JP2014133225A - Method for removing urea within pure water - Google Patents
Method for removing urea within pure water Download PDFInfo
- Publication number
- JP2014133225A JP2014133225A JP2013014791A JP2013014791A JP2014133225A JP 2014133225 A JP2014133225 A JP 2014133225A JP 2013014791 A JP2013014791 A JP 2013014791A JP 2013014791 A JP2013014791 A JP 2013014791A JP 2014133225 A JP2014133225 A JP 2014133225A
- Authority
- JP
- Japan
- Prior art keywords
- exchanger
- pure water
- cation
- urea
- electric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 title claims abstract description 75
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 47
- 239000004202 carbamide Substances 0.000 title claims abstract description 40
- 238000000034 method Methods 0.000 title claims description 33
- 150000001768 cations Chemical class 0.000 claims abstract description 28
- 238000011033 desalting Methods 0.000 claims abstract description 25
- 238000004519 manufacturing process Methods 0.000 claims abstract description 24
- 150000002500 ions Chemical class 0.000 claims abstract description 12
- 230000002378 acidificating effect Effects 0.000 claims abstract description 7
- 125000000542 sulfonic acid group Chemical group 0.000 claims abstract description 6
- 238000010559 graft polymerization reaction Methods 0.000 claims description 33
- 239000000835 fiber Substances 0.000 claims description 28
- 238000005341 cation exchange Methods 0.000 claims description 21
- 238000010612 desalination reaction Methods 0.000 claims description 20
- 239000000463 material Substances 0.000 claims description 16
- 230000005855 radiation Effects 0.000 claims description 16
- 150000001450 anions Chemical class 0.000 claims description 15
- 239000012528 membrane Substances 0.000 claims description 10
- 239000004745 nonwoven fabric Substances 0.000 claims description 8
- 239000003011 anion exchange membrane Substances 0.000 claims description 7
- 239000007788 liquid Substances 0.000 claims description 6
- 238000001223 reverse osmosis Methods 0.000 claims description 6
- 238000011144 upstream manufacturing Methods 0.000 claims description 6
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims description 5
- 239000003456 ion exchange resin Substances 0.000 claims description 4
- 229920003303 ion-exchange polymer Polymers 0.000 claims description 4
- 238000000909 electrodialysis Methods 0.000 claims description 3
- 239000002759 woven fabric Substances 0.000 claims description 3
- 239000002861 polymer material Substances 0.000 claims description 2
- 238000011282 treatment Methods 0.000 abstract description 11
- 238000001179 sorption measurement Methods 0.000 abstract description 6
- 239000007800 oxidant agent Substances 0.000 abstract description 5
- 238000011109 contamination Methods 0.000 abstract description 2
- 230000001590 oxidative effect Effects 0.000 abstract description 2
- 238000010828 elution Methods 0.000 abstract 1
- 239000000758 substrate Substances 0.000 description 15
- 239000000178 monomer Substances 0.000 description 14
- -1 urea compound Chemical class 0.000 description 12
- 238000005342 ion exchange Methods 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 6
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 6
- 239000004698 Polyethylene Substances 0.000 description 5
- 239000002585 base Substances 0.000 description 5
- 239000013522 chelant Substances 0.000 description 5
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 5
- 229920000573 polyethylene Polymers 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 229910021642 ultra pure water Inorganic materials 0.000 description 5
- 239000012498 ultrapure water Substances 0.000 description 5
- 229920003043 Cellulose fiber Polymers 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 150000001299 aldehydes Chemical class 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 125000000524 functional group Chemical group 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 4
- 229920002554 vinyl polymer Polymers 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 239000003463 adsorbent Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 238000010517 secondary reaction Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 235000010265 sodium sulphite Nutrition 0.000 description 3
- 238000006277 sulfonation reaction Methods 0.000 description 3
- 229920002994 synthetic fiber Polymers 0.000 description 3
- 239000012209 synthetic fiber Substances 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- IWTYTFSSTWXZFU-UHFFFAOYSA-N 3-chloroprop-1-enylbenzene Chemical compound ClCC=CC1=CC=CC=C1 IWTYTFSSTWXZFU-UHFFFAOYSA-N 0.000 description 2
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 2
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 229920000297 Rayon Polymers 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 239000003708 ampul Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000005115 demineralization Methods 0.000 description 2
- 230000002328 demineralizing effect Effects 0.000 description 2
- 238000001784 detoxification Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 239000002657 fibrous material Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- NBZBKCUXIYYUSX-UHFFFAOYSA-N iminodiacetic acid Chemical group OC(=O)CNCC(O)=O NBZBKCUXIYYUSX-UHFFFAOYSA-N 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 150000003141 primary amines Chemical class 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 2
- KEQGZUUPPQEDPF-UHFFFAOYSA-N 1,3-dichloro-5,5-dimethylimidazolidine-2,4-dione Chemical compound CC1(C)N(Cl)C(=O)N(Cl)C1=O KEQGZUUPPQEDPF-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- XEEYSDHEOQHCDA-UHFFFAOYSA-N 2-methylprop-2-ene-1-sulfonic acid Chemical compound CC(=C)CS(O)(=O)=O XEEYSDHEOQHCDA-UHFFFAOYSA-N 0.000 description 1
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 1
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 1
- DBCAQXHNJOFNGC-UHFFFAOYSA-N 4-bromo-1,1,1-trifluorobutane Chemical compound FC(F)(F)CCCBr DBCAQXHNJOFNGC-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 229920000433 Lyocell Polymers 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 229920001407 Modal (textile) Polymers 0.000 description 1
- 241000208125 Nicotiana Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000003729 cation exchange resin Substances 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- XTHPWXDJESJLNJ-UHFFFAOYSA-N chlorosulfonic acid Substances OS(Cl)(=O)=O XTHPWXDJESJLNJ-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- QKSIFUGZHOUETI-UHFFFAOYSA-N copper;azane Chemical compound N.N.N.N.[Cu+2] QKSIFUGZHOUETI-UHFFFAOYSA-N 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Substances CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 1
- 229920006248 expandable polystyrene Polymers 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 239000002557 mineral fiber Substances 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- RPQRDASANLAFCM-UHFFFAOYSA-N oxiran-2-ylmethyl prop-2-enoate Chemical compound C=CC(=O)OCC1CO1 RPQRDASANLAFCM-UHFFFAOYSA-N 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- UIIIBRHUICCMAI-UHFFFAOYSA-N prop-2-ene-1-sulfonic acid Chemical compound OS(=O)(=O)CC=C UIIIBRHUICCMAI-UHFFFAOYSA-N 0.000 description 1
- 239000012857 radioactive material Substances 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000004627 regenerated cellulose Substances 0.000 description 1
- 238000009287 sand filtration Methods 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 208000008842 sick building syndrome Diseases 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- NLVXSWCKKBEXTG-UHFFFAOYSA-N vinylsulfonic acid Chemical compound OS(=O)(=O)C=C NLVXSWCKKBEXTG-UHFFFAOYSA-N 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- Water Treatment By Sorption (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Abstract
【課題】 純水中のTOC成分は尿素を主成分とし、非イオン性であるため従来の純水製造プロセスでは十分に除去できない。生物処理や酸化剤処理で除去可能であるが、装置が複雑化するばかりでなく汚染源が増え、十分にTOCの低減された純水を得ることが難しかった。
【解決手段】 電気式脱塩装置の脱塩室にカチオン交換体を形成し、ここで尿素のカチオン化による吸着および溶離を行えるようにした。カチオン交換体は強酸性のスルホン酸基、形状は繊維状が好ましい。従来の電気式脱塩装置の脱塩室のイオン交換体充填構造を変更するだけで純水中の尿素を低減できる。
【選択図】図1PROBLEM TO BE SOLVED: To remove a TOC component in pure water sufficiently by a conventional pure water production process because it contains urea as a main component and is nonionic. Although it can be removed by biological treatment or oxidant treatment, not only the apparatus becomes complicated, but also the number of contamination sources increases, making it difficult to obtain pure water with a sufficiently reduced TOC.
A cation exchanger is formed in a desalting chamber of an electric desalting apparatus so that adsorption and elution by urea cationization can be performed. The cation exchanger is preferably a strongly acidic sulfonic acid group and the shape is fibrous. Urea in pure water can be reduced only by changing the ion exchanger filling structure of the desalting chamber of the conventional electric desalting apparatus.
[Selection] Figure 1
Description
本発明は、有機尿素系化合物、特に水中に含まれる尿素、チオ尿素などの有機尿素系化合物を除去することができる有機尿素系化合物処理方法に関する。 The present invention relates to a method for treating an organic urea compound that can remove an organic urea compound such as urea or thiourea contained in water, in particular, water.
半導体製造工場、液晶製造工場などの精密産業や製薬・食品産業分野においては極めてクリーン度の高い純水が必要とされている。その中でも、TOC成分は尿素を主成分とし純水製造プロセスにおける逆浸透膜処理装置やイオン交換処理装置でも除去しづらい。高純度の純水が要求される現場では、さらなるTOC成分を除去するため、酸化剤によって尿素を主体とするTOCを分解し、後段のイオン交換樹脂で除去することが行われている。ここで、用いる酸化剤は紫外線、オゾン、過酸化水素などであり、紫外線の照射設備の設置や酸化剤の注入設備の設置が必要である。また、残留した酸化剤の無害化処理のため還元剤の注入設備など無害化処理設備などが必要となる(特開2011−183245)。そのため、大掛かりな設備が必要となり、コスト増大を招いている。 In the precision industry such as a semiconductor manufacturing factory and a liquid crystal manufacturing factory, and in the pharmaceutical and food industry fields, pure water with extremely high cleanliness is required. Among them, the TOC component is mainly composed of urea, and is difficult to remove by a reverse osmosis membrane treatment apparatus or an ion exchange treatment apparatus in a pure water production process. In the field where high-purity pure water is required, in order to remove further TOC components, TOC mainly composed of urea is decomposed with an oxidizing agent and removed with an ion exchange resin in the subsequent stage. Here, the oxidizing agent to be used is ultraviolet rays, ozone, hydrogen peroxide, etc., and it is necessary to install an ultraviolet ray irradiation facility or an oxidant injection facility. In addition, a detoxification treatment facility such as a reducing agent injection facility is required for the detoxification treatment of the remaining oxidizing agent (Japanese Patent Laid-Open No. 2011-183245). For this reason, large-scale equipment is required, resulting in an increase in cost.
生物処理は古くより有機物処理に利用されてきた。しかしながら、生物処理は水量が大きく、生物化学的酸素要求量(BOD)が高い排水や下水の処理に有効であったが、純水製造においては却って汚染源となる場合が多い。 Biological treatment has long been used for organic matter treatment. However, biological treatment is effective in treating wastewater and sewage with a large amount of water and high biochemical oxygen demand (BOD), but in pure water production, it is often a source of contamination.
活性炭や有機高分子樹脂による吸着剤処理もあるが、それらの吸着剤は比較的高分子の有機物に対して吸着性能が発揮されるが、尿素のように分子量が小さい有機物に対しては吸着容量が小さく、吸着させる活性炭や樹脂の量を非常に多く必要とする。また、活性炭や樹脂は吸着材自身から多くの有機物を吐き出すために、純水の製造における有機物除去に使用することは避けられていた。 Although there are adsorbent treatments with activated carbon and organic polymer resins, these adsorbents exhibit adsorption performance for relatively high molecular organic substances, but adsorption capacity for organic substances with a small molecular weight such as urea. And requires a very large amount of activated carbon and resin to be adsorbed. Moreover, since activated carbon and resin discharge many organic substances from the adsorbent itself, it has been avoided to use them for organic substance removal in the production of pure water.
しかしながら、これらの従来の装置は非常に大型となり、純水を製造する際において非常に高価であり、また設置面積を相当占める設備となってしまうために、これまでは非常に高い純度を要する半導体製造装置に用いる超純水の分野での使用に限られてきた。
近年、256MB〜1GBの超LSIの製造工場では、TOC 1ppb以下の超高純度の超純水が要求されるようになってきているが、尿素を主成分とするTOCは従来の低減化技術では、システム構成が複雑になり、水回収率も低くなって、設備コストが高くなり、ランニングコストもさらに高くなってしまうという問題があった。 本発明は、かかる従来の課題を解決すべくなされたもので、省資源・省エネルギーの純水製造プロセスとして提案される場合が多い電気式脱塩装置に若干改良を施すことにより、設備コスト、ランニングコストを上げることなく、尿素主体のTOC濃度を低減できる超純水製造プロセス向けの電気式脱塩装置及びそれを使用した超純水製造プロセスを提供することを目的とする。 In recent years, ultra-pure water with ultra-high purity of TOC 1ppb or less has been required in the manufacturing factory of 256MB to 1GB VLSI, but TOC mainly composed of urea is a conventional reduction technology. The system configuration is complicated, the water recovery rate is lowered, the equipment cost is increased, and the running cost is further increased. The present invention has been made in order to solve the conventional problems, and by improving the electric desalination apparatus often proposed as a resource-saving / energy-saving pure water production process, the equipment cost, running An object of the present invention is to provide an electric desalination apparatus for an ultrapure water production process capable of reducing the TOC concentration mainly composed of urea without increasing the cost, and an ultrapure water production process using the same.
本発明は
(1)陰イオン交換膜と陽イオン交換膜によって区画され、該区画室にイオン交換体を充填した電気式脱塩装置において、陽イオン交換膜と陰イオン交換膜に接して少なくとも強酸性カチオン交換体層を形成させた脱塩室のイオン交換体構成を特徴とする尿素除去用の電気式脱塩装置
(2)前記カチオン交換体層を構成するカチオン交換体は放射線グラフト重合法によりスルホン酸基が導入されたものである(1)記載の尿素除去用の電気式脱塩装置
(3)前記放射線グラフト重合法に採用する基材形状が単繊維、繊維の集合体である撚糸、織布、不織布及びカット繊維、ネット、スポンジ等空隙性の高分子材料である(1)及び(2)項記載の尿素除去用の電気式脱塩装置
(4)(1)、(2)及び(3)記載のカチオン交換体層の上流に少なくともアニオン交換体を含むイオン交換体層を形成させた尿素除去用の電気式脱塩装置
(5)(4)記載のアニオン交換体を含む層はアニオン交換体単独、アニオン交換体とカチオン交換体の混合層または積層よりなる尿素除去用の電気式脱塩装置
(6)(1)、(2)、(3)、(4)及び(5)記載の尿素除去用の電気式脱塩装置に通水し尿素濃度を低減させた液体を得る純水製造方法
(7)固液分離装置、逆浸透装置、イオン交換樹脂塔又は電気式脱塩装置より選択された1次脱塩プロセスの下流に(1)、(2)、(3)、(4)、(5)及び(6)記載本発明の尿素除去用の電気式脱塩装置が配置されたTOCの低減された純水の製造方法The present invention is (1) in an electric desalination apparatus partitioned by an anion exchange membrane and a cation exchange membrane, and filled with an ion exchanger in the compartment, and at least a strong acid in contact with the cation exchange membrane and the anion exchange membrane. An electric desalination apparatus for urea removal characterized by the ion exchanger structure of the desalting chamber in which the cationic cation exchanger layer is formed. (2) The cation exchanger constituting the cation exchanger layer is obtained by a radiation graft polymerization method. Electric demineralizer for urea removal according to (1), wherein a sulfonic acid group is introduced (3) The base material employed in the radiation graft polymerization method is a single fiber, a twisted yarn that is an aggregate of fibers, Electric demineralization apparatus (4) (1), (2) for removing urea as described in (1) and (2), which is a porous polymer material such as woven fabric, nonwoven fabric and cut fiber, net, sponge, etc. (3) Cation exchanger layer as described The layer containing an anion exchanger described in the electric desalting apparatus for removing urea (5) and (4) in which an ion exchanger layer containing at least an anion exchanger is formed upstream is an anion exchanger alone, an anion exchanger and a cation Electric demineralization apparatus for removing urea as described in (6) (1), (2), (3), (4) and (5), comprising a mixed layer or laminate of exchangers Pure water production method for obtaining a liquid with reduced urea concentration by passing water through the apparatus (7) Primary desalination process selected from solid-liquid separation device, reverse osmosis device, ion exchange resin tower or electric desalination device (1), (2), (3), (4), (5) and (6) described in the present invention The electric demineralizer for removing urea according to the present invention is disposed. Pure water with reduced TOC Production method
発明者らは長年放射線グラフト重合法による空気清浄フィルターの開発に取り組んでいた。この開発の中で、タバコ臭の除去のテーマやシックハウス症候群の原因物質であるホルムアルデヒド除去材開発のテーマがあった。前者のテーマでは、アンモニア、酢酸、アセトアルデヒドの3成分を同時に除去しなければならない。両者に共通するアルデヒドを効率よく除去できるフィルターの開発が急務であった。 The inventors have been working on the development of air cleaning filters by radiation graft polymerization for many years. Among these developments were the theme of tobacco odor removal and the development of formaldehyde removal materials that cause sick house syndrome. In the former theme, the three components ammonia, acetic acid, and acetaldehyde must be removed simultaneously. There was an urgent need to develop a filter that could efficiently remove aldehydes common to both.
アルデヒドがアミン(特に1級アミンと2級アミン)と反応することはよく知られている。尿素は化学構造式CO(NH2)2で表されるように1級アミンを分子内に2個有し、アルデヒドを吸着する。したがって、尿素を担持させた材料はアルデヒド除去材料になると期待される。尿素は中性の分子であるため、各種基材に担持することが難しいと考えられたが、イオン交換基や親水基などを導入した材料に尿素を含浸担持する実験の中でカチオン交換体が非常に担持しやすいという知見を得ていた。It is well known that aldehydes react with amines (especially primary and secondary amines). Urea has two primary amines in the molecule as represented by the chemical structural formula CO (NH 2 ) 2 and adsorbs aldehydes. Therefore, it is expected that the material carrying urea is an aldehyde removing material. Since urea is a neutral molecule, it was thought that it was difficult to support it on various substrates. However, in an experiment in which urea was impregnated and supported on a material into which an ion exchange group or a hydrophilic group was introduced, a cation exchanger was used. The knowledge that it is very easy to carry was obtained.
したがって、水中の尿素を強酸性カチオン交換体で吸着できる点、水中のイオン成分が電気式脱塩装置で除去できる点から、電気式脱塩装置の脱塩室に吸着性能に優れ、吸着した尿素が容易に移動できるカチオン交換体を充填すれば、尿素が除去できるのではないかと考え本発明に到達した。 Therefore, because urea in water can be adsorbed with a strong acidic cation exchanger, and ionic components in water can be removed with an electric desalting device, the adsorbed urea has excellent adsorption performance in the desalting chamber of the electric desalting device. The present invention was reached on the assumption that urea could be removed by filling a cation exchanger that can be easily moved.
電気式脱塩装置の陽イオン交換膜と陰イオン交換膜によって区画された脱塩室に充填するカチオン交換体としては、尿素吸着性能に優れ、カチオン交換膜へのカチオンの移動経路が連続している要件を満たす各種材料が利用できる。市販のカチオン交換樹脂を単独で充填した脱塩室構造が利用できる。また、カチオン交換繊維の場合は表面積が大きくさらに好適である。放射線グラフト重合法で製造したカチオン交換繊維であればさらに好適である。 As a cation exchanger filled in the desalination chamber partitioned by the cation exchange membrane and anion exchange membrane of the electric desalination apparatus, it has excellent urea adsorption performance and the cation exchange path to the cation exchange membrane is continuous. Various materials are available that meet certain requirements. A desalting chamber structure filled with a commercially available cation exchange resin alone can be used. In the case of a cation exchange fiber, the surface area is large and more preferable. A cation exchange fiber produced by a radiation graft polymerization method is more preferred.
繊維の形状としては単繊維や繊維の集合体である不織布や織布、それらを切断した繊維なども好適に利用できる。放射線グラフト重合法では、基材の形状を自由に選択できるため、繊維以外にもスポンジ状のような空隙性材料が選択できる。また、スペーサとして挿入されているネットも選択できる。 As the shape of the fiber, a single fiber, a non-woven fabric or a woven fabric which is an aggregate of fibers, a fiber obtained by cutting them can be suitably used. In the radiation graft polymerization method, since the shape of the substrate can be freely selected, a porous material such as a sponge can be selected in addition to the fibers. A net inserted as a spacer can also be selected.
放射線グラフト重合法とは、γ線や電子線等の電離性放射線を基材に照射し、基材表面あるいは基材内部に生成したラジカルを利用して重合性単量体(以下、「モノマー」と称する。)を重合させ、基材からグラフト鎖を成長させる方法である。グラフト鎖は共有結合でしっかりと結合しているため溶出物が少なく、本発明の用途である純水や超純水の製造に利用する場合は最適である。 The radiation graft polymerization method is a method of irradiating a substrate with ionizing radiation such as γ-rays or electron beams and utilizing a radical generated on the surface of the substrate or inside the substrate (hereinafter referred to as “monomer”). Is a method of growing a graft chain from a substrate. Since the graft chain is firmly bonded by a covalent bond, there is little eluate, and it is optimal for use in the production of pure water or ultrapure water, which is an application of the present invention.
放射線グラフト重合法の特徴として、放射線の照射により、基材の表面のみならず基材の内部にまでラジカルを容易に発生させることができることが挙げられる。よって、基材表面だけではなく基材内部にまでモノマーを重合させることができるので、基材に導入されるグラフト鎖の数が多くなり、したがって基材に導入される官能基の数も多くなる。 A characteristic of the radiation graft polymerization method is that radicals can be easily generated not only on the surface of the substrate but also inside the substrate by irradiation with radiation. Therefore, since the monomer can be polymerized not only on the substrate surface but also inside the substrate, the number of graft chains introduced into the substrate increases, and thus the number of functional groups introduced into the substrate also increases. .
グラフト(graft)とは「接ぎ木」という意味であり、グラフト鎖の一端が基材に固定されていて、他端が固定されていない自由端である状態を表す。グラフト鎖がこのような形態的特徴を有するので、グラフト鎖間にはサイズの小さなイオンから大きな分子まで容易に侵入することができる。この点は、架橋構造を有するイオン交換樹脂と比較して、大きく異なる特徴である。 Graft means “grafting” and represents a state where one end of the graft chain is fixed to the base material and the other end is a free end that is not fixed. Since the graft chains have such morphological characteristics, small ions to large molecules can easily enter between the graft chains. This is a feature that is greatly different from that of an ion exchange resin having a crosslinked structure.
放射線グラフト重合法についてさらに詳しく説明する。最初にグラフト重合すべき繊維物質に放射線を照射する。照射条件限定はないが、十分なグラフト効率を得るためには、脱酸素状態で、5〜200kGy、特に30〜100kGyが好ましい。酸素濃度は、必要とされる重合率でグラフト重合が達成される濃度であればよく、好ましくは、酸素濃度1%以下、より好ましくは、酸素濃度100ppm以下である。本発明の目的のために好適に用いることのできる放射線としては、α線、β線、γ線、電子線、紫外線などがあげられるがこれらに限定されるものではない。工業的には、γ線又は電子線が適している。 The radiation graft polymerization method will be described in more detail. First, the fiber material to be grafted is irradiated with radiation. Although there is no limitation on irradiation conditions, in order to obtain sufficient graft efficiency, 5 to 200 kGy, particularly 30 to 100 kGy is preferable in a deoxygenated state. The oxygen concentration may be a concentration at which graft polymerization can be achieved at a required polymerization rate, and is preferably 1% or less, more preferably 100 ppm or less. Examples of radiation that can be suitably used for the purpose of the present invention include, but are not limited to, α rays, β rays, γ rays, electron beams, and ultraviolet rays. Industrially, γ rays or electron beams are suitable.
本発明の放射性物質捕集材の基材として有用な繊維素材として、合成繊維の他、綿などのセルロース系繊維、動物性繊維、鉱物系繊維、若しくは再生繊維、またはそれらの混合繊維が挙げられる。合成繊維にはポリエステル系、ポリアミド系、アクリル系、ポリ塩化ビニル系、ポリ塩化ビニリデン系、ポリエチレン系、ポリプロピレン系、ポリウレタン系、ポリビニルアルコール系、フッ素系等が含まれる。セルロース系繊維には、綿、麻等の天然セルロース系繊維、ビスコースレーヨン、銅アンモニア法レーヨン、ポリノジック等の再生セルロース繊維、テンセル等の精製セルロース繊維、アセテート、ジアセテート等の半合成繊維が含まれる。これらの中から、溶出物の少ない素材を用途に応じて適宜選択することができる。ポリエチレン系、ポリプロピレン系などのポリオレフィン系の素材はラジカル保存性などの点でグラフト重合法に利用しやすい。 Examples of the fiber material useful as a base material for the radioactive material collection material of the present invention include synthetic fibers, cellulose fibers such as cotton, animal fibers, mineral fibers, regenerated fibers, or mixed fibers thereof. . Synthetic fibers include polyester, polyamide, acrylic, polyvinyl chloride, polyvinylidene chloride, polyethylene, polypropylene, polyurethane, polyvinyl alcohol, fluorine, and the like. Cellulosic fibers include natural cellulose fibers such as cotton and hemp, viscose rayon, copper ammonia rayon, regenerated cellulose fibers such as polynosic, purified cellulose fibers such as tencel, and semi-synthetic fibers such as acetate and diacetate. It is. Among these, a material with less eluate can be selected as appropriate according to the application. Polyolefin-based materials such as polyethylene-based and polypropylene-based materials are easy to use for graft polymerization in terms of radical preservation.
次の工程はグラフト重合工程である。ここでは、グラフト重合は照射のタイミングにより、前照射グラフト重合法と同時照射グラフト重合法に分けられ、本発明はどちらの照射方法をも採用できる。前照射グラフト重合法はあらかじめ基材に放射線を照射した後、モノマーと接触させる重合方法である。同時照射グラフト重合法は基材とモノマーとの共存下に放射線を照射するグラフト重合法である。本発明においては前照射グラフト重合法及び同時照射グラフト重合法のいずれも利用することが可能であるが、前照射グラフト重合法が単独重合物の生成量が少ないため、本発明の用途である純水製造分野で利用する分離材料の製造方法にふさわしい。 The next step is a graft polymerization step. Here, the graft polymerization is divided into a pre-irradiation graft polymerization method and a simultaneous irradiation graft polymerization method according to the timing of irradiation, and the present invention can employ either irradiation method. The pre-irradiation graft polymerization method is a polymerization method in which a substrate is irradiated with radiation in advance and then contacted with a monomer. The simultaneous irradiation graft polymerization method is a graft polymerization method in which radiation is irradiated in the presence of a substrate and a monomer. In the present invention, it is possible to use both the pre-irradiation graft polymerization method and the simultaneous irradiation graft polymerization method. However, since the pre-irradiation graft polymerization method generates a small amount of homopolymer, the pure irradiation which is an application of the present invention is used. It is suitable for the manufacturing method of the separation material used in the water manufacturing field.
接触させるモノマーが液体か又は気体かにより、それぞれ液相グラフト重合法と気相グラフト重合法とに分けられる。本発明では液相又は気相グラフト重合のいずれのグラフト重合方法も利用できる。また、液相及び気相グラフト重合法の中間に位置するグラフト重合法として含浸重合法がある。この方法は、予め所定のグラフト率が得られるようモノマー量を制御して基材に浸み込ませるグラフト重合法であるが、本発明はこのグラフト重合法にも利用できる。 Depending on whether the monomer to be contacted is liquid or gas, it is divided into a liquid phase graft polymerization method and a gas phase graft polymerization method, respectively. In the present invention, any of the graft polymerization methods of liquid phase or gas phase graft polymerization can be used. Further, there is an impregnation polymerization method as a graft polymerization method located between the liquid phase and the gas phase graft polymerization method. This method is a graft polymerization method in which the amount of monomer is controlled so as to obtain a predetermined graft ratio in advance and the substrate is immersed in the base material. The present invention can also be used for this graft polymerization method.
本発明の放射線グラフト重合法によって繊維に導入することのできる重合性ビニルモノマーとしては、それ自体が種々の機能性官能基を有する重合性ビニルモノマーや、或いはそれをグラフトした後に更に2次反応を行うことによって機能性官能基を導入することのできる重合性ビニルモノマーを用いることができる。 Examples of the polymerizable vinyl monomer that can be introduced into the fiber by the radiation graft polymerization method of the present invention include a polymerizable vinyl monomer having various functional functional groups, or a secondary reaction after grafting the polymerizable vinyl monomer. A polymerizable vinyl monomer which can introduce a functional functional group by performing can be used.
カチオン交換基又はキレート基を有するモノマーに加え、2次反応を行ってイオン交換基やキレート基に転換できるモノマーが好適に利用できる。カチオン交換基を有するモノマーとしては、アクリル酸、メタクリル酸、スチレンスルホン酸、ビニルスルホン酸、メタクリルスルホン酸、アリルスルホン酸及びこれらのアルカリ金属塩などが利用できる。カチオン交換基を有するキレート基としてはイミノジ酢酸基などがある。 In addition to a monomer having a cation exchange group or a chelate group, a monomer that can be converted into an ion exchange group or a chelate group by performing a secondary reaction can be suitably used. Examples of the monomer having a cation exchange group include acrylic acid, methacrylic acid, styrene sulfonic acid, vinyl sulfonic acid, methacryl sulfonic acid, allyl sulfonic acid, and alkali metal salts thereof. Examples of the chelate group having a cation exchange group include an iminodiacetic acid group.
2次反応を行ってイオン交換基やキレート基に転換できるモノマーとしてはアクリロニトリル、アクロレイン、ビニルピリジン、スチレン、クロロメチルスチレン、メタクリル酸グリシジル、アクリル酸グリシジルやこれらの誘導体などが含まれる。メタクリル酸グリシジルの場合、スルホン酸基やカルボキシル基をはじめイミノジ酢酸基などのキレート基など各種官能基導入が容易であるため、好適に利用できる。また、スチレンやクロロメチルスチレンもイオン交換基及びキレート基の導入が容易であり、好適に利用できる。 Monomers that can be converted into ion exchange groups or chelate groups by performing a secondary reaction include acrylonitrile, acrolein, vinylpyridine, styrene, chloromethylstyrene, glycidyl methacrylate, glycidyl acrylate, and derivatives thereof. In the case of glycidyl methacrylate, various functional groups such as a sulfonic acid group and a carboxyl group as well as a chelating group such as an iminodiacetic acid group can be easily introduced. In addition, styrene and chloromethylstyrene can be easily used because ion exchange groups and chelate groups can be easily introduced.
架橋剤であるジビニルベンゼン、トリアリルイソシアネート及びエチレングリコールジメタクリレートなどの架橋剤も利用できる。 Crosslinking agents such as divinylbenzene, triallyl isocyanate and ethylene glycol dimethacrylate, which are crosslinking agents, can also be used.
繊維に導入するカチオン交換基の量はグラフト率によって任意に決めることができる。グラフト率が大きいと物理的強度が小さくなる。 The amount of the cation exchange group introduced into the fiber can be arbitrarily determined depending on the graft ratio. When the graft ratio is large, the physical strength becomes small.
スチレンをグラフト重合した場合、硫酸やクロロスルホン酸を用いてスルホン化することができる。また、メタクリル酸グリシジルをグラフト重合した場合は、亜硫酸ナトリウム水溶液と適当な溶媒を用いてスルホン化ができる。2meq/g程度のイオン交換容量が容易に得られる。 When styrene is graft-polymerized, it can be sulfonated using sulfuric acid or chlorosulfonic acid. When glycidyl methacrylate is graft polymerized, sulfonation can be performed using an aqueous sodium sulfite solution and an appropriate solvent. An ion exchange capacity of about 2 meq / g can be easily obtained.
本発明の電気式脱塩装置における脱塩室のイオン交換体充填構造は図1のようにカチオン交換体を単独で充填した充填層でも良いが、図2のようにカチオン交換体を単独で充填した充填層の上流にアニオン交換体やアニオンとカチオン交換体の混合充填層が存在していても良い。上流にこれらイオン交換体充填層を配置することにより、水中のイオン成分はあらかた除去される。このため、カチオン交換体層のスルホン酸基は尿素の吸着に都合の良いH型に維持される。 The ion exchanger filling structure of the desalting chamber in the electric desalination apparatus of the present invention may be a packed bed filled with a cation exchanger alone as shown in FIG. 1, but is filled with a cation exchanger alone as shown in FIG. An anion exchanger or a mixed packed bed of anions and cation exchangers may exist upstream of the packed bed. By disposing these ion exchanger packed beds upstream, the ion components in the water are almost removed. For this reason, the sulfonic acid group of the cation exchanger layer is maintained in the H-type convenient for urea adsorption.
脱塩室内のイオン交換体充填構造はカチオン交換体単独、カチオン交換体単独の充填層の上流にアニオン交換体層、アニオン・カチオン交換体混合層、カチオン・アニオン交換体の多層を形成していてもよい。また、図3のように電気式脱塩装置の区画室をシリーズに通水させる場合や複数の電気式脱塩装置を利用する場合は前述の技術思想が維持される限り、どのようなイオン交換体充填構造も利用できる。 The ion exchanger packing structure in the desalting chamber is formed of a cation exchanger alone, an anion exchanger layer, an anion / cation exchanger mixed layer, and a cation / anion exchanger multilayer upstream of the packed bed of the cation exchanger alone. Also good. In addition, as shown in FIG. 3, when water is passed through a series of compartments of an electrical desalting apparatus or when a plurality of electrical desalting apparatuses are used, as long as the above technical idea is maintained, any ion exchange can be performed. Body filling structures can also be used.
尿素を含有する水を本発明の電気式脱塩装置に通液することで尿素濃度の低減された水を得ることができる。そして、図4の純水製造の基本フロー図に示すように前段に固液分離装置、逆浸透膜装置を配置し、後段に本発明の電気式脱塩装置からなる純水製造装置によって、TOCの低減された超純水を得ることができる。 By passing water containing urea through the electric desalting apparatus of the present invention, water having a reduced urea concentration can be obtained. Then, as shown in the basic flow diagram of pure water production in FIG. 4, a solid-liquid separation device and a reverse osmosis membrane device are arranged in the previous stage, and the TOC is produced by the pure water production apparatus comprising the electric desalination apparatus of the present invention in the subsequent stage. Can be obtained.
水中の尿素は低分子かつ非イオン性であるため凝集沈殿、逆浸透及びイオン交換装置でも除去しづらい。これを除去するため、生物処理装置や酸化分解装置を設置するなどの対策が考えられているが、装置が複雑化しコストアップを招いていた。本発明は既存の純水製造装置に組み込まれている電気式脱塩装置に若干の変更を加えるだけ尿素濃度を低減させることが可能であり、省資源・省エネルギーの社会的要求にも合致し、産業の発展に資すること極めて大である。 Urea in water is low in molecular weight and nonionic, so it is difficult to remove it by coagulation sedimentation, reverse osmosis and ion exchange equipment. In order to remove this, measures such as installing a biological treatment apparatus and an oxidative decomposition apparatus have been considered, but the apparatus has become complicated and has led to an increase in cost. The present invention can reduce the urea concentration only by making a slight change to the electric desalination apparatus incorporated in the existing pure water production apparatus, and it meets the social demands of resource saving and energy saving. Contributing to industrial development is extremely important.
以下、本発明の実施例について説明するが、本発明の一例を示すものであり、本発明の特許請求の範囲を限定するものではない。 Examples of the present invention will be described below. However, the examples of the present invention are shown, and the scope of the claims of the present invention is not limited.
(1)強酸性カチオン交換繊維の製造
直径約25μmの6−ナイロン繊維の撚糸1kgをポリエチレン袋に入れ、減圧排気−窒素ガス導入という窒素置換操作を3回繰り返した。この袋を発泡スチロールの箱にドライアイス5kgとともに入れ、冷却下でガンマ線50kGyを照射した。照射後のナイロン繊維を取り出し、グラフト重合用ガラスアンプルに入れた。予め窒素ガスでバブリング操作により脱酸素されたメタクリル酸グリシジル10%メタノール溶液をガラスアンプルに導入した。そして、恒温水槽にて40℃、5時間グラフト重合をおこなった。重合終了後の繊維をアセトンに浸漬し、1時間洗浄した。この操作を2回繰り返した。洗浄後の繊維を真空乾燥し、重量増加率を測定することによって、グラフト率86%を得た。さらに、この繊維を亜硫酸ナトリウム10%、イソプロピルアルコール10%及び水80%の溶液に浸漬し、80℃で8時間スルホン化反応を行った。(1) Production of Strong Acid Cation
この繊維0.5gを採取した後、1N塩酸100mlに浸漬し再生した。PH試験紙が酸性を示さなくなるまで純水で洗浄した。次に塩化ナトリウム3%水溶液100mlに30分間浸漬し撹拌した。酸性となった液の一部を1N水酸化ナトリウム水溶液で滴定し、中性塩分解容量を求めた。結果は1.94meq/gの強酸性カチオン交換繊維が得られた。 After collecting 0.5 g of this fiber, it was regenerated by dipping in 100 ml of 1N hydrochloric acid. The PH test paper was washed with pure water until it showed no acidity. Next, it was immersed in 100 ml of 3% aqueous solution of sodium chloride for 30 minutes and stirred. A portion of the acidified solution was titrated with a 1N aqueous sodium hydroxide solution to determine the neutral salt decomposition capacity. As a result, a strongly acidic cation exchange fiber of 1.94 meq / g was obtained.
(2)尿素除去試験
タテ・ヨコ50mm、厚み5mmの大きさのカチオン交換膜、アニオン交換膜によって区画された脱塩室を有する実験用電気透析装置を使用した。この脱塩室に前述の強酸性カチオン交換繊維を均一に約2g充填した。実験室用の純水(電気伝導率0.5μS/cm、TOC15ppb)に尿素を加えTOC濃度160ppbの尿素含有純水を調製した。電気透析装置に15V、0.2Aの直流を印加し、先の合成原水を0.5L/hで通水した。1時間経過後、処理水のTOC濃度を測定すると約35ppbと低い値を示し、継続して安定したTOC濃度を示した。TOC濃度の除去性能から尿素が除去されていることが明らかであった。(2) Urea removal test An experimental electrodialysis apparatus having a desalting chamber partitioned by a vertical and horizontal cation exchange membrane of 50 mm and a thickness of 5 mm and an anion exchange membrane was used. About 2 g of the above-mentioned strongly acidic cation exchange fiber was uniformly filled in this desalting chamber. Urea was added to laboratory pure water (electric conductivity 0.5 μS / cm, TOC 15 ppb) to prepare urea-containing pure water having a TOC concentration of 160 ppb. A 15 V, 0.2 A direct current was applied to the electrodialyzer, and the previous synthetic raw water was passed through at 0.5 L / h. When the TOC concentration of the treated water was measured after 1 hour, it showed a low value of about 35 ppb and showed a stable TOC concentration continuously. It was clear from the removal performance of the TOC concentration that urea was removed.
(1)強酸性カチオン交換繊維の製造
直径約15μmの芯/鞘(ポリエチレンテレフタレート/ポリエチレン)の複合繊維より成る目付80g/m2、厚み約1mmの不織布を切断した。A4大5枚をポリエチレン袋に入れ、実施例1と同様にメタクリル酸グリシジルをグラフト重合し、グラフト率116%を得た。さらに、この繊維を亜硫酸ナトリウム10%、イソプロピルアルコール10%及び水80%の溶液に浸漬し、80℃で8時間スルホン化反応を行った。(1) Production of Strong Acid Cation Exchange Fiber A nonwoven fabric having a basis weight of 80 g / m 2 and a thickness of about 1 mm made of a core / sheath (polyethylene terephthalate / polyethylene) composite fiber having a diameter of about 15 μm was cut. Five large A4 sheets were put in a polyethylene bag, and glycidyl methacrylate was graft polymerized in the same manner as in Example 1 to obtain a graft ratio of 116%. Further, this fiber was immersed in a solution of 10% sodium sulfite, 10% isopropyl alcohol and 80% water, and subjected to sulfonation reaction at 80 ° C. for 8 hours.
この不織布から、5cm×10cmのサンプルを採取した後、1N塩酸100mlに浸漬し再生した。PH試験紙が酸性を示さなくなるまで純水で洗浄した。次に塩化ナトリウム3%水溶液100mlに30分間浸漬し撹拌した。酸性となった液の一部を1N水酸化ナトリウム水溶液で滴定し、中性塩分解容量を求めた。結果は2.33meq/gの強酸性カチオン交換不織布が得られた。 A sample of 5 cm × 10 cm was taken from this nonwoven fabric and then regenerated by dipping in 100 ml of 1N hydrochloric acid. The PH test paper was washed with pure water until it showed no acidity. Next, it was immersed in 100 ml of 3% aqueous solution of sodium chloride for 30 minutes and stirred. A portion of the acidified solution was titrated with a 1N aqueous sodium hydroxide solution to determine the neutral salt decomposition capacity. As a result, a strongly acidic cation exchange nonwoven fabric of 2.33 meq / g was obtained.
(2)尿素除去試験
実施例1の実験用電気透析装置を使用し、同様の尿素除去試験を行った。この際、強酸性カチオン交換不織布は5mm×50mmに切断し、40枚を積層させて脱塩室に充填した。スルホン酸基導入後の不織布の厚みは約1.5mmと基材の厚みと比べ50%増加していたが、脱塩室をはみ出す部分については手で押し込んだ。同様の合成原水を同様の条件で通水したところ、TOC濃度が約30ppbであり、明らかに尿素は除去されていた。(2) Urea removal test Using the experimental electrodialysis apparatus of Example 1, the same urea removal test was conducted. At this time, the strongly acidic cation exchange nonwoven fabric was cut into 5 mm × 50 mm, and 40 sheets were laminated and filled in the desalting chamber. The thickness of the non-woven fabric after introduction of the sulfonic acid group was about 1.5 mm, an increase of 50% compared to the thickness of the base material, but the portion that protruded from the desalting chamber was pushed in by hand. When the same synthetic raw water was passed under the same conditions, the TOC concentration was about 30 ppb, and urea was clearly removed.
1 陽極
2 濃縮室
3 アニオン交換膜
4 脱塩室
5 カチオン交換膜
6 陰極
7 カチオン交換体
8 カチオン・アニオン交換体混合充填層
9 被処理水流通経路
10 凝集沈殿
11 砂ろ過
12 逆浸透
13 電気式脱塩装置DESCRIPTION OF
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013014791A JP2014133225A (en) | 2013-01-11 | 2013-01-11 | Method for removing urea within pure water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013014791A JP2014133225A (en) | 2013-01-11 | 2013-01-11 | Method for removing urea within pure water |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014133225A true JP2014133225A (en) | 2014-07-24 |
Family
ID=51411946
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013014791A Pending JP2014133225A (en) | 2013-01-11 | 2013-01-11 | Method for removing urea within pure water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014133225A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105482041A (en) * | 2015-12-29 | 2016-04-13 | 湖北科技学院 | Cation exchange resin as well as preparation method and application thereof |
CN107028247A (en) * | 2017-05-11 | 2017-08-11 | 广州市爱因电子有限公司 | The exposure suit that a kind of use conductive yarn makes |
JP2019115892A (en) * | 2017-12-27 | 2019-07-18 | 栗田工業株式会社 | Toc removal device and toc removal method |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3869376A (en) * | 1973-05-14 | 1975-03-04 | Alvaro R Tejeda | System for demineralizing water by electrodialysis |
JPS5781829A (en) * | 1980-11-10 | 1982-05-22 | Kokuritsu Eisei Shikenjiyochiyou | Urea adsorbing resin |
JPH0471624A (en) * | 1990-07-10 | 1992-03-06 | Japan Organo Co Ltd | Electrical deionized water producing device and frame used therefor |
JPH04284822A (en) * | 1991-03-13 | 1992-10-09 | Japan Atom Energy Res Inst | Deodorizing agent and its manufacture |
JPH0564726A (en) * | 1991-03-13 | 1993-03-19 | Japan Atom Energy Res Inst | Electric regeneration type desalination equipment |
US6071397A (en) * | 1997-03-19 | 2000-06-06 | Asahi Glass Company Ltd. | Apparatus for producing deionized water |
JP2003190820A (en) * | 2001-12-27 | 2003-07-08 | Ebara Corp | Electric demineralizing apparatus |
JP2011045824A (en) * | 2009-08-26 | 2011-03-10 | Kurita Water Ind Ltd | Apparatus for producing pure water |
JP2011183245A (en) * | 2010-03-04 | 2011-09-22 | Kurita Water Ind Ltd | Method and apparatus for producing ultrapure water |
-
2013
- 2013-01-11 JP JP2013014791A patent/JP2014133225A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3869376A (en) * | 1973-05-14 | 1975-03-04 | Alvaro R Tejeda | System for demineralizing water by electrodialysis |
JPS5781829A (en) * | 1980-11-10 | 1982-05-22 | Kokuritsu Eisei Shikenjiyochiyou | Urea adsorbing resin |
JPH0471624A (en) * | 1990-07-10 | 1992-03-06 | Japan Organo Co Ltd | Electrical deionized water producing device and frame used therefor |
JPH04284822A (en) * | 1991-03-13 | 1992-10-09 | Japan Atom Energy Res Inst | Deodorizing agent and its manufacture |
JPH0564726A (en) * | 1991-03-13 | 1993-03-19 | Japan Atom Energy Res Inst | Electric regeneration type desalination equipment |
US6071397A (en) * | 1997-03-19 | 2000-06-06 | Asahi Glass Company Ltd. | Apparatus for producing deionized water |
JP2003190820A (en) * | 2001-12-27 | 2003-07-08 | Ebara Corp | Electric demineralizing apparatus |
JP2011045824A (en) * | 2009-08-26 | 2011-03-10 | Kurita Water Ind Ltd | Apparatus for producing pure water |
JP2011183245A (en) * | 2010-03-04 | 2011-09-22 | Kurita Water Ind Ltd | Method and apparatus for producing ultrapure water |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105482041A (en) * | 2015-12-29 | 2016-04-13 | 湖北科技学院 | Cation exchange resin as well as preparation method and application thereof |
CN107028247A (en) * | 2017-05-11 | 2017-08-11 | 广州市爱因电子有限公司 | The exposure suit that a kind of use conductive yarn makes |
CN107028247B (en) * | 2017-05-11 | 2018-10-23 | 广州市爱因电子有限公司 | A kind of anti-x-ray clothes made of lead conductive yarn |
JP2019115892A (en) * | 2017-12-27 | 2019-07-18 | 栗田工業株式会社 | Toc removal device and toc removal method |
JP7040008B2 (en) | 2017-12-27 | 2022-03-23 | 栗田工業株式会社 | TOC removal device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100389575B1 (en) | Gas adsorbent | |
US20070007196A1 (en) | Filter cartridge for fluid for treating surface of electronic device substrate | |
JP6697205B2 (en) | Chelate microfiltration membrane manufacturing method, recycling method and application | |
JP7108622B2 (en) | Method for producing ultrapure water | |
WO2004014548A1 (en) | Organic porous article having selective adsorption ability for boron, and boron removing module and ultra-pure water production apparatus using the same | |
CN106902655A (en) | A kind of preparation method and application of mercapto-functionalized polymer separation film | |
JP2003251118A (en) | Filter cartridge with high capacity metal capture capability | |
JP2014133225A (en) | Method for removing urea within pure water | |
CN110349689B (en) | Nuclear power plant radioactive waste liquid treatment device | |
KR20060003058A (en) | Chemical filter | |
KR100454093B1 (en) | Ion exchange textile for electrodeionization process | |
JP4119966B2 (en) | Elution recovery of metal from metal collector and method of regenerating eluent | |
JPH0620554B2 (en) | Method for producing gas adsorbent | |
JP3386929B2 (en) | Method for producing separation functional fiber and ion exchange fiber and gas adsorbent produced using the same | |
JP2011167606A (en) | Method for producing chelate forming group-containing adsorbing material | |
JPH0580941B2 (en) | ||
JP2013034962A (en) | Manufacturing method of ultrapure water | |
JPH05131120A (en) | Electric regeneration type desalination equipment | |
KR101494302B1 (en) | Apparatus for removal of manganese ions in backwashing water for membrane filtration | |
JP3673452B2 (en) | Pollution-resistant porous filtration membrane | |
CN113000034B (en) | Preparation method of uranium ion affinity membrane based on natural plant polyphenol composite coating | |
CN112604674B (en) | A fiber-based adsorption material and its preparation method and the removal of trivalent chromium in water | |
JPH04284853A (en) | Ion exchange filtration method and device | |
CN102992516A (en) | A high-salt organic wastewater treatment system and its process | |
JP2002346400A (en) | Anion exchanger and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151009 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20151009 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20151009 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160523 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160526 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20161116 |