[go: up one dir, main page]

JP2014174061A - Magnetic sensor device - Google Patents

Magnetic sensor device Download PDF

Info

Publication number
JP2014174061A
JP2014174061A JP2013048535A JP2013048535A JP2014174061A JP 2014174061 A JP2014174061 A JP 2014174061A JP 2013048535 A JP2013048535 A JP 2013048535A JP 2013048535 A JP2013048535 A JP 2013048535A JP 2014174061 A JP2014174061 A JP 2014174061A
Authority
JP
Japan
Prior art keywords
magnetic field
field coil
magnetic
layer
effect element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013048535A
Other languages
Japanese (ja)
Other versions
JP6299069B2 (en
Inventor
Makoto Kawakami
川上  誠
Yasunori Takagi
保規 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2013048535A priority Critical patent/JP6299069B2/en
Publication of JP2014174061A publication Critical patent/JP2014174061A/en
Application granted granted Critical
Publication of JP6299069B2 publication Critical patent/JP6299069B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic sensor device in which a magnetic field generated in a magnetic field coil can be efficiently applied to a magnetoresistance effect element.SOLUTION: In the magnetic sensor device, a magnetoresistance effect element, a pair of magnetic bodies which are arranged so that the magnetoresistance effect element is interposed between them, and a magnetic field coil which forms a magnetic field for the magnetoresistance effect element are formed on a substrate. The magnetic coil is configured to include conductor patterns arranged on a lower magnetic field coil layer and an upper magnetic field coil which are laminated with the magnetic bodies therebetween, and the upper magnetic field coil layer is close to a formation surface of the lower magnetic field coil layer, in an arrangement position of the magnetoresistance effect element.

Description

本発明は、磁場強度を測定する磁気センサ装置に関する。   The present invention relates to a magnetic sensor device that measures magnetic field strength.

巨大磁気抵抗効果素子(GMR素子)は、ホール効果素子に比べると、零磁場付近での検出感度が高いので、磁気平衡型電流センサに適用されることが多くなっている。しかしながらGMR素子を用いる場合、印加される磁場が零であると、自由層の磁化状態が安定しないので出力が不安定になってしまう。そこで測定磁界に影響を与えないよう、GMR素子に対し、測定対象の磁場の方向に直交する向きに、大きさが既知である磁場(バイアス磁場)を印加することが行われている(例えば特許文献1)。また、磁気平衡型電流センサでは、ヨークの間に磁気抵抗効果素子を設けることが検討されている(特許文献2)。   Giant magnetoresistive elements (GMR elements) have higher detection sensitivity in the vicinity of the zero magnetic field than Hall effect elements, and thus are often applied to magnetic balanced current sensors. However, when a GMR element is used, if the applied magnetic field is zero, the magnetization state of the free layer is not stable and the output becomes unstable. Therefore, a magnetic field having a known magnitude (bias magnetic field) is applied to the GMR element in a direction orthogonal to the direction of the magnetic field to be measured so as not to affect the measurement magnetic field (for example, patents). Reference 1). Further, in a magnetic balance type current sensor, it has been studied to provide a magnetoresistive effect element between yokes (Patent Document 2).

特開2011-039021号公報JP 2011-039021 A 国際公開第2010/143666号パンフレットInternational Publication No. 2010/143666 Pamphlet

特許文献2のように、フィードバック電流を薄膜の磁場コイルに通し、GMR素子近傍を零磁場とするよう前記磁場コイルを構成することが考えられている。ただし、磁場コイルで消費する電流を低く抑えるには、磁場コイルで発生する磁場を効率的にGMR素子に印加することが要望される。特許文献1,2の構成のままでは、消費電流を更に抑えることは容易ではない。   As in Patent Document 2, it is considered that the magnetic field coil is configured so that a feedback current is passed through a thin-film magnetic field coil and the vicinity of the GMR element is set to a zero magnetic field. However, in order to keep the current consumed by the magnetic field coil low, it is desired to efficiently apply the magnetic field generated by the magnetic field coil to the GMR element. With the configurations of Patent Documents 1 and 2, it is not easy to further reduce the current consumption.

本発明は上記実情に鑑みて為されたもので、磁場コイルで発生する磁場を効率的に磁気抵抗効果素子に印加できる磁気センサ装置を提供することを、その目的の一つとする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a magnetic sensor device capable of efficiently applying a magnetic field generated by a magnetic field coil to a magnetoresistive element.

上記従来例の問題点を解決するための本発明は、磁気センサ装置であって、磁気抵抗効果素子と、前記磁気抵抗効果素子を挟んで配置される、一対の磁性体と、前記一対の磁性体に巻回され、前記磁気抵抗効果素子への磁場を形成する磁場コイルと、を基板上に形成した磁気センサ装置であって、前記磁場コイルは、前記磁性体を挟んで積層配置される下部磁場コイル層及び上部磁場コイル層とにそれぞれ配された導体パターンを含んでなり、前記上部磁場コイル層は、前記磁気抵抗効果素子の配置位置において、前記下部磁場コイル層の形成面に近接することとしたものである。   The present invention for solving the problems of the conventional example described above is a magnetic sensor device, comprising a magnetoresistive effect element, a pair of magnetic bodies arranged with the magnetoresistive effect element sandwiched therebetween, and the pair of magnetism A magnetic sensor device in which a magnetic field coil wound around a body and forming a magnetic field to the magnetoresistive effect element is formed on a substrate, wherein the magnetic field coil is disposed in a stacked manner with the magnetic material interposed therebetween A conductive pattern disposed on each of the magnetic field coil layer and the upper magnetic field coil layer, wherein the upper magnetic field coil layer is close to a formation surface of the lower magnetic field coil layer at a position where the magnetoresistive effect element is disposed; It is what.

また本発明の一態様に係る磁気センサ装置は、感磁軸方向を互いに反平行とし、感磁軸方向に直交する方向に並べて配した第1、第2の磁気抵抗効果素子と、前記第1、第2の磁気抵抗効果素子を含む層とは異なる層に主に配され、前記第1の磁気抵抗効果素子の配置に対応する位置に配した空隙を挟んで対向配置される一対の第1磁性体、並びに前記第2の磁気抵抗効果素子の配置に対応する位置に配した空隙を挟んで対向配置される一対の第2磁性体を含む磁性体層と、前記磁性体層を挟んで積層配置され、前記磁気抵抗効果素子の感磁軸方向に交わる方向に、前記一対の第1磁性体の各々、及び一対の第2磁性体の各々に対してそれぞれ巻回される磁場コイルの導体をそれぞれ含んだ下部磁場コイル層及び上部磁場コイル層と、を有し、前記上部磁場コイル層は、前記磁気抵抗効果素子を含んで予め定められた範囲で前記下部磁場コイル層の形成面に近接させてなる。   The magnetic sensor device according to one aspect of the present invention includes a first magnetoresistive element and a first magnetoresistive element arranged in a direction orthogonal to the magnetosensitive axis direction, the magnetosensitive axis directions being antiparallel to each other. The first pair of first layers disposed mainly on a layer different from the layer including the second magnetoresistive effect element and opposed to each other with a gap disposed at a position corresponding to the arrangement of the first magnetoresistive effect element. A magnetic material and a magnetic material layer including a pair of second magnetic materials arranged opposite to each other with a gap disposed at a position corresponding to the arrangement of the second magnetoresistive effect element, and a laminate sandwiching the magnetic material layer Magnetic field coil conductors that are arranged and wound around each of the pair of first magnetic bodies and each of the pair of second magnetic bodies in a direction that intersects the magnetosensitive axis direction of the magnetoresistive element. Each including a lower magnetic field coil layer and an upper magnetic field coil layer It said upper field coil layer is formed in proximity to the forming surface of the lower magnetic field coil layer within a predetermined range comprising said magnetoresistive element.

またここで、前記第1、第2の磁性体の配される範囲に重なり合う範囲に亘り、前記上部磁場コイル層に対して絶縁層を介して配されるバイアスコイル層内に、渦巻き状のバイアスコイルを配してもよい。   Further, here, in a bias coil layer disposed via an insulating layer with respect to the upper magnetic field coil layer over a range overlapping the range where the first and second magnetic bodies are disposed, a spiral bias is provided. A coil may be arranged.

本発明によると、磁場コイルで発生する磁場を効率的に磁気抵抗効果素子に印加できる。   According to the present invention, the magnetic field generated by the magnetic field coil can be efficiently applied to the magnetoresistive effect element.

本発明の実施の形態に係る磁気センサ装置の構成例を表す概要図である。It is a schematic diagram showing the example of composition of the magnetic sensor device concerning an embodiment of the invention. 本発明の実施の形態に係る磁気センサ部の構成例を表す概略説明図である。It is a schematic explanatory drawing showing the structural example of the magnetic sensor part which concerns on embodiment of this invention. 本発明の実施の形態に係る磁気センサ装置における回路部の概略回路図である。It is a schematic circuit diagram of the circuit part in the magnetic sensor apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る磁気センサ装置の磁場コイルの導体パターンの例を表す説明図である。It is explanatory drawing showing the example of the conductor pattern of the magnetic field coil of the magnetic sensor apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る磁気センサ装置の磁場コイルのもう一つの導体パターンの例を表す説明図である。It is explanatory drawing showing the example of another conductor pattern of the magnetic field coil of the magnetic sensor apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る磁気センサ部の製造方法の例を表す説明図である。It is explanatory drawing showing the example of the manufacturing method of the magnetic sensor part which concerns on embodiment of this invention. 本発明の実施の形態に係る磁気センサ装置のもう一つの構成例を表す概要図である。It is a schematic diagram showing another structural example of the magnetic sensor apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る磁気センサ装置の効果を表す説明図である。It is explanatory drawing showing the effect of the magnetic sensor apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る磁気センサ装置における回路部の別の例を表す概略回路図である。It is a schematic circuit diagram showing another example of the circuit part in the magnetic sensor apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る磁気センサ装置における回路部のまた別の例を表す概略回路図である。It is a schematic circuit diagram showing another example of the circuit part in the magnetic sensor apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る磁気センサ装置における回路部のさらに別の例を表す概略回路図である。It is a schematic circuit diagram showing the further another example of the circuit part in the magnetic sensor apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る磁気センサ装置における回路部のもう一つの例を表す概略回路図である。It is a schematic circuit diagram showing another example of the circuit part in the magnetic sensor apparatus which concerns on embodiment of this invention.

本発明の実施の形態について図面を参照しながら説明する。本発明の実施の形態に係る磁気センサ装置1は、図1(a)に例示するように、Y軸方向に被測定電流Iが流れる導体近傍に配される。この磁気センサ装置1は、磁気センサ部10と、回路部15とを含む。そして磁気センサ部10は、磁気抵抗効果素子11と、この磁気抵抗効果素子11を挟んで対向配置される、一対の磁性体12a,bと、各磁性体12に巻回される磁場コイル13とを含んで構成される。また、この図1(a)に例示する磁気センサ装置1の磁気センサ部10にはさらにバイアスコイル14が積層して配されてもよい(図1(b))。さらに、これらにおいて磁場コイル13並びに磁気抵抗効果素子11に対しては、回路部15が接続されている。   Embodiments of the present invention will be described with reference to the drawings. The magnetic sensor device 1 according to the embodiment of the present invention is arranged in the vicinity of a conductor through which a measured current I flows in the Y-axis direction, as illustrated in FIG. The magnetic sensor device 1 includes a magnetic sensor unit 10 and a circuit unit 15. The magnetic sensor unit 10 includes a magnetoresistive effect element 11, a pair of magnetic bodies 12 a and 12 b disposed opposite to each other with the magnetoresistive effect element 11 interposed therebetween, and a magnetic field coil 13 wound around each magnetic body 12. It is comprised including. Further, a bias coil 14 may be further laminated on the magnetic sensor unit 10 of the magnetic sensor device 1 illustrated in FIG. 1A (FIG. 1B). Furthermore, a circuit unit 15 is connected to the magnetic field coil 13 and the magnetoresistive effect element 11 in these.

ここで磁気抵抗効果素子11,磁性体12,磁場コイル13,バイアスコイル14は薄膜内に形成される。具体的に本実施の形態の磁気センサ部10は、図2に例示するように、基板20と、磁場コイル13をなす導体パターンの一部を含む下部磁場コイル層21と、磁性体層22と、磁場コイル13をなす導体パターンの別の一部を含む上部磁場コイル層23と、バイアスコイルを配したバイアスコイル層24とをこの順に、互いに絶縁体層25を挟んで積層したものである。なお、ここでは基板20に近い側を下側とし、基板20から遠ざかる側を上側と表記しているが、これは実際の使用の場において、必ずしも上部磁場コイル層23側が鉛直上方に配されるべきことを意味するものではない。図2は、本実施の形態の磁気センサ部10を、磁気抵抗効果素子11の中心を通り、X軸方向に平行な面を破断面として破断したときの断面図である。   Here, the magnetoresistive effect element 11, the magnetic body 12, the magnetic field coil 13, and the bias coil 14 are formed in a thin film. Specifically, as illustrated in FIG. 2, the magnetic sensor unit 10 of the present embodiment includes a substrate 20, a lower magnetic field coil layer 21 including a part of a conductor pattern forming the magnetic field coil 13, a magnetic material layer 22, and The upper magnetic field coil layer 23 including another part of the conductor pattern forming the magnetic field coil 13 and the bias coil layer 24 provided with the bias coil are laminated in this order with the insulator layer 25 interposed therebetween. Here, the side closer to the substrate 20 is referred to as the lower side, and the side far from the substrate 20 is referred to as the upper side. However, in the actual use field, the upper magnetic field coil layer 23 side is not necessarily disposed vertically upward. It does not mean what should be done. FIG. 2 is a cross-sectional view of the magnetic sensor unit 10 according to the present embodiment when the surface parallel to the X-axis direction passing through the center of the magnetoresistive element 11 is broken.

磁気抵抗効果素子11は、例えばGMR素子であり、本実施の形態の一例では下部磁場コイル層21の面内に配され、短冊状の形状をなす。このGMR素子の短手方向が本実施の形態における感磁軸方向(感磁軸に平行な方向をX軸方向とし、図面右側をその正の方向とする)となる。具体的にこの感磁軸方向は、磁気抵抗効果素子11として固定層を有するGMR素子を用いるのであれば、固定層の磁化方向に対して平行あるいは反平行な方向が感磁軸方向となる。また、人工格子型のGMR素子(いわゆる積層型GMR素子)を磁気抵抗効果素子11として用いる場合は、当該積層型GMR素子に印加するバイアスの向きに直交する方向が感磁軸方向となる。
固定層を有するGMR素子は、スピンバルブ型の巨大磁気抵抗効果素子(SVGMR素子)であることとしてもよい。ここでは磁気抵抗効果素子11は、その幅方向(長手方向に直交する方向)に固定層が磁化されており、この幅方向の磁場の強さに応じた抵抗値を呈するものとする。本実施の形態の一例では、この磁気抵抗効果素子11は、その幅方向がY軸に平行になるように配される。またこのスピンバルブ型の巨大磁気抵抗効果素子として、固定層の磁化方向をセルフピンで固定する方式を採用することとしてもよい。セルフピン方式の固定層としては、たとえば、強磁性層、Ru層および強磁性層を積層した構成であって、Ru層を介して強磁性層同士が反強磁性結合を為すものを用いることができる。
The magnetoresistive effect element 11 is, for example, a GMR element. In the example of the present embodiment, the magnetoresistive effect element 11 is arranged in the plane of the lower magnetic field coil layer 21 and has a strip shape. The short direction of the GMR element is the magnetosensitive axis direction in this embodiment (the direction parallel to the magnetosensitive axis is the X-axis direction, and the right side of the drawing is the positive direction). Specifically, for the magnetosensitive axis direction, if a GMR element having a fixed layer is used as the magnetoresistive element 11, the direction parallel or antiparallel to the magnetization direction of the fixed layer is the magnetosensitive axis direction. When an artificial lattice type GMR element (so-called laminated GMR element) is used as the magnetoresistive effect element 11, the direction perpendicular to the direction of the bias applied to the laminated GMR element is the magnetosensitive axis direction.
The GMR element having the fixed layer may be a spin valve type giant magnetoresistive element (SVGMR element). Here, in the magnetoresistive effect element 11, the fixed layer is magnetized in the width direction (a direction perpendicular to the longitudinal direction), and exhibits a resistance value according to the strength of the magnetic field in the width direction. In an example of the present embodiment, the magnetoresistive effect element 11 is arranged so that its width direction is parallel to the Y axis. As the spin valve type giant magnetoresistive effect element, a method of fixing the magnetization direction of the fixed layer with a self pin may be adopted. As the self-pinned fixed layer, for example, a structure in which a ferromagnetic layer, a Ru layer, and a ferromagnetic layer are stacked and the ferromagnetic layers are antiferromagnetically coupled to each other through the Ru layer can be used. .

磁性体12は、磁性体層22の面内に配され、鉄とニッケルの合金(パーマロイ)であり、本実施の形態のある例では、厚さ1μm、飽和磁束密度Bs=1.0T、初透磁率μi=2000である。本実施の形態では磁性体12は、基本的には磁気抵抗効果素子11の感磁軸方向に長手方向を有する長方形状をなし、磁気抵抗効果素子11側では、磁気抵抗効果素子11側に短辺を有する台形状部分(S)が形成されている。   The magnetic body 12 is arranged in the plane of the magnetic layer 22 and is an alloy of iron and nickel (permalloy). In an example of the present embodiment, the thickness is 1 μm, the saturation magnetic flux density Bs = 1.0T, Magnetic permeability μi = 2000. In the present embodiment, the magnetic body 12 basically has a rectangular shape having a longitudinal direction in the direction of the magnetic sensitive axis of the magnetoresistive effect element 11, and on the magnetoresistive effect element 11 side, it is short on the magnetoresistive effect element 11 side. A trapezoidal portion (S) having sides is formed.

磁場コイル13は、磁性体12に巻回される導体パターンを含んでなる。具体的に本実施の形態の磁場コイル13は、磁性体層22を挟んで積層配置された下部磁場コイル層21と、上部磁場コイル層23とにそれぞれ配された導体パターンを電気的に接続して形成される。この磁場コイル13の具体的な構成例については後に述べる。   The magnetic field coil 13 includes a conductor pattern wound around the magnetic body 12. Specifically, the magnetic field coil 13 of the present embodiment electrically connects the conductor patterns respectively disposed on the lower magnetic field coil layer 21 and the upper magnetic field coil layer 23 that are stacked with the magnetic layer 22 interposed therebetween. Formed. A specific configuration example of the magnetic field coil 13 will be described later.

バイアスコイル14は、バイアスコイル層24の面内に配される。このバイアスコイル14は、渦巻き状をなし、磁気抵抗効果素子11に対応する位置と、その近傍において感磁軸方向に平行な複数の導線パターンを含む。このバイアスコイル14の具体的な例についても後述する。   The bias coil 14 is disposed in the plane of the bias coil layer 24. The bias coil 14 has a spiral shape and includes a plurality of conductor patterns parallel to the magnetosensitive axis direction at a position corresponding to the magnetoresistive element 11 and its vicinity. A specific example of the bias coil 14 will also be described later.

なお、これら下部磁場コイル層21、磁性体層22、上部磁場コイル層23、及びバイアスコイル層24において、それぞれ導体や磁気抵抗効果素子11、磁性体12等がない部分には絶縁体が充填され、各層は、所定厚さの層状体に形成されている。   In these lower magnetic field coil layer 21, magnetic material layer 22, upper magnetic field coil layer 23, and bias coil layer 24, the portions without the conductor, magnetoresistive effect element 11, magnetic material 12, etc. are filled with an insulator. Each layer is formed into a layered body having a predetermined thickness.

回路部15は、図3(a)に例示するように、固定抵抗素子31,32,33と、増幅器34とを含んで構成される。ここで固定抵抗素子31,32,33は、磁気抵抗効果素子11とともにブリッジ回路を構成する。具体的には、磁気抵抗効果素子11の一方端と、固定抵抗素子31の一方端側とが接続され、共通端子(GND)に接続される。また、磁気抵抗効果素子11の他方端と固定抵抗素子33の一方端とが接続され、固定抵抗素子31の他方端と固定抵抗素子32の一方端とが接続される。固定抵抗素子32,33の他方端側は互いに接続され、電源端子Vccに接続される。   As illustrated in FIG. 3A, the circuit unit 15 includes fixed resistance elements 31, 32, 33 and an amplifier 34. Here, the fixed resistance elements 31, 32, and 33 constitute a bridge circuit together with the magnetoresistive effect element 11. Specifically, one end of the magnetoresistive effect element 11 and one end side of the fixed resistance element 31 are connected and connected to a common terminal (GND). Further, the other end of the magnetoresistive effect element 11 and one end of the fixed resistance element 33 are connected, and the other end of the fixed resistance element 31 and one end of the fixed resistance element 32 are connected. The other end sides of the fixed resistance elements 32 and 33 are connected to each other and connected to the power supply terminal Vcc.

また増幅器34は、磁気抵抗効果素子11の他方端側と、固定抵抗素子31の他方端側との電位差に応じた電圧信号を磁場コイル13の一方端側に供給する。また磁場コイル13の他方端側は共通端子(GND)に接続される。この増幅器34の出力は、磁場コイル13に供給される。具体的には、この増幅器34の出力は、磁気センサ部10の磁場コイル13の一方端側(X軸負の側にある端部)に接続される。なお、磁場コイル13の他方端側は、抵抗器R等を介して共通端子(GND)に接続される。   The amplifier 34 supplies a voltage signal corresponding to the potential difference between the other end side of the magnetoresistive effect element 11 and the other end side of the fixed resistance element 31 to one end side of the magnetic field coil 13. The other end of the magnetic field coil 13 is connected to a common terminal (GND). The output of the amplifier 34 is supplied to the magnetic field coil 13. Specifically, the output of the amplifier 34 is connected to one end side (end portion on the negative side of the X axis) of the magnetic field coil 13 of the magnetic sensor unit 10. The other end side of the magnetic field coil 13 is connected to a common terminal (GND) via a resistor R and the like.

この例によると、磁気抵抗効果素子11の抵抗変化に応じた大きさ(抵抗変化が微少であれば、当該抵抗変化に比例した大きさ)の電圧が磁場コイル13に印加される。ここで固定抵抗素子31,32,33の各抵抗値をr1,r2,r3とし、被測定電流Iにより生成される磁場(外部磁場)がないときの磁気抵抗効果素子11の抵抗値をrとして、r×r2=r1×r3としておく。すると、外部磁場の大きさにより磁気抵抗効果素子11の抵抗値が変化すると、当該抵抗値の変化に応じた電圧が磁場コイル13に印加され、磁気抵抗効果素子11の感磁軸方向に対して、外部磁場とは逆向きで、当該電圧に比例した大きさの磁場(打消し磁場)が形成される。そして被測定電流Iにより生成される外部磁場が、この打消し磁場により打ち消されることとなる。このとき磁場コイル13に流れる電流量iは被測定電流Iに比例する。そこで回路部15は、この電流量iを表す信号を、出力信号として出力する。具体的には磁場コイル13の他方端側と共通端子(GND)との間に抵抗器Rを接続し、この抵抗器Rの両端の電位差を、電流量iの大きさを表す電圧信号として出力することとすればよい。   According to this example, a voltage having a magnitude corresponding to the resistance change of the magnetoresistive effect element 11 (or a magnitude proportional to the resistance change if the resistance change is small) is applied to the magnetic field coil 13. Here, the resistance values of the fixed resistance elements 31, 32, and 33 are r1, r2, and r3, and the resistance value of the magnetoresistance effect element 11 when there is no magnetic field (external magnetic field) generated by the current I to be measured is r. R × r2 = r1 × r3. Then, when the resistance value of the magnetoresistive effect element 11 changes depending on the magnitude of the external magnetic field, a voltage corresponding to the change in the resistance value is applied to the magnetic field coil 13, and with respect to the magnetosensitive axis direction of the magnetoresistive effect element 11. A magnetic field (cancellation magnetic field) having a magnitude in proportion to the voltage is formed opposite to the external magnetic field. The external magnetic field generated by the current I to be measured is canceled by this canceling magnetic field. At this time, the amount of current i flowing through the magnetic field coil 13 is proportional to the current I to be measured. Therefore, the circuit unit 15 outputs a signal representing the current amount i as an output signal. Specifically, a resistor R is connected between the other end of the magnetic field coil 13 and the common terminal (GND), and the potential difference between both ends of the resistor R is output as a voltage signal representing the magnitude of the current amount i. What should I do?

次に磁場コイル13の具体的構成例について説明する。本実施の形態では、下部磁場コイル層21に配される磁場コイル13の一部をなす導体パターンは、図4に例示するようなものとなる。すなわちこの下部磁場コイル層21には、磁気抵抗効果素子11の長手方向(感磁軸方向に対する方向:Y軸方向とする)に平行な直線状の導体L1,L2,…,Li,…,Lnが、磁性体12が配される範囲に亘って、X軸方向に並べて複数配される。なお、図4では磁性体12の配置される位置に対応する範囲を破線で示している。   Next, a specific configuration example of the magnetic field coil 13 will be described. In the present embodiment, the conductor pattern forming a part of the magnetic field coil 13 disposed on the lower magnetic field coil layer 21 is as illustrated in FIG. That is, the lower magnetic field coil layer 21 has linear conductors L1, L2, ..., Li, ..., Ln parallel to the longitudinal direction of the magnetoresistive element 11 (direction relative to the magnetosensitive axis direction: Y-axis direction). However, a plurality of the magnetic bodies 12 are arranged side by side in the X-axis direction over the range where the magnetic bodies 12 are arranged. In FIG. 4, the range corresponding to the position where the magnetic body 12 is arranged is indicated by a broken line.

また磁場コイル13の上部磁場コイル層23に配される磁場コイル13の一部をなす導体パターンは図5に例示するようなものとなる。この上部磁場コイル層23には、下部磁場コイル層21の導体L1に対応するX軸方向の位置に配された端部導体U1が配される。またこの上部磁場コイル層23には、磁気抵抗効果素子11の長手方向(感磁軸方向に対する方向:Y軸方向)に平行な直線状の部分であって、下部磁場コイル層21のi番目(n−1>i>2)の導体Liに重なり合う部分Pを有し、またこの部分Pに対して屈曲部Qを介してX軸方向に隣接する(下部磁場コイル層21にあるi−1番目の)導体Li−1の一方端に重なり合う端部Rとを含んだ導体U2,U3,…Ujが互いに平行に、X軸方向に並べて配される。なお、ここで「重なり合う」とは、平面視(XY面を見るとき)において重なり合って見えることを意味する。つまり「導体Liに重なり合う」というのは、導体Liが配されるX軸方向の位置に対応するX軸上の位置に配されることを意味し、平面視において重なり合って見えることを意味する。   A conductor pattern forming a part of the magnetic field coil 13 disposed on the upper magnetic field coil layer 23 of the magnetic field coil 13 is as illustrated in FIG. The upper magnetic field coil layer 23 is provided with an end conductor U1 disposed at a position in the X-axis direction corresponding to the conductor L1 of the lower magnetic field coil layer 21. The upper magnetic field coil layer 23 is a linear portion parallel to the longitudinal direction of the magnetoresistive effect element 11 (direction with respect to the magnetosensitive axis direction: Y-axis direction), and is the i-th ( n-1> i> 2) has a portion P overlapping the conductor Li, and is adjacent to this portion P via the bent portion Q in the X-axis direction (the (i-1) th in the lower magnetic field coil layer 21) The conductors U2, U3,... Uj including the end R overlapping the one end of the conductor Li-1 are arranged in parallel to each other in the X-axis direction. Here, “overlapping” means that they appear to overlap in plan view (when viewing the XY plane). In other words, “overlap with the conductor Li” means that the conductor Li is disposed at a position on the X axis corresponding to the position in the X axis direction where the conductor Li is disposed, and means that the conductor Li appears to overlap.

さらにこの上部磁場コイル層23には、Y軸方向一方端側はX軸一方方向に隣接する(下部磁場コイル層21にあるi−1番目の)導体Li−1の他方端側に重なり合い、またY軸方向他方端側はX軸他方方向に隣接する(下部磁場コイル層21にあるi+1番目の)導体Li+1の一方端側に重なり合う部分を有し、これらの各部にそれぞれ屈曲部を介して接続され、磁気抵抗効果素子11の長手方向(感磁軸方向に対する方向:Y軸方向)に平行に配される直線状の部分を有する中心導体Ucが配される。この中心導体Ucの直線状の部分は、磁気抵抗効果素子11に重なり合う位置に配される。つまりこの中心導体Ucが、本発明における、磁気抵抗効果素子に重ね合わせられ、感磁軸方向に直交する導体に相当する。   Furthermore, one end side in the Y-axis direction overlaps with the upper magnetic field coil layer 23 on the other end side of the (i−1) -th conductor Li-1 adjacent to the one direction in the X-axis, The other end side in the Y-axis direction has a portion that overlaps with one end side of the (Li + 1) -th conductor Li + 1 (in the lower magnetic field coil layer 21) adjacent to the other direction in the X-axis. A central conductor Uc having a linear portion arranged in parallel to the longitudinal direction of the magnetoresistive effect element 11 (direction with respect to the magnetosensitive axis direction: Y-axis direction) is arranged. The linear portion of the central conductor Uc is disposed at a position overlapping the magnetoresistive effect element 11. That is, the central conductor Uc corresponds to a conductor that is superimposed on the magnetoresistive effect element and is orthogonal to the magnetosensitive axis direction in the present invention.

さらに、上部磁場コイル層23には、この中心導体Ucの中心C(中心導体Ucの重心)を回転中心として、上記導体U1,U2,…,Ujを角度πだけ回転させた形状の導体Uj+1,…Un(ここでn=2j)が配される。また、導体Uiと、導体Li−1,LiまたはLi+1との互いに重なり合う端部は、絶縁層25と磁性体層22とを貫通するビア導体を介して、電気的に接続される。   Further, the upper magnetic field coil layer 23 has conductors Uj + 1, Uj + 1 having a shape obtained by rotating the conductors U1, U2,..., Uj by an angle π with the center C of the center conductor Uc (the center of gravity of the center conductor Uc) as the rotation center. ... Un (where n = 2j) is arranged. In addition, the overlapping ends of the conductor Ui and the conductors Li-1, Li, or Li + 1 are electrically connected via via conductors that penetrate the insulating layer 25 and the magnetic layer 22.

これにより、上部磁場コイル層23に配された導体U1は、下部磁場コイル層21に配された導体L1の他方端側に対してビア導体H1を介して電気的に接続される。また、この導体L1は、その一方端側においてビア導体H2を介して上部磁場コイル層23に配された導体U2に電気的に接続される。この導体U2は、その他方端側において、ビア導体H3を介して下部磁場コイル層21に配された導体L2の他方端側に接続される。以下、導体U3,導体L3,…というように磁性体22に巻回されるように導体が順次電気的に連結され、これにより磁性体22に巻回された磁場コイル13が形成される。   Thereby, the conductor U1 arranged in the upper magnetic field coil layer 23 is electrically connected to the other end side of the conductor L1 arranged in the lower magnetic field coil layer 21 through the via conductor H1. The conductor L1 is electrically connected to the conductor U2 disposed on the upper magnetic field coil layer 23 via the via conductor H2 on one end side thereof. The other end of the conductor U2 is connected to the other end of the conductor L2 disposed in the lower magnetic field coil layer 21 via the via conductor H3. Hereinafter, the conductors are sequentially electrically connected so as to be wound around the magnetic body 22 such as the conductor U3, the conductor L3,..., Thereby forming the magnetic field coil 13 wound around the magnetic body 22.

バイアスコイル14は、X軸方向に平行な導線とY軸方向に平行な導線とを交互に接続した渦巻状コイルである。このバイアスコイル14には所定のバイアス電流が供給される。またこのバイアスコイル14のX軸方向に平行な導線が磁気抵抗効果素子11の長手方向に亘って複数配されることとなるよう、バイアスコイル14が配置される。   The bias coil 14 is a spiral coil in which conductive wires parallel to the X-axis direction and conductive wires parallel to the Y-axis direction are alternately connected. A predetermined bias current is supplied to the bias coil 14. The bias coil 14 is arranged so that a plurality of conductive wires parallel to the X-axis direction of the bias coil 14 are arranged along the longitudinal direction of the magnetoresistive effect element 11.

また本実施の形態の磁気センサ部10では、図2に例示したように、磁気抵抗効果素子11を含んで予め定められた範囲に重なり合う部分で、上部磁場コイル層23が当該磁気抵抗効果素子11に向かって凸となるよう形成されている。つまり、この上部磁場コイル層23の厚さ方向(基板20の面に立つ法線方向をZ軸としてZ軸方向)の中心線は、上記範囲の外側では基板20の面から距離z23の位置にあり、磁気抵抗効果素子11に重なり合う部分では基板20の面から距離z23′(z23′<z23)の位置にあり、これらの間では、磁気抵抗効果素子11に重なり合う部分に近接するほど基板20の面に近づくようXZ面内で傾きをもって(スロープとなって)いる。またこの範囲は、例えば磁気抵抗効果素子11の中心(矩形をなす磁気抵抗効果素子11の当該矩形内に対角線を引いた場合の交点)からX軸正の方向、及び負の方向にそれぞれ幅ξ/2の部分とする。なお磁気抵抗効果素子11の短手方向の長さをwとしたとき、ξ≧wであるものとし、Y軸方向においてはこの範囲は、磁気抵抗効果素子11の中心からY軸正の方向、及び負の方向にそれぞれ長さη/2の部分とする。このとき、磁気抵抗効果素子11の長手方向の長さをlとすると、η>lであるものとする。   Further, in the magnetic sensor unit 10 of the present embodiment, as illustrated in FIG. 2, the upper magnetic field coil layer 23 overlaps the predetermined range including the magnetoresistive effect element 11 in the magnetoresistive effect element 11. It is formed so as to be convex toward. That is, the center line in the thickness direction of the upper magnetic field coil layer 23 (Z-axis direction with the normal direction standing on the surface of the substrate 20 as the Z-axis) is located at a distance z23 from the surface of the substrate 20 outside the above range. Yes, the portion overlapping the magnetoresistive effect element 11 is located at a distance z23 ′ (z23 ′ <z23) from the surface of the substrate 20, and the distance between them is closer to the portion overlapping the magnetoresistive effect element 11. It is inclined (is a slope) in the XZ plane so as to approach the surface. This range is, for example, a width ξ from the center of the magnetoresistive effect element 11 (intersection when a diagonal line is drawn in the rectangle of the magnetoresistive effect element 11 forming a rectangle) to the X axis positive direction and the negative direction respectively. The part of / 2. When the length of the magnetoresistive element 11 in the short direction is w, ξ ≧ w, and in the Y-axis direction, this range is the positive direction of the Y-axis from the center of the magnetoresistive element 11, And a portion of length η / 2 in the negative direction. At this time, assuming that the length of the magnetoresistive element 11 in the longitudinal direction is l, η> l.

これは具体的には、下部磁場コイル層21を、上記の範囲で、この磁気抵抗効果素子11に近接するほど、その厚みを小さくし、磁気抵抗効果素子11に重なり合う部分で一定の厚みとなるように形成しておくことで実現される。この例では、この下部磁場コイル層21に積層される磁性体層22もまた、上記の範囲に重なり合う部分で、当該磁気抵抗効果素子11に向かって凸となり、この磁性体層22に含まれる磁性体12も、この層の厚さ方向の中心線に平行に、上記範囲においてXZ面内で屈曲して配される。   Specifically, as the lower magnetic field coil layer 21 is closer to the magnetoresistive effect element 11 in the above-mentioned range, the thickness thereof is reduced, and a constant thickness is obtained at a portion overlapping the magnetoresistive effect element 11. This is realized by forming as described above. In this example, the magnetic layer 22 laminated on the lower magnetic field coil layer 21 also protrudes toward the magnetoresistive element 11 at a portion overlapping the above range, and the magnetic layer included in the magnetic layer 22 The body 12 is also bent and arranged in the XZ plane within the above range in parallel with the center line in the thickness direction of this layer.

なお、このときバイアスコイル14を含むバイアスコイル層24は、どこも基板20の面に平行になるように形成されてもよい。また、このバイアスコイル14を含むバイアスコイル層24もまた、上部磁場コイル層23と同様に(磁場コイル層23にどの部分でも平行になるよう)、磁気抵抗効果素子11を含んで予め定められた範囲に重なり合う部分で、当該磁気抵抗効果素子11に向かって凸となるように形成されてもよい。   At this time, the bias coil layer 24 including the bias coil 14 may be formed so as to be parallel to the surface of the substrate 20. Further, the bias coil layer 24 including the bias coil 14 is also predetermined including the magnetoresistive effect element 11 in the same manner as the upper magnetic field coil layer 23 (so that any part is parallel to the magnetic field coil layer 23). It may be formed so as to protrude toward the magnetoresistive effect element 11 at a portion overlapping the range.

以下、このような例に係る磁気センサ部10の製造方法の一例について説明する。図6に例示するように、この例ではまず磁場コイル13の下部磁場コイル層21に含まれるべき導体部分を、スパッタリングにて基板20上に形成する。また、所定の位置に磁気抵抗効果素子11を薄膜形成する(S1)。なお、磁気抵抗効果素子11はアルミナ保護膜により保護してもよい。次いで、下部磁場コイル層21の磁場コイル13の導体部分近傍に所定厚さまで絶縁体膜を成膜する(S2)。このとき磁気抵抗効果素子11上には上記の絶縁体膜を形成しない。   Hereinafter, an example of the manufacturing method of the magnetic sensor unit 10 according to such an example will be described. As illustrated in FIG. 6, in this example, first, a conductor portion to be included in the lower magnetic field coil layer 21 of the magnetic field coil 13 is formed on the substrate 20 by sputtering. Further, the magnetoresistive effect element 11 is formed in a thin film at a predetermined position (S1). The magnetoresistive effect element 11 may be protected by an alumina protective film. Next, an insulator film is formed to a predetermined thickness near the conductor portion of the magnetic field coil 13 of the lower magnetic field coil layer 21 (S2). At this time, the insulator film is not formed on the magnetoresistive effect element 11.

これにより磁気抵抗効果素子11を中心としてX軸両方向に所定のサイズだけ凹となる凹部(その端部はスロープとなっていてもよい)が得られる。こうして下部磁場コイル層21及び絶縁体層が形成される。   As a result, a concave portion (its end portion may be a slope) that is concave by a predetermined size in both directions of the X axis with the magnetoresistive element 11 as the center is obtained. Thus, the lower magnetic field coil layer 21 and the insulator layer are formed.

そしてこの下部磁場コイル層21上にスパッタリング等の方法で磁性体12を形成する(S3)。この磁性体12は、絶縁体膜の形状に従い、その磁気抵抗効果素子11側の端部が、磁気抵抗効果素子11に向って凸となるように形成される。さらにこの上部に所定厚の絶縁体膜を成膜する(S4)。なお、磁気抵抗効果素子11をアルミナ保護膜で保護しているときには、磁気抵抗効果素子11の直上部分には絶縁膜を形成する必要はない。そしてこの絶縁体膜も下部磁場コイル層21の形状に沿って形成されるので、磁気抵抗効果素子11の周囲に凹部が形成される。こうして磁性体層22が得られる。   Then, the magnetic body 12 is formed on the lower magnetic field coil layer 21 by a method such as sputtering (S3). The magnetic body 12 is formed so that the end on the magnetoresistive effect element 11 side is convex toward the magnetoresistive effect element 11 according to the shape of the insulator film. Further, an insulator film having a predetermined thickness is formed on the upper part (S4). When the magnetoresistive effect element 11 is protected with an alumina protective film, it is not necessary to form an insulating film immediately above the magnetoresistive effect element 11. Since this insulator film is also formed along the shape of the lower magnetic field coil layer 21, a recess is formed around the magnetoresistive effect element 11. Thus, the magnetic layer 22 is obtained.

ここで、磁性体層22の絶縁体膜のうち、ビアホールに対応する位置に孔を形成して下部磁場コイル層21に含まれる導線パターンに接続されるビア導体を形成する。そして磁性体層22に積層された絶縁体膜上に上部磁場コイル層23に含まれるべき磁場コイル13の導体部分をスパッタリング等により形成する(S5)。このとき、当該導体部分のビアホールに対応する位置で上記ビア導体に電気的に接触するようにしておく。こうして形成した上部磁場コイル層23内の磁場コイル13の導線も、上記凹部の部分では当該形状に沿って配され、XZ面内で、磁気抵抗効果素子11に向う方向に形成される。また、この凹部の部分では、この上部磁場コイル層23の上部は、磁性体層22に配された磁性体12の凹部外の部分(磁性体12のZ軸方向に下部磁場コイル層21より離れた面)よりも磁気抵抗効果素子11を配した下部磁場コイル層21に近接する。   Here, in the insulator film of the magnetic layer 22, a hole is formed at a position corresponding to the via hole to form a via conductor connected to the conductor pattern included in the lower magnetic field coil layer 21. Then, a conductor portion of the magnetic field coil 13 to be included in the upper magnetic field coil layer 23 is formed on the insulator film laminated on the magnetic layer 22 by sputtering or the like (S5). At this time, the via conductor is electrically contacted at a position corresponding to the via hole of the conductor portion. The conducting wire of the magnetic field coil 13 in the upper magnetic field coil layer 23 thus formed is also arranged along the shape in the concave portion, and is formed in the direction toward the magnetoresistive effect element 11 in the XZ plane. Further, in the concave portion, the upper portion of the upper magnetic field coil layer 23 is a portion outside the concave portion of the magnetic body 12 disposed on the magnetic layer 22 (away from the lower magnetic field coil layer 21 in the Z-axis direction of the magnetic body 12). Is closer to the lower magnetic field coil layer 21 on which the magnetoresistive effect element 11 is arranged.

そしてさらにこの上部磁場コイル層23上に所定厚の絶縁体膜を成膜する(S6)。この絶縁体膜は基板20の面からの厚さがどこでも実質的に一定となるよう形成してもよいが、凹凸があっても構わない。これによって上部磁場コイル層23及び絶縁体層が得られる。   Further, an insulator film having a predetermined thickness is formed on the upper magnetic field coil layer 23 (S6). The insulator film may be formed so that the thickness from the surface of the substrate 20 is substantially constant everywhere, but it may be uneven. Thereby, the upper magnetic field coil layer 23 and the insulator layer are obtained.

さらにこの絶縁体層上にスパッタリング等の方法で、XY平面上で渦巻状をなすバイアスコイル14の導線を配する(S7)。そしてさらにこの上部に所定厚の絶縁体膜を成膜する(S8)。このバイアスコイル14も、上記凹部の部分では当該形状に沿って導線が配され、XZ面内で、磁気抵抗効果素子11に向う方向に形成される。   Further, a conductive wire of the bias coil 14 having a spiral shape on the XY plane is arranged on the insulator layer by a method such as sputtering (S7). Further, an insulator film having a predetermined thickness is formed on the upper part (S8). The bias coil 14 is also formed in a direction toward the magnetoresistive effect element 11 in the XZ plane, with a conducting wire disposed along the shape in the concave portion.

また、さらに本実施の形態においては、磁気センサ部10は一つでなく一対としてもよい。具体的にこの例では、図7に示すように、一対の磁気センサ部10a,bが感磁軸方向に直交する方向(Y軸方向)に並べて配される。このとき、各磁気センサ部10a,bのそれぞれに含まれる磁気抵抗効果素子11の感磁軸方向はいずれもX軸に平行で、かつ互いに反平行となるように配される。図7の例では、磁気センサ部10aの磁気抵抗効果素子11a(以下区別のため第1の磁気抵抗効果素子と呼ぶ)の感磁軸方向はX軸負の方向、磁気センサ部10bの磁気抵抗効果素子11b(以下区別のため第2の磁気抵抗効果素子と呼ぶ)の感磁軸方向はX軸正の方向であるものとしている。   Further, in the present embodiment, the magnetic sensor unit 10 may be a pair instead of one. Specifically, in this example, as shown in FIG. 7, a pair of magnetic sensor units 10a and 10b are arranged side by side in a direction (Y-axis direction) orthogonal to the magnetosensitive axis direction. At this time, the magnetosensitive effect elements 11 included in each of the magnetic sensor units 10a and 10b are arranged such that the magnetosensitive axis directions are parallel to the X axis and antiparallel to each other. In the example of FIG. 7, the magnetosensitive axis direction of the magnetoresistive effect element 11 a of the magnetic sensor unit 10 a (hereinafter referred to as the first magnetoresistive effect element for distinction) is the negative X-axis direction, and the magnetoresistive resistance of the magnetic sensor unit 10 b The magnetosensitive axis direction of the effect element 11b (hereinafter referred to as a second magnetoresistive effect element for distinction) is assumed to be the positive direction of the X axis.

このとき、磁気センサ部10a,bのそれぞれに含まれる磁場コイル13a,bは、直列に接続される。具体的には磁気センサ部10aに含まれる磁場コイル13aのX軸正の方向側にある端部(磁気センサ部10が単独であったときに共通端子GNDに接続されていた側)が、磁気センサ部10bに含まれる磁場コイル13bのX軸負の方向側にある端部に接続され、この磁場コイル13bのX軸正の方向側にある端部が抵抗器R等を介して共通端子(GND)に接続される。   At this time, the magnetic field coils 13a and 13b included in the magnetic sensor units 10a and 10b are connected in series. Specifically, the end portion on the positive side in the X-axis direction of the magnetic field coil 13a included in the magnetic sensor unit 10a (the side connected to the common terminal GND when the magnetic sensor unit 10 is single) is magnetic. The magnetic coil 13b included in the sensor unit 10b is connected to the end of the magnetic field coil 13b on the X axis negative direction side, and the end of the magnetic field coil 13b on the X axis positive direction side is connected through a resistor R or the like to a common terminal ( GND).

またこの例では磁気センサ部10a,bの各層(下部磁場コイル層、磁性体層、上部磁場コイル層)のそれぞれはZ軸方向に同じ面に配されるものとする。つまりこの例では、一つの下部磁場コイル層に、磁気センサ部10a,b双方における磁場コイル13a,bの導線パターンの一部及び第1,第2の磁気抵抗効果素子11a,bが配され、一つの磁性体層に、磁気センサ部10a,b双方の磁性体12a,bが配され…というように各層の面が実質的に一致するよう構成される。   In this example, each layer (lower magnetic field coil layer, magnetic layer, upper magnetic field coil layer) of the magnetic sensor units 10a and 10b is arranged on the same surface in the Z-axis direction. That is, in this example, a part of the conductor pattern of the magnetic field coils 13a, 13b and the first and second magnetoresistance effect elements 11a, 11b in both the magnetic sensor units 10a, 10b are arranged on one lower magnetic field coil layer, The magnetic bodies 12a, b of both the magnetic sensor units 10a, 10b are arranged on one magnetic layer, and so on, and the surfaces of the respective layers are configured to substantially coincide.

さらにバイアスコイル14は、図7に例示するようにX軸方向に平行な導線とY軸方向に平行な導線とを交互に接続した渦巻状コイルである。なお、図7では下部の状況が分かりやすいように、バイアスコイル14を透過して、またそのおおよその外形を点線にて図示しているが、このバイアスコイル14は、実際には導体を矩形渦巻状に配したものである。このバイアスコイル14には所定のバイアス電流が供給される。つまりこのバイアスコイル14においては、X軸方向に平行な導線として、電流がX軸一方側へ流れる第1の導線群と、電流がX軸他方側へ流れる第2の導線群とを有するが、このバイアスコイル14の第1の導線群が第1の磁気抵抗効果素子11aに重なり合い、第2の導線群が第2の磁気抵抗効果素子11bに重なり合うよう、バイアスコイル14が配置される。またこのバイアスコイル14は磁気センサ部10a,bのそれぞれに含まれる磁性体12a,bの配される範囲に亘って形成される。つまりバイアスコイル14のX軸方向の幅は実質的に、磁性体12a,bのX軸方向の長さ以上となっている。   Further, as illustrated in FIG. 7, the bias coil 14 is a spiral coil in which conductive wires parallel to the X-axis direction and conductive wires parallel to the Y-axis direction are alternately connected. In FIG. 7, the bias coil 14 is transmitted through and the outline of the outline is shown by a dotted line so that the situation in the lower part can be easily understood. It is arranged in a shape. A predetermined bias current is supplied to the bias coil 14. That is, the bias coil 14 has a first conductor group in which current flows to one side of the X axis and a second conductor group in which current flows to the other side of the X axis as conductors parallel to the X axis direction. The bias coil 14 is arranged so that the first conductor group of the bias coil 14 overlaps the first magnetoresistive element 11a and the second conductor group overlaps the second magnetoresistive element 11b. The bias coil 14 is formed over a range where the magnetic bodies 12a and 12b included in the magnetic sensor units 10a and 10b are arranged. That is, the width of the bias coil 14 in the X-axis direction is substantially greater than or equal to the length of the magnetic bodies 12a and 12b in the X-axis direction.

この例に係る磁気センサ1の回路部15は、図3(b)に例示するように、固定抵抗素子32,33と、増幅器34とを含んで構成される。ここで固定抵抗素子32,33は、一対の磁気抵抗効果素子11a,bとともにブリッジ回路を構成する。具体的には、第1の磁気抵抗効果素子11aの一方端と、第2の磁気抵抗効果素子11bの一方端側とが接続されるとともに、これらの一方端側はさらに共通端子(GND)に接続される。また、第1の磁気抵抗効果素子11aの他方端と固定抵抗素子33の一方端とが接続され、第2の磁気抵抗効果素子11bの他方端と固定抵抗素子32の一方端とが接続される。固定抵抗素子32,33の他方端側は互いに接続され、電源端子Vccに接続される。なお、導線自体のもつ電気的抵抗を考慮して、固定抵抗素子32,33を省いて回路部15を構成してもよい。さらに、固定抵抗素子32,33に代えて、もう一対の磁気抵抗効果素子11c,dを用いてもよい。この場合は図7に例示した磁気センサ1をもう一つ用い、当該もう一つの磁気センサ1に含まれる磁気抵抗効果素子11c,dをここでの固定抵抗素子32,33に代えて接続する。   The circuit unit 15 of the magnetic sensor 1 according to this example includes fixed resistance elements 32 and 33 and an amplifier 34 as illustrated in FIG. Here, the fixed resistance elements 32 and 33 constitute a bridge circuit together with the pair of magnetoresistance effect elements 11a and 11b. Specifically, one end of the first magnetoresistive effect element 11a and one end side of the second magnetoresistive effect element 11b are connected, and these one end sides are further connected to a common terminal (GND). Connected. Further, the other end of the first magnetoresistance effect element 11a is connected to one end of the fixed resistance element 33, and the other end of the second magnetoresistance effect element 11b is connected to one end of the fixed resistance element 32. . The other end sides of the fixed resistance elements 32 and 33 are connected to each other and connected to the power supply terminal Vcc. In consideration of the electrical resistance of the conductive wire itself, the circuit unit 15 may be configured by omitting the fixed resistance elements 32 and 33. Furthermore, instead of the fixed resistance elements 32 and 33, another pair of magnetoresistance effect elements 11c and 11d may be used. In this case, another magnetic sensor 1 illustrated in FIG. 7 is used, and the magnetoresistive effect elements 11c and 11d included in the other magnetic sensor 1 are connected in place of the fixed resistance elements 32 and 33 here.

また増幅器34は、第1の磁気抵抗効果素子11aの他方端側と、第2の磁気抵抗効果素子11bの他方端側との電位差に応じた電圧信号を磁場コイル13の一方端側に供給する。また磁場コイル13の他方端側は共通端子(GND)に接続される。この増幅器34の出力は、磁場コイル13に供給される。具体的には、この増幅器34の出力は、磁気センサ部10aの磁場コイル13aのX軸負の側にある端部に接続される。また磁気センサ部10bの磁場コイル13bのX軸正の側にある端部(磁場コイルの他方端側)が共通端子(GND)に接続される。なお、磁気センサ部10aの磁場コイル13aのX軸正の側の端部と磁気センサ部10bの磁場コイル13bのX軸負の側の端部とは互いに接続される。   The amplifier 34 supplies a voltage signal corresponding to the potential difference between the other end side of the first magnetoresistive effect element 11 a and the other end side of the second magnetoresistive effect element 11 b to the one end side of the magnetic field coil 13. . The other end of the magnetic field coil 13 is connected to a common terminal (GND). The output of the amplifier 34 is supplied to the magnetic field coil 13. Specifically, the output of the amplifier 34 is connected to the end portion on the X-axis negative side of the magnetic field coil 13a of the magnetic sensor unit 10a. Further, the end (the other end side of the magnetic field coil) on the X axis positive side of the magnetic field coil 13b of the magnetic sensor unit 10b is connected to the common terminal (GND). Note that the X-axis positive end of the magnetic field coil 13a of the magnetic sensor unit 10a and the X-axis negative end of the magnetic coil 13b of the magnetic sensor unit 10b are connected to each other.

さらに本実施の形態のこの例では、磁気抵抗効果素子11a,bの抵抗変化に応じた大きさの電圧が磁場コイル13に印加される。つまり上述の例と同様に、外部磁場の大きさにより第1、第2の磁気抵抗効果素子11a,bの抵抗値が変化すると、当該抵抗値の変化に応じた電圧が磁場コイル13に印加され、第1,第2の磁気抵抗効果素子11a,bのそれぞれの感磁軸方向に対して、外部磁場とは逆向きで、当該電圧に比例した大きさの磁場(打消し磁場)が形成される。そして被測定電流Iにより生成される外部磁場が、磁気抵抗効果素子の近傍で、この打消し磁場により打ち消されることとなる。このとき磁場コイル13a,bに流れる電流量iは被測定電流Iに比例する。そこで回路部15は、この電流量iを表す信号を、出力信号として出力する。具体的には磁場コイル13bの他方端側と共通端子(GND)との間に抵抗器Rを接続し、この抵抗器Rの両端の電位差を、電流量iの大きさを表す電圧信号として出力することとすればよい。   Furthermore, in this example of the present embodiment, a voltage having a magnitude corresponding to the resistance change of the magnetoresistive effect elements 11 a and 11 b is applied to the magnetic field coil 13. That is, as in the above example, when the resistance values of the first and second magnetoresistive elements 11a and 11b change depending on the magnitude of the external magnetic field, a voltage corresponding to the change in the resistance value is applied to the magnetic field coil 13. A magnetic field (a canceling magnetic field) having a magnitude proportional to the voltage is formed in the direction opposite to the external magnetic field with respect to the direction of the magnetosensitive axis of each of the first and second magnetoresistive elements 11a and 11b. The The external magnetic field generated by the current I to be measured is canceled by this canceling magnetic field in the vicinity of the magnetoresistive effect element. At this time, the amount of current i flowing through the magnetic field coils 13a, 13b is proportional to the current I to be measured. Therefore, the circuit unit 15 outputs a signal representing the current amount i as an output signal. Specifically, a resistor R is connected between the other end side of the magnetic field coil 13b and the common terminal (GND), and the potential difference between both ends of the resistor R is output as a voltage signal representing the magnitude of the current amount i. What should I do?

なお、この例においても、磁気センサ部10a,bの上部磁場コイル層は、磁気抵抗効果素子11a,bを含んで予め定められたXY面内の範囲で当該磁気抵抗効果素子11a,bに向かって凸となるよう形成され、またバイアスコイル14は、磁気抵抗効果素子11a,bを含んで予め定められた上記の範囲で、磁気抵抗効果素子11a,bに向かって凸となるよう形成されていてもよい。   Also in this example, the upper magnetic field coil layers of the magnetic sensor units 10a and 10b are directed to the magnetoresistive elements 11a and 11b within a predetermined XY plane including the magnetoresistive elements 11a and 11b. The bias coil 14 is formed to be convex toward the magnetoresistive effect elements 11a and 11b in the above-mentioned range including the magnetoresistive effect elements 11a and 11b. May be.

磁場コイル13に印加される電流量を変化させたときに、磁場コイル13の表面(導体表面)からの距離に応じて変化する磁場の強度(単位100μT)をシミュレーションにより求めた結果を図8に示す。   FIG. 8 shows a result obtained by simulating the intensity (unit: 100 μT) of the magnetic field that changes according to the distance from the surface (conductor surface) of the magnetic field coil 13 when the amount of current applied to the magnetic field coil 13 is changed. Show.

図8において横軸は磁場コイル13表面の距離(単位はμm)である。図8に示したように、磁場コイル13に20mAの電流を流したときの磁気抵抗効果素子11a,b近傍の磁場強度は、磁気抵抗効果素子11a,bが磁場コイル13から5μmの位置にあるときには630μTとなり、0.5μmの位置にあるときには1500μT(=1.5mT)となる。すなわち、磁気抵抗効果素子11a,bに向って磁場コイル13の上部磁場コイル層側の導線を4.5μmだけ近接させる(4.5μmだけの凹部を絶縁層に形成して磁場コイル13の導線を4.5μmだけ磁気抵抗効果素子11a,bに向って凸とさせる)と、微小な電流量で磁気抵抗効果素子11a,bに十分な磁場を与えることができるようになる。   In FIG. 8, the horizontal axis is the distance (unit: μm) on the surface of the magnetic field coil 13. As shown in FIG. 8, the magnetic field strength in the vicinity of the magnetoresistive effect elements 11a and 11b when a current of 20 mA is passed through the magnetic field coil 13 is such that the magnetoresistive effect elements 11a and 11b are located at 5 μm from the magnetic field coil 13. Sometimes it becomes 630 μT, and when it is at the position of 0.5 μm, it becomes 1500 μT (= 1.5 mT). That is, the conductor on the upper magnetic field coil layer side of the magnetic field coil 13 is brought close to the magnetoresistive effect elements 11a and 11b by 4.5 μm (a concave part of 4.5 μm is formed in the insulating layer, and the magnetic field coil 13 is electrically connected. If the projection is made to protrude toward the magnetoresistive effect elements 11a and 11b by 4.5 μm), a sufficient magnetic field can be applied to the magnetoresistive effect elements 11a and 11b with a small amount of current.

また磁気センサ部10を一対とする図7の例では、図3(b)に例示した回路に限られず、図9(a)に例示するように、固定抵抗素子31,32と、増幅器34とを含んで構成されるものでもよい。ここで固定抵抗素子31,32が、一対の磁気抵抗効果素子11a,bとともにブリッジ回路(ハーフブリッジ)を構成する。具体的には、第2の磁気抵抗効果素子11bの一方端と、固定抵抗素子32の一方端とが接続されるとともに、これらの一方端側はさらに共通端子(GND)に接続される。また第1の磁気抵抗効果素子11aの一方端側と第2の磁気抵抗効果素子11bの他方端側とが接続される。さらに固定抵抗素子31の一方端側と固定抵抗素子32の他方端側とが接続される。   Further, in the example of FIG. 7 in which the magnetic sensor unit 10 is paired, the circuit is not limited to the circuit illustrated in FIG. 3B, but as illustrated in FIG. 9A, the fixed resistance elements 31 and 32, the amplifier 34, It may be comprised including. Here, the fixed resistance elements 31 and 32 constitute a bridge circuit (half bridge) together with the pair of magnetoresistance effect elements 11a and 11b. Specifically, one end of the second magnetoresistive effect element 11b and one end of the fixed resistance element 32 are connected, and one end side thereof is further connected to a common terminal (GND). The one end side of the first magnetoresistive effect element 11a is connected to the other end side of the second magnetoresistive effect element 11b. Furthermore, one end side of the fixed resistance element 31 and the other end side of the fixed resistance element 32 are connected.

また第1の磁気抵抗効果素子11aの他方端と固定抵抗素子31の他方端とが接続され、これらの他方端側がさらに電源端子Vccに接続される。なお、導線自体のもつ電気的抵抗を考慮して、固定抵抗素子31,32を省いて回路部15を構成してもよい。さらに、固定抵抗素子31,32に代えて、もう一対の磁気抵抗効果素子11c,dを用いてもよい(図10)。この場合は図7に例示した磁気センサ1をもう一つ用い、当該もう一つの磁気センサ1に含まれる磁気抵抗効果素子11c,dをここでの固定抵抗素子31,32に代えて接続する。またこのときには磁気抵抗効果素子11a,11dの感磁軸方向が一致し、磁気抵抗効果素子11c,11bの感磁軸方向は、いずれも磁気抵抗効果素子11a,11dの感磁軸方向に対して反平行となって一致しているものとする。   The other end of the first magnetoresistance effect element 11a is connected to the other end of the fixed resistance element 31, and the other end side is further connected to the power supply terminal Vcc. Note that the circuit unit 15 may be configured by omitting the fixed resistance elements 31 and 32 in consideration of the electrical resistance of the conducting wire itself. Furthermore, instead of the fixed resistance elements 31 and 32, another pair of magnetoresistance effect elements 11c and 11d may be used (FIG. 10). In this case, another magnetic sensor 1 illustrated in FIG. 7 is used, and the magnetoresistive effect elements 11c and 11d included in the other magnetic sensor 1 are connected in place of the fixed resistance elements 31 and 32 here. Further, at this time, the magnetosensitive axis directions of the magnetoresistive effect elements 11a and 11d coincide with each other, and the magnetosensitive effect axis directions of the magnetoresistive effect elements 11c and 11b are both relative to the magnetosensitive axis direction of the magnetoresistive effect elements 11a and 11d. Assume that they are antiparallel and coincide.

また増幅器34は、第1の磁気抵抗効果素子11aの一方端側(つまり第2の磁気抵抗効果素子11bの他方端側)と、固定抵抗素子31の一方端側(つまり)固定抵抗素子32の他方端側)との電位差に応じた電圧信号を磁場コイル13の一方端側に供給する。また磁場コイル13の他方端側は共通端子(GND)に接続される。具体的には、この増幅器34の出力は、磁気センサ部10aの磁場コイル13aのX軸負の側にある端部(磁場コイルの一方端側)に接続され、磁気センサ部10bの磁場コイル13bのX軸正の側にある端部(磁場コイルの他方端側)が共通端子(GND)に接続される。なお、磁気センサ部10aの磁場コイル13aのX軸正の側の端部と磁気センサ部10bの磁場コイル13bのX軸負の側の端部とは互いに接続される。   The amplifier 34 includes one end side of the first magnetoresistive effect element 11a (that is, the other end side of the second magnetoresistive effect element 11b) and one end side (that is, the fixed resistance element 32) of the fixed resistance element 31. A voltage signal corresponding to the potential difference from the other end side is supplied to one end side of the magnetic field coil 13. The other end of the magnetic field coil 13 is connected to a common terminal (GND). Specifically, the output of the amplifier 34 is connected to the end on the X-axis negative side of the magnetic field coil 13a of the magnetic sensor unit 10a (one end side of the magnetic field coil), and the magnetic field coil 13b of the magnetic sensor unit 10b. The end on the X axis positive side (the other end side of the magnetic field coil) is connected to the common terminal (GND). Note that the X-axis positive end of the magnetic field coil 13a of the magnetic sensor unit 10a and the X-axis negative end of the magnetic coil 13b of the magnetic sensor unit 10b are connected to each other.

さらに磁気センサ部10を一対とする図7の例では、図3(b),図9に例示した回路に限られず、図11に例示するように、固定抵抗素子Rrefと、増幅器34とを含んで構成される回路部15を用いてもよい。ここでは、第1、第2の磁気抵抗効果素子11a,bが電源端子Vccと、共通端子(GND)との間で直列に接続される。そして第1の磁気抵抗効果素子11aと、第2の磁気抵抗効果素子11bとが互いに接続される点が増幅器34の一方側端子に接続され、またこの増幅器34の他方側端子は固定抵抗素子Rrefを介して共通端子(GND)に接続されている。   Further, the example of FIG. 7 in which the magnetic sensor unit 10 is paired is not limited to the circuits illustrated in FIGS. 3B and 9, and includes a fixed resistance element Rref and an amplifier 34 as illustrated in FIG. 11. You may use the circuit part 15 comprised by these. Here, the first and second magnetoresistance effect elements 11a and 11b are connected in series between the power supply terminal Vcc and the common terminal (GND). The point at which the first magnetoresistive element 11a and the second magnetoresistive element 11b are connected to each other is connected to one terminal of the amplifier 34, and the other terminal of the amplifier 34 is connected to the fixed resistor Rref. To the common terminal (GND).

つまり増幅器34は、第1の磁気抵抗効果素子11aと第2の磁気抵抗効果素子11bとの中点の電位と、固定抵抗素子Rrefにより得られる参照電位との間の電位差に応じた電圧信号を磁場コイル13の一方端側に供給する。また磁場コイル13の他方端側は共通端子(GND)に接続される。   That is, the amplifier 34 outputs a voltage signal corresponding to the potential difference between the midpoint potential of the first magnetoresistive effect element 11a and the second magnetoresistive effect element 11b and the reference potential obtained by the fixed resistance element Rref. The magnetic field coil 13 is supplied to one end side. The other end of the magnetic field coil 13 is connected to a common terminal (GND).

また図1に例示した、磁気センサ部10が一つである例においても、この図11同様に、図12に例示するように、固定抵抗素子Rrefと、固定抵抗器31と、増幅器34とを含んで構成される回路部15を用いてもよい。ここでは、磁気抵抗効果素子11と固定抵抗器31とが電源端子Vccと、共通端子(GND)との間で直列に接続される。そして磁気抵抗効果素子11と固定抵抗器31とが互いに接続される点が増幅器34の一方側端子に接続され、またこの増幅器34の他方側端子は固定抵抗素子Rrefを介して共通端子(GND)に接続されている。   Further, in the example illustrated in FIG. 1 having one magnetic sensor unit 10, as in FIG. 11, as illustrated in FIG. 12, the fixed resistance element Rref, the fixed resistor 31, and the amplifier 34 are provided. The circuit unit 15 configured to be included may be used. Here, the magnetoresistive effect element 11 and the fixed resistor 31 are connected in series between the power supply terminal Vcc and the common terminal (GND). The point where the magnetoresistive effect element 11 and the fixed resistor 31 are connected to each other is connected to one terminal of the amplifier 34, and the other terminal of the amplifier 34 is connected to the common terminal (GND) via the fixed resistance element Rref. It is connected to the.

つまり増幅器34は、磁気抵抗効果素子11と固定抵抗器31との中点の電位と、固定抵抗素子Rrefにより得られる参照電位との間の電位差に応じた電圧信号を磁場コイル13の一方端側に供給する。また磁場コイル13の他方端側は共通端子(GND)に接続される。   That is, the amplifier 34 outputs a voltage signal corresponding to the potential difference between the midpoint potential of the magnetoresistive effect element 11 and the fixed resistor 31 and the reference potential obtained by the fixed resistance element Rref on one end side of the magnetic field coil 13. To supply. The other end of the magnetic field coil 13 is connected to a common terminal (GND).

1 磁気センサ装置、10 磁気センサ部、11 磁気抵抗効果素子、12 磁性体、13 磁場コイル、14 バイアスコイル、15 回路部、20 基板、21 下部磁場コイル層、22 磁性体層、23 上部磁場コイル層、24 バイアスコイル層、31,32,33 固定抵抗素子、34 増幅器。   DESCRIPTION OF SYMBOLS 1 Magnetic sensor apparatus, 10 Magnetic sensor part, 11 Magnetoresistive element, 12 Magnetic body, 13 Magnetic field coil, 14 Bias coil, 15 Circuit part, 20 Substrate, 21 Lower magnetic field coil layer, 22 Magnetic material layer, 23 Upper magnetic field coil Layer, 24 bias coil layer, 31, 32, 33 fixed resistance element, 34 amplifier.

Claims (3)

磁気抵抗効果素子と、
前記磁気抵抗効果素子を挟んで配置される、一対の磁性体と、
前記一対の磁性体に巻回され、前記磁気抵抗効果素子への磁場を形成する磁場コイルと、
を基板上に形成した磁気センサ装置であって、
前記磁場コイルは、前記磁性体を挟んで積層配置される下部磁場コイル層及び上部磁場コイル層とにそれぞれ配された導体パターンを含んでなり、
前記上部磁場コイル層は、前記磁気抵抗効果素子の配置位置において、前記下部磁場コイル層の形成面に近接する磁気センサ装置。
A magnetoresistive element;
A pair of magnetic bodies disposed across the magnetoresistive element; and
A magnetic field coil wound around the pair of magnetic bodies and forming a magnetic field to the magnetoresistive element;
Is a magnetic sensor device formed on a substrate,
The magnetic field coil includes a conductor pattern disposed on each of a lower magnetic field coil layer and an upper magnetic field coil layer that are stacked with the magnetic material interposed therebetween.
The upper magnetic field coil layer is a magnetic sensor device that is close to a formation surface of the lower magnetic field coil layer at a position where the magnetoresistive effect element is disposed.
感磁軸方向を互いに反平行とし、感磁軸方向に直交する方向に並べて配した第1、第2の磁気抵抗効果素子と、
前記第1、第2の磁気抵抗効果素子を含む層とは異なる層に主に配され、前記第1の磁気抵抗効果素子の配置に対応する位置に配した空隙を挟んで対向配置される一対の第1磁性体、並びに前記第2の磁気抵抗効果素子の配置に対応する位置に配した空隙を挟んで対向配置される一対の第2磁性体を含む磁性体層と、
前記磁性体層を挟んで積層配置され、前記磁気抵抗効果素子の感磁軸方向に交わる方向に、前記一対の第1磁性体の各々、及び一対の第2磁性体の各々に対してそれぞれ巻回される磁場コイルの導体をそれぞれ含んだ下部磁場コイル層及び上部磁場コイル層と、
を有し、
前記上部磁場コイル層は、前記磁気抵抗効果素子を含んで予め定められた範囲で前記下部磁場コイル層の形成面に近接する磁気センサ装置。
First and second magnetoresistive elements that are arranged in a direction orthogonal to the magnetosensitive axis direction, the magnetosensitive axis directions being antiparallel to each other;
A pair that is mainly disposed in a layer different from the layer including the first and second magnetoresistive elements, and is opposed to each other with a gap disposed at a position corresponding to the arrangement of the first magnetoresistive elements. A first magnetic body, and a magnetic layer including a pair of second magnetic bodies disposed opposite to each other with a gap disposed at a position corresponding to the position of the second magnetoresistive element;
Winding around each of the pair of first magnetic bodies and each of the pair of second magnetic bodies in a direction intersecting with the magnetosensitive axis direction of the magnetoresistive element, with the magnetic layers sandwiched therebetween. A lower magnetic field coil layer and an upper magnetic field coil layer, each including a magnetic field coil conductor to be rotated;
Have
The upper magnetic field coil layer is a magnetic sensor device that is close to the formation surface of the lower magnetic field coil layer within a predetermined range including the magnetoresistive effect element.
請求項2記載の磁気センサ装置であって、
前記第1、第2の磁性体の配される範囲に重なり合う範囲に亘り、前記上部磁場コイル層に対して絶縁層を介して配されるバイアスコイル層内に、渦巻き状のバイアスコイルを配した磁気センサ装置。

The magnetic sensor device according to claim 2,
A spiral bias coil is disposed in a bias coil layer disposed through an insulating layer with respect to the upper magnetic field coil layer over a range overlapping the range in which the first and second magnetic bodies are disposed. Magnetic sensor device.

JP2013048535A 2013-03-11 2013-03-11 Magnetic sensor device Expired - Fee Related JP6299069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013048535A JP6299069B2 (en) 2013-03-11 2013-03-11 Magnetic sensor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013048535A JP6299069B2 (en) 2013-03-11 2013-03-11 Magnetic sensor device

Publications (2)

Publication Number Publication Date
JP2014174061A true JP2014174061A (en) 2014-09-22
JP6299069B2 JP6299069B2 (en) 2018-03-28

Family

ID=51695398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013048535A Expired - Fee Related JP6299069B2 (en) 2013-03-11 2013-03-11 Magnetic sensor device

Country Status (1)

Country Link
JP (1) JP6299069B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018004565A (en) * 2016-07-07 2018-01-11 公益財団法人電磁材料研究所 Magnetic sensor module
JP2018200307A (en) * 2017-05-19 2018-12-20 旭化成エレクトロニクス株式会社 Magnetic sensor
JP2019132719A (en) * 2018-01-31 2019-08-08 旭化成エレクトロニクス株式会社 Magnetic detector
JP2019174438A (en) * 2018-03-29 2019-10-10 旭化成エレクトロニクス株式会社 Magnetic detection device
JP2019174436A (en) * 2018-03-27 2019-10-10 Tdk株式会社 Magnetic sensor
JP2020008568A (en) * 2018-07-02 2020-01-16 旭化成エレクトロニクス株式会社 Magnetic field measuring device, magnetic field measuring method, and magnetic field measuring program
US11002806B2 (en) 2018-03-29 2021-05-11 Asahi Kasei Microdevices Corporation Magnetic field detection device
US11391792B2 (en) 2018-07-02 2022-07-19 Asahi Kasei Microdevices Corporation Magnetic field measuring device, magnetic field measurement method, and recording medium having recorded thereon magnetic field measurement program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023119633A (en) 2022-02-17 2023-08-29 Tdk株式会社 magnetic sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08179023A (en) * 1994-12-27 1996-07-12 Res Dev Corp Of Japan Magnetic detection element and magnetic detection module integrated on semiconductor substrate
JP2002310659A (en) * 2001-02-06 2002-10-23 Hitachi Metals Ltd Goniometer and method of measuring direct azimuth
US20030151406A1 (en) * 2002-02-11 2003-08-14 Hong Wan Magnetic field sensor
WO2010143666A1 (en) * 2009-06-12 2010-12-16 アルプス・グリーンデバイス株式会社 Magnetic balance current sensor
JP5990963B2 (en) * 2011-12-26 2016-09-14 日立金属株式会社 Magnetic sensor device and current sensor circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08179023A (en) * 1994-12-27 1996-07-12 Res Dev Corp Of Japan Magnetic detection element and magnetic detection module integrated on semiconductor substrate
JP2002310659A (en) * 2001-02-06 2002-10-23 Hitachi Metals Ltd Goniometer and method of measuring direct azimuth
US20030151406A1 (en) * 2002-02-11 2003-08-14 Hong Wan Magnetic field sensor
WO2010143666A1 (en) * 2009-06-12 2010-12-16 アルプス・グリーンデバイス株式会社 Magnetic balance current sensor
JP5990963B2 (en) * 2011-12-26 2016-09-14 日立金属株式会社 Magnetic sensor device and current sensor circuit

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018004565A (en) * 2016-07-07 2018-01-11 公益財団法人電磁材料研究所 Magnetic sensor module
JP7097228B2 (en) 2017-05-19 2022-07-07 旭化成エレクトロニクス株式会社 Magnetic sensor
JP2018200307A (en) * 2017-05-19 2018-12-20 旭化成エレクトロニクス株式会社 Magnetic sensor
JP2019132719A (en) * 2018-01-31 2019-08-08 旭化成エレクトロニクス株式会社 Magnetic detector
JP2019174436A (en) * 2018-03-27 2019-10-10 Tdk株式会社 Magnetic sensor
JP7225694B2 (en) 2018-03-27 2023-02-21 Tdk株式会社 magnetic sensor
JP2019174438A (en) * 2018-03-29 2019-10-10 旭化成エレクトロニクス株式会社 Magnetic detection device
JP2022100322A (en) * 2018-03-29 2022-07-05 旭化成エレクトロニクス株式会社 Magnetic detection device
US11002806B2 (en) 2018-03-29 2021-05-11 Asahi Kasei Microdevices Corporation Magnetic field detection device
JP7232647B2 (en) 2018-03-29 2023-03-03 旭化成エレクトロニクス株式会社 Magnetic detector
JP7324331B2 (en) 2018-03-29 2023-08-09 旭化成エレクトロニクス株式会社 Magnetic detector
JP7082590B2 (en) 2018-07-02 2022-06-08 旭化成エレクトロニクス株式会社 Magnetic field measuring device, magnetic field measuring method, and magnetic field measuring program
US11391792B2 (en) 2018-07-02 2022-07-19 Asahi Kasei Microdevices Corporation Magnetic field measuring device, magnetic field measurement method, and recording medium having recorded thereon magnetic field measurement program
JP2020008568A (en) * 2018-07-02 2020-01-16 旭化成エレクトロニクス株式会社 Magnetic field measuring device, magnetic field measuring method, and magnetic field measuring program

Also Published As

Publication number Publication date
JP6299069B2 (en) 2018-03-28

Similar Documents

Publication Publication Date Title
JP6299069B2 (en) Magnetic sensor device
JP5250108B2 (en) Magnetic balanced current sensor
US10184959B2 (en) Magnetic current sensor and current measurement method
JP4105147B2 (en) Current sensor
US8487612B2 (en) Current sensor
JP6984792B2 (en) Magnetic sensor, magnetic sensor array, magnetic field distribution measuring device, and positioning device
JP2011196798A (en) Current sensor
JP2016176911A (en) Magnetic sensor
JPWO2012120939A1 (en) Current sensor
JP5990963B2 (en) Magnetic sensor device and current sensor circuit
JP5540299B2 (en) Current sensor
WO2019167598A1 (en) Magnetic sensor
JP2017072375A (en) Magnetic sensor
JP2020153771A (en) Magnetic sensor
JP2018112481A (en) Magnetic sensor
JP2015219227A (en) Magnetic sensor
JP6845247B2 (en) Magnetic field measuring device and method using spin Hall phenomenon
JP4985522B2 (en) Magnetic field measuring method and magnetic sensor
JP2014089088A (en) Magnetoresistive effect element
KR20060050168A (en) Azimuth with spin valve type magnetoresistive element
JP6064656B2 (en) Magnetoresistive element for sensor and sensor circuit
WO2015156260A1 (en) Current detection device
JP6525314B2 (en) Magnetic field detector
WO2015125699A1 (en) Magnetic sensor
JP2017078594A (en) Magnetic sensor, method for measuring magnetic field, current sensor, and method for measuring current

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171026

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20171102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180212

R150 Certificate of patent or registration of utility model

Ref document number: 6299069

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees