituent Ar in the formula (6) include an optionally substituted phenyl group, naphthalene group, biphenyl group, anthracene group, or a hydroxyl group-modified product thereof, among which a phenyl group is preferable.
In addition, the substituent R 5 in the formula (6) is preferably a hydrogen atom, an alkyl group or a hydroxyl-modified product thereof, and an aryl group such as a phenyl group which may have a substituent. Further, both Ar and R 5 are phenyl. More preferably, it is a group.
(In the formula, each Ar independently represents an optionally substituted phenyl group, naphthalene group, biphenyl group, anthracene group or a hydroxyl group-modified product thereof, and R 5 is a hydrogen atom, an alkyl group or a hydroxyl group-modified product thereof, a substituted group. Represents an aryl group which may have a group.)
本発明の樹脂組成物におけるイミダゾール化合物の含有量は特に限定されないが、樹脂組成物成分が、式(1)で表されるエポキシ樹脂(A)、シアン酸エステル化合物(B)、マレイミド化合物(C)及び無機充填材(D)が含まれる系においては、成分(A)〜(C)及び任意成分として含有される式(1)以外のエポキシ樹脂(F)の合計100質量部に対し、0.01〜10質量部であることが好ましく、より好ましくは0.1〜5質量部である。
また、樹脂組成物成分が、式(1)で表されるエポキシ樹脂(A)、BT樹脂(E)及び無機充填材(D)が含まれる系においては、成分(A)、(E)及び任意成分として含有される式(1)以外のエポキシ樹脂(F)の合計100質量部に対し、0.01〜10質量部であることが好ましく、より好ましくは0.1〜5質量部である。
イミダゾール化合物の含有量を好ましい範囲内とすることで、硬化度が上がり、ガラス転移温度、吸水率、及び弾性率に優れたプリント配線板を得ることができる。
Although the content of the imidazole compound in the resin composition of the present invention is not particularly limited, the resin composition component includes an epoxy resin (A) represented by the formula (1), a cyanate ester compound (B), a maleimide compound (C ) And the inorganic filler (D) are included in the system, the component (A) to (C) and the epoxy resin (F) other than the formula (1) contained as an optional component is 100 parts by mass in total. It is preferable that it is 0.01-10 mass parts, More preferably, it is 0.1-5 mass parts.
In the system in which the resin composition component includes the epoxy resin (A) represented by the formula (1), the BT resin (E), and the inorganic filler (D), the components (A), (E) and It is preferable that it is 0.01-10 mass parts with respect to a total of 100 mass parts of epoxy resins (F) other than Formula (1) contained as an arbitrary component, More preferably, it is 0.1-5 mass parts. .
By setting the content of the imidazole compound within a preferable range, the degree of cure is increased, and a printed wiring board excellent in glass transition temperature, water absorption rate, and elastic modulus can be obtained.
また実施形態の樹脂組成物においては、所期の特性が損なわれない範囲において、前記イミダゾール化合物に加え、他の硬化促進剤を併用する事も可能である。このような化合物としては、例えば、過酸化ベンゾイル、ラウロイルパーオキサイド、アセチルパーオキサイド、パラクロロベンゾイルパーオキサイド、ジ−tert−ブチル−ジ−パーフタレート等で例示される有機過酸化物;アゾビスニトリル当のアゾ化合物;N,N−ジメチルベンジルアミン、N,N−ジメチルアニリン、N,N−ジメチルトルイジン、2−N−エチルアニリノエタノール、トリ−n−ブチルアミン、ピリジン、キノリン、N−メチルモルホリン、トリエタノールアミン、トリエチレンジアミン、テトラメチルブタンジアミン、N−メチルピペリジンなどの第3級アミン類;フェノール、キシレノール、クレゾール、レゾルシン、カテコールなどの単量体フェノール類;ナフテン酸鉛、ステアリン酸鉛、ナフテン酸亜鉛、オクチル酸亜鉛、オレイン酸錫、ジブチル錫マレート、ナフテン酸マンガン、ナフテン酸コバルト、アセチルアセトン鉄などの有機金属塩;これら有機金属塩をフェノール、ビスフェノールなどの単量体水酸基含有化合物に溶解してなるもの;塩化錫、塩化亜鉛、塩化アルミニウムなどの無機金属塩;ジオクチル錫オキサイド、その他のアルキル錫、アルキル錫オキサイドなどの有機錫化合物などが挙げられる。 In the resin composition of the embodiment, in addition to the imidazole compound, other curing accelerators can be used in combination as long as the desired characteristics are not impaired. Examples of such compounds include organic peroxides exemplified by benzoyl peroxide, lauroyl peroxide, acetyl peroxide, parachlorobenzoyl peroxide, di-tert-butyl-di-perphthalate, and the like; azobisnitrile The azo compound: N, N-dimethylbenzylamine, N, N-dimethylaniline, N, N-dimethyltoluidine, 2-N-ethylanilinoethanol, tri-n-butylamine, pyridine, quinoline, N-methylmorpholine , Tertiary amines such as triethanolamine, triethylenediamine, tetramethylbutanediamine, N-methylpiperidine; monomeric phenols such as phenol, xylenol, cresol, resorcin, catechol; lead naphthenate, lead stearate, Naphthenic acid sub- Organic metal salts such as zinc octylate, tin oleate, dibutyltin malate, manganese naphthenate, cobalt naphthenate, and acetylacetone iron; these organic metal salts are dissolved in monomeric hydroxyl group-containing compounds such as phenol and bisphenol Inorganic metal salts such as tin chloride, zinc chloride and aluminum chloride; Dioctyl tin oxide, and other organic tin compounds such as alkyl tin and alkyl tin oxide.
さらに本実施形態の樹脂組成物は、式(1)以外のエポキシ樹脂(F)を含有してもよい。式(1)以外のエポキシ樹脂(F)としては分子構造にハロゲン原子を含まず、分子内に2以上のエポキシ基を有するものであれば特に限定されない。
例えば、式(7)で表されるフェノールフェニルアラルキルノボラック型エポキシ樹脂、式(8)で表されるフェノールビフェニルアラルキル型エポキシ樹脂、式(9)で表されるナフトールアラルキル型エポキシ樹脂、また熱膨張を低くするために式(10)で表されるアントラキノン型エポキシ樹脂や式(11)、式(12)で表されるポリオキシナフチレン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、3官能フェノール型エポキシ樹脂、4官能フェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、アラルキルノボラック型エポキシ樹脂、脂環式エポキシ樹脂、ポリオール型エポキシ樹脂、グリシジルアミン、グリシジルエステル、ブタジエンなどの2重結合をエポキシ化した化合物、水酸基含有シリコーン樹脂類とエピクロルヒドリンとの反応により得られる化合物等が挙げられ、この中でも、特に難燃性を向上させるために式(7)で表されるフェノールフェニルアラルキルノボラック型エポキシ樹脂、式(8)で表されるフェノールビフェニルアラルキル型エポキシ樹脂、式(9)で表されるナフトールアラルキル型エポキシ樹脂、式(10)で表されるアントラキノン型エポキシ樹脂、式(11)、式(12)で表されるポリオキシナフチレン型エポキシ樹脂であることが好ましい。
これらの非ハロゲンエポキシ樹脂は、1種もしくは2種以上を適宜混合して使用することが可能である。
Furthermore, the resin composition of this embodiment may contain an epoxy resin (F) other than the formula (1). The epoxy resin (F) other than the formula (1) is not particularly limited as long as it does not contain a halogen atom in the molecular structure and has two or more epoxy groups in the molecule.
For example, a phenol phenyl aralkyl novolak type epoxy resin represented by formula (7), a phenol biphenyl aralkyl type epoxy resin represented by formula (8), a naphthol aralkyl type epoxy resin represented by formula (9), and thermal expansion In order to lower the anthraquinone type epoxy resin represented by formula (10), polyoxynaphthylene type epoxy resin represented by formula (11) and formula (12), bisphenol A type epoxy resin, bisphenol F type epoxy resin , Phenol novolac epoxy resin, cresol novolac epoxy resin, bisphenol A novolac epoxy resin, trifunctional phenol epoxy resin, tetrafunctional phenol epoxy resin, naphthalene epoxy resin, biphenyl epoxy resin, aralkyl novolac epoxy Examples include compounds obtained by epoxidizing double bonds such as fats, alicyclic epoxy resins, polyol-type epoxy resins, glycidyl amines, glycidyl esters, and butadienes, compounds obtained by reaction of hydroxyl group-containing silicone resins with epichlorohydrin, and the like. Among these, in order to improve flame retardancy, the phenol phenyl aralkyl novolac type epoxy resin represented by the formula (7), the phenol biphenyl aralkyl type epoxy resin represented by the formula (8), and the formula (9) The naphthol aralkyl type epoxy resin, the anthraquinone type epoxy resin represented by the formula (10), and the polyoxynaphthylene type epoxy resin represented by the formula (11) and the formula (12) are preferable.
These non-halogen epoxy resins can be used alone or in combination of two or more.
式中、R6は各々独立に水素原子又はメチル基を表し、中でも水素原子が好ましい。
式中、nは1以上の整数を表す。nの上限値は、通常は10、好ましくは7である。
In the formula, each R 6 independently represents a hydrogen atom or a methyl group, and among them, a hydrogen atom is preferable.
In the formula, n represents an integer of 1 or more. The upper limit of n is usually 10, preferably 7.
式中、R7は各々独立に水素原子又はメチル基を表し、中でも水素原子が好ましい。
式中、nは1以上の整数を表す。nの上限値は、通常は10、好ましくは7である。
In the formula, each R 7 independently represents a hydrogen atom or a methyl group, and among them, a hydrogen atom is preferable.
In the formula, n represents an integer of 1 or more. The upper limit of n is usually 10, preferably 7.
式中、R8は各々独立に水素原子又はメチル基を表し、中でも水素原子が好ましい。
式中、nは1以上の整数を表す。nの上限値は、通常は10、好ましくは7である。
In the formula, each R 8 independently represents a hydrogen atom or a methyl group, and among them, a hydrogen atom is preferable.
In the formula, n represents an integer of 1 or more. The upper limit of n is usually 10, preferably 7.
式中、R9は各々独立に炭素原子数1〜4のアルキル基を表し、nは0〜3の整数を表す。
In the formula, each R 9 independently represents an alkyl group having 1 to 4 carbon atoms, and n represents an integer of 0 to 3.
式中、R10は各々独立に炭素原子数1〜4のアルキル基を表し、nは0〜3の整数を表す。
上記式(11)、式(12)のエポキシ樹脂の製品例としてはDIC株式会社製、EXA−7311、EXA−7311―G3、EXA−7311―G4、EXA−7311―G4S、EXA−7311L,HP−6000が挙げられる。
In the formula, each R 10 independently represents an alkyl group having 1 to 4 carbon atoms, and n represents an integer of 0 to 3.
Examples of the epoxy resin products of the above formulas (11) and (12) are DIC Corporation, EXA-7311, EXA-7311-G3, EXA-7311-G4, EXA-7311-G4S, EXA-7311L, and HP. -6000.
さらに求められる用途によりリン含有エポキシ樹脂やブロム化エポキシ樹脂も併用することができる。ブロム化エポキシ樹脂とは、1分子中に2個以上のエポキシ基を有する臭素原子含有化合物であれば特に限定されない。具体的には、ブロム化ビスフェノールA型エポキシ樹脂、ブロム化フェノールノボラック型エポキシ樹脂などが例示される。 Further, a phosphorus-containing epoxy resin or a brominated epoxy resin can be used in combination depending on the intended use. The brominated epoxy resin is not particularly limited as long as it is a bromine atom-containing compound having two or more epoxy groups in one molecule. Specific examples include brominated bisphenol A type epoxy resins and brominated phenol novolac type epoxy resins.
さらに、本実施形態の樹脂組成物は、必要に応じて溶剤を含有していてもよい。例えば、有機溶剤を用いると、樹脂組成物の調製時における粘度が下がり、ハンドリング性を向上されるとともにガラスクロスへの含浸性が高められる。溶剤の種類は、式(1)で表されるエポキシ樹脂(A)、シアン酸エステル化合物(B)、マレイミド化合物(C)、もしくはエポキシ樹脂(A)、BT樹脂(E)の混合物の一部又は全部を溶解可能なものであれば、特に限定されない。その具体例としては、例えば、アセトン、メチルエチルケトン、メチルセルソルブなどのケトン類、トルエン、キシレンなどの芳香族炭化水素類、ジメチルホルムアミドなどのアミド類、プロピレングリコールメチルエーテル及びそのアセテートなどが挙げられるが、これらに特に限定されない。溶剤は、1種を単独で或いは2種以上を組み合わせて使用することができる。 Furthermore, the resin composition of the present embodiment may contain a solvent as necessary. For example, when an organic solvent is used, the viscosity at the time of preparing the resin composition is lowered, the handling property is improved, and the impregnation property to the glass cloth is enhanced. The kind of solvent is an epoxy resin (A) represented by the formula (1), a cyanate ester compound (B), a maleimide compound (C), or a part of a mixture of the epoxy resin (A) and the BT resin (E). Or if it can melt | dissolve all, it will not specifically limit. Specific examples thereof include ketones such as acetone, methyl ethyl ketone and methyl cellosolve, aromatic hydrocarbons such as toluene and xylene, amides such as dimethylformamide, propylene glycol methyl ether and acetate thereof. However, it is not particularly limited to these. A solvent can be used individually by 1 type or in combination of 2 or more types.
本発明における樹脂組成物は、常法にしたがって調製することができ、エポキシ樹脂(A)、シアン酸エステル化合物(B)、マレイミド化合物(C)及び無機充填材(D)及び上述したその他の任意成分、もしくはエポキシ樹脂(A)、BT樹脂(E)及び無機充填材(D)及び上述したその他の任意成分を均一に含有する樹脂組成物が得られる方法であれば、その調製方法は、特に限定されない。例えば、式(1)で表されるエポキシ樹脂、シアン酸エステル化合物、マレイミド化合物、シリカを順次溶剤に配合し、十分に攪拌することで本実施形態の樹脂組成物を容易に調製することができる。 The resin composition in the present invention can be prepared according to a conventional method, and includes an epoxy resin (A), a cyanate ester compound (B), a maleimide compound (C), an inorganic filler (D), and other optional components described above. If the resin composition containing the components or the epoxy resin (A), the BT resin (E), the inorganic filler (D) and the other optional components described above is obtained in a uniform manner, the preparation method is particularly It is not limited. For example, the epoxy resin represented by formula (1), a cyanate ester compound, a maleimide compound, and silica are sequentially blended in a solvent, and the resin composition of this embodiment can be easily prepared by sufficiently stirring. .
本発明の樹脂組成物の調製時において、必要に応じて有機溶剤を使用することができる。有機溶剤の種類は、式(1)で表されるエポキシ樹脂(A)、シアン酸エステル化合物(B)、マレイミド化合物(C)、もしくはエポキシ樹脂(A)、BT樹脂(E)の混合物を溶解可能なものであれば、特に限定されない。その具体例は、上述したとおりである。 In preparing the resin composition of the present invention, an organic solvent can be used as necessary. The type of organic solvent is an epoxy resin (A) represented by the formula (1), a cyanate ester compound (B), a maleimide compound (C), or a mixture of an epoxy resin (A) and a BT resin (E). If possible, it is not particularly limited. Specific examples thereof are as described above.
なお、樹脂組成物の調製時に、各成分を均一に溶解或いは分散させるための公知の処理(攪拌、混合、混練処理など)を行うことができる。例えば、無機充填材(D)の均一分散にあたり、適切な攪拌能力を有する攪拌機を付設した攪拌槽を用いて攪拌分散処理を行うことで、樹脂組成物に対する分散性が高められる。上記の攪拌、混合、混練処理は、例えば、ボールミル、ビーズミルなどの混合を目的とした装置、又は、公転・自転型の混合装置などの公知の装置を用いて適宜行うことができる。 In preparing the resin composition, known processes (such as stirring, mixing, and kneading) for uniformly dissolving or dispersing the components can be performed. For example, when the inorganic filler (D) is uniformly dispersed, the dispersibility with respect to the resin composition can be improved by performing the agitation and dispersion treatment using an agitation tank equipped with a stirrer having an appropriate agitation ability. The above stirring, mixing, and kneading treatment can be appropriately performed using, for example, a known device such as a ball mill, a bead mill or the like, or a revolution / spinning type mixing device.
一方、本発明のプリプレグは、上記の樹脂組成物を基材と組み合わせる、具体的には、上記の樹脂組成物を基材に含浸又は塗布させることにより、得ることができる。プリプレグの作製方法は、常法にしたがって行うことができ、特に限定されない。例えば、本発明における樹脂成分を基材に含浸又は塗布させた後、100〜200℃の乾燥機中で1〜30分加熱するなどして半硬化(Bステ−ジ化)させることで、本実施形態のプリプレグを作製することができる。なお、本実施形態のプリプレグは、特に限定されないが、プリプレグの総量に対する樹脂組成物(無機充填剤を含む。)の量が、30〜90質量%の範囲であることが好ましい。 On the other hand, the prepreg of the present invention can be obtained by combining the above resin composition with a base material, specifically, impregnating or applying the above resin composition to the base material. The method for producing the prepreg can be performed according to a conventional method, and is not particularly limited. For example, after impregnating or applying the resin component in the present invention to a base material, it is heated in a dryer at 100 to 200 ° C. for 1 to 30 minutes to be semi-cured (B staged). The prepreg of the embodiment can be produced. In addition, although the prepreg of this embodiment is not specifically limited, It is preferable that the quantity of the resin composition (an inorganic filler is included) with respect to the total amount of a prepreg is the range of 30-90 mass%.
本発明で使用される基材としては、特に限定されるものではなく、各種プリント配線板材料に用いられている公知のものを、目的とする用途や性能により適宜選択して使用することができる。その具体例としては、例えば、Eガラス、Dガラス、Sガラス、Qガラス、球状ガラス、NEガラス、Tガラス等のガラス繊維、クォーツ等のガラス以外の無機繊維、ポリパラフェニレンテレフタラミド(ケブラー(登録商標)、デュポン株式会社製)、コポリパラフェニレン・3,4’オキシジフェニレン・テレフタラミド(テクノーラ(登録商標)、帝人テクノプロダクツ株式会社製)等の全芳香族ポリアミド、2,6−ヒドロキシナフトエ酸・パラヒドロキシ安息香酸(ベクトラン(登録商標)、株式会社クラレ製)等のポリエステル、ポリパラフェニレンベンズオキサゾール(ザイロン(登録商標)、東洋紡績株式会社製)、ポリイミドなどの有機繊維が挙げられるが、これらに特に限定されない。
これらの中でも低熱膨張性の観点から、Eガラス、Tガラス、Sガラス、Qガラスが好ましい。
これら基材は1種を単独で或いは2種以上を組み合わせて使用することができる。
基材の形状としては織布、不織布、ロービング、チョップドストランドマット、サーフェシングマットなど、織布の織り方としては、平織り、ななこ織り、綾織り等が知られており、これら公知のものから目的とする用途や性能により適宜選択して使用することができ、これらを開繊処理したものやシランカップリング剤などで表面処理したガラス織布が好適に使用される。基材の厚さや質量は、特に限定されないが、通常は0.01〜0.3mm程度のものが好適に用いられる。とりわけ、強度と吸水性の観点から、基材は、厚み200μm以下、質量250g/m2以下のガラス織布が好ましく、Eガラスのガラス繊維からなるガラス織布がより好ましい。
The substrate used in the present invention is not particularly limited, and known materials used for various printed wiring board materials can be appropriately selected and used depending on the intended use and performance. . Specific examples thereof include glass fibers such as E glass, D glass, S glass, Q glass, spherical glass, NE glass and T glass, inorganic fibers other than glass such as quartz, polyparaphenylene terephthalamide (Kevlar), and the like. (Registered trademark), manufactured by DuPont Co., Ltd., wholly aromatic polyamides such as copolyparaphenylene 3,4'oxydiphenylene terephthalamide (Technola (registered trademark), manufactured by Teijin Techno Products Co., Ltd.), 2,6-hydroxy Organic fibers such as polyesters such as naphthoic acid and parahydroxybenzoic acid (Vectran (registered trademark), manufactured by Kuraray Co., Ltd.), polyparaphenylene benzoxazole (Zylon (registered trademark), manufactured by Toyobo Co., Ltd.), and polyimide However, it is not particularly limited to these.
Among these, E glass, T glass, S glass, and Q glass are preferable from the viewpoint of low thermal expansion.
These base materials can be used individually by 1 type or in combination of 2 or more types.
As the shape of the base material, woven fabric, non-woven fabric, roving, chopped strand mat, surfacing mat, etc., the weaving method of woven fabric is known as plain weave, Nanako weave, twill weave, etc. Depending on the intended use and performance, it can be appropriately selected and used, and those obtained by fiber opening treatment or glass woven fabric surface-treated with a silane coupling agent or the like are preferably used. Although the thickness and mass of the substrate are not particularly limited, those having a thickness of about 0.01 to 0.3 mm are preferably used. In particular, from the viewpoint of strength and water absorption, the base material is preferably a glass woven fabric having a thickness of 200 μm or less and a mass of 250 g / m 2 or less, and more preferably a glass woven fabric made of E-glass glass fibers.
他方、本発明の金属箔張積層板は、上述のプリプレグを少なくとも1枚以上重ね、その片面もしくは両面に金属箔を配して積層成形することにより、得ることができる。具体的には、前述のプリプレグを1枚あるいは複数枚以上を重ね、所望によりその片面もしくは両面に銅やアルミニウムなどの金属箔を配置した構成とし、これを必要に応じて積層成形することにより、本実施形態の金属箔張積層板を作製することができる。ここで使用する金属箔は、プリント配線板材料に用いられるものであれば、特に限定されないが、圧延銅箔や電解銅箔などの公知の銅箔が好ましい。また、金属箔の厚みは、特に限定されないが、2〜70μmが好ましく、より好ましくは2〜35μmである。金属箔張積層板の成形方法及びその成形条件についても、特に限定されず、一般的なプリント配線板用積層板及び多層板の手法及び条件を適用することができる。例えば、金属箔張積層板の成形時には多段プレス機、多段真空プレス機、連続成形機、オートクレーブ成形機などを用いることができ、また、温度は100〜300℃、圧力は面圧2〜100kgf/cm2、加熱時間は0.05〜5時間の範囲が一般的である。さらに、必要に応じて、150〜300℃の温度で後硬化を行うこともできる。また、本実施形態のプリプレグと、別途作製した内層用の配線板とを組み合わせて積層成形することにより、多層板とすることも可能である。 On the other hand, the metal foil-clad laminate of the present invention can be obtained by laminating at least one or more of the prepregs described above, placing the metal foil on one side or both sides thereof, and laminating. Specifically, one or a plurality of the prepregs described above are stacked, and a metal foil such as copper or aluminum is arranged on one or both sides as desired, and this is laminated and formed as necessary. The metal foil-clad laminate of this embodiment can be produced. Although the metal foil used here will not be specifically limited if it is used for printed wiring board material, Well-known copper foils, such as a rolled copper foil and an electrolytic copper foil, are preferable. Moreover, although the thickness of metal foil is not specifically limited, 2-70 micrometers is preferable, More preferably, it is 2-35 micrometers. There are no particular limitations on the method for forming the metal foil-clad laminate and the molding conditions thereof, and general methods and conditions for a laminate for a printed wiring board and a multilayer board can be applied. For example, a multi-stage press machine, a multi-stage vacuum press machine, a continuous molding machine, an autoclave molding machine, etc. can be used for forming a metal foil-clad laminate, the temperature is 100 to 300 ° C., the pressure is a surface pressure of 2 to 100 kgf / cm 2 and the heating time are generally in the range of 0.05 to 5 hours. Furthermore, if necessary, post-curing can be performed at a temperature of 150 to 300 ° C. Also, a multilayer board can be formed by combining and molding the prepreg of the present embodiment and a separately prepared wiring board for an inner layer.
上記の本実施形態の金属箔張積層板は、所定の配線パターンを形成することにより、プリント配線板として好適に用いることができる。そして、本発明の金属箔張積層板は、低い熱膨張率、良好な成形性及び耐薬品性を有し、そのような性能が要求される半導体パッケージ用プリント配線板として、殊に有効に用いることができる。 The metal foil-clad laminate of the present embodiment can be suitably used as a printed wiring board by forming a predetermined wiring pattern. The metal foil-clad laminate of the present invention has a low coefficient of thermal expansion, good moldability and chemical resistance, and is particularly effectively used as a printed wiring board for semiconductor packages that require such performance. be able to.
本発明におけるプリント配線板は、例えば、以下の方法により製造することができる。まず、本発明の銅張積層板等の金属箔張積層板を用意する。金属箔張積層板の表面にエッチング処理を施して内層回路の形成を行い、内層基板を作製する。この内層基板の内層回路表面に、必要に応じて接着強度を高めるための表面処理を行い、次いでその内層回路表面に本発明のプリプレグを所要枚数重ね、更にその外側に外層回路用の金属箔を積層し、加熱加圧して一体成形する。このようにして、内層回路と外層回路用の金属箔との間に、基材及び熱硬化性樹脂組成物の硬化物からなる絶縁層が形成された多層の積層板が製造される。次いで、この多層の積層板にスルーホールやバイアホール用の穴あけ加工を施した後、硬化物層に含まれている樹脂成分に由来する樹脂の残渣であるスミアを除去するためデスミア処理が行われる。その後この穴の壁面に内層回路と外層回路用の金属箔とを導通させるめっき金属皮膜を形成し、更に外層回路用の金属箔にエッチング処理を施して外層回路を形成し、プリント配線板が製造される。
本発明のプリプレグ(基材及びこれに添着された本発明の樹脂組成物)、金属箔張積層板の樹脂組成物層(本発明の樹脂組成物からなる層)が、本発明の樹脂組成物を含む絶縁層を構成することになる。
The printed wiring board in the present invention can be manufactured, for example, by the following method. First, a metal foil-clad laminate such as a copper-clad laminate of the present invention is prepared. An inner layer circuit is formed by etching the surface of the metal foil-clad laminate to produce an inner layer substrate. The inner layer circuit surface of the inner layer substrate is subjected to a surface treatment to increase the adhesive strength as necessary, then the required number of prepregs of the present invention are stacked on the inner layer circuit surface, and a metal foil for the outer layer circuit is formed on the outer side. Laminate and heat and press to form one piece. In this way, a multilayer laminate is produced in which an insulating layer made of a cured material of the base material and the thermosetting resin composition is formed between the inner layer circuit and the metal foil for the outer layer circuit. Next, after this multi-layer laminate is subjected to drilling for through holes and via holes, desmear treatment is performed to remove smears, which are resin residues derived from the resin component contained in the cured product layer. . After that, a plated metal film is formed on the wall surface of this hole to connect the inner layer circuit and the metal foil for the outer layer circuit, and the outer layer circuit is formed by etching the metal foil for the outer layer circuit to produce a printed wiring board. Is done.
The prepreg of the present invention (base material and the resin composition of the present invention attached thereto) and the resin composition layer (layer comprising the resin composition of the present invention) of the metal foil-clad laminate are the resin composition of the present invention. Insulating layers including these are formed.
他方、本実施形態の積層樹脂シートは、上記の本実施形態の樹脂組成物を溶剤に溶解させた溶液をシート基材に塗布し乾燥することで得ることができる。ここで用いるシート基材としては、例えば、ポリエチレンフィルム、ポリプロピレンフィルム、ポリカーボネートフィルム、ポリエチレンテレフタレートフィルム、エチレンテトラフルオロエチレン共重合体フィルム、並びにこれらのフィルムの表面に離型剤を塗布した離型フィルム、ポリイミドフィルム等の有機系のフィルム基材、銅箔、アルミ箔等の導体箔、ガラス板、SUS板、FRP等の板状のものが挙げられるが、これらに特に限定されない。塗布方法としては、例えば、本実施形態の樹脂組成物を溶剤に溶解させた溶液を、バーコーター、ダイコーター、ドクターブレード、ベーカーアプリケーター等でシート基材上に塗布する方法が挙げられる。また、乾燥後に、積層樹脂シートからシート基材を剥離又はエッチングすることで、単層シート(樹脂シート)とすることもできる。なお、上記の本実施形態の樹脂組成物を溶剤に溶解させた溶液を、シート状のキャビティを有する金型内に供給し乾燥する等してシート状に成形することで、シート基材を用いることなく単層シート(樹脂シート)を得ることもできる。 On the other hand, the laminated resin sheet of the present embodiment can be obtained by applying a solution obtained by dissolving the resin composition of the present embodiment in a solvent to a sheet base material and drying it. Examples of the sheet substrate used here include a polyethylene film, a polypropylene film, a polycarbonate film, a polyethylene terephthalate film, an ethylene tetrafluoroethylene copolymer film, and a release film obtained by applying a release agent to the surface of these films, Examples thereof include organic film base materials such as polyimide film, conductor foils such as copper foil and aluminum foil, glass plates, SUS plates, and plate-like materials such as FRP, but are not particularly limited thereto. Examples of the application method include a method in which a solution obtained by dissolving the resin composition of the present embodiment in a solvent is applied onto a sheet substrate with a bar coater, a die coater, a doctor blade, a baker applicator, or the like. Moreover, it can also be set as a single layer sheet (resin sheet) by peeling or etching a sheet base material from a laminated resin sheet after drying. In addition, a sheet substrate is used by forming a solution obtained by dissolving the resin composition of the present embodiment in a solvent into a mold having a sheet-like cavity and drying it. A single layer sheet (resin sheet) can also be obtained without any problems.
なお、本実施形態の単層或いは積層シートの作製において、溶剤を除去する際の乾燥条件は、特に限定されないが、低温であると樹脂組成物中に溶剤が残り易く、高温であると樹脂組成物の硬化が進行することから、20℃〜170℃の温度で1〜90分間が好ましい。また、本実施形態の単層或いは積層シートの樹脂層の厚みは、本実施形態の樹脂組成物の溶液の濃度と塗布厚みにより調整することができ、特に限定されないが、一般的には塗布厚みが厚くなると乾燥時に溶剤が残り易くなることから、0.1〜500μmが好ましい。 In the production of the single layer or laminated sheet of the present embodiment, the drying conditions for removing the solvent are not particularly limited, but the solvent tends to remain in the resin composition at a low temperature, and the resin composition at a high temperature. Since hardening of a thing advances, 1 to 90 minutes are preferable at the temperature of 20 to 170 degreeC. In addition, the thickness of the resin layer of the single layer or laminated sheet of the present embodiment can be adjusted by the concentration of the solution of the resin composition of the present embodiment and the coating thickness, and is not particularly limited. If the thickness is too thick, the solvent tends to remain during drying, so 0.1 to 500 μm is preferable.
以下に実施例、比較調製例、比較例を示し、本発明を詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to Examples, Comparative Preparation Examples, and Comparative Examples, but the present invention is not limited to these Examples.
合成例1 BT樹脂1の合成
特開2009−35728に記載の方法で合成したα−ナフトールアラルキル型シアン酸エステル化合物(シアネート当量:261g/eq.)36質量部と式(5)におけるR4がすべて水素原子であり、nが0〜1であるマレイミド化合物(BMI−2300、大和化成工業(株)製)26質量部をジメチルアセトアミドに溶解し、150℃で攪拌しながら反応させ、BT樹脂1を得た。
Synthesis Example 1 Synthesis of BT Resin 1 36 parts by mass of an α-naphthol aralkyl-type cyanate compound (cyanate equivalent: 261 g / eq.) Synthesized by the method described in JP-A-2009-35728 and R 4 in the formula (5) 26 parts by mass of a maleimide compound (BMI-2300, manufactured by Daiwa Kasei Kogyo Co., Ltd.), all of which are hydrogen atoms and n is 0 to 1, are dissolved in dimethylacetamide and reacted at 150 ° C. with stirring to obtain BT resin 1 Got.
合成例2 BT樹脂2の合成
特開2009−35728に記載の方法で合成したα−ナフトールアラルキル型シアン酸エステル化合物(シアネート当量:261g/eq.)36質量部とビスマレイミド化合物(BMI−70、ケイアイ化成(株)製)26質量部をジメチルアセトアミドに溶解し、150℃で攪拌しながら反応させ、BT樹脂2を得た。
Synthesis Example 2 Synthesis of BT Resin 2 36 parts by mass of an α-naphthol aralkyl cyanate ester compound (cyanate equivalent: 261 g / eq.) Synthesized by the method described in JP-A-2009-35728 and a bismaleimide compound (BMI-70, 26 parts by mass (manufactured by KAI Kasei Co., Ltd.) was dissolved in dimethylacetamide and reacted at 150 ° C. with stirring to obtain BT resin 2.
実施例1
式(1)におけるmが0、nが0〜10である、トリス(ヒドロキシフェニル)メタン型エポキシ樹脂(EXA−7250、エポキシ当量:162g/eq.,質量平均分子量462、DIC(株)製)を60質量部、特開2009−35728に記載の方法で合成したα−ナフトールアラルキル型シアン酸エステル化合物樹脂(シアネート当量:261g/eq.)を40質量部、シランカップリング剤(東レ・ダウコーティング(株)製)5質量部、湿潤分散剤(disperbyk−161、ビッグケミージャパン(株)製)を1質量部、球状溶融シリカ(SC2500−SQ、平均粒子径:0.5μm、アドマテックス(株)製)を200質量部混合してワニスを得た。このワニスをメチルエチルケトンで希釈し、厚さ0.1mmのTガラス織布に含浸塗工し、140℃で3分間加熱乾燥して、樹脂含有量50質量%のプリプレグ(シアネート当量/エポキシ当量比:0.48)を得た。
Example 1
Tris (hydroxyphenyl) methane type epoxy resin (EXA-7250, epoxy equivalent: 162 g / eq., Mass average molecular weight 462, manufactured by DIC Corporation), wherein m in formula (1) is 0 and n is 0-10 60 parts by mass, α-naphthol aralkyl-type cyanate compound resin (cyanate equivalent: 261 g / eq.) Synthesized by the method described in JP-A-2009-35728, 40 parts by mass, silane coupling agent (Toray Dow Coating 5 parts by weight, 1 part by weight of a wetting and dispersing agent (disperbyk-161, manufactured by Big Chemie Japan), spherical fused silica (SC2500-SQ, average particle size: 0.5 μm, Admatex) )) Was mixed to 200 parts by mass to obtain a varnish. This varnish was diluted with methyl ethyl ketone, impregnated onto a 0.1 mm thick T glass woven fabric, dried by heating at 140 ° C. for 3 minutes, and a prepreg having a resin content of 50% by mass (cyanate equivalent / epoxy equivalent ratio: 0.48) was obtained.
実施例2
α−ナフトールアラルキル型シアン酸エステル化合物の代わりに2,2−ビス(4−シアネートフェニル)プロパンのプレポリマー(CA210、シアネート当量139、三菱ガス化学(株)製)を40質量部使用した以外は実施例1と同様にしてプリプレグ(シアネート当量/エポキシ当量比:0.90)を得た。
Example 2
Except for using 40 parts by mass of 2,2-bis (4-cyanatephenyl) propane prepolymer (CA210, cyanate equivalent weight 139, manufactured by Mitsubishi Gas Chemical Co., Ltd.) instead of α-naphthol aralkyl type cyanate ester compound A prepreg (cyanate equivalent / epoxy equivalent ratio: 0.90) was obtained in the same manner as in Example 1.
実施例3
α−ナフトールアラルキル型シアン酸エステル化合物の代わりに式(3)におけるR2がすべて水素原子であるノボラック型シアン酸エステル化合物(プリマセットPT−30、ロンザジャパン(株)製、シアネート当量:124g/eq.)を40質量部使用した以外は実施例1と同様にしてプリプレグ(シアネート当量/エポキシ当量比:1.01)を得た。
Example 3
In place of the α-naphthol aralkyl cyanate ester compound, a novolak cyanate ester compound in which R 2 in formula (3) is all hydrogen atoms (Primaset PT-30, manufactured by Lonza Japan KK, cyanate equivalent: 124 g / The prepreg (cyanate equivalent / epoxy equivalent ratio: 1.01) was obtained in the same manner as in Example 1 except that 40 parts by mass of eq.) was used.
実施例4
実施例1で使用したトリス(ヒドロキシフェニル)メタン型エポキシ樹脂を38質量部、α−ナフトールアラルキル型シアン酸エステル化合物(シアネート当量:261g/eq.)を36質量部、合成例1で使用したマレイミド化合物(BMI−2300)を26質量部、シランカップリング剤(Z6040)を5質量部、湿潤分散剤(disperbyk−161)を1質量部、球状溶融シリカ(SC2500−SQ)を200質量部、式(6)におけるR5及びArがすべてフェニル基である2,4,5−トリフェニルイミダゾール(和光純薬工業(株)製)を1質量部混合してワニスを得た。このワニスをメチルエチルケトンで希釈し、厚さ0.1mmのTガラス織布に含浸塗工し、140℃で3分間加熱乾燥して、樹脂含有量50質量%のプリプレグ(シアネート当量/エポキシ当量比:0.68)を得た。
Example 4
38 parts by mass of tris (hydroxyphenyl) methane type epoxy resin used in Example 1, 36 parts by mass of α-naphthol aralkyl type cyanate ester compound (cyanate equivalent: 261 g / eq.), Maleimide used in Synthesis Example 1 26 parts by mass of compound (BMI-2300), 5 parts by mass of silane coupling agent (Z6040), 1 part by mass of wetting and dispersing agent (disperbyk-161), 200 parts by mass of spherical fused silica (SC2500-SQ), formula A varnish was obtained by mixing 1 part by mass of 2,4,5-triphenylimidazole (Wako Pure Chemical Industries, Ltd.) in which R 5 and Ar in (6) are all phenyl groups. This varnish was diluted with methyl ethyl ketone, impregnated onto a 0.1 mm thick T glass woven fabric, dried by heating at 140 ° C. for 3 minutes, and a prepreg having a resin content of 50% by mass (cyanate equivalent / epoxy equivalent ratio: 0.68) was obtained.
実施例5
実施例1で使用したトリス(ヒドロキシフェニル)メタン型エポキシ樹脂の代わりに質量平均分子量が異なるトリス(ヒドロキシフェニル)メタン型エポキシ樹脂(EPPN−501HY、エポキシ当量:169g/eq.,質量平均分子量896、日本化薬(株)製)を38質量部使用した以外は実施例4と同様にしてプリプレグ(シアネート当量/エポキシ当量比:0.61)を得た。
Example 5
Tris (hydroxyphenyl) methane type epoxy resin (EPPN-501HY, epoxy equivalent: 169 g / eq., Weight average molecular weight 896, different in weight average molecular weight instead of the tris (hydroxyphenyl) methane type epoxy resin used in Example 1 A prepreg (cyanate equivalent / epoxy equivalent ratio: 0.61) was obtained in the same manner as in Example 4 except that 38 parts by mass of Nippon Kayaku Co., Ltd. was used.
実施例6
合成例1で使用したマレイミド化合物(BMI−2300)の代わりに合成例2で使用したビス(3−エチル−5−メチル−4マレイミドフェニル)メタン(BMI−70)を26質量部使用した以外は実施例4と同様にしてプリプレグ(シアネート当量/エポキシ当量比:0.68)を得た。
Example 6
Except for using 26 parts by mass of bis (3-ethyl-5-methyl-4maleimidophenyl) methane (BMI-70) used in Synthesis Example 2 instead of the maleimide compound (BMI-2300) used in Synthesis Example 1. A prepreg (cyanate equivalent / epoxy equivalent ratio: 0.68) was obtained in the same manner as in Example 4.
実施例7
さらに2−エチル−4−メチルイミダゾール(2E4MZ)を0.01質量部加えた以外は実施例4と同様にしてプリプレグ(シアネート当量/エポキシ当量比:0.68)を得た。
Example 7
Further, a prepreg (cyanate equivalent / epoxy equivalent ratio: 0.68) was obtained in the same manner as in Example 4 except that 0.01 parts by mass of 2-ethyl-4-methylimidazole (2E4MZ) was added.
実施例8
α−ナフトールアラルキル型シアン酸エステル化合物及び合成例1で使用したマレイミド化合物を使用せず、合成例1で得られたBT樹脂を62質量部加えた以外は実施例4と同様にしてプリプレグ(シアネート当量/エポキシ当量比:0.68)を得た。
Example 8
A prepreg (cyanate) was used in the same manner as in Example 4 except that 62 parts by mass of the BT resin obtained in Synthesis Example 1 was added without using the α-naphthol aralkyl-type cyanate compound and the maleimide compound used in Synthesis Example 1. Equivalent / epoxy equivalent ratio: 0.68) was obtained.
実施例9
α−ナフトールアラルキル型シアン酸エステル化合物及び合成例1で使用したビスマレイミド化合物を使用せず、合成例2で得られたBT樹脂を62質量部加えた以外は実施例4と同様にしてプリプレグ(シアネート当量/エポキシ当量比:0.68)を得た。
Example 9
A prepreg (similar to Example 4) except that the α-naphthol aralkyl cyanate compound and the bismaleimide compound used in Synthesis Example 1 were not used and 62 parts by mass of the BT resin obtained in Synthesis Example 2 was added. Cyanate equivalent / epoxy equivalent ratio: 0.68) was obtained.
比較例1
トリス(ヒドロキシフェニル)メタン型エポキシ樹脂の代わりにフェノールビフェニルアラルキル型エポキシ樹脂(NC−3000−FH,エポキシ当量:320g/eq.、日本化薬(株)製)を38質量部使用した以外は実施例4と同様にしてプリプレグ(シアネート当量/エポキシ当量比:1.16)を得た。
Comparative Example 1
Implemented except that 38 parts by mass of phenol biphenyl aralkyl type epoxy resin (NC-3000-FH, epoxy equivalent: 320 g / eq., Manufactured by Nippon Kayaku Co., Ltd.) was used instead of tris (hydroxyphenyl) methane type epoxy resin. In the same manner as in Example 4, a prepreg (cyanate equivalent / epoxy equivalent ratio: 1.16) was obtained.
比較例2
トリス(ヒドロキシフェニル)メタン型エポキシ樹脂の代わりにナフタレン変性エポキシ樹脂(ESN−175V、エポキシ当量:255g/eq.、新日鐵化学(株)製)を38質量部使用した以外は実施例4と同様にしてプリプレグ(シアネート当量/エポキシ当量比:0.93)を得た。
Comparative Example 2
Example 4 except that 38 parts by mass of naphthalene-modified epoxy resin (ESN-175V, epoxy equivalent: 255 g / eq., Manufactured by Nippon Steel Chemical Co., Ltd.) was used instead of tris (hydroxyphenyl) methane type epoxy resin. Similarly, a prepreg (cyanate equivalent / epoxy equivalent ratio: 0.93) was obtained.
比較例3
トリス(ヒドロキシフェニル)メタン型エポキシ樹脂の代わりにポリオキシナフチレン型エポキシ樹脂(HP−6000,エポキシ当量:250g/eq.、DIC(株)製)を38質量部使用した以外は実施例4と同様にしてプリプレグ(シアネート当量/エポキシ当量比:0.91)を得た。
Comparative Example 3
Example 4 except that 38 parts by mass of polyoxynaphthylene type epoxy resin (HP-6000, epoxy equivalent: 250 g / eq., Manufactured by DIC Corporation) was used instead of tris (hydroxyphenyl) methane type epoxy resin. Similarly, a prepreg (cyanate equivalent / epoxy equivalent ratio: 0.91) was obtained.
比較例4
トリス(ヒドロキシフェニル)メタン型エポキシ樹脂の代わりにフェノールフェニルアラルキルノボラック型エポキシ樹脂(NC−2000−L,エポキシ当量:226g/eq.、日本化薬(株)製)を38質量部使用した以外は実施例4と同様にしてプリプレグ(シアネート当量/エポキシ当量比:0.82)を得た。
Comparative Example 4
Except for using 38 parts by mass of phenol phenyl aralkyl novolak type epoxy resin (NC-2000-L, epoxy equivalent: 226 g / eq., Manufactured by Nippon Kayaku Co., Ltd.) instead of tris (hydroxyphenyl) methane type epoxy resin A prepreg (cyanate equivalent / epoxy equivalent ratio: 0.82) was obtained in the same manner as in Example 4.
金属箔張積層板の作成
実施例1〜9及び比較例1〜4で得られたプリプレグを、それぞれ2枚重ねて12μm厚の電解銅箔(3EC−III、三井金属鉱業(株)製)を上下に配置し、圧力30kgf/cm2、温度220℃で120分間の積層成型を行い、絶縁層厚さ0.2mmの銅張積層板を得た。
Preparation of Metal Foil-Clad Laminates Two prepregs obtained in Examples 1 to 9 and Comparative Examples 1 to 4 were stacked to obtain 12 μm thick electrolytic copper foil (3EC-III, manufactured by Mitsui Mining & Smelting Co., Ltd.). Laminate molding was carried out at a pressure of 30 kgf / cm 2 and a temperature of 220 ° C. for 120 minutes to obtain a copper clad laminate having an insulating layer thickness of 0.2 mm.
得られたプリプレグ及び銅張積層板を用いて、成形性、Tg、耐熱性、面方向の熱膨張率の評価を行った結果を表1、表2に示す。 Tables 1 and 2 show the results of evaluation of moldability, Tg, heat resistance, and coefficient of thermal expansion in the surface direction using the obtained prepreg and copper clad laminate.
プリプレグ及び金属箔張積層板の物性評価方法
プリプレグ溶融粘度、成形性、耐熱性、面方向の熱膨張率は下記方法にて行った。
プリプレグ溶融粘度:得られたプリプレグを揉みほぐして熱硬化性樹脂組成物の粉を落とし、その粉を所定の金型に入れて直圧成形し、樹脂棒とした。次に、高化式フローテスターの加熱部に樹脂棒を投入し、120±0.2℃のときの溶融粘度を測定した。
成形性:銅張積層板の銅箔をエッチングにより除去したのちに、表面を観察しボイドの有無を評価した。ボイドが無かったものを○、アンクラット板の端部のみにボイドがあったものを△、全面ボイドだったものを×とした。
ガラス転移温度(Tg):前記実施例、及び比較例で得られた厚さ0.8mmの両面銅張積層板を全面エッチングし、12mm×25mmの試験片を作製し、DMA装置(TAインスツルメント社製動的粘弾性測定装置DMAQ400)を用いて10℃/分で昇温し、LossModulusのピーク位置をガラス転移温度とした。
耐熱性::n=5で、すべてが半田フロート260℃、30分で膨れが無かったものを○、膨れがあったものを×とした。
面方向の熱膨張率:銅張積層板をエッチングにより銅箔を除去したのちに、熱機械分析装置(TAインスツルメント製)で40℃から340℃まで毎分10℃で昇温し、60℃から120℃での面方向の線膨張係数を測定した。測定方向は積層板のガラスクロスの縦方向(Warp)を測定した。
Method for evaluating physical properties of prepreg and metal foil-clad laminate The prepreg melt viscosity, formability, heat resistance, and coefficient of thermal expansion in the plane direction were measured by the following methods.
Prepreg melt viscosity: The obtained prepreg is loosened to remove the powder of the thermosetting resin composition, and the powder is placed in a predetermined mold and directly pressed to obtain a resin rod. Next, a resin rod was put into the heating part of the Koka type flow tester, and the melt viscosity at 120 ± 0.2 ° C. was measured.
Formability: After removing the copper foil of the copper clad laminate by etching, the surface was observed to evaluate the presence or absence of voids. The case where there was no void was marked as ◯, the case where there was a void only at the end of the ankrat plate was marked as Δ, and the case where the void was entirely void was marked as x.
Glass transition temperature (Tg): A 0.8 mm thick double-sided copper clad laminate obtained in the above examples and comparative examples was etched on the entire surface to prepare a 12 mm × 25 mm test piece, and a DMA device (TA instrument) The temperature was raised at 10 ° C./min using a dynamic viscoelasticity measuring device DMAQ400 manufactured by Mentor, and the peak position of Loss Modulus was defined as the glass transition temperature.
Heat resistance: “n” = 5, all with solder float of 260 ° C. and no swelling at 30 minutes, “◯”, and with swelling, “x”.
Thermal expansion coefficient in the plane direction: After removing the copper foil by etching the copper clad laminate, the temperature was increased from 40 ° C. to 340 ° C. at 10 ° C. per minute with a thermomechanical analyzer (manufactured by TA Instruments). The linear expansion coefficient in the plane direction from ℃ to 120 ℃ was measured. The measurement direction was the longitudinal direction (Warp) of the glass cloth of the laminate.
単位 プリプレグ溶融粘度:×16ps Tg:℃ 熱膨張率:ppm/℃
成形性 ◎、○:ボイド無し △:端部ボイド ×:全面ボイド
単位 プリプレグ溶融粘度:×16ps Tg:℃ 熱膨張率:ppm/℃
Formability ◎, ○: No void Δ: End void ×: Full void unit Prepreg melt viscosity: × 16 ps Tg: ° C Thermal expansion coefficient: ppm / ° C
Claims (26)
(式中、Rは各々独立に炭素数1〜6のアルキル基であり、mは0〜4の整数を表し、nは1以上の整数を表す。) In the resin composition of the inorganic filler (D), the epoxy resin (A) represented by the formula (1), the cyanate ester compound (B), the maleimide compound (C) and the inorganic filler (D) are contained. Resin composition whose content is contained in 100 to 1000 parts by mass with respect to 100 parts by mass in total of components (A) to (C).
(In the formula, each R is independently an alkyl group having 1 to 6 carbon atoms, m represents an integer of 0 to 4, and n represents an integer of 1 or more.)
(式中、R1は各々独立に水素原子又はメチル基を示し、nは1以上の整数を示す。)
(式中、R2は各々独立に水素原子又はメチル基を示し、nは1以上の整数を示す。) A group in which the cyanate ester compound (B) is composed of a naphthol aralkyl cyanate ester compound represented by the formula (2), a novolac cyanate ester compound and a biphenylaralkyl cyanate ester compound represented by the formula (3) The resin composition according to any one of claims 1 to 3, which is any one or more of the above.
(In the formula, each R 1 independently represents a hydrogen atom or a methyl group, and n represents an integer of 1 or more.)
(In the formula, each R 2 independently represents a hydrogen atom or a methyl group, and n represents an integer of 1 or more.)
(式中、R4は各々独立に水素原子又はメチル基を示し、nは1以上の整数を示す。) The resin composition as described in any one of Claims 1-4 whose said maleimide compound (C) is what is represented by Formula (5).
(In the formula, each R 4 independently represents a hydrogen atom or a methyl group, and n represents an integer of 1 or more.)
(式中、Arは各々独立に、置換基を有してもよいフェニル基、ナフタレン基、ビフェニル基、アントラセン基又はその水酸基変性物、R5は水素原子、アルキル基又はその水酸基変性物、置換基を有してもよいアリール基を表す。) Furthermore, the resin composition as described in any one of Claims 1-16 which comprises the imidazole compound represented by Formula (6).
(In the formula, each Ar independently represents an optionally substituted phenyl group, naphthalene group, biphenyl group, anthracene group or a hydroxyl group-modified product thereof, and R 5 is a hydrogen atom, an alkyl group or a hydroxyl group-modified product thereof, a substituted group. Represents an aryl group which may have a group.)
It is a printed wiring board containing an insulating layer and the conductor layer formed in the surface of the said insulating layer, Comprising: The said insulating layer is a printed wiring board containing the resin composition as described in any one of Claims 1-19. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013060291A JP6249345B2 (en) | 2013-03-22 | 2013-03-22 | Resin composition, prepreg, laminate and printed wiring board |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013060291A JP6249345B2 (en) | 2013-03-22 | 2013-03-22 | Resin composition, prepreg, laminate and printed wiring board |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014185222A true JP2014185222A (en) | 2014-10-02 |
JP6249345B2 JP6249345B2 (en) | 2017-12-20 |
Family
ID=51833094
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013060291A Active JP6249345B2 (en) | 2013-03-22 | 2013-03-22 | Resin composition, prepreg, laminate and printed wiring board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6249345B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016158066A1 (en) * | 2015-03-31 | 2016-10-06 | 三菱瓦斯化学株式会社 | Cyanic acid ester compound, curable resin composition containing said compound, and cured object obtained therefrom |
WO2017006897A1 (en) * | 2015-07-06 | 2017-01-12 | 三菱瓦斯化学株式会社 | Resin composition, prepreg, resin sheet, metal foil-clad laminate, and printed wiring board |
CN108431133A (en) * | 2016-08-24 | 2018-08-21 | 三菱瓦斯化学株式会社 | Resin combination, prepreg, clad with metal foil plywood, resin sheet and printed circuit board |
WO2019240260A1 (en) * | 2018-06-15 | 2019-12-19 | リンテック株式会社 | Sealant composition, sealing sheet, and sealed body |
JP2020029566A (en) * | 2019-11-13 | 2020-02-27 | 味の素株式会社 | Resin composition |
JP2020176267A (en) * | 2015-07-06 | 2020-10-29 | 三菱瓦斯化学株式会社 | Resin composition, prepreg, resin sheet, metal foil-clad laminate and printed wiring board |
CN112004855A (en) * | 2018-04-20 | 2020-11-27 | 三菱瓦斯化学株式会社 | Thermosetting composition, prepreg, laminate, metal foil-clad laminate, printed wiring board, and multilayer printed wiring board |
CN112094480A (en) * | 2020-09-22 | 2020-12-18 | 苏州生益科技有限公司 | Resin composition, and prepreg and laminated board manufactured by using same |
CN112384546A (en) * | 2018-10-17 | 2021-02-19 | 东洋纺株式会社 | Thermally conductive resin composition |
WO2021200871A1 (en) * | 2020-03-31 | 2021-10-07 | デンカ株式会社 | Semicured product complex and method for producing same, cured product complex and method for producing same, and thermosetting composition used to impregnate porous body |
CN114196204A (en) * | 2016-12-28 | 2022-03-18 | 三菱瓦斯化学株式会社 | Prepreg, laminate, metal foil-clad laminate, printed wiring board, and multilayer printed wiring board |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0379621A (en) * | 1989-05-12 | 1991-04-04 | Mitsubishi Electric Corp | Resin composition for laminate |
JPH11140276A (en) * | 1997-11-11 | 1999-05-25 | Sumitomo Chem Co Ltd | Polyfunctional cyanate resin composition and resin-encapsulated semiconductor device |
JP2004250674A (en) * | 2003-01-31 | 2004-09-09 | Sumitomo Chem Co Ltd | Resin film and multilayer printed wiring board using the same |
JP2011202140A (en) * | 2009-10-14 | 2011-10-13 | Sumitomo Bakelite Co Ltd | Epoxy resin composition, prepreg, metal-clad laminate, printed wiring board and semiconductor device |
WO2011132674A1 (en) * | 2010-04-21 | 2011-10-27 | 三菱瓦斯化学株式会社 | Thermosetting composition |
WO2011152402A1 (en) * | 2010-06-02 | 2011-12-08 | 三菱瓦斯化学株式会社 | Resin composition, and prepreg and laminated sheet using same |
JP2012116941A (en) * | 2010-11-30 | 2012-06-21 | Sumitomo Bakelite Co Ltd | Resin varnish, prepreg, metal-clad laminate, printed wiring board and semiconductor device |
WO2012165240A1 (en) * | 2011-05-27 | 2012-12-06 | 三菱瓦斯化学株式会社 | Resin composition, prepreg and laminate |
-
2013
- 2013-03-22 JP JP2013060291A patent/JP6249345B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0379621A (en) * | 1989-05-12 | 1991-04-04 | Mitsubishi Electric Corp | Resin composition for laminate |
JPH11140276A (en) * | 1997-11-11 | 1999-05-25 | Sumitomo Chem Co Ltd | Polyfunctional cyanate resin composition and resin-encapsulated semiconductor device |
JP2004250674A (en) * | 2003-01-31 | 2004-09-09 | Sumitomo Chem Co Ltd | Resin film and multilayer printed wiring board using the same |
JP2011202140A (en) * | 2009-10-14 | 2011-10-13 | Sumitomo Bakelite Co Ltd | Epoxy resin composition, prepreg, metal-clad laminate, printed wiring board and semiconductor device |
WO2011132674A1 (en) * | 2010-04-21 | 2011-10-27 | 三菱瓦斯化学株式会社 | Thermosetting composition |
WO2011152402A1 (en) * | 2010-06-02 | 2011-12-08 | 三菱瓦斯化学株式会社 | Resin composition, and prepreg and laminated sheet using same |
JP2012116941A (en) * | 2010-11-30 | 2012-06-21 | Sumitomo Bakelite Co Ltd | Resin varnish, prepreg, metal-clad laminate, printed wiring board and semiconductor device |
WO2012165240A1 (en) * | 2011-05-27 | 2012-12-06 | 三菱瓦斯化学株式会社 | Resin composition, prepreg and laminate |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10370325B2 (en) | 2015-03-31 | 2019-08-06 | Mitsubishi Gas Chemical Company, Inc. | Cyanate ester compound, curable resin composition containing the compound, and hardened product thereof |
WO2016158066A1 (en) * | 2015-03-31 | 2016-10-06 | 三菱瓦斯化学株式会社 | Cyanic acid ester compound, curable resin composition containing said compound, and cured object obtained therefrom |
JP2020176267A (en) * | 2015-07-06 | 2020-10-29 | 三菱瓦斯化学株式会社 | Resin composition, prepreg, resin sheet, metal foil-clad laminate and printed wiring board |
WO2017006897A1 (en) * | 2015-07-06 | 2017-01-12 | 三菱瓦斯化学株式会社 | Resin composition, prepreg, resin sheet, metal foil-clad laminate, and printed wiring board |
JPWO2017006897A1 (en) * | 2015-07-06 | 2018-04-26 | 三菱瓦斯化学株式会社 | Resin composition, prepreg, resin sheet, metal foil-clad laminate and printed wiring board |
US11769607B2 (en) | 2015-07-06 | 2023-09-26 | Mitsubishi Gas Chemical Company, Inc. | Resin composition, prepreg, resin sheet, metal foil-clad laminate, and printed circuit board |
US10676579B2 (en) | 2015-07-06 | 2020-06-09 | Mitsubishi Gas Chemical Company, Inc. | Resin composition, prepreg, resin sheet, metal foil-clad laminate, and printed circuit board |
CN108431133A (en) * | 2016-08-24 | 2018-08-21 | 三菱瓦斯化学株式会社 | Resin combination, prepreg, clad with metal foil plywood, resin sheet and printed circuit board |
CN108431133B (en) * | 2016-08-24 | 2019-06-14 | 三菱瓦斯化学株式会社 | Resin combination, prepreg, clad with metal foil plywood, resin sheet and printed circuit board |
CN114196204A (en) * | 2016-12-28 | 2022-03-18 | 三菱瓦斯化学株式会社 | Prepreg, laminate, metal foil-clad laminate, printed wiring board, and multilayer printed wiring board |
CN112004855A (en) * | 2018-04-20 | 2020-11-27 | 三菱瓦斯化学株式会社 | Thermosetting composition, prepreg, laminate, metal foil-clad laminate, printed wiring board, and multilayer printed wiring board |
CN112004855B (en) * | 2018-04-20 | 2024-01-12 | 三菱瓦斯化学株式会社 | Thermosetting composition, prepreg, laminated board, metal foil-clad laminated board, printed wiring board, and multilayer printed wiring board |
WO2019240260A1 (en) * | 2018-06-15 | 2019-12-19 | リンテック株式会社 | Sealant composition, sealing sheet, and sealed body |
CN112384546B (en) * | 2018-10-17 | 2024-01-16 | 东洋纺株式会社 | Thermally conductive resin composition |
CN112384546A (en) * | 2018-10-17 | 2021-02-19 | 东洋纺株式会社 | Thermally conductive resin composition |
JP2020029566A (en) * | 2019-11-13 | 2020-02-27 | 味の素株式会社 | Resin composition |
WO2021200871A1 (en) * | 2020-03-31 | 2021-10-07 | デンカ株式会社 | Semicured product complex and method for producing same, cured product complex and method for producing same, and thermosetting composition used to impregnate porous body |
EP4130114A4 (en) * | 2020-03-31 | 2023-09-06 | Denka Company Limited | SEMI-HARDENED PRODUCT COMPLEX AND METHOD FOR THE PRODUCTION THEREOF, HARDENED PRODUCT COMPLEX AND METHOD FOR THE PRODUCTION THEREOF AND HEAT-CURING COMPOSITION FOR IMPREGNATION OF A POROUS BODY |
CN115315470A (en) * | 2020-03-31 | 2022-11-08 | 电化株式会社 | Semi-cured composite body and its manufacturing method, cured product composite body and its manufacturing method, and thermosetting composition impregnated and used in porous body |
JPWO2021200871A1 (en) * | 2020-03-31 | 2021-10-07 | ||
JP7622041B2 (en) | 2020-03-31 | 2025-01-27 | デンカ株式会社 | Semi-cured composite and method for producing same, cured composite and method for producing same, and thermosetting composition used by impregnating porous body |
CN112094480B (en) * | 2020-09-22 | 2023-04-11 | 苏州生益科技有限公司 | Resin composition, and prepreg and laminated board manufactured by using same |
CN112094480A (en) * | 2020-09-22 | 2020-12-18 | 苏州生益科技有限公司 | Resin composition, and prepreg and laminated board manufactured by using same |
Also Published As
Publication number | Publication date |
---|---|
JP6249345B2 (en) | 2017-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6249345B2 (en) | Resin composition, prepreg, laminate and printed wiring board | |
JP7121354B2 (en) | Resin composition, prepreg, resin sheet, laminated resin sheet, laminate, metal foil-clad laminate, and printed wiring board | |
JP6314830B2 (en) | Resin composition, prepreg, laminate, and printed wiring board | |
JP6414799B2 (en) | Resin composition, prepreg, laminate, metal foil clad laminate and printed wiring board | |
JP5849948B2 (en) | Resin composition and prepreg and laminate using the same | |
US9775238B2 (en) | Resin composition, and prepreg and laminate using the same | |
JP6115225B2 (en) | Resin composition, prepreg, laminate and printed wiring board | |
JP5692062B2 (en) | Method for storing resin solution, and method for producing prepreg and laminate | |
TWI734690B (en) | Resin composition, prepreg, resin sheet, metal foil-clad laminate and printed wiring board | |
JPWO2012165423A1 (en) | Resin composition, prepreg and laminate | |
JP5988176B2 (en) | Resin composition, prepreg and laminate | |
JP2018204037A (en) | Prepreg, metal foil laminate, and printed wiring board | |
JP6774032B2 (en) | Resin composition, prepreg or resin sheet using the resin composition, laminated board and printed wiring board using them | |
WO2015105109A1 (en) | Insulating layer for printed wire board, and printed wire board | |
JP7116370B2 (en) | Resin composition, prepreg, resin sheet, laminate, and printed wiring board | |
WO2017175614A1 (en) | Resin composition and method for producing same, prepreg, resin sheet, laminate, metal-foil-clad laminate, and printed wiring board | |
JP6639072B2 (en) | Resin composition for printed wiring board, prepreg, laminated board and printed wiring board | |
JPWO2017006887A1 (en) | Resin composition, prepreg or resin sheet using the resin composition, and laminate and printed wiring board using the same | |
JP2015168704A (en) | Resin composition for printed wiring board | |
JP2019059958A (en) | Resin composition for printed wiring board, prepreg, laminate sheet, and printed wiring board | |
JP2014084327A (en) | Resin composition, prepreg, laminate, and printed wiring board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160127 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161202 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170117 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170303 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20170303 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20170306 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170724 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170801 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20171030 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6249345 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20171112 |