JP2014119154A - Air conditioner - Google Patents
Air conditioner Download PDFInfo
- Publication number
- JP2014119154A JP2014119154A JP2012273186A JP2012273186A JP2014119154A JP 2014119154 A JP2014119154 A JP 2014119154A JP 2012273186 A JP2012273186 A JP 2012273186A JP 2012273186 A JP2012273186 A JP 2012273186A JP 2014119154 A JP2014119154 A JP 2014119154A
- Authority
- JP
- Japan
- Prior art keywords
- flow rate
- pressure side
- refrigerant
- control device
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003507 refrigerant Substances 0.000 claims abstract description 170
- 238000004378 air conditioning Methods 0.000 description 38
- 238000001816 cooling Methods 0.000 description 20
- 238000010438 heat treatment Methods 0.000 description 20
- 238000004781 supercooling Methods 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 8
- 238000007664 blowing Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000002826 coolant Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000005057 refrigeration Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Landscapes
- Air Conditioning Control Device (AREA)
Abstract
Description
本発明は、冷媒回路を循環する冷媒量を調整可能な空気調和機に関する。 The present invention relates to an air conditioner capable of adjusting the amount of refrigerant circulating in a refrigerant circuit.
現在の空気調和機のほとんどは、冷房と暖房が切り替えられるように冷媒回路が構成されている。また、冷媒回路に必要な冷媒量は、凝縮器の大きさによって大きく変化するところ、一般的な空気調和機においては、冷媒回路を構成する室内熱交換器と室外熱交換器とで冷媒流路の容積が異なる。したがって、冷房運転時と暖房運転時とで、冷媒回路に必要とされる冷媒量が大きく変化する。また、同じ運転モードであっても、圧縮機の回転数が高い場合と低い場合とで冷媒回路に必要とされる冷媒量は変化する。 Most current air conditioners have a refrigerant circuit configured to switch between cooling and heating. Also, the amount of refrigerant required for the refrigerant circuit varies greatly depending on the size of the condenser. In a general air conditioner, the refrigerant flow path between the indoor heat exchanger and the outdoor heat exchanger that constitute the refrigerant circuit The volume of is different. Therefore, the amount of refrigerant required for the refrigerant circuit varies greatly between the cooling operation and the heating operation. Even in the same operation mode, the amount of refrigerant required for the refrigerant circuit varies depending on whether the rotation speed of the compressor is high or low.
上記課題に対して、特許文献1には、少なくとも1つの冷媒ラインによって冷媒回路と流通連通して接続される冷媒貯蔵装置と、少なくとも1つの冷媒ラインに配された冷媒流制御装置とを備え、冷媒流制御装置は冷媒が冷媒ラインを通流する開位置と、冷媒ラインを通る冷媒の流れを遮断する閉位置とを有する冷媒蒸気圧縮システムが記載されている。 In response to the above problem, Patent Document 1 includes a refrigerant storage device connected in flow communication with the refrigerant circuit by at least one refrigerant line, and a refrigerant flow control device arranged in at least one refrigerant line. The refrigerant flow control device is described as a refrigerant vapor compression system having an open position where the refrigerant flows through the refrigerant line and a closed position where the flow of the refrigerant passing through the refrigerant line is blocked.
しかしながら、特許文献1では、必要冷媒量を調整するときのみ冷媒流制御装置を開位置にする制御を行っていることから、冷房運転や暖房運転などの空気調和機運転中に停電等で空気調和機へ電源の供給が途絶えることが発生したときは、冷媒貯蔵装置に冷媒が密封される可能性がある。したがって、冷媒貯蔵装置に冷媒が満たされた状態で密封され、その状態が炎天下で長時間続いた場合には、冷媒貯蔵装置内の冷媒が膨張(液膨張や液冷媒のガス化)することにより非常に高い圧力がかかることになる。冷媒流制御装置に過負荷がかかって故障したり、レシーバから冷媒回路の外に冷媒が漏れるおそれがあり、空気調和機の信頼性が悪くなる。 However, in Patent Document 1, since the refrigerant flow control device is controlled to be in the open position only when the required refrigerant amount is adjusted, air conditioning is performed due to a power failure or the like during air conditioner operations such as cooling operation or heating operation. When supply of power to the machine stops, the refrigerant may be sealed in the refrigerant storage device. Therefore, when the refrigerant storage device is sealed in a state where the refrigerant is filled and the state continues for a long time under the hot sun, the refrigerant in the refrigerant storage device expands (liquid expansion or liquid refrigerant gasification). Very high pressure will be applied. There is a possibility that the refrigerant flow control device is overloaded and breaks down, or the refrigerant leaks out of the refrigerant circuit from the receiver, and the reliability of the air conditioner deteriorates.
そこで、本発明においては、上記に鑑み、運転効率を高めるために冷媒回路を循環する冷媒量を変更可能で、空気調和機の運転中に急に停電等が発生して空気調和機へ電源の供給が途絶えることにより空気調和機の運転が停止した場合でも信頼性の高い空気調和機を提供することを目的とする。 Therefore, in the present invention, in view of the above, it is possible to change the amount of refrigerant circulating in the refrigerant circuit in order to improve the operation efficiency, and a power failure or the like suddenly occurs during the operation of the air conditioner, An object of the present invention is to provide a highly reliable air conditioner even when the operation of the air conditioner is stopped due to supply interruption.
上記目的を達成するために、本発明では、圧縮機、凝縮器、絞り装置および蒸発器が配管により順次接続されて冷媒が流れる冷媒回路が構成され、前記冷媒回路を流れる冷媒の量を調整する冷媒量調整部が前記絞り装置と並列に設けられ、前記冷媒量調整部は、前記絞り装置前後の高圧側配管から低圧側配管に流れる冷媒の圧力を利用して冷媒を溜めるレシーバと、前記レシーバと前記高圧側配管とを連結する高圧側連結管及び前記レシーバと前記低圧側配管とを連結する低圧側連結管と、前記高圧側連結管及び低圧側連結管にそれぞれ介装された、冷媒の流量を調整する高圧側流量調整装置及び低圧側流量調整装置とを備えた空気調和機であって、前記高圧側流量調整装置及び低圧側流量調整装置の開度を制御する制御装置が設けられ、前記制御装置は、前記高圧側流量調整装置及び低圧側流量調整装置のうちの少なくとも一方を全閉しないように開度調整することを特徴とする。 In order to achieve the above object, in the present invention, a compressor, a condenser, a throttling device, and an evaporator are sequentially connected by a pipe to form a refrigerant circuit through which refrigerant flows, and the amount of refrigerant flowing through the refrigerant circuit is adjusted. A refrigerant amount adjustment unit is provided in parallel with the expansion device, and the refrigerant amount adjustment unit stores a refrigerant using a pressure of the refrigerant flowing from the high-pressure side pipe before and after the expansion device to the low-pressure side pipe, and the receiver And a high-pressure side connecting pipe that connects the high-pressure side pipe, a low-pressure side connecting pipe that connects the receiver and the low-pressure side pipe, and a refrigerant that is interposed in the high-pressure side connecting pipe and the low-pressure side connecting pipe, respectively. An air conditioner including a high pressure side flow rate adjustment device and a low pressure side flow rate adjustment device for adjusting a flow rate, and a control device for controlling the opening degree of the high pressure side flow rate adjustment device and the low pressure side flow rate adjustment device is provided, Previous Controller, characterized by the opening adjustment so as not to fully close at least one of the high-pressure side flow control device and the low-flow control device.
上記構成によれば、制御装置は、空気調和機運転中は、高圧側流量調整装置及び低圧側流量調整装置のうちの少なくとも一方を全閉しないように開度調整するため、たとえ、冷房運転や暖房運転などの空気調和機の運転中にレシーバ内いっぱいの冷媒が収容された状態で停電などにより、空気調和機へ電源の供給が途絶えて流量調整装置の動作が停止したとしても、レシーバ内に溜まった冷媒は全閉しない流量調整装置、すなわち、開放状態の流量調整装置を通って冷媒回路に戻ることになる。従って、レシーバの容量を必要以上に大きくすることなく、安全性の高い空気調和機を得ることができる。 According to the above configuration, the controller adjusts the opening degree so that at least one of the high pressure side flow rate adjustment device and the low pressure side flow rate adjustment device is not fully closed during the air conditioner operation. Even if the supply of power to the air conditioner is interrupted due to a power failure while the receiver is full of refrigerant while the air conditioner is in operation, such as heating operation, The accumulated refrigerant returns to the refrigerant circuit through a flow rate adjustment device that does not fully close, that is, an open flow rate adjustment device. Therefore, a highly safe air conditioner can be obtained without increasing the capacity of the receiver more than necessary.
全閉しない流量調整装置は低圧側流量調整装置としてもよい。すなわち、空気調和機が冷暖房運転可能に構成されている場合は、各運転モードにおいて、低圧側流量調整装置を全閉しないように開度調整すればよい。これにより、停電により急に圧縮機が停止した時に、冷媒の圧力差によってレシーバに溜まった冷媒をよりスムーズに冷媒回路に放出することができる。 The flow rate adjusting device that is not fully closed may be a low pressure side flow rate adjusting device. That is, when the air conditioner is configured to be capable of cooling and heating, the opening degree may be adjusted so as not to fully close the low-pressure flow rate adjusting device in each operation mode. Thereby, when the compressor is suddenly stopped due to a power failure, the refrigerant accumulated in the receiver due to the refrigerant pressure difference can be discharged more smoothly into the refrigerant circuit.
制御装置は、入力された設定温度、室温センサによって検出された室温及び外気温センサによって検出された外気温に応じて、予め記憶された運転条件データを基に、圧縮機の回転数、絞り装置の開度、高圧側流量調整装置の開度及び低圧側流量調整装置の開度を制御するようにしてもよい。 The control device is configured to input the set temperature, the room temperature detected by the room temperature sensor, and the outside air temperature detected by the outside air temperature sensor, based on the operation condition data stored in advance, the compressor rotation speed, the throttle device , The opening of the high pressure side flow control device and the opening of the low pressure flow control device may be controlled.
具体的に、先ず、設定温度、室温及び外気温に応じて、最適となる圧縮機の回転数及び絞り装置の開度が決定される。そして、少なくとも一方の流量調整装置を全閉しないという条件下で最適冷媒量となるように、前記高圧側流量調整装置及び低圧側流量調整装置の開度を求める。このようにして得た運転条件データは制御装置のメモリに記憶され、入力された設定温度、室温及び外気温に応じて、運転条件データを基に圧縮機の回転数、絞り装置の開度、両流量調整装置の開度が制御される。 Specifically, first, the optimum rotation speed of the compressor and the opening of the expansion device are determined according to the set temperature, room temperature, and outside air temperature. Then, the opening degrees of the high-pressure side flow control device and the low-pressure side flow control device are obtained so that the optimum refrigerant amount is obtained under the condition that at least one of the flow control devices is not fully closed. The operating condition data obtained in this way is stored in the memory of the control device, and according to the input set temperature, room temperature and outside air temperature, based on the operating condition data, the rotational speed of the compressor, the opening degree of the expansion device, The opening degree of both flow rate adjusting devices is controlled.
なお、ここで最適冷媒量とは、冷媒回路に封入された冷媒量からレシーバ内に貯留される冷媒量を引いた、実際に冷媒回路を循環する冷媒量(循環冷媒量)のうち、「空調能力」/「消費電力」で表わされるCOP(成績係数)が最大となる冷媒量を意味する。 Here, the optimum refrigerant amount is the “air conditioning” of the refrigerant amount (circulating refrigerant amount) that actually circulates in the refrigerant circuit obtained by subtracting the refrigerant amount stored in the receiver from the refrigerant amount enclosed in the refrigerant circuit. It means the amount of refrigerant that maximizes the COP (coefficient of performance) represented by “capacity” / “power consumption”.
制御装置が高圧側流量調整装置の開度及び低圧側流量調整装置の開度を制御することで調整した冷媒量と、実際に冷媒回路を循環する冷媒量との間にずれが生じる場合がある。そこで、制御装置によって調整された冷媒量が最適冷媒量からずれていないかチェックするようにしてもよい。 There may be a difference between the refrigerant amount adjusted by the control device controlling the opening degree of the high-pressure side flow rate adjustment device and the low-pressure side flow rate adjustment device and the refrigerant amount actually circulating in the refrigerant circuit. . Therefore, it may be checked whether the refrigerant amount adjusted by the control device is deviated from the optimum refrigerant amount.
具体的には、制御装置は、運転状態が安定したと判断したときに、凝縮器の出口温度及び蒸発器の出口温度に応じて、高圧側流量調整装置の開度及び低圧側流量調整装置の開度を調整する。すなわち、循環する冷媒量が最適冷媒量で一定で、環境条件、圧縮機の回転数及び絞り装置の開度が一定の冷媒回路では、過冷却度及び過熱度の値が決まる。これらの値が、最適冷媒量における過冷却度の基準値(基準過冷却度)及び過熱度の基準値(基準過熱度)となる。一方、実際の過冷却度は凝縮器出口の温度を測定することにより、また、実際の過熱度は蒸発器出口の温度を測定することによりそれぞれ知ることができる。 Specifically, when the control device determines that the operation state is stable, the opening degree of the high-pressure side flow control device and the low-pressure side flow control device according to the outlet temperature of the condenser and the outlet temperature of the evaporator. Adjust the opening. That is, the value of the degree of supercooling and the degree of superheat is determined in a refrigerant circuit in which the amount of refrigerant circulating is constant at the optimum amount of refrigerant and the environmental conditions, the rotation speed of the compressor, and the opening of the expansion device are constant. These values serve as a reference value for the degree of supercooling (reference degree of supercooling) and a reference value for the degree of superheating (reference degree of superheat) in the optimum refrigerant amount. On the other hand, the actual degree of supercooling can be determined by measuring the temperature at the outlet of the condenser, and the actual degree of superheat can be determined by measuring the temperature at the outlet of the evaporator.
従って、過冷却度の基準値と実測値との差、及び、過熱度の基準値と実測値との差と、これらの温度差を解消するために必要な高圧側流量調整装置の開度の調整値及び低圧側流量調整装置の開度の調整値とを予め実験で求め、そのデータを制御装置に記憶しておく。これにより、制御装置は、凝縮器出口の実際の温度及び蒸発器出口の実際の温度に応じて、制御装置が実験で得たデータを基にして高圧側流量調整装置の開度及び低圧側流量調整装置の開度の調整を行うことにより、最適冷媒量に正確に調整することができる。 Therefore, the difference between the reference value of the supercooling degree and the actual measurement value, the difference between the reference value of the superheat degree and the actual measurement value, and the opening degree of the high pressure side flow rate adjustment device necessary to eliminate these temperature differences. The adjustment value and the adjustment value of the opening degree of the low pressure side flow rate adjustment device are obtained in advance by experiments, and the data is stored in the control device. In this way, the control device determines the opening degree and the low-pressure side flow rate of the high-pressure side flow control device based on the data obtained by the control device in the experiment according to the actual temperature at the condenser outlet and the actual temperature at the evaporator outlet. By adjusting the opening of the adjusting device, it is possible to accurately adjust to the optimum refrigerant amount.
高圧側流量調整装置及び低圧側流量調整装置のうち、少なくとも一方を全閉しない構造の流量調整装置としてもよい。これにより、確実に高圧側流量調整装置及び低圧側流量調整装置のうちの少なくとも一方を全閉しないように開度調整することができる。 It is good also as a flow control device of the structure which does not fully close at least one among a high pressure side flow control device and a low pressure side flow control device. Thereby, the opening degree can be adjusted so that at least one of the high-pressure side flow rate adjusting device and the low-pressure side flow rate adjusting device is not fully closed.
以上のとおり、本発明の空気調和機は、絞り装置に対して並列に設けられた冷媒量調整部において、レシーバに接続した高圧側連結管及び低圧側連結管にそれぞれ高圧側流量調整装置及び低圧側流量調整装置を介装し、高圧側流量調整装置及び低圧側流量調整装置の開度を制御する制御装置を設け、制御装置によって高圧側流量調整装置及び低圧側流量調整装置のうち、少なくとも一方を全閉しないように開度調整したため、停電等で空気調和機へ電源の供給が途絶えることにより急に空気調和機の運転が停止してもレシーバから冷媒を冷媒回路に戻すことが可能である。 As described above, the air conditioner of the present invention includes a high-pressure side flow control device and a low-pressure device connected to the high-pressure side connecting tube and the low-pressure side connecting tube connected to the receiver, respectively, in the refrigerant amount adjusting unit provided in parallel with the expansion device. A control device for controlling the opening degree of the high pressure side flow rate adjustment device and the low pressure side flow rate adjustment device is provided, and at least one of the high pressure side flow rate adjustment device and the low pressure side flow rate adjustment device is provided by the control device. Since the opening is adjusted so as not to be fully closed, it is possible to return the refrigerant from the receiver to the refrigerant circuit even if the operation of the air conditioner stops suddenly due to the interruption of the power supply to the air conditioner due to a power failure etc. .
以下、図面に基づいて本発明の実施の形態を説明する。図1は、本発明に係る空気調和機の実施形態を示す冷媒回路図である。図示のごとく、本実施形態の空気調和機は、1台の室外機1に1台の室内機2が接続されたシングル型空気調和機であり、室外機1に収容される圧縮機3、室外熱交換器4及び絞り装置5をこの順に冷媒配管で直列に接続し、さらに絞り装置5から二方弁6を介して、室内機2に収容される室内熱交換器7を配管接続し、室内熱交換器7から三方弁8を介して、再び室外の圧縮機3に配管接続して冷媒回路を構成している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a refrigerant circuit diagram showing an embodiment of an air conditioner according to the present invention. As illustrated, the air conditioner of the present embodiment is a single-type air conditioner in which one indoor unit 2 is connected to one outdoor unit 1, and includes a
圧縮機3は、切換弁である四方弁9を介して冷媒回路に接続されており、四方弁9を切り換えることにより、室外熱交換器4側、又は、室内熱交換器7側のいずれの方向へも圧縮した冷媒を送出可能な構成とされている。この四方弁9の切り換えにより、室外熱交換器4と室内熱交換器7とが、凝縮器又は蒸発器として使用される。
The
具体的に、図1では、圧縮機3から吐出される高温の冷媒が、図示する実線矢印方向に流通され、凝縮器としての室外熱交換器4、絞り装置5を経て蒸発器としての室内熱交換器7に流入されることによって冷房運転が実現される。また、圧縮機3から吐出される冷媒が、図示する破線矢印方向に流通され、凝縮器としての室内熱交換器7、絞り装置5を経て蒸発器としての室外熱交換器4に流入されることによって暖房運転が実現される。
Specifically, in FIG. 1, the high-temperature refrigerant discharged from the
本発明では、冷媒回路を流れる冷媒の量を調整する冷媒量調整部10が絞り装置5と並列に接続されている。冷媒量調整部10は、絞り装置5前後の配管11、12に流れる冷媒の圧力を利用して冷媒を溜めるレシーバ13と、レシーバ13と配管11とを連結する第一連結管14及びレシーバ13と配管12とを連結する第二連結管15と、第一連結管14に介装される第一流量調整装置16と、第二連結管15に介装される第二流量調整装置17とを備えている。
In the present invention, the refrigerant
レシーバ13の大きさとして、空調運転によって変動し得る最適冷媒量の最大量と最小量の容積差をそのままレシーバの内容積としてもよいが、それよりもレシーバ13を少し大型化することで、レシーバ13内に貯留されている液冷媒が液膨張やガス化した際に、圧力が逃げるスペースが存在するため、信頼性が向上する。従って、運転条件に応じた最適冷媒量の変更による運転効率の向上を図るためには、最適冷媒量の最大量と最小量の容積差を基準としてその1倍以上の容積に設定すればよりよい。
As the size of the
冷媒回路において、絞り装置5の冷媒の流れ方向上流側は高圧となり、絞り装置5の冷媒の流れ方向下流側は低圧となる。すなわち、冷房運転時には、配管11が高圧側配管で配管12が低圧側配管に、第一連結管14が高圧側連結管で第二連結管15が低圧側連結管に、第一流量調整装置16が高圧側流量調整装置で第二流量調整装置17が低圧側流量調整装置になる。一方、暖房運転時は、配管12が高圧側配管で配管11が低圧側配管に、第二連結管15が高圧側連結管で第一連結管14が低圧側連結管に、第二流量調整装置17が高圧側流量調整装置で第一流量調整装置16が低圧側流量調整装置になる。
In the refrigerant circuit, the upstream side in the refrigerant flow direction of the
図2に示すように、空気調和機は、冷凍回路の運転を制御して、空調運転を制御する制御装置20を備えている。空気調和機には、室外熱交換器4の出口温度を検出する温度センサ21、室内熱交換器7の出口温度を検出する温度センサ22、圧縮機3から吐出された冷媒の吐出温度を検出する吐出温度センサ23、室温センサ24、外気温センサ25が設けられる。
As shown in FIG. 2, the air conditioner includes a
制御装置20は、CPU、メモリ等を備えたマイコンから構成され、所望の空調運転に応じて、これらの温度センサの出力や、リモコン、本体の操作スイッチの操作信号等に基づき、圧縮機3、送風機26、絞り装置5、第一流量調整装置16及び第二流量調整装置17の動作を制御して、冷媒回路の運転を制御する。
The
なお、制御装置20は、室内機2に設けられた室内制御部と、室外機1に設けられた室外制御部とから構成される。室内制御部と室外制御部とは互いに通信可能に接続され、両者が連携して室内機2および室外機1の動作を制御する。
The
空調運転が開始すると、制御装置20は、設定温度と室温とに基づいて圧縮機3の目標回転数を設定し、目標回転数に応じて絞り装置5の開度を決める。制御装置20は、決められた運転条件にしたがって、室温が設定温度になるように圧縮機3、絞り装置5、送風機26などを制御する。
When the air conditioning operation starts, the
そして、制御装置20は、空調運転を開始して、圧縮機3の運転を開始すると、最適冷媒量となるように冷媒量調整制御を行う。冷媒回路に充填された冷媒の一部は、レシーバ13に溜められ、残りの冷媒が冷媒回路を循環する。冷媒量調整制御では、空調運転の種類(冷房運転、暖房運転)、吐出温度、圧縮機の回転数、室温、外気温、設定温度などの運転状況に応じて、第一流量調整装置16及び第二流量調整装置17の開度が設定される。
And the
一般的に、室外熱交換器4の容量は室内熱交換器7の容量よりも大である。そのため、冷房運転時には、より多くの冷媒が必要となる。本実施形態においても、冷房定格運転時の最適冷媒量は暖房定格運転時の最適冷媒量よりも多くなるように設定される。ここで、定格運転とは、圧縮機の回転数を予め設定した一定値で駆動させる運転を意味する。圧縮機の回転数としては、最小回転数と最大回転数の間の運転効率が高く標準的な回転数が設定される。すなわち、冷房運転および除湿運転が最適冷媒量の多い空調運転、暖房運転が最適冷媒量の少ない空調運転とされる。
Generally, the capacity of the
制御装置20は、冷媒量調整制御を行うとき、現在の運転状況に基づいて第一流量調整装置16及び第二流量調整装置17の開度を決め、決められた開度になるように第一流量調整装置16及び第二流量調整装置17を制御する。なお、運転状況に応じた第一流量調整装置16及び第二流量調整装置17の開度は、実験等により予め決められ、メモリに記憶されている。制御装置20は、空調運転中、現在の運転状況に応じた第一流量調整装置16及び第二流量調整装置17の開度をメモリから読み出し、読み出した開度に応じて第一流量調整装置16及び第二流量調整装置17を動作させる。
When performing the refrigerant amount adjustment control, the
絞り装置5は、冷媒の流量を調整する装置であり、本実施形態では膨張弁が用いられているが、これに限らず複数のキャピラリチューブを並べて、流路を切り替えるようにしてもよい。また、第一流量調整装置16及び第二流量調整装置17は、開閉することによって第一連結管14及び第二連結管15における冷媒の流れを制御する。
The
すなわち、第一流量調整装置16及び第二流量調整装置17は、レシーバ13内の冷媒の圧力を調整するものであり、膨張弁、流量調整弁、ストップ弁などを用いる。本実施形態では、第一流量調整装置16及び第二流量調整装置17として、同型のニードルバルブを用い、全開位置を基準としてステッピングモータによって開度を正確に制御する構成とされる。
That is, the first flow
冷媒量調整制御は、圧縮機3の運転が開始された時点から実行される。すなわち、リモコンから運転信号を受信したとき、あるいはタイマ予約による予約時間になったときなどの運転指示が入力されたとき、制御装置20は、空調運転を開始して、圧縮機3を動作させる。このとき、制御装置20は、運転状況に基づいて第一流量調整装置16及び第二流量調整装置17の開度をそれぞれ決める。この運転開始時に、運転状況として、空調運転の種類が確認される。制御装置20は、リモコンからの運転信号あるいはタイマ予約情報に基づいて、開始される空調運転の種類を判別する。
The refrigerant amount adjustment control is executed from the time when the operation of the
制御装置20は、空調運転中に高圧側流量調整装置及び低圧側流量調整装置のうちの少なくとも一方を全閉しないように制御する。本実施形態では、少なくとも第一流量調整装置16が全閉しないように制御される。すなわち、暖房定格運転時よりも冷房定格運転時の方が、最適冷媒量が多くなるように設定されるため、暖房運転モードにおいてレシーバ13内は冷媒で満たされる。この状態で、急に停電等によって空気調和機へ電源の供給が途絶えることにより空気調和機が停止しても低圧側流量調整装置となる第一流量調整装置16を全閉しないことで、冷媒の圧力差によってレシーバ13内の冷媒をスムーズに冷媒回路に戻すことができる。
The
なお、第二流量調整装置17も全閉しないように制御してもよいことは勿論である。また、冷房定格運転時よりも暖房定格運転時の方が、最適冷媒量が多くなるように設定される場合は、第二流量調整装置17を全閉しないように制御すればよい。
上記制御により、空調運転中はレシーバ13内に冷媒を密封することができない。したがって、圧縮機3の駆動時には第一流量調整装置16及び第二流量調整装置17の開度を調整することでレシーバ13内の冷媒量を調整することが必要とされる。
Of course, the second flow
With the above control, the refrigerant cannot be sealed in the
具体的に、制御装置20は、設定温度、室温及び外気温に応じて、最適となる圧縮機の回転数及び絞り装置の開度を決定する。そして、少なくとも一方の流量調整装置を全閉しないという条件下で最適冷媒量となるように、第一流量調整装置16及び第二流量調整装置17の開度を実験等によって求める。
Specifically, the
このようにして得た運転条件データを制御装置20のメモリに記憶する。制御装置20は、空調運転中、現在の運転状況に応じた第一流量調整装置16及び第二流量調整装置17の開度をメモリから読み出し、読み出した開度に応じて第一流量調整装置16及び第二流量調整装置17を動作させる。
The operating condition data obtained in this way is stored in the memory of the
暖房運転モードを実行するときは、配管12が高圧側配管となり、第二連結管15が高圧側連結管に、第二流量調整装置17が高圧側流量調整装置となる。そして、配管11が低圧側配管となり、第一連結管14が低圧側連結管に、第一流量調整装置16が低圧側流量調整装置となる。
When the heating operation mode is executed, the
このとき、高圧側流量調整装置である第二流量調整装置17の開度を、低圧側流量調整装置である第一流量調整装置16の開度よりも大きくする、あるいは、第二流量調整装置17を開き、第一流量調整装置16を閉じることで、レシーバ13内に冷媒が溜まる。制御装置20は、前記第一流量調整装置16及び第二流量調整装置17の開度の関係を維持しつつ、実験により求めた所定の開度とすることで、余剰の冷媒をレシーバ13内に溜め、暖房定格運転時における最適冷媒量とすることができる。
At this time, the opening degree of the second flow
一方、冷房運転モードを実行するときは、配管11が高圧側配管となり、第一連結管14が高圧側連結管に、第一流量調整装置16が高圧側流量調整装置となる。そして、配管12が低圧側配管となり、第二連結管15が低圧側連結管に、第二流量調整装置17が低圧側流量調整装置となる。
On the other hand, when the cooling operation mode is executed, the
このとき、高圧側流量調整装置である第一流量調整装置16の開度を低圧側流量調整装置である第二流量調整装置17の開度よりも小さくする、あるいは第二流量調整装置17を開き、第一流量調整装置16を閉じる。制御装置20は、この第一流量調整装置16及び第二流量調整装置17の開度の関係を維持しつつ、実験により求めた所定の開度とすることで、必要量の冷媒を冷媒回路に戻すことができ、その分、循環冷媒量が増加して冷房定格運転における最適冷媒量とすることができる。
At this time, the opening degree of the first flow
このように、空調運転を開始したときから、冷媒回路を循環する冷媒が最適冷媒量となるように第一流量調整装置16及び第二流量調整装置17を制御することにより、空調能力を高めることができる。したがって、運転効率が向上して、省エネ運転を実現できる。
As described above, the air conditioning capacity is increased by controlling the first flow
空調運転の種類の他の判別方法として、室温に基づいて開始される空調運転の種類を決める。制御装置20は、リモコンなどからの運転指示が入力されると、室温センサ24から室温情報を取得する。制御装置20は、現在の室温に基づいて空調運転の種類を判別する。室温に基づいて空調運転の種類を判別するタイミングは、運転指示が入力された後の運転開始する前あるいは運転開始直後とされる。
As another method for determining the type of air-conditioning operation, the type of air-conditioning operation started based on room temperature is determined. The
現在の室温Tと第1規定温度Twおよび第2規定温度Tc(Tw<Tc)とが比較される。現在の室温Tが第1規定温度Tw以下(T≦Tw)の場合、制御装置20は、暖房運転であると判別する。現在の室温Tが第2規定温度Tc以上(T≧Tc)の場合、制御装置20は、冷房運転であると判別する。
The current room temperature T is compared with the first specified temperature Tw and the second specified temperature Tc (Tw <Tc). When the current room temperature T is equal to or lower than the first specified temperature Tw (T ≦ Tw), the
Tw<T<Tcの場合、制御装置20は、送風運転であると判別する。送風運転の場合、制御装置20は、室内機2の送風機26を動作させる。冷凍サイクルの制御は行われないので、冷媒量調整制御は行われない。なお、第一流量調整装置16及び第二流量調整装置17は、開いた状態とされる。このように、室温によって空調運転の種類を判別する方法は、室温に応じて冷房運転あるいは暖房運転を自動的に選択する自動運転が行われる場合に有用である。
In the case of Tw <T <Tc, the
冷房あるいは暖房の空調運転を行うとき、圧縮機3の運転が開始されると、圧縮機3から吐出する冷媒の温度は徐々に上昇する。吐出温度がほぼ一定になると、冷媒回路の運転、すなわち、空調運転が安定する。空調運転の安定後、制御装置20は、冷媒量調整制御を続行する。
When performing the air conditioning operation for cooling or heating, when the operation of the
循環する冷媒量が最適冷媒量で、環境条件、圧縮機の回転数及び絞り装置の開度が一定となり、空調運転が安定した状態では、冷媒の凝縮温度・蒸発温度、過冷却度(基準過冷却度)及び過熱度(基準過熱度)の値が決まる。なお、冷房運転時には、室外熱交換器4が凝縮器となり、室内熱交換器7が蒸発器となる。暖房運転時には室内熱交換器7が凝縮器となり、室外熱交換器4が蒸発器となる。
When the circulating refrigerant amount is the optimum refrigerant amount, the environmental conditions, the compressor speed and the opening of the throttle device are constant, and the air conditioning operation is stable, the refrigerant condensing temperature / evaporating temperature, the degree of supercooling (standard overcooling) The value of the degree of cooling) and the degree of superheat (reference superheat degree) are determined. In the cooling operation, the
制御装置20は、空調運転が安定した後、凝縮器の出口温度及び蒸発器の出口温度を測定することにより、過冷却度の実測値及び過熱度の実測値を算出する。そして、これらの実測値と、基準過冷却度及び基準過熱度との間に差があるときは、その温度差がなくなるように第一流量調整装置16及び第二流量調整装置17の開度を調整する。
After the air-conditioning operation is stabilized, the
具体的に、凝縮器の出口温度と基準過冷却度との差、及び、蒸発器の出口温度と基準過熱度との差と、これらの温度差を解消するために必要な第一流量調整装置16及び第二流量調整装置17の開度の調整値をあらかじめ実験で求め、そのデータを制御装置20に記憶しておく。これにより、制御装置20は、凝縮器出口の実際の温度及び蒸発器出口の実際の温度に応じて、制御装置20が実験で得たデータを基にして第一流量調整装置16及び第二流量調整装置17の開度の調整を行うことにより、最適冷媒量に正確に調整することができる。
Specifically, the difference between the outlet temperature of the condenser and the reference supercooling degree, the difference between the outlet temperature of the evaporator and the reference superheat degree, and the first flow rate adjustment device necessary to eliminate these
空調運転中、室温と設定温度とに温度差があると、制御装置20は、温度差が小さくなるように圧縮機3の回転数および絞り装置5の開度を変化させる。このとき、制御装置20は、圧縮機3の回転数、外気温などに応じて、第一流量調整装置16及び第二流量調整装置17の開度を調整する。例えば、圧縮機3の回転数が上がると、制御装置20は、最適冷媒量が多くなるように、高圧側流量調整装置6の開度を小さくする、あるいは低圧側流量調整装置7の開度を大きくする。
If there is a temperature difference between the room temperature and the set temperature during the air conditioning operation, the
図3に示すように、空調運転の開始後、ある程度時間が経過すると、室温が設定温度に達する。制御装置20は、圧縮機3を停止させ、送風機26だけを動作させる。そして、室温と設定温度とに温度差が生じると、制御装置20は、再び、圧縮機3の運転を開始する。このように、空調運転中、圧縮機3の運転のオンオフを繰り返すサーモオフが行われる。
As shown in FIG. 3, the room temperature reaches the set temperature after a certain amount of time has elapsed after the start of the air conditioning operation. The
サーモオフ時にも冷媒量調整制御が行われる。制御装置20は、サーモオフ時に圧縮機3が運転を開始するとき、第一流量調整装置16及び第二流量調整装置17の開度を調整する。第一流量調整装置16及び第二流量調整装置17の開度は、圧縮機3の回転数に応じて調整される。
The refrigerant amount adjustment control is also performed when the thermostat is off. The
すなわち、制御装置20は、サーモオフにより圧縮機3が停止するとき、停止前の圧縮機3の回転数および第一流量調整装置16及び第二流量調整装置17の開度をメモリに記憶する。そして、制御装置20は、圧縮機3の運転を開始するとき、現在の室温に基づいて圧縮機3の回転数を決め、この回転数に応じて第一流量調整装置16及び第二流量調整装置17の開度を設定する。
That is, when the
図4に示すように、圧縮機3の回転数がA、第一流量調整装置16及び第二流量調整装置17の開度がa1,a2で空調運転が行われている。室温が設定温度になると、制御装置20は、圧縮機3を停止し、送風運転を行う。室温が変化して、室温と設定温度とに温度差が生じると、制御装置20は、圧縮機3の運転を開始する。制御装置20は、室温と設定温度との温度差に応じて圧縮機3の回転数Bを決め、この回転数に応じて第一流量調整装置16及び第二流量調整装置17の開度を決める。なお、制御装置20は、圧縮機3を停止した際に、送風運転も停止してもよい。この場合、室温が変化して、室温と設定温度とに温度差が生じると、制御装置20は、空調運転(圧縮機3の運転及び送風運転)を再開する。
As shown in FIG. 4, the air conditioning operation is performed with the rotation speed of the
圧縮機3の停止前の回転数Aと運転開始時の回転数Bとが同じとき、第一流量調整装置16及び第二流量調整装置17の開度は、運転停止前の開度と同じにされる。各第一流量調整装置16及び第二流量調整装置17の開度はそれぞれa1,a2に固定される。この場合、絞り装置5および第一流量調整装置16及び第二流量調整装置17は全開されることなく、そのままの開度で圧縮機3の運転が再開される。
When the rotation speed A before the stop of the
このように、絞り装置5などの開度の調整を行う必要がないので、圧縮機3の運転をすぐに開始でき、室温を設定温度にするまでの時間を短縮できる。また、運転条件は変わらないので、すぐに最適冷媒量をとなり、効率のよい運転を行え、省エネを図れる。
Thus, since it is not necessary to adjust the opening degree of the
圧縮機3の停止前の回転数Aと運転開始時の回転数Bとが異なるとき、第一流量調整装置16及び第二流量調整装置17の開度は、運転停止前の開度から変更され、開度はそれぞれb1,b2となる。制御装置20は、第一流量調整装置16及び第二流量調整装置17を一旦全開して、冷媒回路の圧力の平衡をとってから、決められた開度にし、圧縮機3を動作させる。以降、室温が設定温度に達するまで、空調運転が行われる。例えば、圧縮機3の回転数が上がると、制御装置20は、最適冷媒量が多くなるように、高圧側流量調整装置の開度を小さくし、低圧側流量調整装置の開度を大きくする。
When the rotation speed A before the stop of the
このように、圧縮機3の運転開始時に圧縮機3の回転数に応じて第一流量調整装置16及び第二流量調整装置17の開度を調整することにより、すばやく室温を設定温度にすることができ、利用者の快適性を向上できる。また、圧縮機3が停止する時間が長くなり、省エネ運転を実現できる。
Thus, the room temperature can be quickly set to the set temperature by adjusting the opening of the first flow
ところで、空調運転中、運転状況に変化があったとき、制御装置20は、運転状況の変化に応じて第一流量調整装置16及び第二流量調整装置17を制御する。特に、外気温センサ25により検出された外気温に応じて、第一流量調整装置16及び第二流量調整装置17の開度が調整される。
By the way, when there is a change in the operating status during the air conditioning operation, the
圧縮機3の運転開始時の外気温が圧縮機3の停止時の外気温から変化したとき、制御装置20は、外気温および室温に基づいて圧縮機3の回転数を決める。例えば、冷房運転のとき、外気温が上がると、圧縮機3の回転数が停止前の回転数よりも上げられる。この回転数に応じて、冷媒回路を循環する冷媒の最適冷媒量が多くなるように、高圧側流量調整装置である第一流量調整装置16の開度を小さくし、低圧側流量調整装置である第二流量調整装置17の開度を大きくする。
When the outside air temperature at the start of operation of the
外気温が下がった場合も、同様に最適冷媒量が少なくなるように、第一流量調整装置16及び第二流量調整装置17の開度が調整される。また、暖房運転の場合でも、同様に、外気温の変化に応じて最適冷媒量が増減するように、第一流量調整装置16及び第二流量調整装置17の開度が調整される。
Similarly, when the outside air temperature decreases, the opening amounts of the first flow
このように、外気温の変化に応じて第一流量調整装置16及び第二流量調整装置17の開度を調整することにより、運転状況が変化しても、最適な冷媒量で冷媒が冷媒回路を循環する。したがって、効率のよい運転を行え、省エネとなる。
In this way, by adjusting the opening degree of the first flow
本実施形態では第一流量調整装置16が全閉しないように制御される。そこで、第一流量調整装置16として全閉しない構造の流量調整装置を用いれば、第一流量調整装置16が全閉する事態を確実に阻止することが可能となる。全閉しない構造の流量調整装置として、具体的には、弁体が全閉位置の手前で物理的にストップして弁体と弁座との間に隙間を確保する構造のものや、弁体自身に切込み等を設けることで全閉位置において冷媒の流通を確保する構造のものを用いることができる。なお、第二流量調整装置17も全閉しないように制御すること、さらに、第二流量調整装置17も全閉しない構造の流量調整装置としてもよいことはもちろんである。
In the present embodiment, the first flow
本発明は、上記実施形態に限定されるものではなく、本発明の範囲内で上記実施形態に多くの修正および変更を加えることができる。具体的に、上記実施形態では第一連結管14及び第二連結管15の一端側はそれぞれ冷媒回路の配管11及び12に接続され、他端側はそれぞれ個々にレシーバ13に接続されているが、これに限らず、たとえば、図5に示すように、第一連結管14及び第二連結管15の他端側を集合させた後に、一本の連結管としてレシーバ13に接続することも可能である。
The present invention is not limited to the above embodiment, and many modifications and changes can be made to the above embodiment within the scope of the present invention. Specifically, in the above embodiment, one end side of the first connecting
また、空調運転が安定したか否かを判断するのに、圧縮機3と吐出温度を検出し、検出温度変化が所定時間内で一定範囲内になったときに安定したと判断しているがこれに限らず、たとえば、所定時間内で凝縮器又は蒸発器の出口温度の温度変化が一定範囲内になったときに安定したと判断するようにしてもよい。
Further, to determine whether the air-conditioning operation is stable, the
1 室外機
2 室内機
3 圧縮機
4 室外熱交換器
5 絞り装置
6 二方弁
7 室内熱交換器
8 三方弁
9 四方弁
10 冷媒量調整部
11 配管
12 配管
13 レシーバ
14 第一連結管
15 第二連結管
16 第一流量調整装置
17 第二流量調整装置
20 制御装置
21 温度センサ
22 温度センサ
23 吐出温度センサ
24 室温センサ
25 外気温センサ
26 送風機
DESCRIPTION OF SYMBOLS 1 Outdoor unit 2
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012273186A JP2014119154A (en) | 2012-12-14 | 2012-12-14 | Air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012273186A JP2014119154A (en) | 2012-12-14 | 2012-12-14 | Air conditioner |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014119154A true JP2014119154A (en) | 2014-06-30 |
Family
ID=51174145
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012273186A Pending JP2014119154A (en) | 2012-12-14 | 2012-12-14 | Air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014119154A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2017068642A1 (en) * | 2015-10-20 | 2018-05-10 | 三菱電機株式会社 | Refrigeration cycle equipment |
EP3315875A4 (en) * | 2015-06-24 | 2018-05-16 | Mitsubishi Electric Corporation | Heat source apparatus |
WO2019004112A1 (en) * | 2017-06-26 | 2019-01-03 | ダイキン工業株式会社 | Refrigerating device |
US20210047773A1 (en) * | 2019-08-14 | 2021-02-18 | Lg Electronics Inc. | Apparatus for controlling clothes treating apparatus, clothes treating apparatus and method for controlling clothes treating apparatus |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6039876U (en) * | 1983-07-15 | 1985-03-20 | ダイキン工業株式会社 | Freezers for refrigerated containers, etc. |
JPH05126425A (en) * | 1991-11-07 | 1993-05-21 | Matsushita Refrig Co Ltd | Apparatus for cooling and heating |
JPH08313069A (en) * | 1995-05-19 | 1996-11-29 | Fujitsu General Ltd | Air conditioning equipment |
JPH11248266A (en) * | 1998-03-05 | 1999-09-14 | Mitsubishi Electric Corp | Air conditioner and condenser |
JPH11248234A (en) * | 1998-02-26 | 1999-09-14 | Hitachi Ltd | Air conditioner |
JP2000146328A (en) * | 1998-11-16 | 2000-05-26 | Sanyo Electric Co Ltd | Refrigerating and air-conditioning device |
JP2004324949A (en) * | 2003-04-23 | 2004-11-18 | Mitsubishi Electric Corp | Refrigerant circuit and refrigerating machine comprising the same |
JP2005147463A (en) * | 2003-11-13 | 2005-06-09 | Sharp Corp | Air conditioner |
JP2009156531A (en) * | 2007-12-27 | 2009-07-16 | Mitsubishi Electric Corp | Refrigeration system |
-
2012
- 2012-12-14 JP JP2012273186A patent/JP2014119154A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6039876U (en) * | 1983-07-15 | 1985-03-20 | ダイキン工業株式会社 | Freezers for refrigerated containers, etc. |
JPH05126425A (en) * | 1991-11-07 | 1993-05-21 | Matsushita Refrig Co Ltd | Apparatus for cooling and heating |
JPH08313069A (en) * | 1995-05-19 | 1996-11-29 | Fujitsu General Ltd | Air conditioning equipment |
JPH11248234A (en) * | 1998-02-26 | 1999-09-14 | Hitachi Ltd | Air conditioner |
JPH11248266A (en) * | 1998-03-05 | 1999-09-14 | Mitsubishi Electric Corp | Air conditioner and condenser |
JP2000146328A (en) * | 1998-11-16 | 2000-05-26 | Sanyo Electric Co Ltd | Refrigerating and air-conditioning device |
JP2004324949A (en) * | 2003-04-23 | 2004-11-18 | Mitsubishi Electric Corp | Refrigerant circuit and refrigerating machine comprising the same |
JP2005147463A (en) * | 2003-11-13 | 2005-06-09 | Sharp Corp | Air conditioner |
JP2009156531A (en) * | 2007-12-27 | 2009-07-16 | Mitsubishi Electric Corp | Refrigeration system |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3315875A4 (en) * | 2015-06-24 | 2018-05-16 | Mitsubishi Electric Corporation | Heat source apparatus |
JPWO2017068642A1 (en) * | 2015-10-20 | 2018-05-10 | 三菱電機株式会社 | Refrigeration cycle equipment |
WO2019004112A1 (en) * | 2017-06-26 | 2019-01-03 | ダイキン工業株式会社 | Refrigerating device |
US20210047773A1 (en) * | 2019-08-14 | 2021-02-18 | Lg Electronics Inc. | Apparatus for controlling clothes treating apparatus, clothes treating apparatus and method for controlling clothes treating apparatus |
US12146260B2 (en) * | 2019-08-14 | 2024-11-19 | Lg Electronics Inc. | Apparatus for controlling clothes treating apparatus, clothes treating apparatus and method for controlling clothes treating apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6148001B2 (en) | Air conditioner | |
US20080197206A1 (en) | Refrigerant System With Water Heating | |
JP5642085B2 (en) | Refrigeration cycle apparatus and information transmission method applied thereto | |
EP3285021B1 (en) | Heat pump type air conditioning and hot water supplying device | |
US20100139312A1 (en) | Refrigeration apparatus | |
JP6545252B2 (en) | Refrigeration cycle device | |
WO2013065233A1 (en) | Refrigeration cycle apparatus and air conditioner provided with same | |
JP2001248937A (en) | Heat pump hot water supply air conditioner | |
JP2014119154A (en) | Air conditioner | |
JP6068121B2 (en) | Air conditioner | |
JP2014119150A (en) | Air conditioner | |
JP2017009269A (en) | Air conditioning system | |
JP5881339B2 (en) | Air conditioner | |
JP5138292B2 (en) | Air conditioner | |
JP5677198B2 (en) | Air cooling heat pump chiller | |
JP2007163071A (en) | Heat pump type air conditioner | |
JP6105270B2 (en) | Air conditioner | |
US20210207859A1 (en) | Controller of air conditioning apparatus, outdoor unit, relay unit, heat source unit, and air conditioning apparatus | |
JP5973336B2 (en) | Air conditioner | |
JP5245575B2 (en) | Refrigerant amount determination method for air conditioner and air conditioner | |
JP6092606B2 (en) | Air conditioner | |
JP6251429B2 (en) | Air conditioner | |
JP6105271B2 (en) | Air conditioner | |
JP6507598B2 (en) | Air conditioning system | |
CN221035981U (en) | Multi-split air conditioning system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150916 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160614 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160615 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160802 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20161220 |