[go: up one dir, main page]

JP2014120418A - Radiation generation device and radiographic apparatus - Google Patents

Radiation generation device and radiographic apparatus Download PDF

Info

Publication number
JP2014120418A
JP2014120418A JP2012276539A JP2012276539A JP2014120418A JP 2014120418 A JP2014120418 A JP 2014120418A JP 2012276539 A JP2012276539 A JP 2012276539A JP 2012276539 A JP2012276539 A JP 2012276539A JP 2014120418 A JP2014120418 A JP 2014120418A
Authority
JP
Japan
Prior art keywords
tube
radiation
cathode
anode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012276539A
Other languages
Japanese (ja)
Inventor
Koji Yamazaki
康二 山▲崎▼
Yoshio Suzuki
義勇 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2012276539A priority Critical patent/JP2014120418A/en
Publication of JP2014120418A publication Critical patent/JP2014120418A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • X-Ray Techniques (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a radiation generation device in which creeping discharge around the outer periphery of a radiation generation tube is suppressed and reliability of voltage resistance is improved by suppressing the flow of an insulative liquid between the radiation generation tube and an outer cylindrical tube and reducing creeping charge around the outer periphery of the radiation generation tube.SOLUTION: In a radiation generation device which comprises: a radiation generation tube 2 including a cathode 8, an anode 9 and an insulation tube 10; an outer cylindrical tube 5 in the outer periphery of the radiation generation tube; and an accommodation container 3 filled with an insulative liquid 4, one opening of the outer cylindrical tube 5 is positioned at a side opposite to the anode with the cathode as a criterion, and the other opening of the outer cylindrical tube is positioned at a side opposite to the cathode. Between an electrode fixed to the outer cylindrical tube 5 at the side opposite to the anode with the cathode as a criterion and regulated to a potential higher than the cathode and an electrode fixed to the outer cylindrical tube 5 at the side opposite to the cathode and regulated to a potential lower than the anode, at least one electrode is included.

Description

本発明は、放射線発生装置及び放射線撮影装置に関するものである。   The present invention relates to a radiation generator and a radiation imaging apparatus.

従来、放射線発生装置は、絶縁性液体で満たされた収納容器内に、放射線発生管を納めた構成が一般的である。絶縁性液体は、放射線発生装置の収納容器内部の、耐圧(高電圧)特性を向上させるために用いられている。さらに、特許文献1のように、放射線発生管と、収納容器もしくは収納容器内の他の構成部材との間の耐圧特性を向上させるために、放射線発生管の外周部に誘電体からなる絶縁スリーブ(以下、外筒管)を配する場合がある。また、特許文献1では、放射線発生管を冷却するために、放射線発生管と外筒管との間に間隙を設け、絶縁性液体の流路が確保された構造となっている。   Conventionally, radiation generators generally have a configuration in which a radiation generator tube is housed in a storage container filled with an insulating liquid. The insulating liquid is used to improve the pressure resistance (high voltage) characteristics inside the storage container of the radiation generator. Furthermore, as in Patent Document 1, in order to improve the pressure resistance between the radiation generating tube and the storage container or other components in the storage container, an insulating sleeve made of a dielectric material is provided on the outer periphery of the radiation generating tube. (Hereinafter referred to as an outer tube) may be provided. Moreover, in patent document 1, in order to cool a radiation generating tube, it has the structure which provided the gap | interval between a radiation generating tube and an outer cylinder tube, and ensured the flow path of the insulating liquid.

特開2007−080568号公報JP 2007-080568 A

放射線発生管に高電圧が印加されると、収納容器内の絶縁性液体は、EHD(Electrohydrodynamics)効果により対流する。特許文献1のように、放射線発生管と外筒管の間に間隙を設け、絶縁性液体の流路が確保された構造の場合には、放射線発生管と外筒管の間の間隙を絶縁性液体が流れ、絶縁性液体と放射線発生管の摩擦により、放射線発生管の外周沿面が帯電する。特に、動画撮影等の使用条件によっては、放射線発生管に連続して高電圧を印加する場合があり、放射線発生管の外周沿面の帯電が蓄積され、絶縁性液体中の放射線発生管外周沿面上において、沿面放電が発生する恐れがある。   When a high voltage is applied to the radiation generating tube, the insulating liquid in the storage container convects due to the EHD (Electrohydrodynamics) effect. In the case of a structure in which a gap is provided between the radiation generating tube and the outer cylindrical tube and a flow path for the insulating liquid is secured as in Patent Document 1, the gap between the radiation generating tube and the outer cylindrical tube is insulated. The conductive liquid flows, and the peripheral creepage surface of the radiation generating tube is charged by friction between the insulating liquid and the radiation generating tube. In particular, depending on the use conditions such as movie shooting, a high voltage may be applied continuously to the radiation generating tube, charging on the outer periphery of the radiation generating tube is accumulated, and on the outer periphery of the radiation generating tube in the insulating liquid. In this case, creeping discharge may occur.

本発明は、放射線発生管と外筒管の間の絶縁性液体の流動を抑制し、放射線発生管外周沿面の帯電を軽減することによって、放射線発生管外周での沿面放電を抑制し、耐圧信頼性の高い放射線発生装置を提供することを目的とする。   The present invention suppresses the creeping discharge on the outer periphery of the radiation generating tube by suppressing the flow of the insulating liquid between the radiation generating tube and the outer cylindrical tube, and reduces the charging on the outer periphery of the radiation generating tube. An object of the present invention is to provide a high-quality radiation generator.

本発明の放射線発生装置は、陰極と、該陰極と対向する陽極と、前記陰極と前記陽極とに狭持された絶縁管とを備える放射線発生管と、該放射線発生管の外周に沿って離間し、前記放射線発生管を周状に囲み、誘電体からなる筒状の外筒管と、少なくとも該放射線発生管と該外筒管とを収納する収納容器と、該収納容器の内部において、前記放射線発生管と前記外筒管とに接触するように収納された絶縁性液体と、を備えた放射線発生装置において、
前記外筒管の一方の開口は、管軸方向において前記陰極を基準に前記陽極とは反対側に位置し、前記外筒管の他方の開口は、管軸方向において前記陽極を基準に前記陰極とは反対側に位置し、
前記陰極を基準に前記陽極とは反対側において前記外筒管に固定され、前記陰極よりも高い電位に規定された電極と、前記陽極を基準に前記陰極とは反対側において前記外筒管に固定され、前記陽極よりも低い電位に規定された電極とのうち、少なくとも一方の電極を有することを特徴とする。
The radiation generating apparatus of the present invention includes a radiation generating tube including a cathode, an anode facing the cathode, an insulating tube sandwiched between the cathode and the anode, and a space along the outer periphery of the radiation generating tube. And surrounding the radiation generating tube, a cylindrical outer cylindrical tube made of a dielectric, a storage container for storing at least the radiation generating tube and the outer cylindrical tube, and inside the storage container, In a radiation generating apparatus comprising: a radiation generating tube and an insulating liquid stored so as to be in contact with the outer tube.
One opening of the outer tube is located on the opposite side of the anode with respect to the cathode in the tube axis direction, and the other opening of the outer tube is the cathode with respect to the anode in the tube axis direction. Located on the opposite side of
An electrode fixed to the outer tube on the side opposite to the anode with respect to the cathode and defined at a higher potential than the cathode; and an electrode on the outer tube on the side opposite to the cathode with respect to the anode It is characterized by having at least one of the fixed electrode and the electrode defined at a lower potential than the anode.

また、本発明の放射線撮影装置は、上記放射線発生装置と、前記放射線発生装置から放出され被検体を透過した放射線を検出する放射線検出器と、前記放射線発装置と前記放射線検出器とを統合して制御する装置制御部とを備えることを特徴とする。   The radiation imaging apparatus of the present invention integrates the radiation generation apparatus, a radiation detector that detects radiation emitted from the radiation generation apparatus and transmitted through a subject, and the radiation generation apparatus and the radiation detector. And a device control unit for controlling the device.

本発明によれば、高い耐圧特性を有する信頼性の高い放射線発生装置及び放射線撮影装置を提供することを可能とする。   According to the present invention, it is possible to provide a highly reliable radiation generating apparatus and radiation imaging apparatus having high pressure resistance characteristics.

本発明における放射線発生装置の断面図である。It is sectional drawing of the radiation generator in this invention. 本発明の比較例として示した放射線発生装置の断面図である。It is sectional drawing of the radiation generator shown as a comparative example of this invention. 本発明の放射線撮影装置の概念図である。It is a conceptual diagram of the radiography apparatus of this invention.

以下、図面を参照して、本発明の放射線発生装置について好適な実施の形態を例示的に詳しく説明する。ただし、この実施の形態に記載されている構成部材の材質、寸法、形状、相対配置等は、特に記載がない限り、この発明の範囲を限定する趣旨のものではない。   Hereinafter, exemplary embodiments of the radiation generating apparatus of the present invention will be described in detail with reference to the drawings. However, the materials, dimensions, shapes, relative arrangements, and the like of the constituent members described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified.

図1(A)は、本発明の放射線発生装置の内部を模式的に示した断面図である。図1(B)、(C)はさらに、図1(A)のA−A’断面図である。   FIG. 1A is a cross-sectional view schematically showing the inside of the radiation generator of the present invention. 1B and 1C are cross-sectional views taken along the line A-A ′ of FIG.

図1(A)乃至(C)において、1は放射線発生装置、2は放射線発生管、3は収納容器、4は絶縁性液体、5は外筒管、6は第一の電極、7は第二の電極である。   1A to 1C, 1 is a radiation generator, 2 is a radiation generator tube, 3 is a storage container, 4 is an insulating liquid, 5 is an outer tube, 6 is a first electrode, and 7 is a first electrode. The second electrode.

放射線発生装置1は、絶縁性液体4で満たされた収納容器3に、少なくとも放射線発生管2が収納されている。   In the radiation generating apparatus 1, at least the radiation generating tube 2 is stored in a storage container 3 filled with an insulating liquid 4.

放射線発生管2は、詳細構成を後述する透過型の放射線発生管であり、主に、陰極8と、陽極9と、これらに挟持された絶縁管(管状部材)10とで形成される真空容器である。放射線発生装置1の動作時には、放射線発生管2の陰極8と陽極9の間には高電圧が印加される。   The radiation generating tube 2 is a transmission type radiation generating tube whose detailed configuration will be described later, and is mainly a vacuum container formed by a cathode 8, an anode 9, and an insulating tube (tubular member) 10 sandwiched between them. It is. During the operation of the radiation generating apparatus 1, a high voltage is applied between the cathode 8 and the anode 9 of the radiation generating tube 2.

収納容器3は、放射線発生装置1の動作安定性や安全性の観点から、接地電位とすることが好ましい。収納容器3の材料としては、放射線遮蔽性、強度、表面電位規定性能の観点から、鉄、ステンレス、鉛、真鍮、銅等の金属が使用可能である。   The storage container 3 is preferably at a ground potential from the viewpoint of operational stability and safety of the radiation generator 1. As the material of the storage container 3, metals such as iron, stainless steel, lead, brass, and copper can be used from the viewpoint of radiation shielding properties, strength, and surface potential regulating performance.

放射線発生管2の陰極8はVc(V)に規定され、陽極9はVa(V)に規定される。Va>Vcであり、陰極8と陽極9の間にはVa−Vc(V)の電圧が印加される。また、収納容器3を接地電位とした場合、放射線発生装置内部の耐圧安定性の観点から、放射線発生管2の陰極8をVc<0(負電位)、陽極9をVa>0(正電位)に電位規定するのが好ましい。   The cathode 8 of the radiation generating tube 2 is defined as Vc (V), and the anode 9 is defined as Va (V). Va> Vc, and a voltage of Va−Vc (V) is applied between the cathode 8 and the anode 9. Further, when the storage container 3 is set to the ground potential, the cathode 8 of the radiation generating tube 2 is Vc <0 (negative potential) and the anode 9 is Va> 0 (positive potential) from the viewpoint of pressure resistance stability inside the radiation generator. It is preferable to regulate the potential.

絶縁性液体4は、放射線発生管2と外筒管5の周辺を満たし、放射線発生装置1の耐圧特性および動作時の安定性の観点から用いられる。すなわち、絶縁性液体4は、放射線発生管2の陰極8と陽極9の間の絶縁性確保、および放射線発生管2の動作時の放熱性向上のために用いられる。したがって、絶縁性液体4は、電気絶縁性が高く、冷却能力が高く、さらに熱による変質の少ないものが好ましく、例えば、シリコーン油、トランス油、フッ素系オイル等の電気絶縁油、ハイドロフルオロエーテル等のフッ素系の絶縁性液体等が使用可能である。   The insulating liquid 4 fills the periphery of the radiation generating tube 2 and the outer cylindrical tube 5 and is used from the viewpoint of pressure resistance characteristics of the radiation generating device 1 and stability during operation. That is, the insulating liquid 4 is used for ensuring insulation between the cathode 8 and the anode 9 of the radiation generating tube 2 and improving heat dissipation during operation of the radiation generating tube 2. Therefore, the insulating liquid 4 is preferably one having high electrical insulation, high cooling capacity, and less deterioration due to heat. For example, electrical insulating oil such as silicone oil, transformer oil, fluorine oil, hydrofluoroether, etc. Fluorine-based insulating liquid or the like can be used.

外筒管5は、誘電体材料からなり、放射線発生管2の外周に沿って離間し、放射線発生管2を周状に囲む筒状をなしており、放射線発生管2と収納容器3、もしくは収納容器3内の不図示の他の構成部材との耐圧特性の向上のために用いられる。したがって、外筒管5としては、耐油性の樹脂が好ましく、ポリエーテルイミド樹脂やアクリル樹脂が好適である。また、放射線発生管2を冷却するため、放射線発生管2と外筒管5の間に、絶縁性液体4が流動可能な間隙を設けるのが良い。   The outer tube 5 is made of a dielectric material, is separated along the outer periphery of the radiation generating tube 2, and has a cylindrical shape surrounding the radiation generating tube 2, and the radiation generating tube 2 and the storage container 3 or It is used to improve the pressure resistance with other components (not shown) in the storage container 3. Accordingly, the outer tube 5 is preferably an oil-resistant resin, and is preferably a polyetherimide resin or an acrylic resin. In order to cool the radiation generating tube 2, it is preferable to provide a gap through which the insulating liquid 4 can flow between the radiation generating tube 2 and the outer tube 5.

ここで、放射線発生装置1を動作させた場合、放射線発生管2の陰極8および陽極9に与えられた電位によって、陰極8と陽極9の間、陰極8と収納容器3の間、陽極9と収納容器3の間などに電位差(=電圧)が生じる。この電圧によって、EHD効果により絶縁性液体4が対流する。特に陰極8と陽極9の間の電圧によって、放射線発生管2の外周沿面に沿った絶縁性液体4の流れ11、12が生じる。   Here, when the radiation generating apparatus 1 is operated, the potential applied to the cathode 8 and the anode 9 of the radiation generating tube 2 is set between the cathode 8 and the anode 9, between the cathode 8 and the storage container 3, and between the anode 9 and A potential difference (= voltage) occurs between the storage containers 3. This voltage causes the insulating liquid 4 to convect due to the EHD effect. In particular, due to the voltage between the cathode 8 and the anode 9, flows 11 and 12 of the insulating liquid 4 are generated along the outer circumferential surface of the radiation generating tube 2.

まず、図2を用いて、第一の電極6および第二の電極7を設けない場合の流れ11の様子を示す。放射線発生管2と外筒管5の間の流れ11は、一方行ではなく、時間および場所において揺らぎがあることを本発明者らは確認している。流れ11の矢印の向きは、定常的な流れの向きを示すものではなく、説明のために示したに過ぎない。第一の電極6および第二の電極7を設けない場合の流れ11は、放射線発生管2を冷却する一方で、絶縁性液体4と管状部材10とを摩擦させ、管状部材10の沿面の帯電を引き起こす。放射線発生装置1の使用状況によっては、管状部材10の沿面の帯電は蓄積していき、望まぬ放電に至る可能性がある。特に、動画撮影などで高電圧を連続的に印加する場合には、放電が発生する可能性が高まる。   First, the state of the flow 11 when the 1st electrode 6 and the 2nd electrode 7 are not provided is shown using FIG. The present inventors have confirmed that the flow 11 between the radiation generating tube 2 and the outer cylindrical tube 5 is not one-way, but fluctuates in time and place. The direction of the arrow of the flow 11 does not indicate a steady flow direction, but is merely shown for explanation. When the first electrode 6 and the second electrode 7 are not provided, the flow 11 cools the radiation generating tube 2, while rubbing the insulating liquid 4 and the tubular member 10 to charge the creeping surface of the tubular member 10. cause. Depending on how the radiation generator 1 is used, the charge on the creeping surface of the tubular member 10 may accumulate, leading to unwanted discharge. In particular, when a high voltage is continuously applied for moving image shooting or the like, the possibility of occurrence of discharge increases.

本発明では、図1に示すように、第一の電極6および第二の電極7を設け、流れ11に逆行する流れ12を発生させ、放射線発生管2と外筒管5の間の流れ11の流速を遅くしている。図1においても、流れ11、12の矢印の向きは、定常的な流れの向きを示すものではなく、図2と比較するために例示しているに過ぎない。逆行する流れ12を発生させるために、第一の電極6は、管軸方向において、陰極8を基準に陽極9とは反対側に配置し、陰極8よりも高電位に規定する。また、第二の電極7は、管軸方向に置いて、陽極9を基準に陰極8とは反対側に配置し、陽極9よりも低電位に規定する。さらに、第一の電極6と陰極8の間、第二の電極7と陽極9の間の耐圧を確保するため、第一の電極6と第二の電極7は、外筒管5の外周部に設けるのが良い。このような配置を実現するためには、外筒管5の陰極8側の開口は、管軸方向において陰極8を基準に陽極9とは反対側に位置し、外筒管5の陽極9側の開口は、管軸方向において陽極9を基準に陰極8とは反対側に位置する必要がある。なお、上記で述べた基準は、詳細には管状部材10との境界、すなわち接合部分である。   In the present invention, as shown in FIG. 1, a first electrode 6 and a second electrode 7 are provided to generate a flow 12 opposite to the flow 11, and a flow 11 between the radiation generating tube 2 and the outer tube 5. The flow rate is slow. Also in FIG. 1, the directions of the arrows of the flows 11 and 12 do not indicate a steady flow direction, but are merely illustrated for comparison with FIG. In order to generate the backward flow 12, the first electrode 6 is disposed on the opposite side of the anode 9 with respect to the cathode 8 in the tube axis direction, and is defined at a higher potential than the cathode 8. The second electrode 7 is disposed in the tube axis direction, is disposed on the opposite side of the cathode 8 with respect to the anode 9, and is defined at a lower potential than the anode 9. Furthermore, in order to ensure the breakdown voltage between the first electrode 6 and the cathode 8 and between the second electrode 7 and the anode 9, the first electrode 6 and the second electrode 7 are arranged on the outer peripheral portion of the outer tube 5. It is good to provide in. In order to realize such an arrangement, the opening on the cathode 8 side of the outer tube 5 is located on the side opposite to the anode 9 with respect to the cathode 8 in the tube axis direction, and the anode 9 side of the outer tube 5 Must be located on the side opposite to the cathode 8 with respect to the anode 9 in the tube axis direction. In addition, the reference | standard mentioned above is a boundary with the tubular member 10, ie, a junction part, in detail.

ここで、第一の電極6に、陰極8の電位Vcよりも高い電位Vcgを与えると、陰極8を挟んで対向するように、陰極8よりも電位の高い陽極9と第一の電極6が配置され、陰極8を境に逆向きの流れを生じようとする。同様に、第二の電極7に、陽極9の電位Vaよりも低い電位Vagを与えると、陽極9を挟んで対向するように、陽極9よりも電位の低い陰極8と第二の電極が配置され、陽極9を境に逆向きの流れを生じようとする。このように、外筒管5の両開口において、流れ11と逆行する流れ12が発生し、結果として流れ11の流速を低下させることができる。この結果、絶縁性液体4と管状部材10の摩擦が減少し、管状部材10沿面の帯電が抑制され、耐圧性能が向上する。第一の電極6および第二の電極7を設けたとしても、流れ11は無くならず、冷却能力を備えつつ、耐圧性能を向上させることが可能となる。   Here, when a potential Vcg higher than the potential Vc of the cathode 8 is applied to the first electrode 6, the anode 9 having a higher potential than the cathode 8 and the first electrode 6 are opposed to each other across the cathode 8. It is arranged and tries to generate a reverse flow with the cathode 8 as a boundary. Similarly, when a potential Vag lower than the potential Va of the anode 9 is applied to the second electrode 7, the cathode 8 and the second electrode having a potential lower than that of the anode 9 are arranged so as to face each other with the anode 9 interposed therebetween. Then, a reverse flow is attempted to occur at the anode 9 as a boundary. In this way, the flow 12 reverse to the flow 11 is generated at both openings of the outer tube 5, and as a result, the flow velocity of the flow 11 can be reduced. As a result, friction between the insulating liquid 4 and the tubular member 10 is reduced, charging along the tubular member 10 is suppressed, and pressure resistance is improved. Even if the first electrode 6 and the second electrode 7 are provided, the flow 11 does not disappear, and it is possible to improve the pressure resistance performance while providing cooling capability.

逆行する流れ12は、外筒管5の開口部全周囲において発生させることが好ましく、第一の電極6および第二の電極7は、図1(B)に示すように、導電性の環状部材、もしくは、図1(C)に示すように、導電性部材を離散的に環状に配置するのが良い。図1(C)に示す導電性部材は、それぞれ隣接する導電性部材と配線13により電気的に接続すればよい。   The backward flow 12 is preferably generated around the entire opening of the outer tube 5, and the first electrode 6 and the second electrode 7 are formed of a conductive annular member as shown in FIG. Alternatively, as shown in FIG. 1C, the conductive members are preferably discretely arranged in an annular shape. The conductive member illustrated in FIG. 1C may be electrically connected to the adjacent conductive member through the wiring 13.

また、流れ11および12の定常的な偏りをなくすために、放射線発生管2と外筒管5は外周方向に沿って、一定の距離をおいて配置されるのが好ましい。特に、図1(B)、(C)に示すような、断面が円形の放射線発生管2を用いる場合には、放射線発生管2、外筒管5、第一の電極6または第二の電極7が同心円状に配置されるのが好ましい。   Further, in order to eliminate the steady bias of the flows 11 and 12, it is preferable that the radiation generating tube 2 and the outer tube 5 are arranged at a certain distance along the outer peripheral direction. In particular, when a radiation generating tube 2 having a circular cross section as shown in FIGS. 1B and 1C is used, the radiation generating tube 2, the outer tube 5, the first electrode 6 or the second electrode. 7 are preferably arranged concentrically.

収納容器3が接地電位に規定される場合、第一の電極6および第二の電極7ともに接地電位に規定すると、別途電源を設ける必要が無くなり、放射線発生装置1の小型化、軽量化のためには良い。   When the storage container 3 is regulated to the ground potential, if both the first electrode 6 and the second electrode 7 are regulated to the ground potential, there is no need to provide a separate power source, and the radiation generator 1 can be reduced in size and weight. Good for.

ここで、図1に示され、詳細を後述する透過型の放射線発生管2では、陰極8から見て、陽極9側に放射線20を射出する構造であり、ターゲット15は陽極9上の放射線発生管2の外側面に配置される。ターゲット15は電子線17の照射により発熱するが、熱は陽極9に伝導するため、陽極9を冷却することで、発熱部であるターゲット15を冷却することが可能である。絶縁性液体4の対流は、陽極9と収納容器3との間でも発生するので、透過型の場合は第一の電極6および第二の電極7の有無に関わらず、この対流によっても、陽極9を冷却することができる。すなわち、最も温度上昇するターゲット15を効果的に冷却できる。よって、透過型の放射線発生管2では、流れ11に求められる冷却能力が軽減される。したがって、透過型の放射線発生管は、本発明を適用するのに好ましい形態といえる。   Here, the transmission-type radiation generating tube 2 shown in FIG. 1 and described in detail later has a structure in which radiation 20 is emitted toward the anode 9 when viewed from the cathode 8, and the target 15 generates radiation on the anode 9. Located on the outer surface of the tube 2. Although the target 15 generates heat by irradiation with the electron beam 17, since heat is conducted to the anode 9, it is possible to cool the target 15, which is a heat generating part, by cooling the anode 9. Since the convection of the insulating liquid 4 also occurs between the anode 9 and the storage container 3, in the case of the transmission type, regardless of the presence or absence of the first electrode 6 and the second electrode 7, 9 can be cooled. That is, the target 15 whose temperature rises most can be effectively cooled. Therefore, in the transmission type radiation generating tube 2, the cooling capacity required for the flow 11 is reduced. Therefore, it can be said that the transmission type radiation generating tube is a preferable form for applying the present invention.

なお、電極として第一の電極6と第2の電極7の両方の電極を設けた場合で本発明を説明したが、いずれか一方の電極を設けた場合でも本発明の効果を得ることができる。   Although the present invention has been described in the case where both the first electrode 6 and the second electrode 7 are provided as electrodes, the effect of the present invention can be obtained even when any one of the electrodes is provided. .

最後に、本発明が好適に適用される、透過型の放射線発生管の基本構造を説明すると、透過型ターゲットが、電子放出源と対向し、電子放出源から放出された電子の照射により放射線を発生するターゲット層と、ターゲット層を支持し前記放射線を透過する材料からなる基材とから構成される。透過型ターゲットは、陽極部材に接続され、陽極部材と透過型ターゲットとにより陽極を構成する。このような透過型ターゲットを備えた放射線発生管を、本願明細書において、透過型放射線発生管と称する。次に、図1に基づいてより詳細に説明する。   Finally, the basic structure of a transmission type radiation generating tube to which the present invention is suitably applied will be described. A transmission type target is opposed to an electron emission source and emits radiation by irradiation of electrons emitted from the electron emission source. The target layer is generated and a base material made of a material that supports the target layer and transmits the radiation. The transmission target is connected to the anode member, and the anode member and the transmission target constitute an anode. The radiation generating tube provided with such a transmission type target is referred to as a transmission type radiation generating tube in the present specification. Next, it demonstrates in detail based on FIG.

放射線発生管2は、陰極8と、陰極8に接続された電子放出源14と、陽極9と、陽極9に接続されたターゲット15と、管状部材10とを備える。陰極8と陽極9は、互いに離れた位置で、管状部材10が備える二つの開口に、それぞれ接続されている。電子放出源14は、放射線発生管2の内部空間に配置され、電子放出部16を有する。電子放出部16から放出された電子が、電子線17としてターゲット15に照射可能な程度に、放射線発生管2の内部空間は減圧(真空排気)されている。放射線発生管2の内部空間の真空度は、使用する電子放出源14の種類や、駆動条件等を考慮して適宜選択することが可能であるが、例えば、1E−4乃至1E−8Paとすることが可能である。Spindt型、MIM等の冷陰極型電子放出源を使用した場合には、1E−6Pa以下の真空度とすることが、電子放出特性の安定性の点でより好ましい。真空度の維持の為に、不図示のゲッタを放射線発生管2の内部空間、若しくは、内部空間に連通している不図示の補助スペースに設置することも可能である。   The radiation generating tube 2 includes a cathode 8, an electron emission source 14 connected to the cathode 8, an anode 9, a target 15 connected to the anode 9, and a tubular member 10. The cathode 8 and the anode 9 are respectively connected to two openings provided in the tubular member 10 at positions separated from each other. The electron emission source 14 is disposed in the internal space of the radiation generating tube 2 and has an electron emission portion 16. The internal space of the radiation generating tube 2 is depressurized (evacuated) to such an extent that electrons emitted from the electron emission unit 16 can be irradiated onto the target 15 as an electron beam 17. The degree of vacuum in the internal space of the radiation generating tube 2 can be appropriately selected in consideration of the type of electron emission source 14 to be used, driving conditions, and the like. For example, the degree of vacuum is set to 1E-4 to 1E-8 Pa. It is possible. When a cold cathode type electron emission source such as Spindt type or MIM is used, a vacuum degree of 1E-6 Pa or less is more preferable from the viewpoint of stability of electron emission characteristics. In order to maintain the degree of vacuum, a getter (not shown) can be installed in the internal space of the radiation generating tube 2 or an auxiliary space (not shown) communicating with the internal space.

電子放出源14としては、放射線発生管2の外部より放出電子量を制御可能な電子放出源であれば良く、前述の冷陰極型電子放出源の他、熱陰極型電子放出源を適宜適用することが可能である。大電流の電子線17を安定に取り出せる点で、含浸型カソードの熱陰極電子放出源を好適に使用することができる。   The electron emission source 14 may be any electron emission source that can control the amount of emitted electrons from the outside of the radiation generating tube 2, and a hot cathode type electron emission source is appropriately applied in addition to the aforementioned cold cathode type electron emission source. It is possible. A hot cathode electron emission source of an impregnated cathode can be preferably used in that a large current electron beam 17 can be stably taken out.

電子放出源14は、陰極8に設けた電流導入端子18を介して、電子放出量および電子放出のオン・オフタイミングを制御可能なように、放射線発生管2の外部に設置した駆動回路19に電気的に接続される。   The electron emission source 14 is connected to a drive circuit 19 installed outside the radiation generating tube 2 so that the amount of electron emission and the on / off timing of electron emission can be controlled via a current introduction terminal 18 provided on the cathode 8. Electrically connected.

電子放出部16は、電子源のタイプに応じて、電子放出に必要な駆動用電極を備える(不図示)。電子ビーム収束、非点収差補正等の電子光学的な機能を付加する場合は、さらに数極の補助電極(不図示)を備える。前述の駆動用電極と補助電極とからなる電極群は、陰極8側から、放射線発生管2の外部の駆動回路19と、電流導入端子18を介して接続することが可能である。   The electron emission unit 16 includes driving electrodes necessary for electron emission according to the type of electron source (not shown). In the case of adding an electron optical function such as electron beam convergence and astigmatism correction, several auxiliary electrodes (not shown) are further provided. The electrode group composed of the driving electrode and the auxiliary electrode can be connected to the driving circuit 19 outside the radiation generating tube 2 from the cathode 8 side via the current introduction terminal 18.

ターゲット15は、電子放出部16から放出された電子の照射を受けることが可能なように、放射線発生管2の内部に配置される。陰極8と陽極9間の電場の対称性の観点からは、ターゲット15が電子放出部16と対向して配置されることが好ましい。   The target 15 is disposed inside the radiation generating tube 2 so that it can be irradiated with electrons emitted from the electron emission unit 16. From the viewpoint of the symmetry of the electric field between the cathode 8 and the anode 9, it is preferable that the target 15 is disposed to face the electron emission portion 16.

ターゲット15には、電子放出部16に対して10kV乃至200kVの正電位が印加されており、電子放出部16から放出された電子が電子線17として、10keV乃至200keVの入射エネルギーを有してターゲット15に入射し、ターゲット15で放射線を発生する。ターゲット15は、電子の衝突によって放射線20を発生する重元素を含有したターゲット材を備えている。ターゲット15は、ターゲット材のみからなる自立型の形態とすることが可能であり、自立型の形態としては、ダイアフラム状の金属薄膜が陽極9に接続されている形態を含む。またターゲット15は、放射線を透過する材料中にターゲット材料を分散した状態で含有した分散型形態とすることや、ターゲット材料を含む金属薄膜を、放射線を透過する材料からなる基板上に積層させた積層型の形態とすることも可能である。放射線を透過する基板としては、ベリリウムやダイアモンドのような低原子番号材料からなる基板が好ましい。金属薄膜は数μmの厚さで基板上に形成することが、放射線の減衰を抑制する点、ターゲット15の熱変形によるデフォーカスを抑制する点で好ましい。この金属薄膜は、放射線量/入射電子量の変換効率の観点から、原子番号26以上の重金属材料を用いることが好ましい。具体的には、タングステン、モリブデン、クロム、銅、コバルト、鉄、ロジウム、レニウム等、あるいはこれらの合金材料とすることが可能である。基板上に金属薄膜を形成する場合は、基板との密着性が確保されれば、特定の製法には限定されず、スパッタ、CVD、蒸着等の各種成膜方法が利用可能である。   A positive potential of 10 kV to 200 kV is applied to the target 15 with respect to the electron emission portion 16, and electrons emitted from the electron emission portion 16 have an incident energy of 10 keV to 200 keV as an electron beam 17. 15 and the target 15 generates radiation. The target 15 includes a target material containing a heavy element that generates radiation 20 by electron collision. The target 15 can be in a self-supporting form made of only the target material. The self-supporting form includes a form in which a diaphragm-like metal thin film is connected to the anode 9. Moreover, the target 15 is made into a dispersion | distribution form which contained the target material in the state which disperse | distributed in the material which permeate | transmits radiation, or the metal thin film containing a target material was laminated | stacked on the board | substrate which consists of a material which permeate | transmits radiation. It is also possible to use a stacked type. The substrate that transmits radiation is preferably a substrate made of a low atomic number material such as beryllium or diamond. The metal thin film is preferably formed on the substrate with a thickness of several μm from the viewpoint of suppressing radiation attenuation and suppressing defocus due to thermal deformation of the target 15. The metal thin film is preferably made of a heavy metal material having an atomic number of 26 or more from the viewpoint of the conversion efficiency of radiation dose / incident electron quantity. Specifically, tungsten, molybdenum, chromium, copper, cobalt, iron, rhodium, rhenium, or the like, or an alloy material thereof can be used. In the case of forming a metal thin film on a substrate, it is not limited to a specific manufacturing method as long as adhesion to the substrate is ensured, and various film forming methods such as sputtering, CVD, and vapor deposition can be used.

なお、ターゲット15は陽極9により電位規定される。また、陽極9は、放射線20の照射範囲を規定可能な不図示の遮蔽体を別途備えることが可能である。この場合、ターゲット15は、この遮蔽体を介して電位規定されることも可能である。   The potential of the target 15 is regulated by the anode 9. In addition, the anode 9 can be separately provided with a shield (not shown) that can define the irradiation range of the radiation 20. In this case, the potential of the target 15 can be regulated via the shield.

陰極8および陽極9は、不図示の電圧源により電位規定される。また、陰極8および陽極9は、放射線発生管2の内部の静電場を規定する機能を有する。よって、陰極8および陽極9は、電子放出源14およびターゲット15のそれぞれの近傍における電界分布を、なるべく平行電場に近づけるのが望ましい。従って、陰極8および陽極9のそれぞれは、所定の面積の範囲を電位規定することが好ましく、管状部材10の開口断面積に一致させることがより好ましい。   The cathode 8 and the anode 9 are regulated in potential by a voltage source (not shown). The cathode 8 and the anode 9 have a function of defining an electrostatic field inside the radiation generating tube 2. Therefore, it is desirable that the cathode 8 and the anode 9 make the electric field distribution in the vicinity of the electron emission source 14 and the target 15 as close to a parallel electric field as possible. Therefore, each of the cathode 8 and the anode 9 preferably regulates a potential within a predetermined area, and more preferably matches the opening cross-sectional area of the tubular member 10.

陰極8と陽極9の材料は、導電性、気密性、強度、及び管状部材10との線膨張係数整合によって決めることが可能であり、コバールやタングステン等を適用することが可能である。   The material of the cathode 8 and the anode 9 can be determined by conductivity, air tightness, strength, and linear expansion coefficient matching with the tubular member 10, and Kovar, tungsten, or the like can be applied.

なお、収納容器3には放射線20に対応して、放射線透過窓21が設けられている。   The storage container 3 is provided with a radiation transmitting window 21 corresponding to the radiation 20.

管状部材10は誘電性を有し、陰極8と陽極9のそれぞれを接続する少なくとも2つの開口を備えている。また管状部材10は、その断面が円管状の形態に限らず、その断面の外周形状や内周形状が多角形であってもよい。管状部材10の材料は、電気絶縁性、気密性、低ガス放出性、耐熱性、および、陰極8や陽極9との線膨張係数整合の観点で選ばれるが、ボロンナイトライド、アルミナ等の絶縁性セラミック、ホウケイ酸ガラス等の絶縁性の無機ガラスが適用可能である。   The tubular member 10 is dielectric and includes at least two openings that connect the cathode 8 and the anode 9 respectively. Further, the tubular member 10 is not limited to a circular tubular cross section, and the outer peripheral shape and inner peripheral shape of the cross section may be polygonal. The material of the tubular member 10 is selected from the viewpoints of electrical insulation, air tightness, low outgassing properties, heat resistance, and linear expansion coefficient matching with the cathode 8 and the anode 9, but insulation such as boron nitride and alumina. Insulating inorganic glass such as conductive ceramic and borosilicate glass is applicable.

陰極8または陽極9と、管状部材10とは接合材(不図示)をもって接合される。接合材としては、導電性を有し、耐熱性と金属―絶縁体の異種材料間の接合性が良好な銀ろう、銅ろう等の硬ろう(ろう付け用合金)が好ましく適用できる。   The cathode 8 or the anode 9 and the tubular member 10 are joined with a joining material (not shown). As the bonding material, a hard brazing (a brazing alloy) such as silver brazing, copper brazing or the like, which has electrical conductivity and has good heat resistance and good bonding between different kinds of metal-insulator materials, can be preferably applied.

<実施例1>
本実施例は上記実施形態で例示された構成の例であり、以下、図1(A)、(B)を用いて詳細に説明する。図1(A)は、本実施例の放射線発生装置1の断面図、図1(B)は図1(A)のA−A’位置に相当する断面図である。
<Example 1>
This example is an example of the configuration exemplified in the above embodiment, and will be described in detail below with reference to FIGS. 1A is a cross-sectional view of the radiation generating apparatus 1 of the present embodiment, and FIG. 1B is a cross-sectional view corresponding to the position AA ′ in FIG. 1A.

放射線発生管2は透過型であり、陰極8と陽極9とで管状部材10の二つの開口を塞ぐように封止されている。陰極8には、陰極電位を基準とした、電子放出部16を有する電子放出源14が接続されている。陽極9には、電子放出部16から放出された電子線17が衝突することによって放射線を放出するターゲット15が設けられている。陰極8及び陽極9にはコバール、管状部材10にはアルミナを用い、ろう付け法により接合した。陰極8及び陽極9は厚さ3mmの円形(円板状)、管状部材10は円筒形とした。電子放出源14には含浸カソードを用い、ターゲット15はダイヤモンド基板上にタングステンを成膜したものを用いた。放射線発生管2は、外径がΦ50mm、管軸方向の長さが66mmで、外周での陰極8と陽極9の距離は60mmである。   The radiation generating tube 2 is a transmission type, and is sealed with a cathode 8 and an anode 9 so as to close two openings of the tubular member 10. Connected to the cathode 8 is an electron emission source 14 having an electron emission portion 16 based on the cathode potential. The anode 9 is provided with a target 15 that emits radiation when the electron beam 17 emitted from the electron emission portion 16 collides. Kovar was used for the cathode 8 and anode 9, and alumina was used for the tubular member 10, and they were joined by brazing. The cathode 8 and the anode 9 were circular (disk shape) with a thickness of 3 mm, and the tubular member 10 was cylindrical. An impregnated cathode was used as the electron emission source 14, and a target 15 was formed by depositing tungsten on a diamond substrate. The radiation generating tube 2 has an outer diameter of Φ50 mm, a length in the tube axis direction of 66 mm, and the distance between the cathode 8 and the anode 9 on the outer periphery is 60 mm.

外筒管5は、アクリルの円筒管とした。内径56Φmm、外径Φ66mmとし、管軸方向の長さは86mmである。   The outer tube 5 was an acrylic cylindrical tube. The inner diameter is 56 Φmm, the outer diameter is Φ66 mm, and the length in the tube axis direction is 86 mm.

放射線発生管2と外筒管5は、周方向には、中心を同じくした同心円状に、管軸方向には、管状部材10の中央部と外筒管5の中央部が揃うように固定した。放射線発生管2と外筒管5との相互の固定は、不図示の樹脂製のスペーサを、周方向に120度毎に配置して行った。管軸方向には、同様にして、不図示の樹脂製のスペーサを用いて、放射線発生管2の管軸方向の2か所で固定した。外筒管5は、陰極8と管状部材10の接合部、および陽極9と管状部材10の接合部から、それぞれ管軸方向外側に13mmずつ突出している。   The radiation generating tube 2 and the outer tube 5 are fixed so that the center is concentric in the circumferential direction and the center of the tubular member 10 and the center of the outer tube 5 are aligned in the tube axis direction. . The radiation generating tube 2 and the outer cylindrical tube 5 were fixed to each other by arranging resin spacers (not shown) in the circumferential direction every 120 degrees. Similarly, in the tube axis direction, the radiation generating tube 2 was fixed at two locations in the tube axis direction using resin spacers (not shown). The outer tube 5 protrudes 13 mm outward from the joint between the cathode 8 and the tubular member 10 and the joint between the anode 9 and the tubular member 10 outward in the tube axis direction.

第一の電極6および第二の電極7は、内径が66mm、外径が68mm、幅3mmの真鍮製の環状電極とし、不図示のネジで固定した。管軸方向の場所は、それぞれが外筒管5の開口端から1mmの位置である。また、不図示の配線によって収納容器3と接続した。この結果、第一の電極6は、陰極8と管状部材10の接合部から9mm、陽極9とは反対側にずれて位置し、第二の電極7は、陽極9と管状部材10の接合部から9mm、陰極8とは反対側にずれて位置したことになる。   The first electrode 6 and the second electrode 7 were brass annular electrodes having an inner diameter of 66 mm, an outer diameter of 68 mm, and a width of 3 mm, and were fixed with screws (not shown). The locations in the tube axis direction are each 1 mm from the open end of the outer tube 5. Moreover, it connected with the storage container 3 by wiring not shown. As a result, the first electrode 6 is positioned 9 mm away from the junction of the cathode 8 and the tubular member 10 and is shifted to the opposite side of the anode 9, and the second electrode 7 is the junction of the anode 9 and the tubular member 10. 9 mm from the cathode 8 and shifted to the opposite side to the cathode 8.

以上に述べた相互の固定により外筒管5と一体化された放射線発生管2を、駆動回路19と共に収納容器3に納め、駆動回路19と放射線発生管2とを、不図示の配線により電気的に接続させた。さらに、不図示の注入口より絶縁性液体4として高圧絶縁油A(JX日鉱日石エネルギー株式会社製)を収納容器3の余空間に充填して、放射線発生装置1を作製した。収納容器3は真鍮製であり、放射線発生管2からの放射線20に合わせて放射線透過窓21を設けている。   The radiation generating tube 2 integrated with the outer tube 5 by mutual fixation as described above is housed in the storage container 3 together with the drive circuit 19, and the drive circuit 19 and the radiation generating tube 2 are electrically connected by a wiring (not shown). Connected. Furthermore, high-pressure insulating oil A (manufactured by JX Nippon Mining & Energy Co., Ltd.) was filled into the storage container 3 as an insulating liquid 4 from an injection port (not shown) to produce the radiation generator 1. The storage container 3 is made of brass, and a radiation transmitting window 21 is provided in accordance with the radiation 20 from the radiation generating tube 2.

この放射線発生装置1において、収納容器3、第一の電極6、および第二の電極7を接地し、陰極8を−57.5kV、陽極9を+57.5kVに規定して放電するまでの時間を測定することによって、耐圧信頼性を確認した。陰極8と陽極9には115kVの電圧がかかった状態で100時間に渡り、持続的に管電圧が印加可能であるばかりでなく、管電流の変動も認められなかった。   In this radiation generating apparatus 1, the time until discharge is performed with the storage container 3, the first electrode 6 and the second electrode 7 grounded, the cathode 8 set to -57.5 kV, and the anode 9 set to +57.5 kV. The withstand voltage reliability was confirmed by measuring. A tube voltage could be continuously applied to the cathode 8 and the anode 9 with a voltage of 115 kV for 100 hours, and fluctuations in the tube current were not observed.

また、陰極8を−50kV、陽極9を50kVに規定し、Vaを100kVとして、電子放出源14を、パルス幅9ms、周波数15Hzで30分間連続駆動したところ異常な温度上昇は認められず、安定した放射線放出が確認された。   Further, when the cathode 8 is set to −50 kV, the anode 9 is set to 50 kV, Va is set to 100 kV, and the electron emission source 14 is continuously driven at a pulse width of 9 ms and a frequency of 15 Hz for 30 minutes, an abnormal temperature rise is not recognized and stable. Confirmed radiation emission.

<実施例2>
電極として、陰極側には設けず、陽極側の電極7のみ実装する他は、実施例1と同様に放射線発生装置1を作製し、同様に試験を行った。本実施例の態様でも、100時間の耐圧維持が可能であり、管電流の変動についても、ほとんど認められず、良好な信頼性を示すことが確認された。
<Example 2>
The radiation generating apparatus 1 was produced in the same manner as in Example 1 except that only the anode-side electrode 7 was mounted as an electrode, not on the cathode side, and the test was performed in the same manner. Also in this embodiment, it was possible to maintain the withstand voltage for 100 hours, and almost no fluctuations in the tube current were observed, and it was confirmed that good reliability was exhibited.

<比較例1>
比較例として、実施例1で作製した放射線発生装置1に対して、第一の電極6および第二の電極7を設けずに、図2に示す放射線発生装置を作製した。図2は本比較例の放射線発生装置1の断面図であり、図1(A)と同じ部材には同じ符号を付してある。
<Comparative Example 1>
As a comparative example, the radiation generating apparatus shown in FIG. 2 was manufactured without providing the first electrode 6 and the second electrode 7 with respect to the radiation generating apparatus 1 manufactured in Example 1. FIG. 2 is a cross-sectional view of the radiation generator 1 of this comparative example, and the same members as those in FIG.

この放射線発生装置1において、収納容器3を接地し、陰極8を−57.5kV、陽極9を+57.5kVに規定して放電するまでの時間を測定することによって、耐圧信頼性を確認した。耐圧信頼性の結果は、実施例1と同様に100時間の管電圧Vaとして115kVを持続的に印加することが可能であったが、管電流の変動が認められた。本比較例の、外筒管5と放射線発生管2との間で、微小な放電が複数回発生しているものと考えられ、信頼性については、実施例1および実施例2に及ばないものであった。   In this radiation generating apparatus 1, the withstand voltage reliability was confirmed by measuring the time until the storage container 3 was grounded, the cathode 8 was set to -57.5 kV, and the anode 9 was set to +57.5 kV to discharge. As a result of the withstand voltage reliability, it was possible to continuously apply 115 kV as the tube voltage Va for 100 hours as in the case of Example 1, but the fluctuation of the tube current was recognized. In this comparative example, it is considered that minute discharges are generated a plurality of times between the outer tube 5 and the radiation generating tube 2, and the reliability does not reach that in the first and second embodiments. Met.

<実施例3>
本実施例は、放射線発生装置を用いた放射線撮影装置である。本実施例の放射線撮影装置は、図3に示すように、放射線発生装置1、放射線検出器31、信号処理部32、装置制御部33及び表示部34を備えている。放射線検出器31は信号処理部32を介して装置制御部33に接続され、装置制御部33は表示部34及び電圧制御部35に接続されている。放射線発生装置1としては、実施例1の放射線発生装置を用いた。放射線発生装置1における処理は装置制御部33によって統括制御される。例えば、装置制御部33は放射線発生装置1と放射線検出器31による放射線撮影を制御する。放射線発生装置1から放出された放射線20は、被検体36を介して放射線検出器31で検出され、被検体の放射線透過画像が撮影される。撮影された放射線透過画像は表示部34に表示される。また例えば、装置制御部33は放射線発生装置1の駆動を制御し、電圧制御部35を介して放射線発生管に印加される電圧信号を制御することにより、放射線発生装置1と、放線検出器31とを統合して制御する。
<Example 3>
The present embodiment is a radiation imaging apparatus using a radiation generator. As shown in FIG. 3, the radiation imaging apparatus of the present embodiment includes a radiation generation apparatus 1, a radiation detector 31, a signal processing unit 32, an apparatus control unit 33, and a display unit 34. The radiation detector 31 is connected to the device control unit 33 via the signal processing unit 32, and the device control unit 33 is connected to the display unit 34 and the voltage control unit 35. As the radiation generator 1, the radiation generator of Example 1 was used. Processing in the radiation generating apparatus 1 is comprehensively controlled by the apparatus control unit 33. For example, the device control unit 33 controls radiation imaging by the radiation generator 1 and the radiation detector 31. The radiation 20 emitted from the radiation generator 1 is detected by the radiation detector 31 through the subject 36, and a radiation transmission image of the subject is taken. The captured radiation transmission image is displayed on the display unit 34. In addition, for example, the apparatus control unit 33 controls the driving of the radiation generation apparatus 1 and controls a voltage signal applied to the radiation generation tube via the voltage control unit 35, whereby the radiation generation apparatus 1 and the radiation detector 31 are controlled. Integrate and control.

本実施例の放射線撮影装置は、安定した放射線画像を得ることのできる良好な性能のものであった。   The radiographic apparatus of the present example had a good performance capable of obtaining a stable radiographic image.

1:放射線発生装置、2:放射線発生管、3:収納容器、4:絶縁性液体、5:外筒管、6:第一の電極、7:第二の電極、8:陰極、9:陽極、10:絶縁管(管状部材)、11:流れ、12:逆行する流れ、13:配線、14:電子放出源、15:ターゲット、16:電子放出部、17:電子線、31:放射線検出器、32:信号処理部、33:装置制御部、34:表示部、35:電圧制御部、36:被検体   1: Radiation generator, 2: Radiation tube, 3: Storage container, 4: Insulating liquid, 5: Outer tube, 6: First electrode, 7: Second electrode, 8: Cathode, 9: Anode 10: Insulating tube (tubular member), 11: flow, 12: reverse flow, 13: wiring, 14: electron emission source, 15: target, 16: electron emission unit, 17: electron beam, 31: radiation detector 32: signal processing unit, 33: device control unit, 34: display unit, 35: voltage control unit, 36: subject

Claims (11)

陰極と、該陰極と対向する陽極と、前記陰極と前記陽極とに狭持された絶縁管とを備える放射線発生管と、該放射線発生管の外周に沿って離間し、前記放射線発生管を周状に囲み、誘電体からなる筒状の外筒管と、少なくとも該放射線発生管と該外筒管とを収納する収納容器と、該収納容器の内部において、前記放射線発生管と前記外筒管とに接触するように収納された絶縁性液体と、を備えた放射線発生装置において、
前記外筒管の一方の開口は、管軸方向において前記陰極を基準に前記陽極とは反対側に位置し、前記外筒管の他方の開口は、管軸方向において前記陽極を基準に前記陰極とは反対側に位置し、
前記陰極を基準に前記陽極とは反対側において前記外筒管に固定され、前記陰極よりも高い電位に規定された電極と、前記陽極を基準に前記陰極とは反対側において前記外筒管に固定され、前記陽極よりも低い電位に規定された電極とのうち、少なくとも一方の電極を有することを特徴とする放射線発生装置。
A radiation generating tube comprising a cathode, an anode facing the cathode, and an insulating tube sandwiched between the cathode and the anode, and spaced apart along the outer periphery of the radiation generating tube to surround the radiation generating tube. A cylindrical outer cylindrical tube made of a dielectric material, a storage container for storing at least the radiation generating tube and the outer cylindrical tube, and the radiation generating tube and the outer cylindrical tube inside the storage container A radiation generator comprising: an insulating liquid stored in contact with
One opening of the outer tube is located on the opposite side of the anode with respect to the cathode in the tube axis direction, and the other opening of the outer tube is the cathode with respect to the anode in the tube axis direction. Located on the opposite side of
An electrode fixed to the outer tube on the side opposite to the anode with respect to the cathode and defined at a higher potential than the cathode; and an electrode on the outer tube on the side opposite to the cathode with respect to the anode A radiation generating apparatus comprising: at least one of fixed electrodes and a potential lower than that of the anode.
前記陰極を基準に前記陽極とは反対側において前記外筒管に固定され、前記陰極よりも高い電位に規定された第一の電極と、前記陽極を基準に前記陰極とは反対側において前記外筒管に固定され、前記陽極よりも低い電位に規定された第二の電極とを有することを特徴とする請求項1に記載の放射線発生装置。   A first electrode fixed to the outer tube on the side opposite to the anode with respect to the cathode and defined at a higher potential than the cathode; and the outer side on the side opposite to the cathode with respect to the anode. The radiation generating apparatus according to claim 1, further comprising a second electrode fixed to a cylindrical tube and defined at a lower potential than the anode. 前記第一の電極および前記第二の電極は、前記外筒管の外周部に形成されることを特徴とする請求項2に記載の放射線発生装置。   The radiation generating apparatus according to claim 2, wherein the first electrode and the second electrode are formed on an outer peripheral portion of the outer tube. 前記第一の電極および前記第二の電極は、導電性の環状部材からなることを特徴とする請求項2または3に記載の放射線発生装置。   The radiation generator according to claim 2, wherein the first electrode and the second electrode are made of a conductive annular member. 前記第一の電極および前記第二の電極は、導電性部材が離散的に環状に配置されていることを特徴とする請求項3に記載の放射線発生装置。   The radiation generating apparatus according to claim 3, wherein the first electrode and the second electrode have conductive members discretely arranged in an annular shape. 前記放射線発生管の外周と前記外筒管の外周は、同心円状に配置されることを特徴とする請求項1乃至5のいずれか1項に記載の放射線発生装置。   6. The radiation generating apparatus according to claim 1, wherein an outer periphery of the radiation generating tube and an outer periphery of the outer cylindrical tube are arranged concentrically. 前記第一の電極と前記第二の電極とは、同電位に規定されることを特徴とする請求項1乃至6のいずれか1項に記載の放射線発生装置。   The radiation generating apparatus according to claim 1, wherein the first electrode and the second electrode are defined to have the same potential. 前記陽極は接地電位に対して正電位、前記陰極は接地電位に対して負電位に規定され、前記第一の電極および前記第二の電極は、接地電位に規定されることを特徴とする請求項7のいずれか1項に記載の放射線発生装置。   The anode is defined as a positive potential with respect to a ground potential, the cathode is defined as a negative potential with respect to the ground potential, and the first electrode and the second electrode are defined as a ground potential. Item 8. The radiation generator according to any one of Items 7 to 9. 前記絶縁性液体は、シリコーン油、トランス油、フッ素系オイルのいずれかであることを特徴とする請求項1乃至8のいずれか1項に記載の放射線発生装置。   The radiation generating apparatus according to claim 1, wherein the insulating liquid is any one of silicone oil, transformer oil, and fluorine oil. 前記放射線発生管は、前記陽極部材に接続された透過型ターゲットを備える透過型放射線発生管であることを特徴とする請求項1乃至9のいずれか1項に記載の放射線発生装置。   The radiation generating apparatus according to claim 1, wherein the radiation generating tube is a transmissive radiation generating tube including a transmissive target connected to the anode member. 請求項1乃至10のいずれか1項に記載の放射線発生装置と、前記放射線発生装置から放出され被検体を透過した放射線を検出する放射線検出器と、前記放射線発装置と前記放射線検出器とを統合して制御する装置制御部とを備えることを特徴とする放射線撮影装置。   A radiation generator according to any one of claims 1 to 10, a radiation detector that detects radiation emitted from the radiation generator and transmitted through a subject, the radiation generator, and the radiation detector. A radiation imaging apparatus comprising: an apparatus control unit that performs integrated control.
JP2012276539A 2012-12-19 2012-12-19 Radiation generation device and radiographic apparatus Pending JP2014120418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012276539A JP2014120418A (en) 2012-12-19 2012-12-19 Radiation generation device and radiographic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012276539A JP2014120418A (en) 2012-12-19 2012-12-19 Radiation generation device and radiographic apparatus

Publications (1)

Publication Number Publication Date
JP2014120418A true JP2014120418A (en) 2014-06-30

Family

ID=51175072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012276539A Pending JP2014120418A (en) 2012-12-19 2012-12-19 Radiation generation device and radiographic apparatus

Country Status (1)

Country Link
JP (1) JP2014120418A (en)

Similar Documents

Publication Publication Date Title
JP5796990B2 (en) X-ray generator and X-ray imaging apparatus using the same
US9373478B2 (en) Radiation generating apparatus and radiation imaging apparatus
EP2547177B1 (en) Radiation generating apparatus and radiation imaging apparatus
JP5713832B2 (en) Radiation generator and radiation imaging apparatus using the same
KR101563521B1 (en) Radiation generating apparatus and radiation imaging apparatus
US9595415B2 (en) X-ray generator and X-ray imaging apparatus
US9117621B2 (en) Radiation generating tube, radiation generating unit, and radiation image taking system
JP2013020792A (en) Radiation generating device and radiography device using it
CN108933072B (en) Anode and X-ray generating tube, X-ray generating apparatus and radiography system
US20160020060A1 (en) X-ray generating tube, x-ray generating apparatus, x-ray imaging system, and anode used therefor
JP5911283B2 (en) Radiation generator
US20130121473A1 (en) Radiation generating tube and radiation generating apparatus using the same
JP2014086147A (en) Radiation generating tube, radiation generating unit and radiation image pick-up system
JP2014149932A (en) Radiation generator and radiographic system
JP2014139876A (en) Radiation generator and radiographic system
JP2014120418A (en) Radiation generation device and radiographic apparatus
JP5725827B2 (en) Radiation generator and radiation imaging system
JP2016154087A (en) Radiation generator and radiographic system
JP5449118B2 (en) Transmission type radiation tube, radiation generator, and radiation imaging apparatus
JP2015056247A (en) Radiation generation device and radiographic device using the same
JP2015090840A (en) Radiation generator and radiography system