JP2014152343A - Composite copper foil and production method thereof - Google Patents
Composite copper foil and production method thereof Download PDFInfo
- Publication number
- JP2014152343A JP2014152343A JP2013020737A JP2013020737A JP2014152343A JP 2014152343 A JP2014152343 A JP 2014152343A JP 2013020737 A JP2013020737 A JP 2013020737A JP 2013020737 A JP2013020737 A JP 2013020737A JP 2014152343 A JP2014152343 A JP 2014152343A
- Authority
- JP
- Japan
- Prior art keywords
- plating layer
- copper plating
- copper foil
- copper
- roughened
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 492
- 239000011889 copper foil Substances 0.000 title claims abstract description 201
- 239000002131 composite material Substances 0.000 title claims abstract description 93
- 238000004519 manufacturing process Methods 0.000 title claims description 20
- 239000010949 copper Substances 0.000 claims abstract description 295
- 229910052802 copper Inorganic materials 0.000 claims abstract description 291
- 238000007747 plating Methods 0.000 claims description 323
- 238000011282 treatment Methods 0.000 claims description 52
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 38
- 238000010438 heat treatment Methods 0.000 claims description 25
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims description 22
- 239000002775 capsule Substances 0.000 claims description 21
- 239000013078 crystal Substances 0.000 claims description 20
- 239000007788 liquid Substances 0.000 claims description 20
- 229910052759 nickel Inorganic materials 0.000 claims description 18
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 claims description 16
- 230000002265 prevention Effects 0.000 claims description 16
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 13
- 230000008878 coupling Effects 0.000 claims description 13
- 238000010168 coupling process Methods 0.000 claims description 13
- 238000005859 coupling reaction Methods 0.000 claims description 13
- 229910000077 silane Inorganic materials 0.000 claims description 13
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 11
- 239000011701 zinc Substances 0.000 claims description 11
- 229910052725 zinc Inorganic materials 0.000 claims description 11
- 239000004094 surface-active agent Substances 0.000 claims description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 6
- 150000002898 organic sulfur compounds Chemical class 0.000 claims description 5
- 125000003396 thiol group Chemical group [H]S* 0.000 claims description 5
- 238000009713 electroplating Methods 0.000 claims description 4
- 239000000758 substrate Substances 0.000 abstract description 12
- 238000000034 method Methods 0.000 description 54
- 239000000463 material Substances 0.000 description 52
- 239000002585 base Substances 0.000 description 46
- 230000008569 process Effects 0.000 description 44
- 239000011888 foil Substances 0.000 description 40
- 238000005452 bending Methods 0.000 description 37
- 230000000052 comparative effect Effects 0.000 description 37
- 238000007788 roughening Methods 0.000 description 29
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 24
- 238000001953 recrystallisation Methods 0.000 description 20
- 239000007864 aqueous solution Substances 0.000 description 16
- 238000000137 annealing Methods 0.000 description 14
- 230000000694 effects Effects 0.000 description 14
- 238000011156 evaluation Methods 0.000 description 14
- 239000000654 additive Substances 0.000 description 13
- 230000000996 additive effect Effects 0.000 description 13
- 238000005530 etching Methods 0.000 description 12
- 239000006259 organic additive Substances 0.000 description 12
- 230000002159 abnormal effect Effects 0.000 description 11
- 230000002378 acidificating effect Effects 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 230000003746 surface roughness Effects 0.000 description 9
- 238000002834 transmittance Methods 0.000 description 9
- 238000012545 processing Methods 0.000 description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000000853 adhesive Substances 0.000 description 6
- JZCCFEFSEZPSOG-UHFFFAOYSA-L copper(II) sulfate pentahydrate Chemical compound O.O.O.O.O.[Cu+2].[O-]S([O-])(=O)=O JZCCFEFSEZPSOG-UHFFFAOYSA-L 0.000 description 6
- 238000005238 degreasing Methods 0.000 description 6
- 230000003449 preventive effect Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 5
- 229910052804 chromium Inorganic materials 0.000 description 5
- 239000011651 chromium Substances 0.000 description 5
- 238000005097 cold rolling Methods 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- 238000005554 pickling Methods 0.000 description 5
- 229920001721 polyimide Polymers 0.000 description 5
- 238000004439 roughness measurement Methods 0.000 description 5
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 239000009719 polyimide resin Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 238000005096 rolling process Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- LMPMFQXUJXPWSL-UHFFFAOYSA-N 3-(3-sulfopropyldisulfanyl)propane-1-sulfonic acid Chemical compound OS(=O)(=O)CCCSSCCCS(O)(=O)=O LMPMFQXUJXPWSL-UHFFFAOYSA-N 0.000 description 3
- 229910000881 Cu alloy Inorganic materials 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 229910000365 copper sulfate Inorganic materials 0.000 description 3
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- 239000012670 alkaline solution Substances 0.000 description 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 2
- 239000004327 boric acid Substances 0.000 description 2
- 239000011362 coarse particle Substances 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- SURQXAFEQWPFPV-UHFFFAOYSA-L iron(2+) sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Fe+2].[O-]S([O-])(=O)=O SURQXAFEQWPFPV-UHFFFAOYSA-L 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 2
- RRIWRJBSCGCBID-UHFFFAOYSA-L nickel sulfate hexahydrate Chemical compound O.O.O.O.O.O.[Ni+2].[O-]S([O-])(=O)=O RRIWRJBSCGCBID-UHFFFAOYSA-L 0.000 description 2
- 229940116202 nickel sulfate hexahydrate Drugs 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 239000011684 sodium molybdate Substances 0.000 description 2
- 235000015393 sodium molybdate Nutrition 0.000 description 2
- TVXXNOYZHKPKGW-UHFFFAOYSA-N sodium molybdate (anhydrous) Chemical compound [Na+].[Na+].[O-][Mo]([O-])(=O)=O TVXXNOYZHKPKGW-UHFFFAOYSA-N 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 2
- 230000008719 thickening Effects 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 2
- 229910000368 zinc sulfate Inorganic materials 0.000 description 2
- 229960001763 zinc sulfate Drugs 0.000 description 2
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- -1 for example Substances 0.000 description 1
- 238000005246 galvanizing Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229940113125 polyethylene glycol 3000 Drugs 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000010731 rolling oil Substances 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Landscapes
- Parts Printed On Printed Circuit Boards (AREA)
- Laminated Bodies (AREA)
- Electroplating And Plating Baths Therefor (AREA)
- Electroplating Methods And Accessories (AREA)
Abstract
Description
本発明は、銅めっき層を備える複合銅箔および複合銅箔の製造方法に関する。 The present invention relates to a composite copper foil having a copper plating layer and a method for producing the composite copper foil.
フレキシブルプリント配線板(FPC:Flexible Printed Circuit)は、薄くて可撓性に優れる。このため、FPCは、折り畳み式携帯電話の折り曲げ部や、デジタルカメラやプリンタヘッド等の可動部のほか、ディスク関連機器の可動部の配線等に用いられることが多い。したがって、FPCやその配線材として用いられる圧延銅箔には、高屈曲特性、つまり、繰り返しの曲げに耐える優れた耐屈曲性が要求されてきた。 A flexible printed circuit (FPC) is thin and excellent in flexibility. For this reason, the FPC is often used for wiring of a movable part of a disk-related device in addition to a folding part of a folding cellular phone, a movable part such as a digital camera or a printer head. Therefore, the rolled copper foil used as FPC and its wiring material has been required to have high bending properties, that is, excellent bending resistance that can withstand repeated bending.
FPC用の圧延銅箔は、FPCの製造工程において、ポリイミド等の樹脂からなるFPCのベースフィルム(基材)と加熱等により貼り合わされる。基材上の圧延銅箔は、エッチング等の表面加工を施されて配線となる。圧延銅箔の耐屈曲性は、基材との貼り合わせ時の加熱で、圧延銅箔が再結晶焼鈍されることで向上する。 The rolled copper foil for FPC is bonded to an FPC base film (base material) made of a resin such as polyimide by heating or the like in the FPC manufacturing process. The rolled copper foil on the base material is subjected to surface processing such as etching to become a wiring. The bending resistance of the rolled copper foil is improved by recrystallization annealing of the rolled copper foil by heating at the time of bonding to the base material.
また、基材との密着性を向上させるため、圧延銅箔の少なくとも片面に粗化銅めっき層を設けることがある。このとき、例えば圧延銅箔上に銅めっき層を設けて平滑化した後、粗化銅めっき層が形成される(例えば、特許文献1,2)。 Moreover, in order to improve adhesiveness with a base material, a roughening copper plating layer may be provided in the at least single side | surface of rolled copper foil. At this time, for example, after a copper plating layer is provided on a rolled copper foil and smoothed, a roughened copper plating layer is formed (for example, Patent Documents 1 and 2).
圧延銅箔に銅めっき層を形成した複合銅箔においては、充分な耐屈曲性が得られないことがある。これは、圧延銅箔とは異なる結晶組織を備える銅めっき層の影響と考えられる。このため、銅めっき層を極力薄く形成することが好ましい。 In a composite copper foil in which a copper plating layer is formed on a rolled copper foil, sufficient bending resistance may not be obtained. This is considered to be an influence of a copper plating layer having a crystal structure different from that of the rolled copper foil. For this reason, it is preferable to form the copper plating layer as thin as possible.
しかしながら、銅めっき層を薄くすると、粗化銅めっき層が異常成長してしまう場合がある。基材と貼り合わされた複合銅箔にこのような異常成長部分があると、基材における光の透過率が低下してしまう。FPCに搭載される電子部品等とFPCとは、例えば基材を透かして位置合わせが行われる。このため、基材における光の透過率が低下していると位置合わせが困難となってしまう。 However, when the copper plating layer is thinned, the roughened copper plating layer may grow abnormally. If there is such an abnormally grown portion in the composite copper foil bonded to the base material, the light transmittance in the base material is lowered. The electronic component and the like mounted on the FPC and the FPC are aligned, for example, through the base material. For this reason, if the light transmittance in the base material is lowered, the alignment becomes difficult.
本発明の目的は、耐屈曲性を維持しつつ、基材における光の透過率を高めることができる複合銅箔および複合銅箔の製造方法を提供することである。 The objective of this invention is providing the manufacturing method of the composite copper foil and composite copper foil which can raise the transmittance | permeability of the light in a base material, maintaining bending resistance.
本発明の第1の態様によれば、
圧延銅箔と、
前記圧延銅箔の少なくとも片面上に形成され、厚さが0.05μm以上0.5μm以下の銅めっき層と、を備え、
前記銅めっき層の表面に凹部が存在する場合、前記凹部の深さの平均値が0.5μm以下である
複合銅箔が提供される。
According to a first aspect of the invention,
Rolled copper foil,
Formed on at least one surface of the rolled copper foil, and a copper plating layer having a thickness of 0.05 μm or more and 0.5 μm or less, and
When the concave portion exists on the surface of the copper plating layer, a composite copper foil having an average depth of the concave portion of 0.5 μm or less is provided.
本発明の第2の態様によれば、
250℃、5分の熱処理後、
前記銅めっき層における最大径が2.0μm以上の結晶粒の個数が、走査型電子顕微鏡の3500倍の視野内にて1個以上150個以下となる
第1の態様に記載の複合銅箔が提供される。
According to a second aspect of the invention,
After heat treatment at 250 ° C for 5 minutes,
The composite copper foil according to the first aspect, wherein the number of crystal grains having a maximum diameter of 2.0 μm or more in the copper plating layer is 1 or more and 150 or less in a field of view of 3500 times that of a scanning electron microscope. Provided.
本発明の第3の態様によれば、
前記銅めっき層上に粗化銅めっき層を備え、
前記粗化銅めっき層の最大高さが3.0μm以下である
第1又は第2の態様に記載の複合銅箔が提供される。
According to a third aspect of the invention,
A roughened copper plating layer is provided on the copper plating layer,
The composite copper foil as described in the 1st or 2nd aspect whose maximum height of the said roughening copper plating layer is 3.0 micrometers or less is provided.
本発明の第4の態様によれば、
前記粗化銅めっき層を平均に均したとき、0.11μm以上1.98μm以下の厚さ相当である
第3の態様に記載の複合銅箔が提供される。
According to a fourth aspect of the invention,
When the roughened copper plating layer is averaged, the composite copper foil according to the third aspect, which is equivalent to a thickness of 0.11 μm to 1.98 μm, is provided.
本発明の第5の態様によれば、
前記粗化銅めっき層は、
平均に均したとき、0.66μm以上1.1μm以下の厚さ相当の粗化粒層と、
厚さが0.15μm以上0.88μm以下のカプセル銅めっき層と、を前記銅めっき層上にこの順に形成してなる
第3又は第4の態様に記載の複合銅箔が提供される。
According to a fifth aspect of the present invention,
The roughened copper plating layer is
When averaged, a roughened grain layer corresponding to a thickness of 0.66 μm or more and 1.1 μm or less,
A composite copper foil according to the third or fourth aspect is provided, wherein a capsule copper plating layer having a thickness of 0.15 μm or more and 0.88 μm or less is formed in this order on the copper plating layer.
本発明の第6の態様によれば、
前記粗化銅めっき層上に厚さが11nm以上35nm以下の防錆層を備える
第3〜第5の態様のいずれかに記載の複合銅箔が提供される。
According to a sixth aspect of the present invention,
The composite copper foil in any one of the 3rd-5th aspect provided with the rust prevention layer whose thickness is 11 nm or more and 35 nm or less on the said roughening copper plating layer is provided.
本発明の第7の態様によれば、
前記粗化銅めっき層上に、ニッケルめっき層、亜鉛めっき層、クロメート処理層、シランカップリング処理層をこの順に形成してなり、厚さが11nm以上35nm以下の防錆層を備える
第3〜第6の態様のいずれかに記載の複合銅箔が提供される。
According to a seventh aspect of the present invention,
On the roughened copper plating layer, a nickel plating layer, a zinc plating layer, a chromate treatment layer, and a silane coupling treatment layer are formed in this order, and third to third rust prevention layers having a thickness of 11 nm to 35 nm are provided. A composite copper foil according to any of the sixth aspects is provided.
本発明の第8の態様によれば、
圧延銅箔の少なくとも片面上に形成され、厚さが0.05μm以上0.5μm以下の銅めっき層を形成する工程を有し、
前記銅めっき層を形成する工程では、
メルカプト基を有する有機硫黄化合物と、界面活性剤と、塩化物イオンを添加した銅めっき液を用いる
複合銅箔の製造方法が提供される。
According to an eighth aspect of the present invention,
Formed on at least one surface of a rolled copper foil, and having a step of forming a copper plating layer having a thickness of 0.05 μm or more and 0.5 μm or less,
In the step of forming the copper plating layer,
Provided is a method for producing a composite copper foil using an organic sulfur compound having a mercapto group, a surfactant, and a copper plating solution to which chloride ions are added.
本発明の第9の態様によれば、
前記銅めっき層を形成する工程では、
電流密度が5A/dm2以上30A/dm2未満、液温が15℃以上50℃以下の条件で電解めっきを行う
第8の態様に記載の複合銅箔の製造方法が提供される。
According to a ninth aspect of the present invention,
In the step of forming the copper plating layer,
Current density is 5A / dm 2 or more 30A / dm less than 2, the production method of the composite copper foil according to the eighth embodiment of the liquid temperature to perform electroplating under the following conditions 50 ° C. or higher 15 ℃ is provided.
本発明によれば、耐屈曲性を維持しつつ、基材における光の透過率を高めることができる複合銅箔および複合銅箔の製造方法が提供される。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the composite copper foil and composite copper foil which can raise the light transmittance in a base material is maintained, maintaining bending resistance.
<本発明者等が得た知見>
上述のように、FPCの基材との密着性を向上させるため、FPC用の圧延銅箔の少なくとも片面に、粗化銅めっき層が形成されることがある。その際に、例えば圧延銅箔上に銅めっき層を形成して表面の平滑化を図ったうえで、粗化銅めっき層が形成される。
<Knowledge obtained by the present inventors>
As described above, a roughened copper plating layer may be formed on at least one side of the rolled copper foil for FPC in order to improve the adhesion of the FPC to the base material. At that time, for example, a copper plating layer is formed on a rolled copper foil to smooth the surface, and then a roughened copper plating layer is formed.
圧延銅箔上に銅めっき層が形成された複合銅箔では、充分な耐屈曲性が得られ難い。これは、銅めっき層が、圧延銅箔とは異なる結晶組織を備えるためと考えられる。したがって、充分な耐屈曲性を備える複合銅箔とするには、銅めっき層を極力薄くすることが望ましい。銅めっき層を薄くすることで、めっき時間を短縮し、生産性を向上させることもできる。 In the composite copper foil in which the copper plating layer is formed on the rolled copper foil, it is difficult to obtain sufficient bending resistance. This is considered because the copper plating layer has a different crystal structure from the rolled copper foil. Therefore, in order to obtain a composite copper foil having sufficient bending resistance, it is desirable to make the copper plating layer as thin as possible. By thinning the copper plating layer, the plating time can be shortened and the productivity can be improved.
しかしながら、銅めっき層を薄くすると、粗化銅めっき層の異常成長が起き、粗化銅めっき層の表面に凹凸が生じてしまうことがある。このような複合銅箔を基材に貼り合わせると、粗化銅めっき層の凹凸が基材の表面に転写されてしまったり、基材に食い込んだ粗化銅めっき層の凸部が複合銅箔のエッチング除去後も残ってしまったり(根残り)することがある。このように、粗化銅めっき層の凹凸が基材の表面に転写されると、基材の透過率が低下してしまうことがある。 However, when the copper plating layer is thinned, abnormal growth of the roughened copper plating layer occurs, and the surface of the roughened copper plating layer may be uneven. When such a composite copper foil is bonded to a base material, the unevenness of the roughened copper plating layer is transferred to the surface of the base material, or the convex portion of the roughened copper plating layer that has digged into the base material is the composite copper foil. May remain even after etching is removed. Thus, when the unevenness | corrugation of a roughening copper plating layer is transcribe | transferred on the surface of a base material, the transmittance | permeability of a base material may fall.
例えばFPC上に電子部品を搭載する際、このような基材を透かして電子部品とFPCとを位置合わせしようとしても、基材の透過率が低いために視認性が悪く、位置合わせが困難となってしまう場合がある。 For example, when an electronic component is mounted on an FPC, even if an attempt is made to align the electronic component and the FPC through such a base material, the transparency of the base material is low, so the visibility is poor and the alignment is difficult. It may become.
本発明者等は、鋭意研究の結果、銅めっき層が薄いと銅めっき層の表面に凹部が存在することがあり、また、この凹部を所定深さ以下とすることで、銅めっき層が薄くとも、粗化銅めっき層の異常成長を抑制できることを見いだした。 As a result of intensive studies, the present inventors have found that when the copper plating layer is thin, there may be a recess on the surface of the copper plating layer, and by making this recess below a predetermined depth, the copper plating layer is thin. In both cases, it was found that the abnormal growth of the roughened copper plating layer can be suppressed.
また、本発明者等は、基材との貼り合わせにおける加熱時に銅めっき層を再結晶させることで、少なくとも銅めっき層が充分に薄ければ、複合銅箔の全体としての耐屈曲性を向上させることが可能であることを見いだした。 In addition, the present inventors recrystallized the copper plating layer at the time of heating in bonding with the base material, and at least if the copper plating layer is sufficiently thin, the overall bending resistance of the composite copper foil is improved. I found out that it is possible.
本発明は、発明者等が見いだしたこれらの知見に基づくものである。 The present invention is based on these findings found by the inventors.
<本発明の一実施形態>
(1)複合銅箔の構成
まずは、本発明の一実施形態に係る複合銅箔の構成について説明する。
<One Embodiment of the Present Invention>
(1) Structure of composite copper foil First, the structure of the composite copper foil which concerns on one Embodiment of this invention is demonstrated.
本実施形態に係る複合銅箔は、無酸素銅やタフピッチ銅、または無酸素銅やタフピッチ銅を母相とする希薄銅合金からなる圧延銅箔と、圧延銅箔の少なくとも片面上に形成された銅めっき層と、を備える。また、本実施形態に係る複合銅箔は、銅めっき層の上に、粗化銅めっき層と、防錆層と、をこの順に備える。 The composite copper foil according to this embodiment is formed on at least one surface of a rolled copper foil made of oxygen-free copper, tough pitch copper, or a dilute copper alloy having oxygen-free copper or tough pitch copper as a parent phase, and the rolled copper foil. A copper plating layer. Moreover, the composite copper foil which concerns on this embodiment is equipped with a roughening copper plating layer and a rust prevention layer in this order on a copper plating layer.
このように構成された複合銅箔は、例えば粗化銅めっき層が形成された粗化面側がFPCの基材と貼り合わされ、FPCにおける可撓性の配線材としての用途に用いられる。 The composite copper foil configured as described above is used, for example, as a flexible wiring material in an FPC by bonding the roughened surface side on which a roughened copper plating layer is formed to an FPC base material.
(圧延銅箔の概要)
複合銅箔が備える圧延銅箔は、例えば主表面としての圧延面を備える板状に構成されている。この圧延銅箔は、例えば無酸素銅(OFC:Oxygen-Free Copper)やタフピッチ銅等の純銅を原材料とする鋳塊に、熱間圧延工程や冷間圧延工程等を施し所定厚さとした圧延銅箔である。本実施形態に係る圧延銅箔は、例えばFPCの基材との貼り合わせの工程を兼ねる再結晶焼鈍工程が施されると、再結晶に調質されて優れた耐屈曲性を具備するよう企図されている。
(Outline of rolled copper foil)
The rolled copper foil included in the composite copper foil is configured in a plate shape including a rolled surface as a main surface, for example. This rolled copper foil is a rolled copper having a predetermined thickness by subjecting an ingot made of pure copper such as oxygen free copper (OFC) or tough pitch copper to a hot rolling process or a cold rolling process. It is a foil. The rolled copper foil according to the present embodiment is intended to have excellent bending resistance by being subjected to recrystallization when subjected to a recrystallization annealing process that also serves as a bonding process with an FPC base material, for example. Has been.
圧延銅箔の原材料となる無酸素銅は、例えばJIS C1020,H3100等に規定の純度が99.96%以上の銅材である。酸素含有量は完全にゼロでなくともよく、例えば数ppm程度の酸素が含まれていてもよい。また、圧延銅箔の原材料となるタフピッチ銅は、例えばJIS C1100,H3100等に規定の純度が99.9%以上の銅材である。タフピッチ銅の場合、酸素含有量は例えば100ppm〜600ppm程度である。或いは、圧延銅箔として、無酸素銅やタフピッチ銅にスズ(Sn)や銀(Ag)やホウ素(B)、チタン(Ti)等の所定の添加材を微量に加えて希薄銅合金とし、耐熱性等の諸特性が調整された原材料を用いてもよい。 The oxygen-free copper used as a raw material for the rolled copper foil is a copper material having a purity specified in JIS C1020, H3100, etc. of 99.96% or more. The oxygen content may not be completely zero, and for example, oxygen of about several ppm may be included. Moreover, the tough pitch copper used as the raw material of the rolled copper foil is a copper material having a purity specified in, for example, JIS C1100, H3100, etc. of 99.9% or more. In the case of tough pitch copper, the oxygen content is, for example, about 100 ppm to 600 ppm. Alternatively, as a rolled copper foil, oxygen-free copper or tough pitch copper is added to a small amount of a predetermined additive such as tin (Sn), silver (Ag), boron (B), titanium (Ti) to form a diluted copper alloy, You may use the raw material in which various characteristics, such as property, were adjusted.
(銅めっき層の概要)
複合銅箔が備える銅めっき層は、圧延銅箔の主表面としての圧延面、またはその裏面の、少なくとも片側の面上に、例えば電解めっき等を用いて形成されている。本実施形態に係る銅めっき層は、例えば厚さが0.05μm以上0.5μm以下である。なお、銅めっき層の厚さを、めっき量にして0.08g/m2以上0.8g/m2以下の厚さ相当と表わすこともできる。
(Overview of copper plating layer)
The copper plating layer with which the composite copper foil is provided is formed on the rolled surface as the main surface of the rolled copper foil, or on at least one surface of the back surface by using, for example, electrolytic plating. The copper plating layer according to the present embodiment has a thickness of, for example, 0.05 μm or more and 0.5 μm or less. In addition, the thickness of the copper plating layer can be expressed as a thickness equivalent to 0.08 g / m 2 or more and 0.8 g / m 2 or less in terms of plating amount.
銅めっき層の厚さを例えば0.05μm以上とすることで、銅めっき層上に粗化銅めっきを均一に施すことが容易となる。また、後述する粗化銅めっき層の正味の厚さを考慮のうえ、これに相応する厚さとして、銅めっき層の上限を例えば0.5μm以下としている。 By setting the thickness of the copper plating layer to, for example, 0.05 μm or more, it becomes easy to uniformly apply the roughened copper plating on the copper plating layer. In consideration of the net thickness of the roughened copper plating layer described later, the upper limit of the copper plating layer is set to, for example, 0.5 μm or less as a thickness corresponding to this.
また、銅めっき層の表面に凹部が存在する場合、凹部の最大径の平均値が5μm以下、凹部の深さの平均値が0.5μm以下、好ましくは0.3μm以下である。ここで、銅めっき層の表面における凹部の平面視の形状は、例えば真円ではなくいびつな形状となり得るところ、凹部の径を最大径で定義した。 Moreover, when a recessed part exists in the surface of a copper plating layer, the average value of the maximum diameter of a recessed part is 5 micrometers or less, and the average value of the depth of a recessed part is 0.5 micrometer or less, Preferably it is 0.3 micrometer or less. Here, the shape of the concave portion on the surface of the copper plating layer in plan view may be, for example, an irregular shape instead of a perfect circle, and the diameter of the concave portion is defined as the maximum diameter.
また、本実施形態に係る銅めっき層は、基材との貼り合わせにおける熱処理により再結晶するよう構成されている。具体的には、250℃、5分の熱処理後、銅めっき層において、最大径(長径)が2.0μm以上の結晶粒の個数が、走査型電子顕微鏡(SEM:Scanning Electron Microscopy)の3500倍の視野内、つまり、例えば953μm2視野内にて、1個以上150個以下となるよう構成されている。ここで、銅めっき層の結晶粒の形状は、例えば球形等ではなくいびつな形状となり得るところ、結晶粒の径を最大径で定義した。 Moreover, the copper plating layer which concerns on this embodiment is comprised so that it may recrystallize by the heat processing in bonding with a base material. Specifically, after heat treatment at 250 ° C. for 5 minutes, the number of crystal grains having a maximum diameter (major axis) of 2.0 μm or more in the copper plating layer is 3500 times that of a scanning electron microscope (SEM). Within the field of view, that is, for example, within 953 μm 2 field of view, the number is 1 or more and 150 or less. Here, the crystal grain shape of the copper plating layer can be an irregular shape rather than a spherical shape, for example, and the crystal grain diameter is defined as the maximum diameter.
このように、表面の凹部のサイズを所定値以下とし、熱処理により再結晶を起こす銅めっき層を得る方法については後述する。 Thus, the method of obtaining the copper plating layer which makes the size of the surface recessed part below a predetermined value, and causes recrystallization by heat processing is mentioned later.
(粗化銅めっき層の概要)
複合銅箔が備える粗化銅めっき層は、銅めっき層の上に形成され、主にめっきにより銅めっき層上に付着された粗化粒からなる層である。粗化粒は、例えば銅(Cu)単体、または、銅(Cu)に、鉄(Fe)、モリブデン(Mo)、ニッケル(Ni)、コバルト(Co)、スズ(Sn)、亜鉛(Zn)、タングステン(W)等を少なくとも1種類以上、好ましくは2種類以上含む直径1μm程度の金属粒子である。
(Outline of roughened copper plating layer)
The roughened copper plating layer with which the composite copper foil is provided is a layer formed of roughened grains formed on the copper plating layer and mainly deposited on the copper plating layer by plating. The roughened grains are, for example, copper (Cu) alone or copper (Cu), iron (Fe), molybdenum (Mo), nickel (Ni), cobalt (Co), tin (Sn), zinc (Zn), It is a metal particle having a diameter of about 1 μm and containing at least one type, preferably two or more types of tungsten (W).
粗化銅めっき層が有する粗化粒の層の厚さは、例えばめっき量にして、1.0g/m2以上10g/m2以下、好ましくは2.3g/m2以上8.2g/m2未満の厚さ相当である。これは、各粗化粒により凹凸を有する粗化粒層を平均に均したとすると、0.11μm以上1.1μm以下、好ましくは0.25μm以上0.90μm未満の厚さ相当となる。 The thickness of the roughened grain layer of the roughened copper plating layer is, for example, 1.0 g / m 2 or more and 10 g / m 2 or less, preferably 2.3 g / m 2 or more and 8.2 g / m in terms of plating amount. It is equivalent to a thickness of less than 2 . This is equivalent to a thickness of not less than 0.11 μm and not more than 1.1 μm, preferably not less than 0.25 μm and less than 0.90 μm, assuming that the roughened grain layer having irregularities by each roughened grain is averaged.
また、粗化粒をコブ状突起へと成長させて更に大きくする目的で、粗化粒を覆うようにカプセルめっき層、所謂、被せめっき層が形成されることもある。また、粗化粒層の厚さが、例えば6.0g/m2以上10g/m2以下、つまり、0.66μm以上1.1μm以下と、比較的厚い場合、粗化粒の脱落を抑制する目的で、カプセルめっき層が形成されることもある。 In addition, for the purpose of growing the roughened grains into bump-shaped protrusions and further enlarging them, a capsule plating layer, so-called a covering plating layer, may be formed so as to cover the roughened grains. Moreover, when the thickness of the roughened grain layer is relatively thick, for example, 6.0 g / m 2 or more and 10 g / m 2 or less, that is, 0.66 μm or more and 1.1 μm or less, the dropping of the roughened grains is suppressed. For the purpose, a capsule plating layer may be formed.
カプセルめっき層は、銅めっき等により形成され、例えばめっき量にして、1.4g/m2以上8.0g/m2以下の厚さ相当、つまり、0.15μm以上0.88μm以下の厚さである。カプセルめっき層の厚さをこのような範囲とすることで、粗化粒の脱落を抑制し、かつ、粗化粒がカプセルめっき層で埋まって粒状でなくなってしまうことを抑制できる。 The capsule plating layer is formed by copper plating or the like. For example, the capsule plating layer is equivalent to a thickness of 1.4 g / m 2 or more and 8.0 g / m 2 or less, that is, a thickness of 0.15 μm or more and 0.88 μm or less. It is. By setting the thickness of the capsule plating layer in such a range, it is possible to suppress the falling off of the roughened grains and to prevent the roughened grains from being filled with the capsule plated layer and becoming non-granular.
このように、粗化銅めっき層は、主に粗化粒層からなり、或いはまた、カプセルめっき層を備えていてもよい。したがって、凹凸を有する粗化銅めっき層を平均に均したときの厚さは、例えばカプセルめっき層を有さない場合の最小値である0.11μmを下限とする。また、例えばカプセルめっき層を有する場合のそれぞれの層の最大値である1.1μmと0.88μmとを足し合わせた1.98μmを上限とする。 Thus, the roughened copper plating layer is mainly composed of a roughened grain layer, or may be provided with a capsule plating layer. Accordingly, the lower limit of the thickness when the roughened copper plating layer having irregularities is averaged is, for example, 0.11 μm which is the minimum value when the capsule plating layer is not provided. For example, when the capsule plating layer is provided, the upper limit is 1.98 μm obtained by adding 1.1 μm and 0.88 μm which are the maximum values of the respective layers.
また、粗化銅めっき層を平均に均したときの厚さとして、より好ましい最小値である0.25μmを下限としてもよい。また、より好ましい最大値である0.90μmと0.88μmとを足し合わせた1.78μm未満を上限値としてもよい。 Moreover, as a thickness when the roughened copper plating layer is averaged, a more preferable minimum value of 0.25 μm may be set as the lower limit. Moreover, it is good also considering less than 1.78 micrometers which added 0.90 micrometer and 0.88 micrometer which are more preferable maximum values as an upper limit.
また、粗化銅めっき層の最大高さRyは3.0μm以下である。最大高さRyは、JIS B0601:2001による表面粗さの規定値である。表面粗さ測定で得られる粗さ曲線から、基準長さ内にある最も高い山と最も低い谷との差をみる。これにより、粗化銅めっき層が有する凹凸の差を知ることができる。 The maximum height Ry of the roughened copper plating layer is 3.0 μm or less. The maximum height Ry is a specified value of the surface roughness according to JIS B0601: 2001. From the roughness curve obtained by the surface roughness measurement, the difference between the highest peak and the lowest valley within the reference length is observed. Thereby, the difference of the unevenness | corrugation which a roughening copper plating layer has can be known.
複合銅箔が粗化銅めっき層を備えることで、複合銅箔とFPCの基材との密着性を向上させることができる。このとき、粗化銅めっき層の厚さを上述の所定範囲内とすることで、アンカー効果により基材との密着性を得つつ、めっき時間を所定内に抑えて生産性の向上を図ることができる。粗化銅めっき層を過剰に厚くしないことで、複合銅箔の全体としての耐屈曲性も維持し易い。 By providing the composite copper foil with the roughened copper plating layer, the adhesion between the composite copper foil and the FPC substrate can be improved. At this time, by setting the thickness of the roughened copper plating layer within the above-mentioned predetermined range, the plating time is kept within the predetermined range while improving the productivity while obtaining adhesion with the base material by the anchor effect. Can do. By not excessively thickening the roughened copper plating layer, it is easy to maintain the bending resistance of the composite copper foil as a whole.
(防錆層の概要)
複合銅箔が備える防錆層は、例えばニッケルめっき層、亜鉛めっき層、クロメート処理層(3価クロム化成処理層)、シランカップリング処理層が、この順に粗化銅めっき層上に形成された積層構造を備える。防錆層は、例えばめっき量にして、0.1g/m2以上0.3g/m2以下の厚さ相当、つまり、11nm以上35nm以下の厚さである。
(Outline of rust prevention layer)
As for the rust prevention layer with which composite copper foil is provided, the nickel plating layer, the zinc plating layer, the chromate treatment layer (trivalent chromium chemical conversion treatment layer), and the silane coupling treatment layer were formed on the roughened copper plating layer in this order, for example. A laminated structure is provided. The anticorrosive layer is, for example, equivalent to a thickness of 0.1 g / m 2 or more and 0.3 g / m 2 or less in terms of plating amount, that is, a thickness of 11 nm or more and 35 nm or less.
複合銅箔が防錆層を備えることで、複合銅箔の耐熱性や耐薬品性が向上する。このとき、防錆層の厚さを上述の所定範囲内とすることで、充分な耐熱性や耐薬品性を得つつ、エッチングの容易性を損ねて根残り等が発生しないようにすることができる。 By providing the composite copper foil with a rust prevention layer, the heat resistance and chemical resistance of the composite copper foil are improved. At this time, by making the thickness of the rust preventive layer within the above-mentioned predetermined range, while obtaining sufficient heat resistance and chemical resistance, it is possible to prevent the etching residue from occurring and to prevent root residue and the like from occurring. it can.
なお、具体的には、防錆層を構成する各層のうち、ニッケルめっき層は銅の拡散を抑制する。また、亜鉛めっき層は耐熱性を向上させる。また、クロメート処理層およびシランカップリング処理層は、化成処理層(化成処理皮膜)として働く。特に、シランカップリング処理層は、複合銅箔と基材との化学的密着性を向上させる。 Specifically, among the layers constituting the rust prevention layer, the nickel plating layer suppresses copper diffusion. Moreover, the galvanized layer improves the heat resistance. The chromate treatment layer and the silane coupling treatment layer function as a chemical conversion treatment layer (chemical conversion treatment film). In particular, the silane coupling treatment layer improves the chemical adhesion between the composite copper foil and the substrate.
また、銅めっき層や粗化銅めっき層を圧延銅箔の片面にのみ形成した場合であっても、このような防錆層を粗化銅めっき層等が形成された側に形成するとともに、このような防錆層の少なくとも一部、例えばニッケルめっき層、亜鉛めっき層、クロメート処理層を、圧延銅箔のこれとは反対側の面上に形成してもよい。これにより、複合銅箔の銅めっき層などを備えない面側においても、耐熱性や耐薬品性を向上させることができる。 In addition, even when a copper plating layer or a roughened copper plating layer is formed only on one side of the rolled copper foil, such a rust preventive layer is formed on the side on which the roughened copper plating layer is formed, You may form at least one part of such a rust preventive layer, for example, a nickel plating layer, a zinc plating layer, and a chromate treatment layer, on the surface on the opposite side to this of a rolled copper foil. Thereby, heat resistance and chemical resistance can be improved even on the side of the composite copper foil that does not include a copper plating layer.
(複合銅箔の作用)
以上のように構成される複合銅箔の作用について、以下に説明する。
(Operation of composite copper foil)
The effect | action of the composite copper foil comprised as mentioned above is demonstrated below.
上述のように、粗化銅めっき層の下地となる銅めっき層が薄いと、粗化銅めっき層に異常成長が生じてしまうことがある。 As described above, if the copper plating layer that is the base of the roughened copper plating layer is thin, abnormal growth may occur in the roughened copper plating layer.
本発明者等は、図5(a)に示される複合銅箔100のように、粗化銅めっき層130の異常成長は、圧延銅箔110上に形成された銅めっき層120の表面に存在する凹部120dの周辺で起きていることを突き止めた。本発明者等によれば、銅めっき層120の表面に存在する凹部120dが上述の所定サイズを超えていると、粗化銅めっき層の異常成長が起き易くなってしまう。 The present inventors have found that the abnormal growth of the roughened copper plating layer 130 exists on the surface of the copper plating layer 120 formed on the rolled copper foil 110, as in the composite copper foil 100 shown in FIG. It was found out that it was happening around the recess 120d. According to the present inventors, when the recess 120d existing on the surface of the copper plating layer 120 exceeds the predetermined size, abnormal growth of the roughened copper plating layer is likely to occur.
また、本発明者等によれば、銅めっき層120の表面の凹部120dは、圧延銅箔110の表面に元々存在していたオイルピット等が銅めっき層120によって埋まり切らずに残ったものであると考えられる。オイルピットは、例えば圧延時に用いる圧延油が圧延ロールによって圧延対象の板材の表面に噛み込まれて生じる窪みである。圧延銅箔の表面におけるオイルピットの深さは、例えば0.7μm以上1.0μm以下である。 Further, according to the present inventors, the recess 120d on the surface of the copper plating layer 120 is the one in which the oil pits originally present on the surface of the rolled copper foil 110 remain without being completely filled with the copper plating layer 120. It is believed that there is. The oil pit is a depression formed by rolling oil used at the time of rolling, for example, into the surface of a plate material to be rolled by a rolling roll. The depth of the oil pit on the surface of the rolled copper foil is, for example, 0.7 μm or more and 1.0 μm or less.
粗化銅めっきを施す際、このような凹部120dの周辺におけるめっきの析出量が他の部分よりも集中してしまう異常析出により、粗化銅めっき層130の異常成長が起きる。異常成長の生じた部分においては、例えば粗化銅めっき層130が他よりも突出した凸状になる。このような凸状部は、例えば他の部分における平均的な大きさの粗化粒よりも3倍以上の大きさを有する粗大化した粗化粒や、その上に形成される防錆層140により構成される。これに対し、図5(b)の複合銅箔200では、厚い銅めっき層220が圧延銅箔210上に形成され、比較的粗化粒の揃った平坦な粗化銅めっき層230や、その上に形成される防錆層240を備える。 When roughening copper plating is performed, abnormal growth of the roughened copper plating layer 130 occurs due to abnormal precipitation in which the amount of plating deposited around the recess 120d is more concentrated than other portions. In the portion where the abnormal growth has occurred, for example, the roughened copper plating layer 130 has a convex shape protruding more than the others. Such convex portions are, for example, roughened coarse particles having a size three times or more than the average size of coarse particles in other portions, and the anticorrosive layer 140 formed thereon. Consists of. On the other hand, in the composite copper foil 200 of FIG. 5B, a thick copper plating layer 220 is formed on the rolled copper foil 210, and a flat roughened copper plating layer 230 with relatively roughened grains is obtained. The anticorrosive layer 240 formed on is provided.
図6に示されているように、複合銅箔100は、FPCの基材300と貼り合わされた後(図6(a),(b))、一部がエッチング等により除去され、FPCの配線(リード)150となる(図6(c))。しかしながら、上述のような異常成長部分を粗化銅めっき層130に有する複合銅箔100を基材300と貼り合わせると、複合銅箔100の有する凹凸が基材300に転写され、エッチングによる複合銅箔100の除去後も基材300に残ってしまう。これにより、基材300における光の透過率が低下してしまう。 As shown in FIG. 6, after the composite copper foil 100 is bonded to the FPC base material 300 (FIGS. 6A and 6B), a part thereof is removed by etching or the like, and the wiring of the FPC is performed. (Lead) 150 (FIG. 6C). However, when the composite copper foil 100 having the abnormally grown portion as described above on the roughened copper plating layer 130 is bonded to the base material 300, the unevenness of the composite copper foil 100 is transferred to the base material 300, and the composite copper by etching Even after the removal of the foil 100, it remains on the substrate 300. Thereby, the light transmittance in the base material 300 is lowered.
また、粗化銅めっき層130の凸状の異常成長部分は基材300に食い込んだ状態となっている。このため、エッチングによる複合銅箔100の除去後も、凸状の粗化銅めっき層130や、その上に形成される防錆層140が、基材300に食い込んだまま残渣となる、所謂、根残り(銅残り)130rが生じ易くなってしまう。このような根残り130rがあると、基材300における光の透過率は更に低下する。 Further, the convex abnormally grown portion of the roughened copper plating layer 130 is in a state of being bitten into the base material 300. For this reason, even after the removal of the composite copper foil 100 by etching, the convex roughened copper plating layer 130 and the anticorrosive layer 140 formed thereon become a residue while biting into the substrate 300, so-called A root residue (copper residue) 130r is likely to occur. If there is such a root residue 130r, the light transmittance in the substrate 300 further decreases.
配線150の形成されたFPCには、電子部品等が搭載される。このとき、配線150と電子部品等との位置合わせが行われる。位置合わせの際には、例えば基材300上の配線150に対向するよう電子部品等を配置する。そして、基材300の配線150とは反対の側から光を当て、基材300を透かして配線150と電子部品等とを位置合わせする。上述のように、基材300における光の透過率が低下していると、視認性が低下し、配線150の位置を確認できない場合がある。 An electronic component or the like is mounted on the FPC in which the wiring 150 is formed. At this time, alignment between the wiring 150 and the electronic component or the like is performed. At the time of alignment, for example, an electronic component or the like is disposed so as to face the wiring 150 on the substrate 300. Then, light is applied from the side opposite to the wiring 150 of the base material 300, and the wiring 150 is aligned with the electronic component or the like through the base material 300. As described above, when the light transmittance in the substrate 300 is lowered, the visibility is lowered, and the position of the wiring 150 may not be confirmed.
また、異常成長部分を粗化銅めっき層130に有する複合銅箔100を基材300と貼り合わせると、複合銅箔100と基材300との間に気泡、つまり、ボイド300vを生じることがある(図6(b))。このようなボイド300vは、ラミネートと呼ばれる手法により貼り合わせを行ったときに生じ易い。これにより、複合銅箔100と基材300との密着性が低下することがある。また、ボイド300vの生じたFPCは、外観不良で不良品として扱われてしまうことがある。 Further, when the composite copper foil 100 having the abnormally grown portion in the roughened copper plating layer 130 is bonded to the base material 300, bubbles, that is, voids 300v may be generated between the composite copper foil 100 and the base material 300. (FIG. 6B). Such voids 300v are likely to occur when bonding is performed by a technique called lamination. Thereby, the adhesiveness of the composite copper foil 100 and the base material 300 may fall. Further, the FPC in which the void 300v is generated may be handled as a defective product due to a poor appearance.
以上のような課題を解決すべく、本実施形態に係る銅めっき層は、表面の凹部のサイズが所定値以下であり、熱処理により再結晶を起こすよう構成されている。 In order to solve the problems as described above, the copper plating layer according to the present embodiment is configured such that the size of the concave portion on the surface is equal to or smaller than a predetermined value and causes recrystallization by heat treatment.
すなわち、本実施形態では、複合銅箔の備える銅めっき層が薄くとも、銅めっき層の表面に存在し得る凹部のサイズを所定値以下としているので、粗化銅めっき層における異常成長が生じ難い。よって、粗化銅めっき層の凹凸差、つまり、最大高さRyを上述の所定値内とすることができる。よって、粗化銅めっき層の凹凸が基材に転写されたり、根残りが生じたりして、基材の透過率が低下してしまうのを抑制することができる。 That is, in this embodiment, even if the copper plating layer included in the composite copper foil is thin, the size of the recesses that may be present on the surface of the copper plating layer is set to a predetermined value or less, so that abnormal growth in the roughened copper plating layer hardly occurs. . Therefore, the unevenness difference of the roughened copper plating layer, that is, the maximum height Ry can be within the predetermined value. Therefore, it can suppress that the unevenness | corrugation of a roughening copper plating layer is transcribe | transferred to a base material, or a root residue arises and the transmittance | permeability of a base material falls.
また、上述のように、本実施形態に係る銅めっき層は熱処理により再結晶を起こすよう構成されている。 Further, as described above, the copper plating layer according to this embodiment is configured to cause recrystallization by heat treatment.
本発明者等は、圧延銅箔に銅めっき層を設けた複合銅箔において、原箔である圧延銅箔よりも耐屈曲性が劣ってしまうのは、銅めっき層の影響であると考えた。すなわち、銅めっき層は、もともと圧延銅箔とは異なる結晶組織を備えている。また、圧延銅箔とは異なり、銅めっき層は、基材との貼り合わせ時の熱処理温度では殆ど再結晶しないと考えられる。 In the composite copper foil in which the copper plating layer is provided on the rolled copper foil, the present inventors considered that the bending resistance is inferior to the rolled copper foil as the original foil because of the influence of the copper plating layer. . That is, the copper plating layer originally has a different crystal structure from the rolled copper foil. Further, unlike the rolled copper foil, it is considered that the copper plating layer hardly recrystallizes at the heat treatment temperature at the time of bonding with the base material.
そこで、上述のように、銅めっき層を充分に薄く形成するとともに、基材との貼り合わせ時に再結晶するよう銅めっき層を構成する。これにより、圧延銅箔が再結晶して耐屈曲性を具備するとともに、銅めっき層自体の耐屈曲性も向上させることができる。再結晶後は、銅めっき層中の結晶粒が粗大化する。したがって、熱処理後の銅めっき層中の粗大な結晶粒の個数を上述のように規定することで、再結晶した状態の銅めっき層を規定することができる。なお、粗大な結晶粒の個数に上限はないが、後述する銅めっき層の形成方法において得られる個数の最大値として妥当な数値を一応の上限とした。 Therefore, as described above, the copper plating layer is formed to be sufficiently thin and recrystallized when bonded to the base material. Thereby, while rolling copper foil recrystallizes and it comprises bending resistance, the bending resistance of copper plating layer itself can also be improved. After recrystallization, the crystal grains in the copper plating layer become coarse. Therefore, by defining the number of coarse crystal grains in the copper plating layer after the heat treatment as described above, the recrystallized copper plating layer can be defined. Although there is no upper limit to the number of coarse crystal grains, a reasonable numerical value is set as a temporary upper limit for the maximum number obtained in the copper plating layer forming method described later.
このように、銅めっき層が再結晶することにより、複合銅箔の全体としての耐屈曲性が向上する。 Thus, the bending resistance as a whole of composite copper foil improves by recrystallizing a copper plating layer.
(2)複合銅箔の製造方法
本発明者等は、上述の構成要件を満たす銅めっき層を形成すべく、鋭意研究を行った。その結果、以下の手法により所定の効果を得たので、ここに説明する。
(2) Manufacturing method of composite copper foil The present inventors conducted earnest research in order to form the copper plating layer which satisfy | fills the above-mentioned structural requirements. As a result, a predetermined effect was obtained by the following method, which will be described here.
本発明の一実施形態に係る複合銅箔の製造方法について、図1を用いて説明する。図1は、本実施形態に係る複合銅箔の製造工程を示すフロー図である。 The manufacturing method of the composite copper foil which concerns on one Embodiment of this invention is demonstrated using FIG. FIG. 1 is a flowchart showing the manufacturing process of the composite copper foil according to the present embodiment.
(圧延銅箔の準備工程S10)
図1に示されているように、まずは、原箔となる圧延銅箔を準備する。圧延銅箔は、上述の通り、無酸素銅やタフピッチ銅からなる純銅や、またはこれらを母相とする希薄銅合金等を原料とする。係る原料の鋳塊に対し、熱間圧延工程と、冷間圧延処理および焼鈍処理を繰り返す繰り返し工程と、最終冷間圧延工程と、を施し、所定厚さの圧延銅箔が得られる。
(Rolled copper foil preparation step S10)
As shown in FIG. 1, first, a rolled copper foil serving as a raw foil is prepared. As described above, the rolled copper foil is made of pure copper made of oxygen-free copper or tough pitch copper, or a dilute copper alloy having these as a parent phase. Such a raw material ingot is subjected to a hot rolling process, a repeating process of repeating a cold rolling process and an annealing process, and a final cold rolling process to obtain a rolled copper foil having a predetermined thickness.
(銅めっき層の形成工程S20)
次に、電解脱脂および酸洗処理S21と、銅めっき処理S22とを行って、圧延銅箔の少なくとも片面上に銅めっき層を形成する銅めっき層の形成工程S20を行う。なお、各処理の間には、水洗処理を施す。
(Copper plating layer forming step S20)
Next, electrolytic degreasing and pickling treatment S21 and copper plating treatment S22 are performed, and a copper plating layer forming step S20 is performed to form a copper plating layer on at least one surface of the rolled copper foil. In addition, a water washing process is performed between each process.
すなわち、電解脱脂および酸洗処理S21を行って圧延銅箔の表面を清浄化する。電解脱脂としては、例えば水酸化ナトリウム等のアルカリ溶液を用いた陰極電解脱脂を行う。アルカリ溶液としては、例えば水酸化ナトリウムを20g/L以上60g/L以下、炭酸ナトリウムを10g/L以上30g/L以下含む水溶液を用いることができる。 That is, the surface of the rolled copper foil is cleaned by performing electrolytic degreasing and pickling treatment S21. As electrolytic degreasing, for example, cathodic degreasing using an alkaline solution such as sodium hydroxide is performed. As the alkaline solution, for example, an aqueous solution containing 20 g / L to 60 g / L of sodium hydroxide and 10 g / L to 30 g / L of sodium carbonate can be used.
酸洗処理としては、例えば硫酸等の酸性水溶液に圧延銅箔を浸漬し、圧延銅箔の表面に残存するアルカリ成分の中和および銅酸化膜の除去を行う。酸性水溶液としては、例えば硫酸を120g/L以上180g/L以下含む水溶液や銅エッチング液等を用いることができる。 As the pickling treatment, for example, the rolled copper foil is immersed in an acidic aqueous solution such as sulfuric acid, and the alkali component remaining on the surface of the rolled copper foil is neutralized and the copper oxide film is removed. As the acidic aqueous solution, for example, an aqueous solution containing 120 g / L or more and 180 g / L or less of sulfuric acid, a copper etching solution, or the like can be used.
続いて、銅めっき処理S22を行って、圧延銅箔上に銅めっき層を形成する。銅めっき処理S22としては、例えば硫酸銅及び硫酸を主成分とする酸性銅めっき浴にて圧延銅箔を陰極とする電解処理を施す。 Subsequently, a copper plating process S22 is performed to form a copper plating layer on the rolled copper foil. As the copper plating treatment S22, for example, an electrolytic treatment using a rolled copper foil as a cathode in an acidic copper plating bath mainly composed of copper sulfate and sulfuric acid is performed.
このとき、酸性銅めっき浴の液組成、液温、電解条件は、広い範囲から選択可能であり、特に限定されるものではないが、例えば下記の範囲から選択されることが望ましい。
硫酸銅五水和物:20g/L以上300g/L以下
硫酸:10g/L以上200g/L以下
液温:15℃以上50℃以下
電流密度:1A/dm2以上30A/dm2以下
処理時間:1秒以上20秒以下
At this time, the liquid composition, the liquid temperature, and the electrolysis conditions of the acidic copper plating bath can be selected from a wide range and are not particularly limited, but are preferably selected from the following ranges, for example.
Copper sulfate pentahydrate: 20 g / L or more and 300 g / L or less Sulfuric acid: 10 g / L or more and 200 g / L or less Liquid temperature: 15 ° C. or more and 50 ° C. or less Current density: 1 A / dm 2 or more and 30 A / dm 2 or less Processing time: 1 second to 20 seconds
なお、このときの電流密度は限界電流密度末満である。つまり、所謂、ヤケめっきとはならない電流密度とする。電流密度のより好ましい範囲は、例えば5A/dm2以上30A/dm2以下である。 In addition, the current density at this time is full of the limit current density. In other words, the current density is not so-called burnt plating. A more preferable range of the current density is, for example, 5 A / dm 2 or more and 30 A / dm 2 or less.
このように、限界電流密度末満の電流密度とすることで、銅めっき層の表面の凹凸を小さくし、平滑化を図ることができる。但し、電流密度が高いほどめっき速度が高まり生産性は向上する。したがって、所定のめっき条件における限界電流密度未満、かつ、極力高い電流密度とすることが好ましい。 In this way, by setting the current density at the end of the limit current density, unevenness on the surface of the copper plating layer can be reduced and smoothing can be achieved. However, the higher the current density, the higher the plating speed and the higher the productivity. Therefore, it is preferable that the current density be less than the limit current density under predetermined plating conditions and as high as possible.
また、上述の酸性銅めっき浴には、所定の有機系添加剤を添加する。有機系添加剤としては、3−メルカプト−1−スルホン酸やビス(3−スルホプロピル)ジスルフィド等のメルカプト基を持つ化合物、ポリエチレングリコールやポリプロピレングリコール等の界面活性剤、塩酸(HCl水溶液)等の塩化物イオンを所定の組み合わせで用いる。 In addition, a predetermined organic additive is added to the above-described acidic copper plating bath. Examples of organic additives include compounds having mercapto groups such as 3-mercapto-1-sulfonic acid and bis (3-sulfopropyl) disulfide, surfactants such as polyethylene glycol and polypropylene glycol, and hydrochloric acid (HCl aqueous solution). Chloride ions are used in a predetermined combination.
具体的には、有機硫黄化合物としてビス(3−スルホプロピル)ジスルフィドを10mg/L以上60mg/L以下、界面活性剤として例えばモル質量が3000g/mol程度のポリエチレングリコールを50mg/L以上300mg/L以下、塩化物イオンとして塩化水素(HCl)を20mg/L以上80mg/L以下含む水溶液等を用いることができる。 Specifically, bis (3-sulfopropyl) disulfide as an organic sulfur compound is 10 mg / L or more and 60 mg / L or less, and as a surfactant, for example, polyethylene glycol having a molar mass of about 3000 g / mol is 50 mg / L or more and 300 mg / L. Hereinafter, an aqueous solution containing 20 mg / L or more and 80 mg / L or less of hydrogen chloride (HCl) as chloride ions can be used.
これらの有機系添加剤は、銅めっき処理において、光沢剤や界面活性剤として用いられるものである。しかしながら、本発明者等は、これらの有機系添加剤を所定の組み合わせで用いることで、銅めっき層によって圧延銅箔のオイルピット等の窪みを埋める効果が高まり、銅めっき層の表面に存在し得る凹部のサイズを小さくできることを見いだした。 These organic additives are used as brighteners and surfactants in the copper plating process. However, the present inventors, by using these organic additives in a predetermined combination, increase the effect of filling the depressions such as oil pits of the rolled copper foil with the copper plating layer, and exist on the surface of the copper plating layer. It has been found that the size of the recess to be obtained can be reduced.
本発明者等は、メルカプト基を持つ化合物が圧延銅箔の窪みを優先的に埋める効果を促進しているのではないかと推測している。メルカプト基を持つ化合物のこのような働きを、塩化物イオンが更に高めるような相乗効果が起きている可能性もある。これらの有機系添加剤を用いない場合には、本実施形態のような薄い銅めっき層においては、凹部のサイズを上述の範囲内に抑えることができないことからも、その効果は明らかである。 The present inventors presume that a compound having a mercapto group may promote the effect of preferentially filling the depression of the rolled copper foil. There is a possibility that a synergistic effect is caused such that chloride ions further enhance such a function of the compound having a mercapto group. In the case where these organic additives are not used, in the thin copper plating layer as in the present embodiment, the effect is obvious from the fact that the size of the recess cannot be suppressed within the above range.
また、本発明者等は、これらの有機系添加剤を所定の組み合わせで用いることで、FPCの製造工程にて行う再結晶焼鈍工程において、圧延銅箔のみならず、銅めっき層も再結晶されることを見いだした。本発明者等によれば、銅めっき層の形成時、これらの有機系添加剤により、銅めっき層の再結晶に必要な何らかのエネルギーが、銅めっき層に蓄積されると推察される。このとき、界面活性剤が、銅めっき層のセルフアニール、つまり、常温で自然に再結晶が進む現象の起きる閾値を下げることで、銅めっき層が再結晶し易いような状態となっている可能性がある。 In addition, by using these organic additives in a predetermined combination, the present inventors recrystallized not only the rolled copper foil but also the copper plating layer in the recrystallization annealing process performed in the FPC manufacturing process. I found out. According to the present inventors, it is presumed that, when the copper plating layer is formed, any energy necessary for recrystallization of the copper plating layer is accumulated in the copper plating layer by these organic additives. At this time, the surfactant may be in a state in which the copper plating layer is easily recrystallized by lowering the threshold value at which the self-annealing of the copper plating layer, that is, the phenomenon in which recrystallization proceeds naturally at room temperature, is lowered. There is sex.
本発明者等が見いだした、これらの効果や用途、使用法は、これらの有機系添加剤の光沢剤や界面活性像等としての従来の効果や用途、使用法とは全く異なる新規なものである。 These effects, uses and usages found by the present inventors are completely different from the conventional effects, uses and usages of these organic additives such as brighteners and surface-active images. is there.
なお、上述の効果を得るため、これらの有機系添加剤が予め配合された銅めっき用添加剤等を用いることも可能である。このような銅めっき用添加剤としては、例えば奥野製薬工業株式会社製のトップルチナLS、メルテックス株式会社製のカパーグリームCLX、荏原ユージライト株式会社製のCU−BRITETH−RIII、上村工業株式会社製のスルカップEUC等が挙げられる。これらのいずれかを所定濃度、所定の配合で用いることで、本実施形態の銅めっき層に係る上述の効果を奏する。 In addition, in order to acquire the above-mentioned effect, it is also possible to use an additive for copper plating in which these organic additives are blended in advance. As such an additive for copper plating, for example, Top Lucina LS manufactured by Okuno Pharmaceutical Co., Ltd., Capper Grime CLX manufactured by Meltex Co., Ltd., CU-BRITETH-RIII manufactured by Sugawara Eugene Corporation, and manufactured by Uemura Industrial Co., Ltd. Sulcup EUC and the like. By using any of these in a predetermined concentration and a predetermined composition, the above-described effects relating to the copper plating layer of the present embodiment can be obtained.
以上により、本実施形態に係る銅めっき層付き圧延銅箔が形成される。 As described above, the rolled copper foil with a copper plating layer according to the present embodiment is formed.
(粗化銅めっき層の形成工程S30)
次に、粗化処理S31と、カプセルめっき処理S32とを行って、銅めっき層上に粗化銅めっき層を形成する粗化銅めっき層の形成工程S30を行う。なお、カプセルめっき処理S32は、行わないこととすることもできる。なお、各処理の間には、水洗処理を施す。
(Roughening copper plating layer forming step S30)
Next, a roughening treatment S31 and a capsule plating treatment S32 are performed, and a roughening copper plating layer forming step S30 for forming a roughening copper plating layer on the copper plating layer is performed. Note that the capsule plating process S32 may be omitted. In addition, a water washing process is performed between each process.
まずは、粗化処理S31により、例えば硫酸銅及び硫酸を主成分とする酸性銅めっき浴にて圧延銅箔を陰極とする電解処理を施して、粗化粒を銅めっき層の表面に付着させ、粗化粒層を形成する。 First, by roughening treatment S31, for example, an electrolytic treatment using a rolled copper foil as a cathode in an acidic copper plating bath mainly composed of copper sulfate and sulfuric acid is performed, and the roughened particles are attached to the surface of the copper plating layer, A roughened grain layer is formed.
このとき、酸性銅めっき浴の液組成、液温、電解条件は、広い範囲から選択可能であり、特に限定されるものではないが、例えば下記の範囲から選択されることが望ましい。
硫酸銅五水和物:20g/L以上300g/L以下
硫酸:10g/L以上200g/L以下
液温:15℃以上50℃以下
電流密度:20A/dm2以上100A/dm2以下
処理時間:0.5秒以上10秒以下
At this time, the liquid composition, the liquid temperature, and the electrolysis conditions of the acidic copper plating bath can be selected from a wide range and are not particularly limited, but are preferably selected from the following ranges, for example.
Copper sulfate pentahydrate: 20 g / L or more and 300 g / L or less Sulfuric acid: 10 g / L or more and 200 g / L or less Liquid temperature: 15 ° C. or more and 50 ° C. or less Current density: 20 A / dm 2 or more and 100 A / dm 2 or less Treatment time: 0.5 seconds to 10 seconds
なお、このときの電流密度は限界電流密度を超えた値である。つまり、所謂、ヤケめっきとなる電流値で粗化処理S31を行う。 The current density at this time is a value exceeding the limit current density. That is, the roughening process S31 is performed with a current value that causes so-called burn plating.
また、処理時間を0.5秒以上10秒以下とすることで、例えば粗化粒層を平均に均したとすると、0.11μm以上1.1μm以下の厚さに形成することができる。好ましくは、処理時間を2秒以上10秒以下として、粗化粒層を0.25μm以上0.90μm未満の厚さに形成してもよい。 Further, by setting the treatment time to 0.5 seconds or more and 10 seconds or less, for example, if the roughened grain layer is averaged, it can be formed to a thickness of 0.11 μm or more and 1.1 μm or less. Preferably, the roughening grain layer may be formed to a thickness of 0.25 μm or more and less than 0.90 μm with a treatment time of 2 seconds or more and 10 seconds or less.
また、上述の酸性銅めっき浴には、銅(Cu)以外の金属元素を添加する。銅(Cu)以外の金属元素としては、例えば鉄(Fe)、モリブデン(Mo)、ニッケル(Ni)、コバルト(Co)、スズ(Sn)、亜鉛(Zn)、タングステン(W)等が挙げられ、これらを少なくとも1種類以上、好ましくは2種類以上添加することが好ましい。 Moreover, metal elements other than copper (Cu) are added to the above-mentioned acidic copper plating bath. Examples of metal elements other than copper (Cu) include iron (Fe), molybdenum (Mo), nickel (Ni), cobalt (Co), tin (Sn), zinc (Zn), tungsten (W), and the like. These are preferably added in at least one, preferably two or more.
具体的には、硫酸鉄七水和物を10g/L以上30g/L以下、モリブデン酸ナトリウムを1g/L以上2g/L以下含む水溶液等を用いることができる。 Specifically, an aqueous solution containing 10 g / L to 30 g / L of iron sulfate heptahydrate and 1 g / L to 2 g / L of sodium molybdate can be used.
続いて、必要に応じてカプセルめっき処理S32を行って、カプセル銅めっき層(被せめっき層)により粗化粒を覆う。これにより、粗化粒をコブ状突起へと成長させることができ、また、粗化粒の脱落を抑制することができる。なお、粗化粒を微細なままに留めたい場合などには、カプセルめっき処理S32を省略することができる。 Subsequently, a capsule plating process S32 is performed as necessary, and the roughened grains are covered with a capsule copper plating layer (covered plating layer). Thereby, the roughened grains can be grown into bump-like projections, and the dropout of the roughened grains can be suppressed. In addition, when it is desired to keep the roughened grains fine, the capsule plating process S32 can be omitted.
カプセルめっき処理S32においては、例えば硫酸銅及び硫酸を主成分とする酸性銅めっき浴にて圧延銅箔を陰極とする電解処理を施してカプセルめっき層を形成する。 In the capsule plating process S32, for example, an electrolytic process using a rolled copper foil as a cathode in an acidic copper plating bath mainly composed of copper sulfate and sulfuric acid is performed to form a capsule plating layer.
このとき、酸性銅めっき浴の液組成、液温、電解条件は、広い範囲から選択可能であり、特に限定されるものではないが、例えば下記の範囲から選択されることが望ましい。
硫酸銅五水和物:20g/L以上300g/L以下
硫酸:10g/L以上200g/L以下
液温:20℃以上50℃以下
電流密度:1A/dm2以上20A/dm2以下
処理時間:1秒以上20秒以下
At this time, the liquid composition, the liquid temperature, and the electrolysis conditions of the acidic copper plating bath can be selected from a wide range and are not particularly limited, but are preferably selected from the following ranges, for example.
Copper sulfate pentahydrate: 20 g / L or more and 300 g / L or less Sulfuric acid: 10 g / L or more and 200 g / L or less Liquid temperature: 20 ° C. or more and 50 ° C. or less Current density: 1 A / dm 2 or more and 20 A / dm 2 or less Processing time: 1 second to 20 seconds
なお、このときの電流密度は限界電流密度末満である。つまり、所謂、ヤケめっきとはならない電流密度とする。また、上述の酸性銅めっき浴には、上述の銅めっき処理S22で用いた所定の有機系添加剤を添加してもよい。 In addition, the current density at this time is full of the limit current density. In other words, the current density is not so-called burnt plating. Moreover, you may add the predetermined | prescribed organic type additive used by the above-mentioned copper plating process S22 to the above-mentioned acidic copper plating bath.
以上により、銅めっき層上に粗化銅めっき層が形成される。 As described above, the roughened copper plating layer is formed on the copper plating layer.
(防錆層の形成工程S40)
次に、ニッケルめっき処理S41と、亜鉛めっき処理S42と、クロメート処理(3価クロム化成処理)S43と、シランカップリング処理S44と、を行って、粗化銅めっき層上に防錆層を形成する防錆層の形成工程S40を行う。係る防錆層は、後処理めっき層とも呼ばれる。なお、各処理の間には、水洗処理を施す。
(Rust prevention layer forming step S40)
Next, nickel plating treatment S41, zinc plating treatment S42, chromate treatment (trivalent chromium chemical conversion treatment) S43, and silane coupling treatment S44 are performed to form a rust prevention layer on the roughened copper plating layer. The rust preventive layer forming step S40 is performed. Such a rust prevention layer is also called a post-treatment plating layer. In addition, a water washing process is performed between each process.
ニッケルめっき処理S41には、例えば硫酸ニッケル六水和物を280g/L以上320g/L以下、塩化ニッケルを40g/L以上50g/L以下、硼酸を40g/L以上60g/L以下含む水溶液を用いることができる。これにより、粗化銅めっき層上にニッケルめっき層が形成される。このとき、コバルト等の他の金属元素を含む化合物を加えて、ニッケル合金から構成されるニッケルめっき層を形成してもよい。 For the nickel plating treatment S41, for example, an aqueous solution containing 280 g / L to 320 g / L of nickel sulfate hexahydrate, 40 g / L to 50 g / L of nickel chloride, and 40 g / L to 60 g / L of boric acid is used. be able to. Thereby, a nickel plating layer is formed on the roughened copper plating layer. At this time, a nickel plating layer made of a nickel alloy may be formed by adding a compound containing other metal elements such as cobalt.
亜鉛めっき処理S42には、例えば硫酸亜鉛を80g/L以上120g/L以下、硫酸ナトリウムを60g/L以上80g/L以下含む水溶液を用いることができる。これにより、ニッケルめっき層上に亜鉛めっき層が形成される。このとき、他の金属元素を含む化合物を加えて、亜鉛合金から構成される亜鉛めっき層を形成してもよい。 For the galvanizing treatment S42, for example, an aqueous solution containing zinc sulfate of 80 g / L to 120 g / L and sodium sulfate of 60 g / L to 80 g / L can be used. Thereby, a zinc plating layer is formed on the nickel plating layer. At this time, a compound containing another metal element may be added to form a galvanized layer composed of a zinc alloy.
その後、クロメート処理S43により、3価クロムタイプの反応型クロメート液を用い、亜鉛めっき層上にクロメート処理層(3価クロム化成処理層)を形成する。また、シランカップリング処理S44として、シランカップリング液を用い、クロメート処理層上にシランカップリング処理層を形成する。 Thereafter, a chromate treatment S43 is used to form a chromate treatment layer (trivalent chromium conversion treatment layer) on the zinc plating layer using a trivalent chromium type reaction chromate solution. Further, as the silane coupling treatment S44, a silane coupling treatment layer is formed on the chromate treatment layer using a silane coupling liquid.
以上により、ニッケルめっき層、亜鉛めっき層、クロメート処理層、シランカップリング処理層が、この順に粗化銅めっき層上に形成されてなる防錆層が形成される。 As described above, a rust prevention layer is formed in which the nickel plating layer, the zinc plating layer, the chromate treatment layer, and the silane coupling treatment layer are formed in this order on the roughened copper plating layer.
また、以上により、本実施形態に係る複合銅箔としての粗化箔が製造される。 Moreover, the roughening foil as composite copper foil which concerns on this embodiment is manufactured by the above.
(3)フレキシブルプリント配線板の製造方法
次に、本発明の一実施形態に係る複合銅箔を用いたフレキシブルプリント配線板(FPC)の製造方法について説明する。
(3) Manufacturing method of flexible printed wiring board Next, the manufacturing method of the flexible printed wiring board (FPC) using the composite copper foil which concerns on one Embodiment of this invention is demonstrated.
(再結晶焼鈍工程(CCL工程))
まずは、本実施形態に係る複合銅箔を所定のサイズに裁断し、例えばポリイミド樹脂フィルム等からなるFPCの基材と貼り合わせてCCL(Copper Clad Laminate)を形成する。すなわち、加熱処理により、基材の表面に設けられたエポキシ系接着剤等の接着剤を硬化させて、複合銅箔の粗化銅めっき層等を有する粗化面と基材とを密着させ接合する。加熱温度や時間は、接着剤や基材の硬化温度等に合わせて適宜選択することができ、例えば150℃以上400℃以下の温度で、1分以上120分以下、0.5MPa以上3.0MPa以下の圧力を加えながら貼り合わせを行うことができる。
(Recrystallization annealing process (CCL process))
First, the composite copper foil according to the present embodiment is cut into a predetermined size and bonded to an FPC base material made of, for example, a polyimide resin film to form a CCL (Copper Clad Laminate). That is, an adhesive such as an epoxy-based adhesive provided on the surface of the base material is cured by heat treatment, and the roughened surface having the roughened copper plating layer of the composite copper foil and the base material are adhered and bonded. To do. The heating temperature and time can be appropriately selected according to the curing temperature of the adhesive or the base material, for example, at a temperature of 150 ° C. or more and 400 ° C. or less, 1 minute or more and 120 minutes or less, 0.5 MPa or more and 3.0 MPa. Bonding can be performed while applying the following pressure.
上述のように、複合銅箔が備える圧延銅箔の耐熱性は、このときの加熱温度に合わせて調整されている。したがって、最終冷間圧延工程により加工硬化した状態の圧延銅箔が、上述の加熱により軟化し再結晶に調質される。つまり、基材に複合銅箔を貼り合わせるCCL工程が、複合銅箔の圧延銅箔に対する再結晶焼鈍工程を兼ねている。 As described above, the heat resistance of the rolled copper foil included in the composite copper foil is adjusted according to the heating temperature at this time. Therefore, the rolled copper foil that has been work-hardened in the final cold rolling step is softened by the above-described heating and tempered to recrystallization. That is, the CCL process of bonding the composite copper foil to the substrate also serves as a recrystallization annealing process for the rolled copper foil of the composite copper foil.
このように、CCL工程が再結晶焼鈍工程を兼ねることで、複合銅箔を基材に貼り合わせるまでの工程では、圧延銅箔が最終冷間圧延工程後の加工硬化した状態で複合銅箔を取り扱うことができ、複合銅箔を基材に貼り合わせる際の、伸び、しわ、折れ等の変形を起こり難くすることができる。 Thus, in the process until the composite copper foil is bonded to the substrate by the CCL process also serving as the recrystallization annealing process, the rolled copper foil is processed and cured after the final cold rolling process. It can be handled, and deformation such as elongation, wrinkling, and folding can be made difficult to occur when the composite copper foil is bonded to the base material.
また、上述のような圧延銅箔の軟化は、再結晶焼鈍工程により、調質された圧延銅箔、つまり、再結晶組織を有する圧延銅箔が得られたことを示している。これにより、耐屈曲性に優れた圧延銅箔を得ることができる。 The softening of the rolled copper foil as described above indicates that a tempered rolled copper foil, that is, a rolled copper foil having a recrystallized structure, was obtained by the recrystallization annealing process. Thereby, the rolled copper foil excellent in bending resistance can be obtained.
一方で、上述の銅めっき層の形成工程S20により形成された銅めっき層もまた、この再結晶焼鈍工程における加熱で再結晶され、上述のような所定サイズ以上の結晶粒を所定個数以上備える結晶組織へと調質される。これにより、銅めっき層自体の耐屈曲性も向上し、複合銅箔の全体としての耐屈曲を向上させることができる。 On the other hand, the copper plating layer formed by the above-described copper plating layer forming step S20 is also recrystallized by heating in this recrystallization annealing step, and is a crystal having a predetermined number or more of crystal grains having a predetermined size or more as described above. Tempered into an organization. Thereby, the bending resistance of copper plating layer itself can also be improved, and the bending resistance as a whole of composite copper foil can be improved.
(表面加工工程)
次に、基材に貼り合わせた複合銅箔に表面加工工程を施す。表面加工工程では、複合銅箔に例えばエッチング等の手法を用いて配線(リード)等を形成する配線形成工程と、配線と他の電子部品等との接続信頼性を向上させるためメッキ処理等の表面処理を施す表面処理工程と、配線等を保護するため配線上の一部を覆うようにソルダレジスト等の保護膜を形成する保護膜形成工程とを行う。
(Surface machining process)
Next, a surface processing step is performed on the composite copper foil bonded to the substrate. In the surface processing process, for example, a wiring forming process for forming wiring (lead) etc. on the composite copper foil by using a technique such as etching, and a plating process for improving the connection reliability between the wiring and other electronic parts, etc. A surface treatment process for performing a surface treatment and a protective film forming process for forming a protective film such as a solder resist so as to cover a part of the wiring to protect the wiring and the like are performed.
以上により、本実施形態に係る複合銅箔を用いたFPCが製造される。 As described above, the FPC using the composite copper foil according to the present embodiment is manufactured.
<本発明の他の実施形態>
以上、本発明の実施形態について具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
<Other Embodiments of the Present Invention>
As mentioned above, although embodiment of this invention was described concretely, this invention is not limited to the above-mentioned embodiment, It can change variously in the range which does not deviate from the summary.
例えば、上述の実施形態においては、複合銅箔は、銅めっき層、粗化銅めっき層、防錆層が、この順に圧延銅箔に形成されてなるとしたが、複合銅箔の構成はこれに限られない。例えば、複合銅箔が、銅めっき層付き圧延銅箔として構成されていてもよい。また、複合銅箔が、粗化箔として構成されていてもよい。なお、上述の実施形態においては、粗化箔は、銅めっき層、粗化銅めっき層、防錆層が、この順に圧延銅箔に形成されてなるとしたが、防錆層を備えていなくともよい。 For example, in the above-described embodiment, the composite copper foil is formed by forming a copper plating layer, a roughened copper plating layer, and a rust prevention layer in this order on the rolled copper foil. Not limited. For example, the composite copper foil may be configured as a rolled copper foil with a copper plating layer. Moreover, the composite copper foil may be configured as a roughened foil. In the above-described embodiment, the roughened foil is formed by forming the copper plated layer, the roughened copper plated layer, and the rust preventive layer in this order on the rolled copper foil, but even if the rust preventive layer is not provided. Good.
また、上述の実施形態においては、FPCの製造工程におけるCCL工程は圧延銅箔に対する再結晶焼鈍工程を兼ねることとしたが、再結晶焼鈍工程は、CCL工程とは別工程として行ってもよい。 In the above-described embodiment, the CCL process in the FPC manufacturing process also serves as a recrystallization annealing process for the rolled copper foil. However, the recrystallization annealing process may be performed as a separate process from the CCL process.
また、上述の実施形態においては、接着剤を介して複合銅箔と基材との貼り合わせを行う3層材CCLを製造することとしたが、接着剤を介さず直接貼り合わせを行って2層材CCLを製造してもよい。接着剤を用いない場合には、加熱・加圧により複合銅箔と基材とを直接圧着させてもよい。 Moreover, in the above-mentioned embodiment, although it decided to manufacture the 3 layer material CCL which bonds together composite copper foil and a base material via an adhesive agent, it bonds directly without using an adhesive agent, and 2 The layer material CCL may be manufactured. When an adhesive is not used, the composite copper foil and the base material may be directly pressure-bonded by heating and pressing.
また、上述の実施形態においては、複合銅箔はFPC用途に用いられることとしたが、複合銅箔の用途はこれに限られず、例えばリチウムイオン二次電池の負極集電銅箔や、プラズマディスプレイ用電磁波シールド、ICカードのアンテナ等、その他の耐屈曲性を必要とする他の用途にも用いることができる。 In the above-described embodiment, the composite copper foil is used for FPC, but the use of the composite copper foil is not limited to this. For example, the negative electrode current collector copper foil of a lithium ion secondary battery, or a plasma display It can also be used for other applications that require bending resistance, such as electromagnetic wave shields for use and antennas for IC cards.
また、上述の実施形態においては、上述のような所定の構成要件を有する銅めっき層を形成する方法として、所定の有機系添加剤を用いた電解めっき等に所定の効果が見いだされた。但し、これら以外にも、上述の所定の有機系添加剤と同様の効果を奏する添加剤を用いてもよい。あるいは、上述とは異なる他の銅めっき層の形成工程、或いは、再結晶焼鈍工程等により、上述のような所定の構成要件を有する銅めっき層を形成してもよい。 Further, in the above-described embodiment, a predetermined effect has been found in electrolytic plating using a predetermined organic additive as a method of forming a copper plating layer having the above-described predetermined structural requirements. However, in addition to these, an additive having the same effect as the above-described predetermined organic additive may be used. Or you may form the copper plating layer which has the above-mentioned predetermined structural requirements by the formation process of another copper plating layer different from the above, or a recrystallization annealing process.
本発明の主眼は、あくまで、複合銅箔の銅めっき層の表面に存在し得る凹部が所定のサイズ以下となっている点と、銅めっき層が上述の再結晶焼鈍工程にて再結晶することが可能に構成されている点と、にある。また、粗化銅めっき層の凹凸の不均一性が低減されている点にある。 The main point of the present invention is that the concave portions that can be present on the surface of the copper plating layer of the composite copper foil are not more than a predetermined size, and that the copper plating layer is recrystallized in the above-described recrystallization annealing step. Is configured to be possible. Further, the unevenness of the unevenness of the roughened copper plating layer is reduced.
次に、本発明に係る実施例について比較例とともに説明する。 Next, examples according to the present invention will be described together with comparative examples.
(1)銅めっき層付き圧延銅箔および粗化箔の製作
種々の評価を行うため、実施例1〜9および比較例1〜6に係る銅めっき層付き圧延銅箔および粗化箔を製作した。
(1) Production of rolled copper foil with copper plating layer and roughened foil In order to perform various evaluations, the rolled copper foil with copper plated layer and the roughened foil according to Examples 1 to 9 and Comparative Examples 1 to 6 were produced. .
(実施例1)
まずは、実施例1に係る銅めっき層付き圧延銅箔および粗化箔の製作過程について以下に説明する。
Example 1
First, the production process of the rolled copper foil with a copper plating layer and the roughened foil according to Example 1 will be described below.
原箔としては、スズ(Sn)を0.01質量%含み、厚さ11μmの圧延銅箔を3本用いた。この圧延銅箔について後述する耐屈曲性の評価を行ったところ、250℃、5分の熱処理後において、屈曲回数は3本の平均で130万回だった。また、この圧延銅箔の表面をレーザ顕微鏡にて無作為に10点測定したところ、表面凹部の深さの平均値は0.7μmであった。 As the original foil, three rolled copper foils containing 0.01% by mass of tin (Sn) and having a thickness of 11 μm were used. When the bending resistance described later was evaluated for the rolled copper foil, the number of bending was 1.3 million on average after three heat treatments at 250 ° C. for 5 minutes. Moreover, when the surface of this rolled copper foil was measured at random at 10 points with a laser microscope, the average value of the depth of the surface recesses was 0.7 μm.
次に、電解脱脂および酸洗処理を施して圧延銅箔の表面を清浄化した。電解脱脂としては、水酸化ナトリウム40g/L、炭酸ナトリウム20g/Lを含む水溶液中にて、液温40℃、電流密度10A/dm2の設定で10秒間の処理を行った。圧延銅箔を水洗した後、酸洗として、硫酸150g/Lを含む水溶液中にて液温25℃で10秒間浸漬した。その後、圧延銅箔を更に水洗した。 Next, electrolytic degreasing and pickling treatment were performed to clean the surface of the rolled copper foil. As electrolytic degreasing, treatment for 10 seconds was performed in an aqueous solution containing 40 g / L of sodium hydroxide and 20 g / L of sodium carbonate at a liquid temperature of 40 ° C. and a current density of 10 A / dm 2 . After the rolled copper foil was washed with water, it was immersed in an aqueous solution containing 150 g / L of sulfuric acid at a liquid temperature of 25 ° C. for 10 seconds as pickling. Thereafter, the rolled copper foil was further washed with water.
次に、厚さ0.05μmの銅めっき層を形成した。この工程では、硫酸銅五水和物を170g/L、硫酸を70g/L、有機硫黄化合物としてビス(3−スルホプロピル)ジスルフィドを40mg/L、界面活性剤としてポリエチレングリコール3000(モル質量が3000g/molのポリエチレングリコール)を150mg/L、塩化物イオンとして塩化水素(HCl)を50mg/L含む水溶液を用いた。めっき条件としては、液温35℃、電流密度7A/dm2の設定で10秒間とした。その後、圧延銅箔を水洗した。 Next, a copper plating layer having a thickness of 0.05 μm was formed. In this process, 170 g / L of copper sulfate pentahydrate, 70 g / L of sulfuric acid, 40 mg / L of bis (3-sulfopropyl) disulfide as an organic sulfur compound, and polyethylene glycol 3000 (molar mass of 3000 g as a surfactant) An aqueous solution containing 150 mg / L of polyethylene glycol / mol and 50 mg / L of hydrogen chloride (HCl) as a chloride ion was used. The plating conditions were set at a liquid temperature of 35 ° C. and a current density of 7 A / dm 2 for 10 seconds. Thereafter, the rolled copper foil was washed with water.
以上により、実施例1に係る銅めっき層付き圧延銅箔が製作された。 The rolled copper foil with a copper plating layer concerning Example 1 was manufactured by the above.
続いて、銅めっき層上に、粗化粒層およびカプセルめっき層をこの順に形成してなる粗化銅めっき層を形成する。 Then, the roughening copper plating layer formed by forming a roughening grain layer and a capsule plating layer in this order on a copper plating layer is formed.
まずは、平均に均したときに0.5μmの厚さ相当となる粗化粒層を形成した。この工程では、硫酸銅五水和物を50g/L、硫酸を70g/L、硫酸鉄七水和物20g/L、モリブデン酸ナトリウム1g/Lを含む水溶液を用いた。めっき条件としては、液温30℃、電流密度40A/dm2の設定で5秒間とした。その後、圧延銅箔を水洗した。 First, a roughened grain layer corresponding to a thickness of 0.5 μm was formed when averaged. In this step, an aqueous solution containing 50 g / L of copper sulfate pentahydrate, 70 g / L of sulfuric acid, 20 g / L of iron sulfate heptahydrate, and 1 g / L of sodium molybdate was used. The plating conditions were set at a liquid temperature of 30 ° C. and a current density of 40 A / dm 2 for 5 seconds. Thereafter, the rolled copper foil was washed with water.
次に、厚さ0.3μmのカプセルめっき層を形成した。この工程では、硫酸銅五水和物を170g/L、硫酸を70g/L含む水溶液を用いた。めっき条件としては、液温35℃、電流密度7A/dm2の設定で15秒間とした。その後、圧延銅箔を水洗した。 Next, a capsule plating layer having a thickness of 0.3 μm was formed. In this step, an aqueous solution containing 170 g / L of copper sulfate pentahydrate and 70 g / L of sulfuric acid was used. The plating conditions were set at a liquid temperature of 35 ° C. and a current density of 7 A / dm 2 for 15 seconds. Thereafter, the rolled copper foil was washed with water.
次に、粗化銅めっき層上に、ニッケルめっき層、亜鉛めっき層、クロメート処理層、シランカップリング処理層をこの順に形成してなる防錆層を形成する。 Next, a rust prevention layer is formed by forming a nickel plating layer, a zinc plating layer, a chromate treatment layer, and a silane coupling treatment layer in this order on the roughened copper plating layer.
まずは、厚さ20nmのニッケルめっき層を形成した。この工程では、硫酸ニッケル六水和物300g/L、塩化ニッケル45g/L、硼酸50g/Lを含む水溶液を用いた。めっき条件としては、液温50℃、電流密度2A/dm2の設定で5秒間とした。その後、圧延銅箔を水洗した。 First, a nickel plating layer having a thickness of 20 nm was formed. In this step, an aqueous solution containing nickel sulfate hexahydrate 300 g / L, nickel chloride 45 g / L, and boric acid 50 g / L was used. The plating conditions were set at a liquid temperature of 50 ° C. and a current density of 2 A / dm 2 for 5 seconds. Thereafter, the rolled copper foil was washed with water.
次に、厚さ5nmの亜鉛めっき層を形成した。この工程では、硫酸亜鉛90g/L、硫酸ナトリウム70g/Lを含む水溶液を用いた。めっき条件としては、液温30℃、電流密度1.5A/dm2の設定で4秒間とした。その後、圧延銅箔を水洗した。 Next, a zinc plating layer having a thickness of 5 nm was formed. In this step, an aqueous solution containing 90 g / L of zinc sulfate and 70 g / L of sodium sulfate was used. The plating conditions were set to a liquid temperature of 30 ° C. and a current density of 1.5 A / dm 2 for 4 seconds. Thereafter, the rolled copper foil was washed with water.
次に、3価クロム化成処理を行って厚さ5nmのクロメート処理層を形成した。その後、5%の3−アミノプロピルトリメトキシシランを含有するシランカップリング液に、25℃で5秒間浸漬した後、直ちに180℃の温度で乾燥し、シランカップリング処理層を形成した。 Next, a trivalent chromium chemical conversion treatment was performed to form a 5 nm thick chromate treatment layer. Thereafter, the film was immersed in a silane coupling solution containing 5% 3-aminopropyltrimethoxysilane at 25 ° C. for 5 seconds and immediately dried at a temperature of 180 ° C. to form a silane coupling treatment layer.
上述の各層を形成した面、つまり、この後、ポリイミド樹脂フィルムと貼り合わされる面と反対側の面には、上述のような各層は形成せず、防錆層の一部、つまり、ニッケルめっき層と亜鉛めっき層とクロメート処理層とを、上述の手法及び手順と同様に形成した。 The above-mentioned layers are not formed on the surface on which each of the above-described layers is formed, that is, the surface opposite to the surface to be bonded to the polyimide resin film, and a part of the rust-proof layer, that is, nickel plating. A layer, a galvanized layer, and a chromate treatment layer were formed in the same manner as described above.
以上により、実施例1に係る粗化箔が製作された。 Thus, the roughened foil according to Example 1 was manufactured.
(実施例2〜9)
続いて、実施例2〜9に係る銅めっき層付き圧延銅箔および粗化箔を製作した。
(Examples 2-9)
Then, the rolled copper foil with a copper plating layer and roughened foil which concern on Examples 2-9 were manufactured.
実施例2,3に係る銅めっき層付き圧延銅箔および粗化箔は、上述の実施例1と同一の条件で製作した。各めっき工程では、上述の所定範囲内で液中の成分がばらつく可能性がある。実施例2,3は、実施例1の再現性評価用である。 The rolled copper foil with copper plating layer and the roughened foil according to Examples 2 and 3 were produced under the same conditions as in Example 1 described above. In each plating step, components in the liquid may vary within the above-described predetermined range. Examples 2 and 3 are for reproducibility evaluation of Example 1.
実施例4〜6に係る銅めっき層付き圧延銅箔は、銅めっき層の厚さを0.2μmとした以外は、上述の実施例1と同様の条件で製作した。また、実施例4〜6に係る粗化箔は、上述の実施例1と同様の条件で製作した。 The rolled copper foil with a copper plating layer according to Examples 4 to 6 was manufactured under the same conditions as in Example 1 except that the thickness of the copper plating layer was 0.2 μm. Moreover, the roughening foil which concerns on Examples 4-6 was manufactured on the conditions similar to the above-mentioned Example 1. FIG.
実施例7〜9に係る銅めっき層付き圧延銅箔は、銅めっき層の厚さを0.5μmとした以外は、上述の実施例1と同様の条件で製作した。また、実施例7〜9に係る粗化箔は、上述の実施例1と同様の条件で製作した。 The rolled copper foil with a copper plating layer according to Examples 7 to 9 was manufactured under the same conditions as in Example 1 except that the thickness of the copper plating layer was 0.5 μm. Moreover, the roughening foil which concerns on Examples 7-9 was manufactured on the conditions similar to the above-mentioned Example 1. FIG.
(比較例1〜6)
次に、比較例1〜6に係る銅めっき層付き圧延銅箔および粗化箔を製作した。
(Comparative Examples 1-6)
Next, the rolled copper foil with a copper plating layer and roughened foil which concern on Comparative Examples 1-6 were manufactured.
比較例1に係る銅めっき層付き圧延銅箔は、銅めっき層の厚さを0.03μmとした以外は、上述の実施例1と同様の条件で製作した。また、比較例1に係る粗化箔は、上述の実施例1と同様の条件で製作した。 The rolled copper foil with a copper plating layer according to Comparative Example 1 was manufactured under the same conditions as in Example 1 except that the thickness of the copper plating layer was 0.03 μm. Moreover, the roughening foil which concerns on the comparative example 1 was manufactured on the conditions similar to the above-mentioned Example 1. FIG.
比較例2に係る銅めっき層付き圧延銅箔は、銅めっき層の厚さを0.80μmとした以外は、上述の実施例1と同様の条件で製作した。また、比較例2に係る粗化箔は、上述の実施例1と同様の条件で製作した。 The rolled copper foil with a copper plating layer according to Comparative Example 2 was manufactured under the same conditions as in Example 1 except that the thickness of the copper plating layer was 0.80 μm. Moreover, the roughening foil which concerns on the comparative example 2 was manufactured on the conditions similar to the above-mentioned Example 1. FIG.
比較例3〜6に係る銅めっき層付き圧延銅箔においては、有機硫黄化合物や界面活性剤等の有機系添加剤および塩酸を添加せずに銅めっき層の形成を行った。また、銅めっき層の厚さは、比較例3を0.05μmとし、比較例4を0.20μmとし、比較例5を0.50μmとし、比較例6を0.80μmとした。それ以外は、実施例1と同様の条件で製作した。比較例3〜6に係る粗化箔は、上述の実施例1と同様の条件で製作した。 In the rolled copper foil with a copper plating layer according to Comparative Examples 3 to 6, the copper plating layer was formed without adding organic additives such as organic sulfur compounds and surfactants and hydrochloric acid. The thickness of the copper plating layer was 0.05 μm in Comparative Example 3, 0.20 μm in Comparative Example 4, 0.50 μm in Comparative Example 5, and 0.80 μm in Comparative Example 6. Other than that, it manufactured on the conditions similar to Example 1. FIG. The roughened foils according to Comparative Examples 3 to 6 were manufactured under the same conditions as in Example 1 described above.
(2)銅めっき層付き圧延銅箔および粗化箔の評価
上述のように製作した実施例1〜9および比較例1〜6に係る銅めっき層付き圧延銅箔および粗化箔について、以下の評価を行った。
(2) Evaluation of rolled copper foil with copper plating layer and roughened foil About rolled copper foil with copper plated layer and roughened foil according to Examples 1 to 9 and Comparative Examples 1 to 6 manufactured as described above, Evaluation was performed.
(結晶粒の個数測定)
実施例1〜9および比較例1〜6に係る銅めっき層付き圧延銅箔の結晶粒の状態を評価した。
(Counting the number of crystal grains)
The state of the crystal grains of the rolled copper foil with a copper plating layer according to Examples 1 to 9 and Comparative Examples 1 to 6 was evaluated.
各銅めっき層付き圧延銅箔に対し、窒素雰囲気中で250℃、5分の熱処理を施した。係る条件は、フレキシブルプリント配線板のCCL工程で、基材との密着の際に銅めっき層付き圧延銅箔や粗化箔が実際に受ける熱量の一例を模している。 Each rolled copper foil with a copper plating layer was heat-treated at 250 ° C. for 5 minutes in a nitrogen atmosphere. Such a condition imitates an example of the amount of heat actually received by the rolled copper foil with a copper plating layer and the roughened foil in the CCL process of the flexible printed wiring board in close contact with the substrate.
その後、走査型電子顕微鏡(SEM:Scanning Electron Microscopy)により、銅めっき層の表面の、YAG結晶を用いた反射電子(YAG-BSE:YAG-Back-Scattered Electron)像を撮影した。このYAG−BSE像から、3500倍で観察したときの視野範囲である953μm2視野範囲内に存在する最大径2.0μm以上の結晶粒の個数を測定した。 Then, the backscattered electron (YAG-BSE: YAG-Back-Scattered Electron) image using the YAG crystal | crystallization was image | photographed with the scanning electron microscope (SEM: Scanning Electron Microscopy). From this YAG-BSE image, the number of crystal grains having a maximum diameter of 2.0 μm or more existing in a 953 μm 2 visual field range which is a visual field range when observed at 3500 times was measured.
(表面粗さ測定)
実施例1〜9および比較例1〜6に係る銅めっき層付き圧延銅箔および粗化箔の表面粗さ測定を行った。
(Surface roughness measurement)
The surface roughness of the rolled copper foil with copper plating layer and the roughened foil according to Examples 1 to 9 and Comparative Examples 1 to 6 was measured.
各銅めっき層付き圧延銅箔に対する表面粗さ測定は、レーザ顕微鏡にて、倍率500倍の視野中に存在する銅めっき層の表面に存在する凹部の深さを測定して行った。1回あたりの測定では、無作為に選んだ約200μmの測定長の中で最も高い部分を基準点とし、係る測定長の中に存在する凹部について、基準点からどれだけ窪んでいるかを測定した。これを5回繰り返し、凹部の深さの合計値を凹部の個数で割った値を、その銅めっき層における凹部の深さとした。 The surface roughness measurement for each rolled copper foil with a copper plating layer was carried out by measuring the depth of the recesses present on the surface of the copper plating layer existing in the field of view of magnification 500 times with a laser microscope. In each measurement, the highest part of the measurement length of approximately 200 μm selected at random was used as a reference point, and the degree of depression from the reference point was measured for the concave portion present in the measurement length. . This was repeated 5 times, and the value obtained by dividing the total depth of the recesses by the number of recesses was taken as the recess depth in the copper plating layer.
各粗化箔に対する表面粗さ測定は、触針式表面粗さ測定により、最大高さRy(JIS B0601:2001)を求めた。これにより、粗化粒層およびカプセルめっき層からなる粗化銅めっき層の凹凸差がわかる。係る凹凸差は防錆層込みの値であるが、充分に薄い防錆層の凹凸差は無視できる。 For the surface roughness measurement for each roughened foil, the maximum height Ry (JIS B0601: 2001) was determined by stylus type surface roughness measurement. Thereby, the unevenness | corrugation difference of the roughening copper plating layer which consists of a roughening grain layer and a capsule plating layer is known. The unevenness difference is a value including the antirust layer, but the unevenness difference of the sufficiently thin antirust layer can be ignored.
(エッチング性)
実施例1〜9および比較例1〜6に係る粗化箔のエッチング性を評価した。
(Etching property)
The etching properties of the roughened foils according to Examples 1 to 9 and Comparative Examples 1 to 6 were evaluated.
まずは、真空プレス機により、温度300℃、圧力30MPa、10分間の条件で、各粗化箔の粗化面を、厚さ50μmのポリイミド樹脂フィルムと貼り合せた。次に、幅1mmのマスキングテープを各粗化箔の圧延銅箔側の上面に貼り、塩化第二鉄のスプレーエッチングにて1分間のエッチング処理を行った。これにより、マスキングテープによってマスキングされた領域以外の粗化箔が除去されて、下地のポリイミド樹脂フィルムが露出した状態となった。 First, the roughened surface of each roughened foil was bonded to a polyimide resin film having a thickness of 50 μm using a vacuum press machine under conditions of a temperature of 300 ° C. and a pressure of 30 MPa for 10 minutes. Next, a masking tape having a width of 1 mm was attached to the upper surface of each roughened foil on the side of the rolled copper foil, and an etching process was performed for 1 minute by ferric chloride spray etching. Thereby, the roughening foil other than the region masked by the masking tape was removed, and the underlying polyimide resin film was exposed.
1mm幅に残った粗化箔を配線(リード)に見立て、幅方向の両端部を30mmの測定長に亘って、SEMにより、倍率3500倍にて真上から観察した。このとき、配線に見立てた粗化箔の端部からのはみ出しの最大長が10μm以上の根残りの個数を測定した。係る根残りの個数が、1個以下であることが好ましい。はみ出しの最大長が10μm以上の根残りが複数個存在すると、通常のFPCにおいて配線間が短絡してしまうおそれが高いからである。 The roughened foil remaining in the width of 1 mm was regarded as a wiring (lead), and both end portions in the width direction were observed from directly above with a SEM at a magnification of 3500 times over a measurement length of 30 mm. At this time, the number of remaining roots whose maximum length of protrusion from the end portion of the roughened foil that was considered as wiring was 10 μm or more was measured. It is preferable that the number of remaining roots is 1 or less. This is because if there are a plurality of root residues having a maximum protrusion length of 10 μm or more, there is a high possibility that the wiring is short-circuited in a normal FPC.
(耐屈曲性)
実施例1〜9および比較例1〜6に係る粗化箔の耐屈曲性を評価した。係る評価は、図2に示す摺動屈曲試験装置10を用い、IPC(米国プリント回路工業会)規格に準拠して行った。
(Flexibility)
The bending resistance of the roughened foils according to Examples 1 to 9 and Comparative Examples 1 to 6 was evaluated. Such evaluation was performed using the sliding bending test apparatus 10 shown in FIG. 2 in accordance with the IPC (American Printed Circuit Industry Association) standard.
まずは、圧延方向に長さ200mm、幅12.5mmに各粗化箔を切り取った試験片50に対し、大気中で250℃、5分の熱処理を施した。次に、図2に示されているように、試料片50を、摺動屈曲試験装置10の試料固定板11にネジ12で固定した。続いて、試料片50を振動伝達部13に接触させて貼り付け、発振駆動体14により振動伝達部13を上下方向に振動させて試料片50に振動を伝達し、屈曲疲労寿命試験を実施した。測定条件としては、曲げ半径10rを1.5mmとし、ストローク10sを10mmとし、屈曲速度を1500回/分とした。係る条件下、各試料片50が破断するまでの屈曲回数の平均値を比較した。 First, a heat treatment was performed at 250 ° C. for 5 minutes in the atmosphere on the test piece 50 in which each roughened foil was cut to a length of 200 mm and a width of 12.5 mm in the rolling direction. Next, as shown in FIG. 2, the sample piece 50 was fixed to the sample fixing plate 11 of the sliding bending test apparatus 10 with screws 12. Subsequently, the specimen piece 50 was attached in contact with the vibration transmission section 13, and the vibration transmission section 13 was vibrated in the vertical direction by the oscillation driver 14 to transmit vibration to the specimen piece 50, and a bending fatigue life test was performed. . As measurement conditions, the bending radius 10r was 1.5 mm, the stroke 10 s was 10 mm, and the bending speed was 1500 times / minute. Under such conditions, the average values of the number of bendings until each sample piece 50 broke was compared.
(3)銅めっき層付き圧延銅箔および粗化箔の評価結果
以下の表1に、実施例1〜9および比較例1〜6に係る銅めっき層付き圧延銅箔および粗化箔についての各評価結果を示す。
(3) Evaluation results of rolled copper foil with copper plating layer and roughened foil In Table 1 below, each of the rolled copper foil with copper plated layer and the roughened foil according to Examples 1 to 9 and Comparative Examples 1 to 6 An evaluation result is shown.
表1に示されているように、実施例1に係る銅めっき層付き圧延銅箔および粗化箔については、全評価結果において所定値を満たしていた。また、再現性評価に係る実施例2,3についても、実施例1と同等の評価結果が得られた。処理条件のばらつきの範囲内であれば、所定の効果を奏するに充分な評価結果が得られることがわかった。 As shown in Table 1, the rolled copper foil with copper plating layer and the roughened foil according to Example 1 satisfied predetermined values in all evaluation results. In addition, with respect to Examples 2 and 3 related to reproducibility evaluation, evaluation results equivalent to those of Example 1 were obtained. It was found that an evaluation result sufficient to obtain a predetermined effect can be obtained within the range of variation in processing conditions.
実施例4〜9についても、全評価結果において所定値を満たしていた。また、同一条件で製作された実施例4〜6同士、および実施例7〜9同士は、略同等の結果を示した。 For Examples 4 to 9, the predetermined value was satisfied in all the evaluation results. Moreover, Examples 4-6 produced on the same conditions and Examples 7-9 showed the substantially equivalent result.
一方で、銅めっき層が所定値より薄い比較例1においては、耐屈曲性以外、全ての評価結果が所定値から外れてしまった。 On the other hand, in Comparative Example 1 in which the copper plating layer is thinner than the predetermined value, all the evaluation results other than the bending resistance are out of the predetermined value.
また、銅めっき層が所定値より厚い比較例2においては、銅めっき層および粗化銅めっき層の表面粗さが低減するものの、屈曲回数が減少し、良好な耐屈曲性が得られなかった。また、銅めっき層を厚くつけることで、複合銅箔としての生産性の悪化が懸念される。 Further, in Comparative Example 2 where the copper plating layer was thicker than the predetermined value, the surface roughness of the copper plating layer and the roughened copper plating layer was reduced, but the number of bendings was reduced, and good bending resistance was not obtained. . Moreover, there is a concern about the deterioration of productivity as a composite copper foil by thickening the copper plating layer.
また、銅めっき層を形成する際、添加剤を用いなかった比較例3〜6においては、銅めっき層および粗化銅めっき層の表面粗さが一様に増大してしまった。また、添加剤を用いて銅めっき層を形成した場合の同じ厚さの銅めっき層を備えるものと比較すると、若干ながら、屈曲回数が一様に減少している。添加剤を加えなかった影響によると考えられる。 Moreover, when forming a copper plating layer, in Comparative Examples 3-6 which did not use an additive, the surface roughness of the copper plating layer and the roughening copper plating layer increased uniformly. In addition, the number of bendings is slightly reduced as compared with a case where a copper plating layer having the same thickness when the copper plating layer is formed using an additive is used. This is considered to be due to the effect of not adding the additive.
(その他の評価結果)
図3に実施例10および比較例7に係る粗化箔のSEMによる表面観察の結果を示す。
(Other evaluation results)
The result of the surface observation by SEM of the roughened foil which concerns on FIG. 3 at Example 10 and the comparative example 7 is shown.
図3(a)に示される実施例10は、銅めっき層の厚さを3.6g/m2(0.4μm厚さ相当)とし、粗化銅めっき層の厚さを8g/m2(0.9μm厚さ相当)とした以外は、上述の実施例1と同様の条件で製作した。したがって、実施例10における防錆層(ニッケルめっき層、亜鉛めっき層、クロメート処理層)の厚さは0.2g/m2(30nm厚さ相当)である。また、実施例10において、上述の実施例の手法及び手順と同様に測定した銅めっき層の凹部の深さは、0.43μmであった。 In Example 10 shown in FIG. 3A, the thickness of the copper plating layer is 3.6 g / m 2 (equivalent to a thickness of 0.4 μm), and the thickness of the roughened copper plating layer is 8 g / m 2 ( The film was manufactured under the same conditions as in Example 1 except that the thickness was equivalent to 0.9 μm. Therefore, the thickness of the rust prevention layer (nickel plating layer, galvanization layer, chromate treatment layer) in Example 10 is 0.2 g / m 2 (corresponding to a thickness of 30 nm). Moreover, in Example 10, the depth of the recessed part of the copper plating layer measured in the same manner as the method and procedure of the above-described example was 0.43 μm.
図3(b)に示される比較例7は、銅めっき層の厚さを3.6g/m2(0.4μm厚さ相当)とし、粗化銅めっき層の厚さを8g/m2(0.9μm厚さ相当)とした以外は、上述の比較例3と同様の条件で製作した。つまり、比較例7においては、添加剤を用いずに銅めっき層を形成した。比較例7における防錆層(ニッケルめっき層、亜鉛めっき層、クロメート処理層)の厚さは0.2g/m2(30nm厚さ相当)である。また、比較例7において、上述の実施例の手法及び手順と同様に測定した銅めっき層の凹部の深さは、0.55μmであった。 In Comparative Example 7 shown in FIG. 3B, the thickness of the copper plating layer is 3.6 g / m 2 (equivalent to a thickness of 0.4 μm), and the thickness of the roughened copper plating layer is 8 g / m 2 ( The film was manufactured under the same conditions as in Comparative Example 3 except that the thickness was equivalent to 0.9 μm. That is, in Comparative Example 7, a copper plating layer was formed without using an additive. The thickness of the antirust layer (nickel plating layer, zinc plating layer, chromate treatment layer) in Comparative Example 7 is 0.2 g / m 2 (corresponding to a thickness of 30 nm). Moreover, in the comparative example 7, the depth of the recessed part of the copper plating layer measured similarly to the method and procedure of the above-mentioned Example was 0.55 micrometer.
図3に示されているように、各層の厚さが同じであっても、実施例10の方が比較例7と比べ、粗化粒がより均一に付着していることがわかる。上述のように、比較例7における銅めっき層の凹部の深さが所定値を外れているのに対し、実施例10における銅めっき層の凹部の深さが所定値内であるためと考えられる。また、銅めっき層の凹部の深さの違いは、銅めっき層の形成時に添加剤を用いたか否かによると考えられる。 As shown in FIG. 3, it can be seen that even when the thicknesses of the respective layers are the same, the roughened grains adhere more uniformly in Example 10 than in Comparative Example 7. As described above, the depth of the concave portion of the copper plating layer in Comparative Example 7 is out of the predetermined value, whereas the depth of the concave portion of the copper plating layer in Example 10 is considered to be within the predetermined value. . Moreover, it is thought that the difference in the depth of the recessed part of a copper plating layer is based on whether the additive was used at the time of formation of a copper plating layer.
また、図3(b)下段に、比較例7において散見された異常箇所を示す。図3(b)下段に示されているように、比較例7においては、銅めっき層の形成によっては埋まり切らなかった圧延銅箔のオイルピットによると思われる窪み(A)が認められた。また、それにより異常成長したと思われる粗化銅めっき層の異常析出箇所(B)が認められた。 Moreover, the abnormal part scattered in the comparative example 7 is shown in the lower stage of FIG.3 (b). As shown in the lower part of FIG. 3 (b), in Comparative Example 7, a depression (A) that was thought to be due to an oil pit of a rolled copper foil that was not completely filled by the formation of the copper plating layer was observed. Moreover, the abnormal precipitation location (B) of the roughening copper plating layer considered to be abnormally grown by it was recognized.
図4に参考例1,2に係る銅めっき層付き圧延銅箔における銅めっき層の表面のYAG−BSE像を示す。 The YAG-BSE image of the surface of the copper plating layer in the rolled copper foil with a copper plating layer according to Reference Examples 1 and 2 is shown in FIG.
図4(a)に示される参考例1は、銅めっき層の厚さを1.0μmとした以外は、上述の実施例1と同様の条件で製作した。なお、図4(a)の上段は、熱処理前のYAG−BSE像であり、下段は、250℃、5分の熱処理後のYAG−BSE像である。 Reference Example 1 shown in FIG. 4A was manufactured under the same conditions as in Example 1 except that the thickness of the copper plating layer was 1.0 μm. 4A is a YAG-BSE image before heat treatment, and the lower row is a YAG-BSE image after heat treatment at 250 ° C. for 5 minutes.
図4(b)に示される参考例2は、銅めっき層の厚さを1.0μmとした以外は、上述の比較例3と同様の条件で製作した。つまり、参考例2においては、添加剤を用いずに銅めっき層を形成した。なお、図4(b)の上段は、熱処理前のYAG−BSE像であり、下段は、250℃、5分の熱処理後のYAG−BSE像である。 Reference Example 2 shown in FIG. 4B was manufactured under the same conditions as Comparative Example 3 described above except that the thickness of the copper plating layer was 1.0 μm. That is, in Reference Example 2, the copper plating layer was formed without using an additive. Note that the upper part of FIG. 4B is a YAG-BSE image before heat treatment, and the lower part is a YAG-BSE image after heat treatment at 250 ° C. for 5 minutes.
図4に示されているように、特に熱処理後において、実施例1と同様、添加剤を用いて形成された参考例1の銅めっき層の結晶粒の大きさは、添加剤を用いずに形成された参考例2の銅めっき層の結晶粒の大きさより圧倒的に大きいことがわかる。この結晶粒の大きさの違いをみても、粗化箔における耐屈曲性に差が生じることが明らかである。 As shown in FIG. 4, the size of the crystal grains of the copper plating layer of the reference example 1 formed using the additive, as in Example 1, particularly after the heat treatment, is determined without using the additive. It turns out that it is overwhelmingly larger than the size of the crystal grain of the formed copper plating layer of the reference example 2. Even when the difference in the size of the crystal grains is seen, it is clear that there is a difference in the bending resistance of the roughened foil.
10 摺動屈曲試験装置
11 試料固定板
12 ネジ
13 振動伝達部
14 発振駆動体
50 試料片
DESCRIPTION OF SYMBOLS 10 Sliding bending test apparatus 11 Sample fixing plate 12 Screw 13 Vibration transmission part 14 Oscillation drive body 50 Sample piece
Claims (9)
前記圧延銅箔の少なくとも片面上に形成され、厚さが0.05μm以上0.5μm以下の銅めっき層と、を備え、
前記銅めっき層の表面に凹部が存在する場合、前記凹部の深さの平均値が0.5μm以下である
ことを特徴とする複合銅箔。 Rolled copper foil,
Formed on at least one surface of the rolled copper foil, and a copper plating layer having a thickness of 0.05 μm or more and 0.5 μm or less, and
The composite copper foil characterized by having an average depth of the concave portion of 0.5 μm or less when the concave portion is present on the surface of the copper plating layer.
前記銅めっき層における最大径が2.0μm以上の結晶粒の個数が、走査型電子顕微鏡の3500倍の視野内にて1個以上150個以下となる
ことを特徴とする請求項1に記載の複合銅箔。 After heat treatment at 250 ° C for 5 minutes,
2. The number of crystal grains having a maximum diameter of 2.0 μm or more in the copper plating layer is 1 or more and 150 or less in a field of view of 3500 times that of a scanning electron microscope. Composite copper foil.
前記粗化銅めっき層の最大高さが3.0μm以下である
ことを特徴とする請求項1又は2に記載の複合銅箔。 A roughened copper plating layer is provided on the copper plating layer,
3. The composite copper foil according to claim 1, wherein the roughened copper plating layer has a maximum height of 3.0 μm or less.
ことを特徴とする請求項3に記載の複合銅箔。 4. The composite copper foil according to claim 3, wherein when the roughened copper plating layer is averaged, the thickness is equal to or greater than 0.11 μm and equal to or less than 1.98 μm.
平均に均したとき、0.66μm以上1.1μm以下の厚さ相当の粗化粒層と、
厚さが0.15μm以上0.88μm以下のカプセル銅めっき層と、を前記銅めっき層上にこの順に形成してなる
ことを特徴とする請求項3又は4に記載の複合銅箔。 The roughened copper plating layer is
When averaged, a roughened grain layer corresponding to a thickness of 0.66 μm or more and 1.1 μm or less,
5. The composite copper foil according to claim 3, wherein a capsule copper plating layer having a thickness of 0.15 μm or more and 0.88 μm or less is formed on the copper plating layer in this order.
ことを特徴とする請求項3〜5のいずれかに記載の複合銅箔。 The composite copper foil according to claim 3, further comprising a rust prevention layer having a thickness of 11 nm to 35 nm on the roughened copper plating layer.
ことを特徴とする請求項3〜6のいずれかに記載の複合銅箔。 A nickel plating layer, a zinc plating layer, a chromate treatment layer, and a silane coupling treatment layer are formed in this order on the roughened copper plating layer, and a rust prevention layer having a thickness of 11 nm to 35 nm is provided. The composite copper foil according to any one of claims 3 to 6.
前記銅めっき層を形成する工程では、
メルカプト基を有する有機硫黄化合物と、界面活性剤と、塩化物イオンを添加した銅めっき液を用いる
ことを特徴とする複合銅箔の製造方法。 Formed on at least one surface of a rolled copper foil, and having a step of forming a copper plating layer having a thickness of 0.05 μm or more and 0.5 μm or less,
In the step of forming the copper plating layer,
The manufacturing method of the composite copper foil characterized by using the copper plating solution which added the organic sulfur compound which has a mercapto group, surfactant, and a chloride ion.
電流密度が5A/dm2以上30A/dm2未満、液温が15℃以上50℃以下の条件で電解めっきを行う
ことを特徴とする請求項8に記載の複合銅箔の製造方法。 In the step of forming the copper plating layer,
9. The method for producing a composite copper foil according to claim 8, wherein the electroplating is performed under conditions of a current density of 5 A / dm 2 or more and less than 30 A / dm 2 and a liquid temperature of 15 ° C. or more and 50 ° C. or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013020737A JP2014152343A (en) | 2013-02-05 | 2013-02-05 | Composite copper foil and production method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013020737A JP2014152343A (en) | 2013-02-05 | 2013-02-05 | Composite copper foil and production method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014152343A true JP2014152343A (en) | 2014-08-25 |
Family
ID=51574513
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013020737A Pending JP2014152343A (en) | 2013-02-05 | 2013-02-05 | Composite copper foil and production method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014152343A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5728118B1 (en) * | 2014-09-22 | 2015-06-03 | 株式会社Shカッパープロダクツ | Surface-treated copper foil, method for producing the surface-treated copper foil, and copper-clad laminate using the surface-treated copper foil |
JPWO2018047933A1 (en) * | 2016-09-12 | 2018-09-06 | 古河電気工業株式会社 | Copper foil and copper-clad laminate having the same |
CN113337862A (en) * | 2021-04-12 | 2021-09-03 | 浙江花园新能源有限公司 | Surface treatment process of 0.1 mm ultra-width rolled copper foil |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010037585A (en) * | 2008-08-01 | 2010-02-18 | Hitachi Cable Ltd | Copper foil and copper foil manufacturing method |
JP2011009267A (en) * | 2009-06-23 | 2011-01-13 | Hitachi Cable Ltd | Copper foil for printed wiring board, and method of manufacturing the same |
-
2013
- 2013-02-05 JP JP2013020737A patent/JP2014152343A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010037585A (en) * | 2008-08-01 | 2010-02-18 | Hitachi Cable Ltd | Copper foil and copper foil manufacturing method |
JP2011009267A (en) * | 2009-06-23 | 2011-01-13 | Hitachi Cable Ltd | Copper foil for printed wiring board, and method of manufacturing the same |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5728118B1 (en) * | 2014-09-22 | 2015-06-03 | 株式会社Shカッパープロダクツ | Surface-treated copper foil, method for producing the surface-treated copper foil, and copper-clad laminate using the surface-treated copper foil |
JPWO2018047933A1 (en) * | 2016-09-12 | 2018-09-06 | 古河電気工業株式会社 | Copper foil and copper-clad laminate having the same |
CN109642338A (en) * | 2016-09-12 | 2019-04-16 | 古河电气工业株式会社 | Copper foil and copper-clad plate with the copper foil |
CN109642338B (en) * | 2016-09-12 | 2021-02-09 | 古河电气工业株式会社 | Copper foil and copper-clad plate with same |
CN113337862A (en) * | 2021-04-12 | 2021-09-03 | 浙江花园新能源有限公司 | Surface treatment process of 0.1 mm ultra-width rolled copper foil |
CN113337862B (en) * | 2021-04-12 | 2022-05-24 | 浙江花园新能源股份有限公司 | Surface treatment process of 0.1 mm ultra-width rolled copper foil |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI626150B (en) | Composite copper foil and composite copper foil manufacturing method | |
JP5282675B2 (en) | Copper foil for printed wiring board and method for producing the same | |
TWI554392B (en) | A liquid crystal polymer copper clad laminate and a copper foil for the laminated sheet | |
JP6367687B2 (en) | Surface-treated copper foil and laminate | |
TWI633196B (en) | Rolled copper foil with copper plating | |
TW201800242A (en) | Surface-treated copper foil and copper-clad laminate produced using same | |
JP6373166B2 (en) | Surface-treated copper foil and laminate | |
JP2015124426A (en) | Surface-treated copper foil and laminate | |
JP2012172198A (en) | Electrolytic copper foil and method for manufacturing the same | |
JP2014152344A (en) | Composite copper foil and production method thereof | |
JP5822928B2 (en) | Electrolytic copper foil having high strength and low warpage and method for producing the same | |
JPWO2013065730A1 (en) | Copper foil for printed circuit | |
JP2016003378A (en) | Surface-treated copper foil, production method thereof and laminate | |
JP5075099B2 (en) | Surface-treated copper foil, surface treatment method thereof, and laminated circuit board | |
JP2014152343A (en) | Composite copper foil and production method thereof | |
JP5728118B1 (en) | Surface-treated copper foil, method for producing the surface-treated copper foil, and copper-clad laminate using the surface-treated copper foil | |
JP5941959B2 (en) | Electrolytic copper foil and method for producing the same | |
JP7247015B2 (en) | Electrolytic copper foil, surface-treated copper foil using the electrolytic copper foil, and copper-clad laminate and printed wiring board using the surface-treated copper foil | |
KR20140085583A (en) | Copper foil for printing circuit | |
JP2006052441A (en) | Copper foil and manufacturing method thereof, and TAB tape | |
TWI415742B (en) | A method for manufacturing fine grain copper foil with high peel strength and environmental protection for printed circuit board tool | |
JP6392674B2 (en) | Surface-treated copper foil and laminate | |
JP5728117B1 (en) | Surface-treated copper foil, method for producing the surface-treated copper foil, and copper-clad laminate using the surface-treated copper foil | |
WO2024185853A1 (en) | Aluminum foil | |
JP2005340635A (en) | Rolled copper foil for printed wiring board and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150724 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160516 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160524 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20170131 |