[go: up one dir, main page]

JP2014156388A - 窒化物半導体積層構造およびそれを製造する方法 - Google Patents

窒化物半導体積層構造およびそれを製造する方法 Download PDF

Info

Publication number
JP2014156388A
JP2014156388A JP2014000733A JP2014000733A JP2014156388A JP 2014156388 A JP2014156388 A JP 2014156388A JP 2014000733 A JP2014000733 A JP 2014000733A JP 2014000733 A JP2014000733 A JP 2014000733A JP 2014156388 A JP2014156388 A JP 2014156388A
Authority
JP
Japan
Prior art keywords
nitride semiconductor
sectional
view
semiconductor region
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014000733A
Other languages
English (en)
Inventor
Seihaku Sai
成伯 崔
Toshiya Yokogawa
俊哉 横川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2014000733A priority Critical patent/JP2014156388A/ja
Publication of JP2014156388A publication Critical patent/JP2014156388A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Led Devices (AREA)

Abstract

【課題】低い転位密度を有する窒化物半導体積層構造およびそれを製造する方法を提供すること。
【解決手段】本発明の窒化物半導体積層構造は、m面サファイヤ基板または(11−22)面の主面を有する窒化物半導体基板からなる群から選択される基板、前記基板の表面の一部に形成されたマスク層、および前記マスク層を被覆するように前記基板の表面に形成された窒化物半導体層を具備する。断面視において隣接する2つのマスク層の間に挟まれる窒化物半導体層の部分は、点A、点B、および点Cによって囲まれている領域G1および点B、点C、および点Dによって囲まれている領域G2を有しており、領域G2は領域G1よりも低い転位密度を有する。
【選択図】図1

Description

本発明は、窒化物半導体積層構造およびそれを製造する方法に関する。
特許文献1は、III族窒化物半導体の成長方法を開示する。図16は、特許文献1の図9の複製を示す。特許文献1によれば、図16の上部に示されるように、III族窒化物半導体の従来の成長方法によってc面基板上に成長されたIII族窒化物半導体層の表面には、転位が現れる。転位は、III族窒化物半導体層の品質を低下させる。
この問題を解決するため、特許文献1は、図16の下部に示されるように、hの高さを有する複数のマスクを用いることを開示している。文字「θ」は、III族窒化物半導体のファセット面および基板の表面の間に形成される角度を表す。文字「w」は、隣接する2つのマスクの間の幅を表す。特許文献1によれば、数式(II):h≧(w/2)・tanθが充足される。このような高さhを有するマスクは、図16の下部に示されるように、基板に平行な転位の成長を停止する。このようにして、マスクは、III族窒化物半導体層の表面に転位が現れるという問題を解決する。
特許文献2は、窒化物半導体積層構造を開示する。図17は、特許文献2の図1の複製を示す。特許文献2によれば、図17に示されるように、m面GaN基板上にマスク60が形成され、m面GaN基板上に積層される窒化物半導体積層構造に含まれる結晶欠陥の密度が減らされる。
非特許文献1は、m面サファイヤ基板上に窒化物半導体層をエピタキシャル成長させることを開示している。成長された窒化物半導体層は、エピタキシャル成長の条件に依存して、(10−10)面、(11−22)面、および(10−1−3)面からなる群から選択される1つの主面を有する。
米国特許第6809351号明細書 特開2008−153286号公報
Philippe Vennegues et. al. "Study of the epitaxial relationships between III-nitrides and M-plane sapphire", Journal of Applied Physics, vol. 108, page 113521 (2010) S.F.Chichibu et. al. "Optional properties of nearly stacking-fault-free m-plane GaN homoepitaxial films grown by metal organic vapor phase epitaxy on low defect density freestanding GaN substrates", Applied Physics Letters, vol. 92, page 090912 (2008) Hiroshi Furuya et. al "Growth of [11-22] GaN on shallowly etched r-plane patterned sapphire substrates", Phys. Status Solidi C 9, No. 3-4, 568-571 (2012) Tanikawa et. al. "Growth of semi-polar (11-22) GaN on a (113) Si substrate by selective MOVPE", Phys. Status Solidi C 5, No. 9, 2966-2968 (2008)
本発明の目的は、低い転位密度を有する窒化物半導体積層構造およびそれを製造する方法を提供することである。
本発明の窒化物半導体積層構造は、以下を具備する:
m面サファイヤ基板(100)、
前記m面サファイヤ基板(100)の表面の一部に形成されたマスク層(121)、および
前記マスク層(121)を被覆するように前記m面サファイヤ基板(100)の表面に形成された窒化物半導体層(300)、ここで
X軸は前記m面サファイヤ基板(100)のa軸を表し、
Y軸は前記m面サファイヤ基板(100)のc軸を表し、
Z軸は前記m面サファイヤ基板(100)のm軸を表し、
前記Z軸およびY軸を含む面に沿って前記窒化物半導体積層構造を切断することによって現れる断面視において、複数のマスク層(121)が現れ、
前記断面視において、各マスク層(121)は、底面(124)、第1の側面(122)、および第2の側面(123)を有し、
前記断面視において、各マスク層(121)は、Hの高さを有し、
前記窒化物半導体層(300)は、(11−22)面により表される主面を有し、
前記断面視において、隣接する2つのマスク層の一方のマスク層(121a)の第1の側面(122a)は、前記窒化物半導体層(300)を挟んで、隣接する2つのマスク層の他方のマスク層(121b)の第2の側面(123b)と向かい合い、
前記断面視において、前記窒化物半導体層(300)は、各マスク層(121)の第1の側面(122)および第2の側面(123)に接しており、
前記断面視において、前記窒化物半導体層(300)は、隣接する2つのマスク層(121)の間に露出する部分の前記m面サファイヤ基板(100)に接しており、
前記窒化物半導体層(300)は、前記断面視において、第1の窒化物半導体領域(G1)、第2の窒化物半導体領域(G2)、および第3の窒化物半導体領域(G3)を含み、
前記第1の窒化物半導体領域(G1)は、前記断面視において、点A、点B、および点Cによって囲まれており、
前記第1の窒化物半導体領域(G1)は、前記第2の窒化物半導体領域(G2)よりも高い転位密度を有しており、
前記第1の窒化物半導体領域(G1)は、前記第3の窒化物半導体領域(G3)よりも高い転位密度を有しており、
前記第2の窒化物半導体領域(G2)は、前記断面視において、点B、点C、および点Dによって囲まれており、
前記第1の窒化物半導体領域(G1)および前記第2の窒化物半導体領域(G2)は、前記断面視において、前記m面サファイヤ基板(100)および前記第3の窒化物半導体領域(G3)の間に挟まれており、
前記第3の窒化物半導体領域(G3)は、108cm-2以下の転位密度を有しており、
前記点Aは、前記断面視において、隣接する2つのマスク層の一方のマスク層(121a)の第1の側面(122a)および前記m面サファイヤ基板(100)の交点を表し、
前記点Bは、前記断面視において、隣接する2つのマスク層の他方のマスク層(121b)の第2の側面(123b)および前記m面サファイヤ基板(100)の交点を表し、
前記点Cは、前記断面視において、隣接する2つのマスク層の一方のマスク層(121a)の第1の側面(122a)および直線L1の交点を表し、
前記点Dは、前記断面視において、隣接する2つのマスク層の他方のマスク層の第2の側面および直線L2の交点を表し、
前記直線L1は、前記断面視において、前記点Bを通り、かつ前記m面サファイヤ基板(100)と角度θで交差し、
前記直線L2は、前記断面視において、前記点Cを通り、かつ前記m面サファイヤ基板(100)に平行であり、
数式(I):H≧W・tanθが充足され、:
距離Wは、前記断面視において、互いに平行な直線L3および直線L4の距離を表し、
角度θは、前記断面視において、前記Y軸および窒化物半導体層(300)のc面の間に形成される角度を表し、
前記直線L3は、前記断面視において、前記点Bを通り、かつ前記m面サファイヤ基板(100)に垂直であり、
前記直線L4は、前記断面視において、前記点Cを通り、かつ前記m面サファイヤ基板(100)に垂直であり、および
前記角度θは、48度以上58度以下である。

前記第2の窒化物半導体領域(G2)は、前記第3の窒化物半導体領域(G3)と同じ転位密度を有し得る。

前記第1の窒化物半導体領域(G1)は、1010cm-2以上の転位密度を有し得る。

前記第2の窒化物半導体領域(G2)は、108cm-2以下の転位密度を有し得る。

前記第1の窒化物半導体領域(G1)は、1010cm-2以上の転位密度を有し、かつ
前記第2の窒化物半導体領域(G2)は、108cm-2以下の転位密度を有し得る。

複数の前記マスク層(121)が前記m面サファイヤ基板(100)の表面の一部に形成されており、
前記各マスク層(121)は、X軸に平行であり得る。

前記窒化物半導体積層構造の上面視において、前記マスク層(121)は開口部(130)を具備し、
前記第1の窒化物半導体領域(G1)および前記第2の窒化物半導体領域(G2)が前記開口部(130)に含まれ得る。

前記窒化物半導体層(300)の上面は、前記m面基板(100)の表面に平行であり得る。

本発明の発光素子は、以下を具備する:
上記窒化物半導体積層構造、
前記窒化物半導体積層構造上に形成されたn型窒化物半導体層、
前記n型窒化物半導体層上に形成された活性層、
前記活性層上に形成されたp型窒化物半導体層、
前記n型窒化物半導体層に接し、かつ前記n型窒化物半導体層に電気的に接続されたn側電極、および
前記p型窒化物半導体層に接し、かつ前記p型窒化物半導体層に電気的に接続されたp側電極。

本発明の他の窒化物半導体積層構造は、以下を具備する:
(11−22)面の主面を有する窒化物半導体基板(100)、
前記窒化物半導体基板(100)の表面の一部に形成されたマスク層(121)、および
前記マスク層(121)を被覆するように前記窒化物半導体基板(100)の表面に形成された窒化物半導体層(300)、ここで
X軸は<1−100>方向を表し、
Y軸は<11−2−3>を表し、
Z軸は<11−22>方向を表し、
前記Z軸およびY軸を含む面に沿って前記窒化物半導体積層構造を切断することによって現れる断面視において、複数のマスク層(121)が現れ、
前記断面視において、各マスク層(121)は、底面(124)、第1の側面(122)、および第2の側面(123)を有し、
前記断面視において、各マスク層(121)は、Hの高さを有し、
前記窒化物半導体層(300)は、(11−22)面により表される主面を有し、
前記断面視において、隣接する2つのマスク層の一方のマスク層(121a)の第1の側面(122a)は、前記窒化物半導体層(300)を挟んで、隣接する2つのマスク層の他方のマスク層(121b)の第2の側面(123b)と向かい合い、
前記断面視において、前記窒化物半導体層(300)は、各マスク層(121)の第1の側面(122)および第2の側面(123)に接しており、
前記断面視において、前記窒化物半導体層(300)は、隣接する2つのマスク層(121)の間に露出する部分の前記窒化物半導体基板(100)に接しており、
前記窒化物半導体層(300)は、前記断面視において、第1の窒化物半導体領域(G1)、第2の窒化物半導体領域(G2)、および第3の窒化物半導体領域(G3)を含み、
前記第1の窒化物半導体領域(G1)は、前記断面視において、点A、点B、および点Cによって囲まれており、
前記窒化物半導体基板(100)は、前記第2の窒化物半導体領域(G2)よりも高い転位密度を有しており、
前記窒化物半導体基板(100)は、前記第3の窒化物半導体領域(G3)よりも高い転位密度を有しており、
前記第1の窒化物半導体領域(G1)は、前記第2の窒化物半導体領域(G2)よりも高い転位密度を有しており、
前記第1の窒化物半導体領域(G1)は、前記第3の窒化物半導体領域(G3)よりも高い転位密度を有しており、
前記第2の窒化物半導体領域(G2)は、前記断面視において、点B、点C、および点Dによって囲まれており、
前記第1の窒化物半導体領域(G1)および前記第2の窒化物半導体領域(G2)は、前記断面視において、前記窒化物半導体基板(100)および前記第3の窒化物半導体領域(G3)の間に挟まれており、
前記第3の窒化物半導体領域(G3)は、108cm-2以下の転位密度を有しており、
前記点Aは、前記断面視において、隣接する2つのマスク層の一方のマスク層(121a)の第1の側面(122a)および前記窒化物半導体基板(100)の交点を表し、
前記点Bは、前記断面視において、隣接する2つのマスク層の他方のマスク層(121b)の第2の側面(123b)および前記窒化物半導体基板(100)の交点を表し、
前記点Cは、前記断面視において、隣接する2つのマスク層の一方のマスク層(121a)の第1の側面(122a)および直線L1の交点を表し、
前記点Dは、前記断面視において、隣接する2つのマスク層の他方のマスク層の第2の側面および直線L2の交点を表し、
前記直線L1は、前記断面視において、前記点Bを通り、かつ前記窒化物半導体基板(100)と角度θで交差し、
前記直線L2は、前記断面視において、前記点Cを通り、かつ前記窒化物半導体基板(100)に平行であり、
数式(I):H≧W・tanθが充足され、:
距離Wは、前記断面視において、互いに平行な直線L3および直線L4の距離を表し、
角度θは、前記断面視において、前記Y軸および窒化物半導体層(300)のc面の間に形成される角度を表し、
前記直線L3は、前記断面視において、前記点Bを通り、かつ前記窒化物半導体基板(100)に垂直であり、
前記直線L4は、前記断面視において、前記点Cを通り、かつ前記窒化物半導体基板(100)に垂直であり、および
前記角度θは、48度以上58度以下である。

前記第2の窒化物半導体領域(G2)は、前記第3の窒化物半導体領域(G3)と同じ転位密度を有し得る。

前記第1の窒化物半導体領域(G1)は、1010cm-2以上の転位密度を有し得る。

前記第2の窒化物半導体領域(G2)は、108cm-2以下の転位密度を有し得る。

前記第1の窒化物半導体領域(G1)は、1010cm-2以上の転位密度を有し、かつ
前記第2の窒化物半導体領域(G2)は、108cm-2以下の転位密度を有し得る。

複数の前記マスク層(121)が前記窒化物半導体基板(100)の表面の一部に形成されており、
前記各マスク層(121)は、X軸に平行であり得る。

前記窒化物半導体積層構造の上面視において、前記マスク層(121)は開口部(130)を具備し、
前記第1の窒化物半導体領域(G1)および前記第2の窒化物半導体領域(G2)が前記開口部(130)に含まれ得る。

前記窒化物半導体層(300)の上面は、前記窒化物半導体基板(100)の表面に平行であり得る。

本発明の他の発光素子は、以下を具備する:
上記窒化物半導体積層構造、
前記窒化物半導体積層構造上に形成されたn型窒化物半導体層、
前記n型窒化物半導体層上に形成された活性層、
前記活性層上に形成されたp型窒化物半導体層、
前記n型窒化物半導体層に接し、かつ前記n型窒化物半導体層に電気的に接続されたn側電極、および
前記p型窒化物半導体層に接し、かつ前記p型窒化物半導体層に電気的に接続されたp側電極。

本発明の窒化物半導体積層構造を製造する方法は、以下の工程を具備する:
(a) m面サファイヤ基板(100)の表面の一部に、マスク層(121)を形成する工程;ここで
X軸は前記m面サファイヤ基板(100)のa軸を表し、
Y軸は前記m面サファイヤ基板(100)のc軸を表し、
Z軸は前記m面サファイヤ基板(100)のm軸を表し、
前記Z軸およびY軸を含む面に沿って前記窒化物半導体積層構造を切断することによって現れる断面視において、複数の前記マスク層(121)が現れ、
前記断面視において、各マスク層(121)は、底面(124)、第1の側面(122)、および第2の側面(123)を有し、
前記断面視において、各マスク層(121)は、Hの高さを有し、かつ
前記断面視において、隣接する2つのマスク層の一方のマスク層(121a)の第1の側面(122a)は、前記窒化物半導体層(300)を挟んで、隣接する2つのマスク層の他方のマスク層(121b)の第2の側面(123b)と向かい合い、および

(b) 工程(a)の後に、前記マスク層(121)を被覆するように前記m面サファイヤ基板(100)の表面に窒化物半導体層(300)をエピタキシャル成長させる工程、ここで
前記窒化物半導体層(300)は、(11−22)面により表される主面を有し、
前記断面視において、前記窒化物半導体層(300)は、各マスク層(121)の第1の側面(122)、および第2の側面(123)に接しており、
前記断面視において、前記窒化物半導体層(300)は、隣接する2つのマスク層(121)の間に露出する部分の前記m面サファイヤ基板(100)に接しており、
前記窒化物半導体層(300)は、前記断面視において、第1の窒化物半導体領域(G1)、第2の窒化物半導体領域(G2)、および第3の窒化物半導体領域(G3)を含み、
前記第1の窒化物半導体領域(G1)は、前記断面視において、点A、点B、および点Cによって囲まれており、
前記第1の窒化物半導体領域(G1)は、前記第3の窒化物半導体領域(G3)よりも高い転位密度を有しており、
前記第2の窒化物半導体領域(G2)は、前記断面視において、点B、点C、および点Dによって囲まれており、
前記第1の窒化物半導体領域(G1)および前記第2の窒化物半導体領域(G2)は、前記断面視において、前記m面サファイヤ基板(100)および前記第3の窒化物半導体領域(G3)の間に挟まれており、
前記第3の窒化物半導体領域(G3)は、108cm-2以下の転位密度を有しており、
前記点Aは、前記断面視において、隣接する2つのマスク層の一方のマスク層の第1の側面およびm面サファイヤ基板(100)の交点を表し、
前記点Bは、前記断面視において、隣接する2つのマスク層の他方のマスク層の第2の側面およびm面サファイヤ基板(100)の交点を表し、
前記点Cは、前記断面視において、隣接する2つのマスク層の一方のマスク層の第1の側面および直線L1の交点を表し、
前記点Dは、前記断面視において、隣接する2つのマスク層の他方のマスク層の第2の側面および直線L2の交点を表し、
前記直線L1は、前記断面視において、前記点Bを通り、かつ前記m面サファイヤ基板(100)と角度θで交差し、
前記直線L2は、前記断面視において、前記点Cを通り、かつ前記m面サファイヤ基板(100)に平行であり、
数式(I):H≧W・tanθが充足され、:
距離Wは、前記断面視において、互いに平行な直線L3および直線L4の距離を表し、
角度θは、前記断面視において、前記Y軸および窒化物半導体層(300)のc面の間に形成される角度を表し、
前記直線L3は、前記断面視において、前記点Bを通り、かつ前記m面サファイヤ基板(100)に垂直であり、
前記直線L4は、前記断面視において、前記点Cを通り、かつ前記m面サファイヤ基板(100)に垂直であり、および
前記角度θは、48度以上58度以下である。

前記第2の窒化物半導体領域(G2)は、前記第3の窒化物半導体領域(G3)と同じ転位密度を有し得る。

前記第1の窒化物半導体領域(G1)は、1010cm-2以上の転位密度を有し得る。

前記第2の窒化物半導体領域(G2)は、108cm-2以下の転位密度を有し得る。

前記第1の窒化物半導体領域(G1)は、1010cm-2以上の転位密度を有し、かつ
前記第2の窒化物半導体領域(G2)は、108cm-2以下の転位密度を有し得る。

複数の前記マスク層(121)が前記m面サファイヤ基板(100)の表面の一部に形成されており、
前記各マスク層(121)は、X軸に平行であり得る。

前記窒化物半導体積層構造の上面視において、前記マスク層(121)は開口部(130)を具備し、
前記第1の窒化物半導体領域(G1)および前記第2の窒化物半導体領域(G2)が前記開口部(130)に含まれ得る。

前記窒化物半導体層(300)の上面は、前記m面サファイヤ基板(100)の表面に平行であり得る。

本発明の他の窒化物半導体積層構造を製造する方法は、以下の工程を具備する:
(a) (11−22)面の主面を有する窒化物半導体基板(100)の表面の一部に、マスク層(121)を形成する工程;ここで
X軸は<1−100>方向を表し、
Y軸は<11−2−3>を表し、
Z軸は<11−22>方向を表し、
前記Z軸およびY軸を含む面に沿って前記窒化物半導体積層構造を切断することによって現れる断面視において、複数の前記マスク層(121)が現れ、
前記断面視において、各マスク層(121)は、底面(124)、第1の側面(122)、および第2の側面(123)を有し、
前記断面視において、各マスク層(121)は、Hの高さを有し、かつ
前記断面視において、隣接する2つのマスク層の一方のマスク層(121a)の第1の側面(122a)は、前記窒化物半導体層(300)を挟んで、隣接する2つのマスク層の他方のマスク層(121b)の第2の側面(123b)と向かい合い、および

(b) 工程(a)の後に、前記マスク層(121)を被覆するように前記基板(100)の表面に窒化物半導体層(300)をエピタキシャル成長させる工程、ここで
前記窒化物半導体層(300)は、(11−22)面により表される主面を有し、
前記断面視において、前記窒化物半導体層(300)は、各マスク層(121)の第1の側面(122)、および第2の側面(123)に接しており、
前記断面視において、前記窒化物半導体層(300)は、隣接する2つのマスク層(121)の間に露出する部分の前記基板(100)に接しており、
前記窒化物半導体層(300)は、前記断面視において、第1の窒化物半導体領域(G1)、第2の窒化物半導体領域(G2)、および第3の窒化物半導体領域(G3)を含み、
前記第1の窒化物半導体領域(G1)は、前記断面視において、点A、点B、および点Cによって囲まれており、
前記第1の窒化物半導体領域(G1)は、前記第3の窒化物半導体領域(G3)よりも高い転位密度を有しており、
前記第2の窒化物半導体領域(G2)は、前記断面視において、点B、点C、および点Dによって囲まれており、
前記第1の窒化物半導体領域(G1)および前記第2の窒化物半導体領域(G2)は、前記断面視において、前記基板(100)および前記第3の窒化物半導体領域(G3)の間に挟まれており、
前記第3の窒化物半導体領域(G3)は、108cm-2以下の転位密度を有しており、
前記点Aは、前記断面視において、隣接する2つのマスク層の一方のマスク層の第1の側面および基板(100)の交点を表し、
前記点Bは、前記断面視において、隣接する2つのマスク層の他方のマスク層の第2の側面および基板(100)の交点を表し、
前記点Cは、前記断面視において、隣接する2つのマスク層の一方のマスク層の第1の側面および直線L1の交点を表し、
前記点Dは、前記断面視において、隣接する2つのマスク層の他方のマスク層の第2の側面および直線L2の交点を表し、
前記直線L1は、前記断面視において、前記点Bを通り、かつ前記基板(100)と角度θで交差し、
前記直線L2は、前記断面視において、前記点Cを通り、かつ前記基板(100)に平行であり、
数式(I):H≧W・tanθが充足され、:
距離Wは、前記断面視において、互いに平行な直線L3および直線L4の距離を表し、
角度θは、前記断面視において、前記Y軸および窒化物半導体層(300)のc面の間に形成される角度を表し、
前記直線L3は、前記断面視において、前記点Bを通り、かつ前記基板(100)に垂直であり、
前記直線L4は、前記断面視において、前記点Cを通り、かつ前記基板(100)に垂直であり、および
前記角度θは、48度以上58度以下である。

前記第2の窒化物半導体領域(G2)は、前記第3の窒化物半導体領域(G3)と同じ転位密度を有し得る。

前記第1の窒化物半導体領域(G1)は、1010cm-2以上の転位密度を有し得る。

前記第2の窒化物半導体領域(G2)は、108cm-2以下の転位密度を有し得る。

前記第1の窒化物半導体領域(G1)は、1010cm-2以上の転位密度を有し、かつ
前記第2の窒化物半導体領域(G2)は、108cm-2以下の転位密度を有し得る。

複数の前記マスク層(121)が前記基板(100)の表面の一部に形成されており、
前記各マスク層(121)は、X軸に平行であり得る。

前記窒化物半導体積層構造の上面視において、前記マスク層(121)は開口部(130)を具備し、
前記第1の窒化物半導体領域(G1)および前記第2の窒化物半導体領域(G2)が前記開口部(130)に含まれ得る。

前記窒化物半導体層(300)の上面は、前記基板(100)の表面に平行であり得る。
本発明は、低い転位密度を有する窒化物半導体積層構造およびそれを製造する方法を提供する。
本実施形態による窒化物半導体積層構造の断面図 本実施形態による窒化物半導体積層構造を製造する方法における断面図 図2に引き続き、本実施形態による窒化物半導体積層構造を製造する方法における断面図 実施例による窒化物半導体積層構造を製造する方法に含まれる1工程における平面図 図4Aに含まれる直線L8−L8’に沿って切り取った断面図 図4Aに引き続き、実施例による窒化物半導体積層構造を製造する方法に含まれる1工程における平面図 図5Aに含まれる直線L8−L8’に沿って切り取った断面図 図5Aに引き続き、実施例による窒化物半導体積層構造を製造する方法に含まれる1工程における平面図 図6Aに含まれる直線L8−L8’に沿って切り取った断面図 図6Aに引き続き、実施例による窒化物半導体積層構造を製造する方法に含まれる1工程における平面図 図7Aに含まれる直線L8−L8’に沿って切り取った断面図 図7Aに引き続き、実施例による窒化物半導体積層構造を製造する方法に含まれる1工程における平面図 図8Aに含まれる直線L8−L8’に沿って切り取った断面図 他の実施形態によるマスク層121の平面図 実施例1による、複数の帯状のマスク層121を表面に具備するm面サファイヤ基板100の断面写真 比較例1による窒化物半導体積層構造のX線回折プロファイルのグラフ 比較例1による窒化物半導体積層構造の断面走査型電子顕微鏡(SEM像)写真 実施例1による窒化物半導体積層構造の断面走査型電子顕微鏡(SEM像)写真 実施例2による窒化物半導体積層構造の断面走査型電子顕微鏡(SEM像)写真 10Kの低温下における比較例1および実施例1による窒化物半導体層300の発光スペクトルのグラフ 実施例1による窒化物半導体積層構造の断面透過型電子顕微鏡(TEM像)写真 図14Aに描かれた破線によって囲まれた領域の拡大顕微鏡写真 図14Bに描かれた破線によって囲まれた領域の拡大顕微鏡写真 比較例1による窒化物半導体積層構造の表面モフォロジー顕微鏡写真 参考例1による窒化物半導体積層構造の表面モフォロジー顕微鏡写真 参考例2による窒化物半導体積層構造の表面モフォロジー顕微鏡写真 特許文献1の図9に示される図 特許文献2の図1に示される図
以下、図面を参照しながら本発明の実施形態が説明される。
図1は、本実施形態による窒化物半導体積層構造の断面図を示す。図1に示されるように、本実施形態による窒化物半導体積層構造は、基板100、マスク層121、および窒化物半導体層300を具備する。
(基板100)
基板100は、m面サファイヤ基板または(11−22)面の主面を有する窒化物半導体基板である。本明細書において用いられる用語「m面」とは、(1−100)面およびそれと等価な面を意味する。(1−100)面と等価な面は、(−1100)面、(01-10)面、(0−110)面、(10−10)面、および(−1010)面を含む。
基板100がm面サファイヤ基板である場合、図面に描写されたX軸は、m面サファイヤ基板100のa軸を表す。
基板100がm面サファイヤ基板である場合、図面に描写されたY軸は、m面サファイヤ基板100のc軸を表す。
基板100がm面サファイヤ基板である場合、図面に描写されたZ軸は、m面サファイヤ基板100のm軸を表す。
基板100が(11−22)面の主面を有する窒化物半導体基板である場合、図面に描写されたX軸は、<1−100>方向を表す。
基板100がm面サファイヤ基板である場合、図面に描写されたY軸は、<11−2−3>方向を表す。
基板100がm面サファイヤ基板である場合、図面に描写されたZ軸は、<11−22>方向を表す。
図1では、X軸は紙面に垂直である。
図1では、Y軸は紙面の横方向に平行である。
図1では、Z軸は紙面の長手方向に平行である。
Z軸は、本実施形態による窒化物半導体積層構造の積層方向に平行である。
X軸およびY軸は、積層方向、すなわちZ軸に直交する。X軸およびY軸は、互いに直交する。
(マスク層121)
マスク層121は、基板100の表面の一部に形成されている。図1に示されるように、Z軸およびY軸を含む面に沿って窒化物半導体積層構造を切断することによって現れる断面図において、複数のマスク層121aおよび121bが現れる。
図8Aは、本実施形態によるマスク層121の平面図を示す。図8Aに示されるように、基板100に複数のマスク層121が形成され得る。複数のマスク層121は、互いに平行である。図8Aでは、各マスク層121は、X軸に平行である。
図9は、他の実施形態によるマスク層121の平面図を示す。図9に示されるように、基板100上に、開口部130を有するマスク層121が形成される。基板100の表面の一部が、開口部130において露出している。図9に含まれる直線L9−L9’に沿ってマスク層121が切断されることによって現れる断面図には、図1に示されるように、複数のマスク層121が現れる。
図9では、開口部130は円形である。しかし、開口部130の形状は円の形状に限られない。開口部130の形状の他の例は、正方形、長方形、多角形、または楕円である。複数の開口部130が設けられ得る。複数の開口部130は格子状に設けられ得る。あるいは、複数の開口部130は縦方向および横方向に沿って配列され得る。
マスク層121の材料は限定されない。マスク層121の材料の例は、誘電体である。酸化シリコンまたは窒化シリコンが望ましい。酸化シリコンがより望ましい。
図1に示されるように、各マスク層121は、底面124、第1の側面122、および第2の側面123を有する。各マスク層121は、高さHを有する。図1では、第1の側面122は、マスク層121の左側面である。第2の側面123は、マスク層121の右側面である。
図1では、隣接する2つのマスク層121aおよび121bが描写されている。一方のマスク層121aの第1の側面122aは、他方のマスク層121bの第2の側面123bに向かい合っている。窒化物半導体層300の一部が、これら2つの側面の間に挟まれる。
第1の側面122および基板100によって形成される角度αは、60度以上90度以下であることが望ましい。同様に、第2の側面123および基板100によって形成される角度も、60度以上90度以下であることが望ましい。角度αが60度未満dである場合、マスク121は、あまりにも広い幅を有することが必要とされ得る。一方、90度を超える角度αを有するマスク121を形成することは困難であり得る。
点Aは、一方のマスク層121aの第1の側面122aおよび基板100の交点を表す。点Bは、他方のマスク層121bの第2の側面123bおよび基板100の交点を表す。
(窒化物半導体層300)
窒化物半導体層300は、マスク層121を被覆するように、基板100の表面に形成される。本明細書において用いられる用語「窒化物半導体」は、AlxInyGazN(ここで、0≦x<1、0≦y<1、0<z≦1、およびx+y+z=1)から形成される半導体を意味する。
図1に示されるように、窒化物半導体層300は、各マスク層121の第1の側面122および第2の側面123に接している。窒化物半導体層300は、隣接する2つのマスク層121aおよび121bの間に露出する部分の基板100に接している。
図1に示されるように、断面視において、窒化物半導体層300は、3つの領域、すなわち、第1の窒化物半導体領域G1、第2の窒化物半導体領域G2、および第3の窒化物半導体領域G3から構成される。
第1の窒化物半導体領域G1は、点A、点B、および点Cによって囲まれる。言うまでもないが、第1の窒化物半導体領域G1は、三角形である。
第2の窒化物半導体領域G2は、点B、点C、および点Dによって囲まれる。言うまでもないが、第2の窒化物半導体領域G2も、三角形である。
これら4つの点A〜点Dは、後に詳細に記述される。
第1の窒化物半導体領域G1および第2の窒化物半導体領域G2は、窒化物半導体層300の下部の部分である。第1の窒化物半導体領域G1および第2の窒化物半導体領域G2は、隣接する2つのマスク層121の間に挟まれている。一方、第3の窒化物半導体領域G3は、窒化物半導体層300の上部の部分である。第1の窒化物半導体領域G1および第2の窒化物半導体領域G2が、基板100および第3の窒化物半導体領域G3の間に挟まれている。
窒化物半導体層300は、(11−22)面の主面を有する。言い換えれば、窒化物半導体層300は、<11−22>配向のみを有する。図1から明らかなように、窒化物半導体層300の上面の法線方向はZ軸に平行であるので、窒化物半導体層300の<11−22>方向がZ軸に平行である。窒化物半導体層300のm軸、すなわち、<1−100>方向がX軸に平行である。窒化物半導体層300の<−1−123>方向が、Y軸に平行である。窒化物半導体層300のc軸およびa軸もまた、図1に描写されている。
窒化物半導体は、c軸方向に対して対称性を有さない。図1に示されるc軸方向は、+c軸方向を指し示す。
図1に示されるように、角度θが、Y軸および窒化物半導体層300のc面によって形成されている。いうまでもないが、c面の法線はc軸である。言い換えれば、c面の法線はc軸に平行である。従って、角度θが、Z軸および窒化物半導体層300のc軸によって形成されている。言い換えれば、角度θが、窒化物半導体層300の<11−22>方向および窒化物半導体層300のc軸、すなわち、<0001>方向、によって形成されている。
ここで、点A〜点Dが詳細に記述される。
点Aは、一方のマスク層121aの第1の側面122aおよび基板100の交点を表す。
点Bは、他方のマスク層121bの第2の側面123bおよび基板100の交点を表す。
点Cは、一方のマスク層121aの第1の側面122aおよび直線L1の交点を表す。直線L1は、点Bを通り、かつ基板100と角度θで交差する。
点Dは、他方のマスク層121bの第2の側面123bおよび直線L2の交点を表す。 直線L2は、点Cを通り、かつ基板100に平行である。
本実施形態においては、以下の数式(I)が充足されることが必要とされる。
H≧W・tanθ・・・・(I)
上述したように、Hは、マスク層121の高さを表す。
Wは、互いに平行な直線L3および直線L4の間の距離を表す。
直線L3は、点Bを通り、かつ基板100に直交する。
直線L4は、点Cを通り、かつ基板100に直交する。
角度θは、48度以上58度以下である。
オフ角を有さない基板100が用いられた場合、(11−22)面の主面を有する窒化物半導体層300は、58度の角度θを有する。後述される実施例1および実施例2を参照せよ。
第1の窒化物半導体領域G1は、第2の窒化物半導体領域G2および第3の窒化物半導体領域G3よりも高い転位密度を有する。より具体的には、第1の窒化物半導体領域G1は、1010cm-2以上の高い転位密度を有し得る。一方、第2の窒化物半導体G2は、108cm-2以下の低い転位密度を有し得る。
第3の窒化物半導体領域G3は、第2の窒化物半導体領域G2の上部にエピタキシャル成長されているので、第3の窒化物半導体領域G3もまた、108cm-2以下という低い転位密度を有する。第3の窒化物半導体領域G3の上部の表面(すなわち、主面)は、本実施形態による窒化物半導体積層構造の表面であるので、本実施形態による窒化物半導体積層構造の表面もまた、108cm-2以下という低い転位密度を有する。それ故、本実施形態による窒化物半導体積層構造は、108cm-2以下という低い転位密度を有する。
以下、転位密度が詳細に説明される。
まず、第1の窒化物半導体領域G1が、図2に示されるように、基板100上にエピタキシャル成長される。基板100がm面サファイヤ基板100である場合、m面サファイヤ基板100および窒化物半導体層300との間の格子不整合のため、第1の窒化物半導体領域G1は、多くの転位200を含む。言い換えれば、m面サファイヤ基板100は、第1の窒化物半導体領域G1に含まれる転位200を引き起こす。基板100が(11−22)面の主面を有する窒化物半導体基板である場合、窒化物半導体基板100に含まれる転位のために、第1の窒化物半導体領域G1は、多くの転位200を含む。転位200は、図2および図3において、破線により表されている。この破線は、転位線とも呼ばれる。転位200の密度は、1010cm-2以上である。
これらの転位200は、窒化物半導体層300のc軸に直交する傾向がある。言い換えれば、これらの転位200は、窒化物半導体層300のc面に平行であり、c面内に形成される傾向がある。この場合、c面は、すべり面である。後述される図14Cも参照せよ。本明細書において用いられる用語「転位」は、積層欠陥を含み得る。
しかし、より詳細には、積層欠陥は転位から区別される。積層欠陥は、面欠陥の1種である。積層欠陥は、c面に形成され得る。転位は、線欠陥の1種である。特許文献1に開示されているように、転位は、成長方向およびファセット面に応じて、屈曲し得る。一方、積層欠陥は屈曲しない。
引き続き、図3に示されるように、第2の窒化物半導体領域G2が、窒化物半導体層300のc軸方向に沿ってエピタキシャル成長される。第2の窒化物半導体領域G2は、第1の窒化物半導体領域G1上に形成される。
第2の窒化物半導体領域G2は、以下3つの理由のため、低い転位密度を有する。
(理由A) 第2の窒化物半導体領域G2は、転位200を引き起こすm面サファイヤ基板100または(11−22)面の主面を有する窒化物半導体基板に接しない。
(理由B) 第1の窒化物半導体領域G1に含まれる転位200は、窒化物半導体層300のc軸に直交するため、第1の窒化物半導体領域G1に含まれる転位200は、窒化物半導体層300のc軸に平行な方向に沿ってエピタキシャル成長される第2の窒化物半導体領域G2に現れない。言い換えれば、第1の窒化物半導体領域G1に含まれる転位200は、第2の窒化物半導体領域G2に引き継がれない。
(理由C) マスク層121は転位をほとんど引き起こさない。
このようにして、低い転位密度を有する第2の窒化物半導体領域G2がエピタキシャル成長される。より具体的には、上述したように、第2の窒化物半導体領域G2は、108cm-2以下の低い転位密度を有する。
さらに、第3の窒化物半導体領域G3が、第2の窒化物半導体領域G2上にエピタキシャル成長される。
上記の数式(I)が充足されるため、第3の窒化物半導体領域G3は、第1の窒化物半導体領域G1に含まれる転位200を含まない。以下、これが詳述される。
上述したように、第1の窒化物半導体領域G1が、エピタキシャル成長される間、第1の窒化物半導体領域G1に含まれる転位200は、窒化物半導体層300のc軸に垂直な方向に成長する。
しかし、図2に示されるように、各転位200の成長は、マスク層121aの第1の側面122aで停止する。
さらに、図3に示されるように、マスク層121の高さHが、点Cおよび基板100の表面の間の高さ、すなわち、W・tanθ以上である限り、第1の窒化物半導体領域G1は露出しない。言い換えれば、第1の窒化物半導体領域G1は、基板100、隣接する2つのマスク層121、および第2の窒化物半導体領域G2によって囲まれる。
一例として、Wの値は、100ナノメートル以上5マイクロメートル以下である。一例として、マスク層121の幅Qは、100ナノメートル以上5マイクロメートル以下である。図1に示されるように、マスク層121の幅Qは、断面視において、基板100に接するマスク層121の底面の幅を表す。
このため、第2の窒化物半導体領域G2がエピタキシャル成長された後にエピタキシャル成長される第3の窒化物半導体領域G3は、低い転位密度を有する。言い換えれば、第3の窒化物半導体領域G3がエピタキシャル成長される時には、第1の窒化物半導体領域G1に含まれる転位200は、引き継がれない。
さらに、第1の窒化物半導体領域G1の表面の法線は、+c軸方向に平行である。このため、第1の窒化物半導体領域G1の表面上にエピタキシャル成長される第2の窒化物半導体領域G2においては、−c軸方向のエピタキシャル成長は起きない。同様に、第3の窒化物半導体領域G3においてもまた、−c軸方向のエピタキシャル成長は起きない。+c軸方向に沿ってエピタキシャル成長された層は、−c軸方向に沿ってエピタキシャル成長された層よりも、高い表面平坦性および高い結晶性を有することは公知である。
このように、マスク層121によって、第1の窒化物半導体領域G1に含まれる転位200が、第2の窒化物半導体領域G2および第3の窒化物半導体領域G3に引き継がれることが妨げられる。従って、マスク層121のために、第2の窒化物半導体領域G2および第3の窒化物半導体領域G3は、108cm-2以下という低い転位密度を有する。
参考例1において実証されているように、c軸に対して5度のオフ角を有するm面サファイヤ基板が基板100として用いられた場合、(11−22)面の主面を有する窒化物半導体層300は、53度(=58度−5度)の角度θを有する。参考例2において実証されているように、c軸に対して10度のオフ角を有するm面サファイヤ基板が基板100として用いられた場合、(11−22)面の主面を有する窒化物半導体層300は、48度(=58度−10度)の角度θを有する。従って、角度θは、48度以上58度以下の範囲に収まる。
(製造方法)
本実施形態による窒化物半導体積層構造は、基板上に、(11−22)面の主面を有する窒化物半導体層をエピタキシャル成長させる一般的な方法によって製造され得る。m面サファイヤ基板上に、(11−22)面の主面を有する窒化物半導体層をエピタキシャル成長させる方法を開示する非特許文献1を参照せよ。非特許文献3および非特許文献4は、(11−22)面の主面を有する窒化物半導体基板を開示している。この他、後述される実施例1〜実施例2も参照せよ。
以下の実施例は、本発明をより詳細に説明する。
(実施例1)
図4Aおよび図4Bに示されるように、まず、m面サファイヤ基板100が準備された。m面サファイヤ基板100は、京セラ株式会社より入手した。図4Aは、m面サファイヤ基板100の平面図を示す。図4Bは、図4Aに含まれる線L8−L8’の線に沿ったm面サファイヤ基板100の断面図を示す。
このm面サファイヤ基板100は、およそ2インチの直径および0.43ミリメートルの厚みを有していた。m面サファイヤ基板100は、0.1度以下のオフ角を有していた。オフ角の傾斜方向は、m面サファイヤ基板100のc軸方向であった。
(m面サファイヤ基板の洗浄)
m面サファイヤ基板100は、摂氏100度に加熱された洗浄液を用いて10分間、洗浄された。洗浄液は、1:1の体積比を有する硫酸およびリン酸から構成されていた。続いて、m面サファイヤ基板100は、水を用いて洗浄された。
(マスク層の形成)
次に、図5Aおよび図5Bに示されるように、およそ3.5マイクロメートルの厚みを有するSiO2膜140が、プラズマCVD法により、m面サファイヤ基板100上に形成された。
次に、図6Aおよび図6Bに示されるように、複数の帯状のフォトレジスト層141が、SiO2膜140上に形成された。これらの帯状のフォトレジスト層141は互いに平行であった。帯状の各フォトレジスト層141の長手方向は、m面サファイヤ基板100のa軸に平行であった。言い換えれば、各フォトレジスト層141の長手方向は、X軸に平行であった。帯状の各フォトレジスト層141の幅W1は、2マイクロメートルであった。隣接する2つのフォトレジスト層141の間隔は、2マイクロメートルであった。
図7Aおよび図7Bに示されるように、フォトレジスト層141に被覆されていない部分のSiO2膜140がドライエッチングされた。その後、フォトレジスト層141が除去された。このようにして、図8Aおよび図8Bに示されるように、m面サファイヤ基板100上にSiO2からなる複数の帯状のマスク層121が形成された。
図8Aおよび図8Bから明らかなように、複数の帯状のマスク121は、m面サファイヤ基板100のa軸に平行であった。言い換えれば、複数の帯状のマスク121は、X軸に平行であった。帯状の各マスク121の幅W1は、2マイクロメートルであった。隣接する2つのマスク層121の間隔は、2マイクロメートルであった。各マスク層121の高さHは、おおよそ3.5マイクロメートルであった。角度αは、おおよそ75度であった。
図10は、実施例1による、複数の帯状のマスク層121を表面に具備するm面サファイヤ基板100の断面写真を示す。
m面サファイヤ基板100上に窒化物半導体層300がエピタキシャル成長される場合、窒化物半導体層300は(11−22)面の主面を有する。言い換えれば、窒化物半導体層300の法線方向は、<11−22>方向である。図1に示されるように、m面サファイヤ基板100上には、(11−22)面の主面を有する窒化物半導体層300がエピタキシャル成長される。この場合、図1に示されるように、角度θは58度である。
隣接する2つのマスク層121の間隔は、2マイクロメートルであるため、数式(I):H≧W・tanθに基づき、マスク層121の高さHは、およそ3.2(=2×およそ1.6)マイクロメートル以上であることが必要とされる。上記のように、実施例1では、マスク層121の高さHは、およそ3.5マイクロメートルであった。
(GaN層の成長)
マスク層121を具備するm面サファイヤ基板100は、MOCVD装置内にセットされた。MOCVD装置内では、水素および窒素がキャリアガスとして用いられた。
m面サファイヤ基板100は、MOCVD装置内で加熱された。m面サファイヤ基板100の温度が摂氏500℃になったときに、アンモニアガスが供給され始めた。このアンモニアガスは、m面サファイヤ基板100の表面を窒化したと考えられた。
m面サファイヤ基板100の温度が、摂氏920度に到達した後、1分の時間が経過した。
その後、トリメチルガリウム(以下、「TMG」という)およびアンモニアがMOCVD装置に供給され、(11−22)面の主面を有する窒化物半導体層300をm面サファイヤ基板100の表面に成長した。このようにして、GaNから形成される窒化物半導体積層構造を得た。
窒化物半導体層300がm面サファイヤ基板100の表面に成長される間、m面サファイヤ基板100は、3rpmの回転速度で回転された。表1は、窒化物半導体層300の成長条件を示す。
Figure 2014156388
本実施例1では、低温バッファ層は形成されなかった。低温バッファ層は、一般的な方法によって基板上に窒化物半導体層が形成される際に、基板と窒化物半導体層との間に形成され得る。
(実施例2)
表1に示される成長条件に代えて、表2に示される成長条件が採用されたこと以外は、実施例1と同様の実験が行われた。
Figure 2014156388
(比較例1)
マスク層121が形成されなかったこと以外は、実施例1と同様の実験が行われた。言い換えれば、m面サファイヤ基板100が洗浄された後、マスク層121を形成することなく窒化物半導体層300が形成された。窒化物半導体層300は、3.3マイクロメートルの厚みを有していた。
(結果および評価)
(X線回折プロファイル)
図11は、比較例1による窒化物半導体積層構造のX線回折プロファイルを示す。図11に示されるように、(30−30)面の回折ピークおよび(11−22)面の回折ピークが観測された。(30-30)面の回折ピークは、m面サファイヤ基板100に由来した。(11−22)面の回折ピークは、窒化物半導体層300に由来した。他の回折ピークが観測されていないため、(11−22)面の主面を有する窒化物半導体層300のみが成長されたことが見出された。言い換えれば、窒化物半導体層300の主面の法線は、窒化物半導体の<11−22>結晶軸と平行であった。
このことは、実施例1による窒化物半導体層300の成長方法が、m面サファイヤ基板100の表面に(11−22)面の主面を有する窒化物半導体層300をエピタキシャル成長させることを可能にすることを意味する。
(SEM像)
図12Aは、比較例1による窒化物半導体積層構造の断面走査型電子顕微鏡像(SEM像)を示す。図12Aに示されるように、m面サファイヤ基板100上に、(11−22)面の主面を有する一様な窒化物半導体層300が形成されていた。窒化物半導体層300の表面は平坦であった。しかし、比較例1による窒化物半導体層300は、1010cm-2以上という高い転位密度を有していた。
図12Bは、実施例1による窒化物半導体積層構造の断面走査型電子顕微鏡像(SEM像)を示す。図12Bに示されるように、m面サファイヤ基板100上に、(11−22)面の主面を有する窒化物半導体層300が形成されていた。窒化物半導体層300の表面は、A面ファセットおよびC面ファセットを有していた。
図12Cは、実施例2による窒化物半導体積層構造の断面走査型電子顕微鏡像(SEM像)を示す。図12Cに示されるように、m面サファイヤ基板100上に、(11−22)面の主面を有する一様な窒化物半導体層300が形成されていた。窒化物半導体層300の表面は平坦であった。
(低温フォトルミネセンス測定)
図13は、10Kの低温下における比較例1および実施例1によるGaN層300の発光スペクトルを示す。およそ3.47eVの付近に観察されたピークは、バンド端付近の発光(ドナー束縛励起子発光強度)に対応する。およそ3.42eVの付近に観察されたピークは、積層欠陥に由来する発光(以下、「積層欠陥由来発光(stacking-fault-originated light emission)」という)に対応する。およそ3.3eVの付近に観察されたピークは、他の欠陥または転位に由来する発光に対応する。
図13から明らかなように、実施例1による窒化物半導体積層構造は、比較例1による窒化物半導体積層構造よりも高いバンド端付近の発光強度を有した。さらに、実施例1による窒化物半導体積層構造は、比較例1による窒化物半導体積層構造よりも低い積層欠陥由来発光強度を有した。
非特許文献2によれば、バンド端付近発光のピークは、3.47eV付近(10Kでの測定時)に観測される。
図13に示されるように、実施例1による窒化物半導体積層構造のバンド端付近のドナー束縛励起子発光のピークは、3.471eV付近に観測された。一方、比較例1のそれは、3.480eVに観測された。
非特許文献2によるバンド端付近発光のピーク(3.47eV)および比較例1によるバンド端付近発光のピーク(3.480eV)の間での相違は、およそ0.01eVという比較的大きい値であった。これは、窒化物半導体層300が残留歪みを含んだからである。
一方、非特許文献2によるバンド端付近発光のピーク(3.47eV)および実施例1によるバンド端付近発光のピーク(3.471eV)の間での相違は、およそ0.001eVという小さい値であった。これは、窒化物半導体層300に含まれる歪みが緩和されたからである。このことは、実施例1による窒化物半導体積層構造は、比較例1による窒化物半導体積層構造よりも高い結晶性を有することを意味する。
実施例1による積層欠陥由来発光強度に対するドナー束縛励起子発光強度の比(およそ1.79)は、比較例1の比(0.04)と比較して、大幅に改善された。このことは、実施例1による窒化物半導体積層構造に含まれる積層欠陥の密度は、比較例1による窒化物半導体積層構造に含まれる積層欠陥の密度よりも低いことを意味する。
(TEM像)
図14Aは、実施例による窒化物半導体積層構造の断面透過型電子顕微鏡像(以下、「TEM像」という)を示す。
図14Bは、図14Aにおいて点線によって囲まれた領域の拡大像を示す。
図14Cは、図14Bにおいて点線によって囲まれた領域の拡大像を示す。
TEM像を得るために、窒化物半導体積層構造は、100ナノメートルの厚みを有するようにスライスされた。転位密度は、スライスされた窒化物半導体積層構造の厚み(100ナノメートル)、領域G1、G2、および領域G3の幅(およそ1マイクロメートル〜2マイクロメートル)、および転位の数から見積もられた。
図14A、図14B、および図14Cから明らかなように、第1の窒化物半導体領域G1は、数多くの転位および数多くの積層欠陥を有する。一方、第2の窒化物半導体領域G2は、少ない転位および少ない積層欠陥を有する。これらの転位および積層欠陥は、C軸に直交する方向に形成されている。言い換えれば、これらの転位および積層欠陥は、c面に平行に形成されている。
より具体的には、第1の窒化物半導体領域G1は、1010cm-2以上の転位密度を有していた。一方、第2の窒化物半導体領域G2は、108cm-2以下の転位密度を有していた。
実施例2による第3の窒化物半導体領域G3(図12Cを参照せよ)は、第2の窒化物半導体領域G2上にエピタキシャル成長されたので、実施例2による第3の窒化物半導体領域G3もまた、108cm-2以下の転位密度を有していたと考えられた。
(参考例1)
c軸に対して5度のオフ角を有するm面サファイヤ基板100が用いられたこと以外は、比較例1と同様の実験が行われた。このm面サファイヤ基板100は、京セラ株式会社より入手可能であった。
m面サファイヤ基板100が5度のオフ角を有するので、参考例1では、角度θは53度(=58度−5度)であった。
(参考例2)
c軸に対して10度のオフ角を有するm面サファイヤ基板100が用いられたこと以外は、比較例1と同様の実験が行われた。このm面サファイヤ基板100は、京セラ株式会社より入手可能であった。
m面サファイヤ基板100が10度のオフ角を有するので、参考例1では、θは48度(=58度−10度)であった。
図15Aは、比較例1による窒化物半導体積層構造の表面モフォロジーを示す。
図15Bは、参考例1による窒化物半導体積層構造の表面モフォロジーを示す。
図15Cは、参考例2による窒化物半導体積層構造の表面モフォロジーを示す。
これらの表面モフォロジーは、レーザー顕微鏡を用いて観察された。
図15A、図15B、および図15Cは、互いに類似する表面モフォロジーを示す。これらの図15A〜図15Cから明らかなように、角度θが48度以上58度以下である場合、(11−22)面の主面を有する窒化物半導体積層構造がエピタキシャル成長されることが理解される。
本発明による窒化物半導体積層構造は、窒化物半導体発光素子および窒化物半導体レーザー用いられ得る。
具体的には、窒化物半導体発光素子および窒化物半導体レーザーは、以下の要素を具備する:
本発明による窒化物半導体積層構造
本発明による窒化物半導体積層構造上に形成されたn型窒化物半導体層
n型窒化物半導体層の上に形成された活性層
活性層上に形成されたp型窒化物半導体層
n型窒化物半導体層に接し、かつ電気的に接続されたn側電極、および
p型窒化物半導体層に接し、かつ電気的に接続されたp側電極。
100 基板
121 マスク層
122 第1の側面
123 第2の側面
124 底面
300 窒化物半導体層
G1 第1の窒化物半導体領域
G2 第2の窒化物半導体領域
G3 第3の窒化物半導体領域

Claims (18)

  1. 窒化物半導体積層構造であって、以下を具備する:
    m面サファイヤ基板、
    前記m面サファイヤ基板の表面の一部に形成されたマスク層、および
    前記マスク層を被覆するように前記m面サファイヤ基板の表面に形成された窒化物半導体層、ここで
    X軸は前記m面サファイヤ基板のa軸を表し、
    Y軸は前記m面サファイヤ基板のc軸を表し、
    Z軸は前記m面サファイヤ基板のm軸を表し、
    前記Z軸およびY軸を含む面に沿って前記窒化物半導体積層構造を切断することによって現れる断面視において、複数のマスク層が現れ、
    前記断面視において、各マスク層は、底面、第1の側面、および第2の側面を有し、
    前記断面視において、各マスク層は、Hの高さを有し、
    前記窒化物半導体層は、(11−22)面により表される主面を有し、
    前記断面視において、隣接する2つのマスク層の一方のマスク層の第1の側面は、前記窒化物半導体層を挟んで、隣接する2つのマスク層の他方のマスク層の第2の側面と向かい合い、
    前記断面視において、前記窒化物半導体層は、各マスク層の第1の側面および第2の側面に接しており、
    前記断面視において、前記窒化物半導体層は、隣接する2つのマスク層の間に露出する部分の前記m面サファイヤ基板に接しており、
    前記窒化物半導体層は、前記断面視において、第1の窒化物半導体領域、第2の窒化物半導体領域、および第3の窒化物半導体領域を含み、
    前記第1の窒化物半導体領域は、前記断面視において、点A、点B、および点Cによって囲まれており、
    前記第1の窒化物半導体領域は、前記第2の窒化物半導体領域よりも高い転位密度を有しており、
    前記第1の窒化物半導体領域は、前記第3の窒化物半導体領域よりも高い転位密度を有しており、
    前記第2の窒化物半導体領域は、前記断面視において、点B、点C、および点Dによって囲まれており、
    前記第1の窒化物半導体領域および前記第2の窒化物半導体領域は、前記断面視において、前記m面サファイヤ基板および前記第3の窒化物半導体領域の間に挟まれており、
    前記第3の窒化物半導体領域は、108cm-2以下の転位密度を有しており、
    前記点Aは、前記断面視において、隣接する2つのマスク層の一方のマスク層の第1の側面および前記m面サファイヤ基板の交点を表し、
    前記点Bは、前記断面視において、隣接する2つのマスク層の他方のマスク層の第2の側面および前記m面サファイヤ基板の交点を表し、
    前記点Cは、前記断面視において、隣接する2つのマスク層の一方のマスク層の第1の側面および直線L1の交点を表し、
    前記点Dは、前記断面視において、隣接する2つのマスク層の他方のマスク層の第2の側面および直線L2の交点を表し、
    前記直線L1は、前記断面視において、前記点Bを通り、かつ前記m面サファイヤ基板と角度θで交差し、
    前記直線L2は、前記断面視において、前記点Cを通り、かつ前記m面サファイヤ基板に平行であり、
    数式(I):H≧W・tanθが充足され、:
    距離Wは、前記断面視において、互いに平行な直線L3および直線L4の距離を表し、
    角度θは、前記断面視において、前記Y軸および窒化物半導体層のc面の間に形成される角度を表し、
    前記直線L3は、前記断面視において、前記点Bを通り、かつ前記m面サファイヤ基板に垂直であり、
    前記直線L4は、前記断面視において、前記点Cを通り、かつ前記m面サファイヤ基板に垂直であり、および
    前記角度θは、48度以上58度以下である。
  2. 請求項1の窒化物半導体積層構造であって、
    前記第2の窒化物半導体領域は、前記第3の窒化物半導体領域と同じ転位密度を有する。
  3. 請求項1の窒化物半導体積層構造であって、
    前記第1の窒化物半導体領域は、1010cm-2以上の転位密度を有する。
  4. 請求項1の窒化物半導体積層構造であって、
    前記第2の窒化物半導体領域は、108cm-2以下の転位密度を有する。
  5. 請求項1の窒化物半導体積層構造であって、
    前記第1の窒化物半導体領域は、1010cm-2以上の転位密度を有し、かつ
    前記第2の窒化物半導体領域は、108cm-2以下の転位密度を有する。
  6. 請求項1の窒化物半導体積層構造であって、
    複数の前記マスク層が前記m面サファイヤ基板の表面の一部に形成されており、
    前記各マスク層は、X軸に平行である。
  7. 請求項1の窒化物半導体積層構造であって、
    前記窒化物半導体積層構造の上面視において、前記マスク層は開口部を具備し、
    前記第1の窒化物半導体領域および前記第2の窒化物半導体領域が前記開口部に含まれている。
  8. 請求項1の窒化物半導体積層構造であって、
    前記窒化物半導体層の上面は、前記m面基板の表面に平行である。
  9. 発光素子であって、以下を具備する:
    請求項1の窒化物半導体積層構造、
    前記窒化物半導体積層構造上に形成されたn型窒化物半導体層、
    前記n型窒化物半導体層上に形成された活性層、
    前記活性層上に形成されたp型窒化物半導体層、
    前記n型窒化物半導体層に接し、かつ前記n型窒化物半導体層に電気的に接続されたn側電極、および
    前記p型窒化物半導体層に接し、かつ前記p型窒化物半導体層に電気的に接続されたp側電極。
  10. 窒化物半導体積層構造であって、以下を具備する:
    (11−22)面の主面を有する窒化物半導体基板、
    前記窒化物半導体基板の表面の一部に形成されたマスク層、および
    前記マスク層を被覆するように前記窒化物半導体基板の表面に形成された窒化物半導体層、ここで
    X軸は<1−100>方向を表し、
    Y軸は<11−2−3>を表し、
    Z軸は<11−22>方向を表し、
    前記Z軸およびY軸を含む面に沿って前記窒化物半導体積層構造を切断することによって現れる断面視において、複数のマスク層が現れ、
    前記断面視において、各マスク層は、底面、第1の側面、および第2の側面を有し、
    前記断面視において、各マスク層は、Hの高さを有し、
    前記窒化物半導体層は、(11−22)面により表される主面を有し、
    前記断面視において、隣接する2つのマスク層の一方のマスク層の第1の側面は、前記窒化物半導体層を挟んで、隣接する2つのマスク層の他方のマスク層の第2の側面と向かい合い、
    前記断面視において、前記窒化物半導体層は、各マスク層の第1の側面および第2の側面に接しており、
    前記断面視において、前記窒化物半導体層は、隣接する2つのマスク層の間に露出する部分の前記窒化物半導体基板に接しており、
    前記窒化物半導体層は、前記断面視において、第1の窒化物半導体領域、第2の窒化物半導体領域、および第3の窒化物半導体領域を含み、
    前記第1の窒化物半導体領域は、前記断面視において、点A、点B、および点Cによって囲まれており、
    前記窒化物半導体基板は、前記第2の窒化物半導体領域よりも高い転位密度を有しており、
    前記窒化物半導体基板は、前記第3の窒化物半導体領域よりも高い転位密度を有しており、
    前記第1の窒化物半導体領域は、前記第2の窒化物半導体領域よりも高い転位密度を有しており、
    前記第1の窒化物半導体領域は、前記第3の窒化物半導体領域よりも高い転位密度を有しており、
    前記第2の窒化物半導体領域は、前記断面視において、点B、点C、および点Dによって囲まれており、
    前記第1の窒化物半導体領域および前記第2の窒化物半導体領域は、前記断面視において、前記窒化物半導体基板および前記第3の窒化物半導体領域の間に挟まれており、
    前記第3の窒化物半導体領域は、108cm-2以下の転位密度を有しており、
    前記点Aは、前記断面視において、隣接する2つのマスク層の一方のマスク層の第1の側面および前記窒化物半導体基板の交点を表し、
    前記点Bは、前記断面視において、隣接する2つのマスク層の他方のマスク層の第2の側面および前記窒化物半導体基板の交点を表し、
    前記点Cは、前記断面視において、隣接する2つのマスク層の一方のマスク層の第1の側面および直線L1の交点を表し、
    前記点Dは、前記断面視において、隣接する2つのマスク層の他方のマスク層の第2の側面および直線L2の交点を表し、
    前記直線L1は、前記断面視において、前記点Bを通り、かつ前記窒化物半導体基板と角度θで交差し、
    前記直線L2は、前記断面視において、前記点Cを通り、かつ前記窒化物半導体基板に平行であり、
    数式(I):H≧W・tanθが充足され、:
    距離Wは、前記断面視において、互いに平行な直線L3および直線L4の距離を表し、
    角度θは、前記断面視において、前記Y軸および窒化物半導体層のc面の間に形成される角度を表し、
    前記直線L3は、前記断面視において、前記点Bを通り、かつ前記窒化物半導体基板に垂直であり、
    前記直線L4は、前記断面視において、前記点Cを通り、かつ前記窒化物半導体基板に垂直であり、および
    前記角度θは、48度以上58度以下である。
  11. 請求項10の窒化物半導体積層構造であって、
    前記第2の窒化物半導体領域は、前記第3の窒化物半導体領域と同じ転位密度を有する。
  12. 請求項10の窒化物半導体積層構造であって、
    前記第1の窒化物半導体領域は、1010cm-2以上の転位密度を有する。
  13. 請求項10の窒化物半導体積層構造であって、
    前記第2の窒化物半導体領域は、108cm-2以下の転位密度を有する。
  14. 請求項10の窒化物半導体積層構造であって、
    前記第1の窒化物半導体領域は、1010cm-2以上の転位密度を有し、かつ
    前記第2の窒化物半導体領域は、108cm-2以下の転位密度を有する。
  15. 請求項10の窒化物半導体積層構造であって、
    複数の前記マスク層が前記窒化物半導体基板の表面の一部に形成されており、
    前記各マスク層は、X軸に平行である。
  16. 請求項10の窒化物半導体積層構造であって、
    前記窒化物半導体積層構造の上面視において、前記マスク層は開口部を具備し、
    前記第1の窒化物半導体領域および前記第2の窒化物半導体領域が前記開口部に含まれている。
  17. 請求項10の窒化物半導体積層構造であって、
    前記窒化物半導体層の上面は、前記窒化物半導体基板の表面に平行である。
  18. 発光素子であって、以下を具備する:
    請求項10の窒化物半導体積層構造、
    前記窒化物半導体積層構造上に形成されたn型窒化物半導体層、
    前記n型窒化物半導体層上に形成された活性層、
    前記活性層上に形成されたp型窒化物半導体層、
    前記n型窒化物半導体層に接し、かつ前記n型窒化物半導体層に電気的に接続されたn側電極、および
    前記p型窒化物半導体層に接し、かつ前記p型窒化物半導体層に電気的に接続されたp側電極。
JP2014000733A 2013-01-16 2014-01-07 窒化物半導体積層構造およびそれを製造する方法 Pending JP2014156388A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014000733A JP2014156388A (ja) 2013-01-16 2014-01-07 窒化物半導体積層構造およびそれを製造する方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013005161 2013-01-16
JP2013005161 2013-01-16
JP2014000733A JP2014156388A (ja) 2013-01-16 2014-01-07 窒化物半導体積層構造およびそれを製造する方法

Publications (1)

Publication Number Publication Date
JP2014156388A true JP2014156388A (ja) 2014-08-28

Family

ID=51577537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014000733A Pending JP2014156388A (ja) 2013-01-16 2014-01-07 窒化物半導体積層構造およびそれを製造する方法

Country Status (1)

Country Link
JP (1) JP2014156388A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105655451A (zh) * 2014-11-13 2016-06-08 北京北方微电子基地设备工艺研究中心有限责任公司 一种刻蚀用掩膜组及应用其的衬底刻蚀方法
JP2018520502A (ja) * 2015-05-05 2018-07-26 セレン フォトニクス リミテッド 半導体テンプレート及び製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270516A (ja) * 2001-03-07 2002-09-20 Nec Corp Iii族窒化物半導体の成長方法、iii族窒化物半導体膜およびそれを用いた半導体素子
US20110291074A1 (en) * 2010-06-01 2011-12-01 Palo Alto Research Center Incorporated Semi-Polar Nitride-Based Light Emitting Structure and Method of Forming Same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270516A (ja) * 2001-03-07 2002-09-20 Nec Corp Iii族窒化物半導体の成長方法、iii族窒化物半導体膜およびそれを用いた半導体素子
US20110291074A1 (en) * 2010-06-01 2011-12-01 Palo Alto Research Center Incorporated Semi-Polar Nitride-Based Light Emitting Structure and Method of Forming Same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105655451A (zh) * 2014-11-13 2016-06-08 北京北方微电子基地设备工艺研究中心有限责任公司 一种刻蚀用掩膜组及应用其的衬底刻蚀方法
CN105655451B (zh) * 2014-11-13 2018-07-06 北京北方华创微电子装备有限公司 一种刻蚀用掩膜组及应用其的衬底刻蚀方法
JP2018520502A (ja) * 2015-05-05 2018-07-26 セレン フォトニクス リミテッド 半導体テンプレート及び製造方法

Similar Documents

Publication Publication Date Title
JP5180189B2 (ja) エピタキシャル横方向異常成長窒化ガリウムテンプレート上での酸化亜鉛膜成長の方法
EP2518191B1 (en) Template for epitaxial growth and process for producing same
CN101800170B (zh) 制造第ⅲ族氮化物半导体的方法和模板衬底
JP5392855B2 (ja) 半導体基板及びその製造方法
TW200419652A (en) Growth of reduced dislocation density non-polar gallium nitride by hydride vapor phase epitaxy
JP5891390B2 (ja) 窒化物半導体構造、積層構造、および窒化物半導体発光素子
JP4529846B2 (ja) Iii−v族窒化物系半導体基板及びその製造方法
JP2010168273A (ja) Iii族窒化物半導体の製造方法、およびテンプレート基板
JP4968660B2 (ja) ZnO系化合物半導体結晶の製造方法、及び、ZnO系化合物半導体基板
JP2009018983A (ja) GaN基板、エピタキシャル層付き基板、半導体装置、およびGaN基板の製造方法
US12091774B2 (en) Nitride semiconductor substrate, laminated structure, and method for manufacturing nitride semiconductor substrate
US9515146B2 (en) Nitride semiconductor layer, nitride semiconductor device, and method for manufacturing nitride semiconductor layer
US11908688B2 (en) Method for manufacturing nitride semiconductor substrate, nitride semiconductor substrate and layered structure
JP2010168274A (ja) Iii族窒化物半導体の製造方法およびテンプレート基板
JP5957771B2 (ja) 窒化物半導体積層構造、半導体発光素子および窒化物半導体積層構造を製造する方法
JP2014156388A (ja) 窒化物半導体積層構造およびそれを製造する方法
JP2015032730A (ja) 窒化物半導体構造およびそれを製造する方法
EP4053881B1 (en) Semiconductor element and method for producing semiconductor element
JP6663237B2 (ja) Iii族窒化物半導体基板及びiii族窒化物半導体基板の製造方法
KR101379341B1 (ko) 마스크 패턴을 삽입한 고품질 반도체 소자용 기판의 제조 방법
JP6984856B2 (ja) 半導体基板の製造方法
JP6374071B2 (ja) 窒化物半導体層、窒化物半導体装置及び窒化物半導体層の製造方法
WO2023190969A1 (ja) GaN結晶及びGaNウエハ
JP5869064B2 (ja) エピタキシャル成長用テンプレート及びその作製方法
JP2023181502A (ja) c面GaN基板

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150623