[go: up one dir, main page]

JP2014117680A - Catalyst attached particulate filter - Google Patents

Catalyst attached particulate filter Download PDF

Info

Publication number
JP2014117680A
JP2014117680A JP2012276053A JP2012276053A JP2014117680A JP 2014117680 A JP2014117680 A JP 2014117680A JP 2012276053 A JP2012276053 A JP 2012276053A JP 2012276053 A JP2012276053 A JP 2012276053A JP 2014117680 A JP2014117680 A JP 2014117680A
Authority
JP
Japan
Prior art keywords
catalyst
supported
combustion
zrce
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012276053A
Other languages
Japanese (ja)
Other versions
JP5954159B2 (en
Inventor
Yoshi Baba
誉士 馬場
Koichiro Harada
浩一郎 原田
Keiji Yamada
啓司 山田
Masahiko Shigetsu
雅彦 重津
明秀 ▲高▼見
Akihide Takami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2012276053A priority Critical patent/JP5954159B2/en
Publication of JP2014117680A publication Critical patent/JP2014117680A/en
Application granted granted Critical
Publication of JP5954159B2 publication Critical patent/JP5954159B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a particulate filter that efficiently promotes the burning of PM deposited on the particulate filter.SOLUTION: The catalyst layer 22 provided on the exhaust gas passage wall 21 of the particulate filter comprises: Pd supporting ZrCe-based complex oxides that are ZrCe-based complex oxides 25 comprising zirconium (Zr) and cerium (Ce) and are supporting, as catalyst metal, palladium (Pd) 26; and Pt supporting active alumina particles that are active alumina particles 23 and are supporting, as catalyst metal, platinum (Pt) 24.

Description

本発明は、エンジンから排出されるパティキュレートを捕集するとともに、捕集したパティキュレートを燃焼除去するのに用いられる触媒を備えた触媒付パティキュレートフィルタに関する。   The present invention relates to a particulate filter with a catalyst provided with a catalyst used for collecting particulates discharged from an engine and burning and removing the collected particulates.

ディーゼルエンジン等の希薄燃焼エンジンを搭載した自動車の排ガス通路には、排ガス中のパティキュレート(炭素質微粒子等のPM:Particulate matter)を捕集するフィルタが設けられている。このフィルタのPM堆積量が多くなると、フィルタの目詰まりを招く。そのため、フィルタの前後に設けられた圧力センサの圧力差等に基づいてPM堆積量を推定し、その堆積量が所定値になった時点で、エンジンの燃料噴射制御(燃料増量や後噴射等)によって、フィルタに到達する排ガスの温度を高め、PMを燃焼除去するようにされている。そして、このPMの燃焼を促進するために、フィルタの排ガス通路壁に触媒が担持されており、特に触媒金属として白金(Pt)を担持することが行われている。   A filter for collecting particulates (PM: Particulate matter) in exhaust gas is provided in an exhaust gas passage of an automobile equipped with a lean combustion engine such as a diesel engine. When the amount of PM deposited on the filter increases, the filter is clogged. Therefore, the PM accumulation amount is estimated based on the pressure difference of the pressure sensors provided before and after the filter, and when the accumulation amount reaches a predetermined value, engine fuel injection control (fuel increase, post-injection, etc.) Thus, the temperature of the exhaust gas reaching the filter is increased, and PM is burned and removed. In order to promote the combustion of PM, a catalyst is supported on the exhaust gas passage wall of the filter, and in particular, platinum (Pt) is supported as a catalyst metal.

例えば、特許文献1には、PMの燃焼速度を向上するために、フィルタの排ガス通路壁に、ジルコニウム(Zr)と、ネオジム(Nd)と、セリウム(Ce)及びNd以外の希土類元素とを含有する複合酸化物粒子にPtを担持又はドープした触媒材を設けることが開示されている。このような触媒材を用いると、複合酸化物粒子からPtを介して活性酸素が放出され、この活性酸素がPMと反応するため、PMの燃焼を促進できる。   For example, Patent Document 1 contains zirconium (Zr), neodymium (Nd), and rare earth elements other than cerium (Ce) and Nd in the exhaust gas passage wall of the filter in order to improve the PM combustion rate. It is disclosed to provide a catalyst material in which Pt is supported or doped on the composite oxide particles. When such a catalyst material is used, active oxygen is released from the composite oxide particles via Pt, and this active oxygen reacts with PM, so that PM combustion can be promoted.

また、特許文献2には、特に、三元触媒、選択的触媒還元(Selective Catalytic Reduction:SCR)触媒、又はフィルタの上流若しくは下流に配設されるディーゼル酸化触媒として、Ptではなくパラジウム(Pd)をCe含有複合酸化物に担持した触媒材を用いることが開示されている。特許文献2において、このような複合酸化物とPM燃焼との関連性については開示されていない。   Patent Document 2 discloses palladium (Pd) instead of Pt as a three-way catalyst, a selective catalytic reduction (SCR) catalyst, or a diesel oxidation catalyst disposed upstream or downstream of a filter. It is disclosed to use a catalyst material in which is supported on a Ce-containing composite oxide. Patent Document 2 does not disclose the relationship between such a complex oxide and PM combustion.

特開2008−221204号公報JP 2008-221204 A 特表2012−518531号公報Special table 2012-518531 gazette

ところで、従来の触媒付きパティキュレートフィルタでは、触媒層表面のPM堆積量が少ないときは、そのPMが比較的効率良く燃焼除去されるが、PM堆積量が多くなると、PMの燃焼除去に時間がかかる傾向がみられる。その理由は、本発明者の実験・研究に基づく知見によれば、次の通りである。   By the way, in the conventional particulate filter with catalyst, when the amount of PM deposited on the surface of the catalyst layer is small, the PM is combusted and removed relatively efficiently. However, when the amount of PM deposited is large, it takes time for the PM to be removed by combustion. This tendency is seen. The reason is as follows according to findings based on experiments and research by the present inventors.

すなわち、図1のグラフは触媒層に堆積したPMが燃焼していくときのPM残存割合の経時変化を模式的に示す。当初はPMの燃焼が急速に進むが、その急速燃焼領域(例えば、PM残存割合が100%から50%になるまでの燃焼前期)を経た後、PMの燃焼が緩慢になる緩慢燃焼領域(PM残存割合が50%から0%になるまでの燃焼後期)に移る。この点を以下詳述する。   That is, the graph of FIG. 1 schematically shows a change with time of the PM remaining ratio when PM deposited on the catalyst layer burns. Initially, the combustion of PM proceeds rapidly, but after passing through the rapid combustion region (for example, the first combustion period until the PM remaining ratio becomes 100% to 50%), the combustion of PM becomes slow (PM) It shifts to the combustion late stage until the remaining ratio becomes 50% to 0%. This point will be described in detail below.

図2の写真に示すように、燃焼当初はPMがフィルタの表面に担持された触媒層に接触している。このため、例えば触媒層がCe含有酸化物粒子やZr含有酸化物粒子を含んでいる場合、図3に模式的に示すように、それら酸化物粒子から放出される活性な内部酸素が触媒層に接触しているPMに高活性状態で供給される。その結果、触媒層表面のPMが急速に燃焼していく。   As shown in the photograph of FIG. 2, at the beginning of combustion, PM is in contact with the catalyst layer supported on the surface of the filter. For this reason, for example, when the catalyst layer contains Ce-containing oxide particles and Zr-containing oxide particles, as schematically shown in FIG. 3, active internal oxygen released from these oxide particles is generated in the catalyst layer. It is supplied in a highly active state to the contacting PM. As a result, the PM on the catalyst layer surface burns rapidly.

しかし、上述の如く、触媒層表面のPMが燃焼除去される結果、図4の写真に示すように、触媒層とPM堆積層との間に数十μm程度の隙間を部分的に生ずる。そのため、図5に模式的に示すように、酸化物粒子内部から放出される活性酸素は、ごく短時間であれば活性を維持するが、ほとんどの活性酸素がPMに到達する前に活性が低下し、例えば、気相中の酸素と同じ通常の酸素となる。その結果、PMの燃焼が緩慢になる。もちろん、図5左上及び左下に示すように排ガス中の酸素もPMの燃焼に寄与するが、上述の活性酸素による燃焼に比べると、その燃焼は緩慢である。   However, as described above, the PM on the surface of the catalyst layer is burned and removed. As a result, a gap of about several tens of μm is partially formed between the catalyst layer and the PM deposit layer as shown in the photograph of FIG. Therefore, as schematically shown in FIG. 5, the active oxygen released from the inside of the oxide particles maintains the activity for a very short time, but the activity decreases before most of the active oxygen reaches the PM. For example, it becomes the same normal oxygen as oxygen in the gas phase. As a result, the combustion of PM becomes slow. Of course, as shown in the upper left and lower left of FIG. 5, the oxygen in the exhaust gas also contributes to the combustion of PM, but the combustion is slower than the combustion by the active oxygen described above.

本発明は、前記の問題に鑑みてなされたものであり、その目的は、フィルタに堆積したPMの急速燃焼領域及び緩慢燃焼領域の双方において、その燃焼が効率良く進むようにして、トータルのPM燃焼速度を向上できるようにすることにある。   The present invention has been made in view of the above-mentioned problems, and the object thereof is to increase the total PM combustion rate so that combustion proceeds efficiently in both the rapid combustion region and the slow combustion region of PM deposited on the filter. It is to be able to improve.

本発明者らは、前記の目的を達成するために、さらに実験・研究を進めた結果、活性アルミナ粒子、及びZrとCeとを含むZrCe系複合酸化物を含む粒子材に、触媒金属としてPt及びPdが担持されてなる触媒材は、前記粒子材にPtのみが担持された触媒材と比較して、NOを酸化してNOを生成するNO酸化性能が顕著に高いことを見出した。さらに、そのような触媒材のうち、Ptが担持された活性アルミナ粒子と、Pdが担持されたZrCe系複合酸化物とを含む触媒材が、特にPM燃焼性能が高いことを見出して本発明を完成した。 As a result of further experiments and researches to achieve the above object, the inventors of the present invention applied activated alumina particles and a particle material containing a ZrCe-based composite oxide containing Zr and Ce to Pt as a catalyst metal. It has been found that the catalyst material in which Pd is supported has a significantly higher NO oxidation performance for oxidizing NO and generating NO 2 than the catalyst material in which only Pt is supported on the particle material. Furthermore, among such catalyst materials, a catalyst material containing activated alumina particles carrying Pt and a ZrCe composite oxide carrying Pd is found to have a particularly high PM combustion performance. completed.

すなわち、本発明に係る触媒付パティキュレートフィルタは、排ガス中のパティキュレートを捕集するフィルタの排ガス通路壁に、触媒層が設けられており、触媒層は、ジルコニウム(Zr)とセリウム(Ce)とを含むZrCe系複合酸化物に触媒金属としてパラジウム(Pd)が担持されたPd担持ZrCe系複合酸化物と、活性アルミナ粒子に触媒金属として白金(Pt)が担持されたPt担持活性アルミナ粒子とを含むことを特徴とする。   That is, in the particulate filter with catalyst according to the present invention, a catalyst layer is provided on the exhaust gas passage wall of the filter that collects particulates in the exhaust gas, and the catalyst layer includes zirconium (Zr) and cerium (Ce). A Pd-supported ZrCe composite oxide in which palladium (Pd) is supported as a catalyst metal on a ZrCe-based composite oxide containing Pt, and Pt-supported active alumina particles in which platinum (Pt) is supported as a catalyst metal on active alumina particles; It is characterized by including.

上記の通り、活性アルミナとZrCe系複合酸化物とを含む粒子材に触媒金属としてPdとPtとが担持された触媒材は、NO酸化性能が高い。このため、例えばリーン排ガス中のNOを酸化してNOの生成を促進でき、その結果、生成されたNOが酸化剤としてPMの燃焼のために働くので、PM燃焼速度が向上する。 As described above, a catalyst material in which Pd and Pt are supported as catalyst metals on a particle material containing activated alumina and a ZrCe-based composite oxide has high NO oxidation performance. For this reason, for example, NO in lean exhaust gas can be oxidized to promote the generation of NO 2 , and as a result, the generated NO 2 acts as an oxidant for the combustion of PM, thereby improving the PM combustion rate.

また、ZrCe系複合酸化物は、酸素吸蔵放出能を有し、酸素交換反応を起こしてPM燃焼に有効に働く活性酸素を多く放出できる。さらに、触媒金属としてPtの代わりにPdを用いると急速燃焼領域における燃焼促進に有効な貴金属の活性点が増加すると考えられ、このため、PdをZrCe系複合酸化物に担持することで、PdがZrCe系複合酸化物により活性の高い酸化状態に保たれ、特に急速燃焼領域における燃焼速度を向上できる。なお、本発明の触媒付パティキュレートフィルタにおいて、Pd担持ZrCe系複合酸化物には、さらにPtが担持されていてもよい。   In addition, the ZrCe-based composite oxide has an oxygen storage / release capability, and can release a large amount of active oxygen that works effectively for PM combustion by causing an oxygen exchange reaction. Furthermore, it is considered that when Pd is used instead of Pt as the catalyst metal, the active sites of the noble metal effective for promoting combustion in the rapid combustion region are increased. For this reason, Pd is supported by supporting Pd on the ZrCe-based composite oxide. A highly active oxidation state is maintained by the ZrCe-based composite oxide, and the combustion rate in the rapid combustion region can be improved. In the particulate filter with catalyst of the present invention, the Pd-supported ZrCe-based composite oxide may further support Pt.

また、活性アルミナ粒子は、貴金属の分散性が高いため、活性アルミナ粒子を触媒材に用いると触媒金属の凝集等を防止でき、触媒効果の低減を防止できる。   In addition, since the activated alumina particles have high dispersibility of the noble metal, when the activated alumina particles are used as a catalyst material, aggregation of the catalyst metal and the like can be prevented and reduction of the catalytic effect can be prevented.

これらにより、本発明に係る触媒付パティキュレートフィルタは、トータルのPM燃焼速度を向上することができ、上述したエンジン噴射制御が短時間となる、換言すると、燃料消費量が少なくなり、燃費性能が向上する。さらに、触媒金属としてPtの代わりにPdを一部用いるため、用いるPtの量を低減できて、コストを低減することが可能となる。   As a result, the particulate filter with catalyst according to the present invention can improve the total PM combustion speed, and the above-described engine injection control becomes a short time. In other words, the fuel consumption is reduced and the fuel consumption performance is improved. improves. Further, since a part of Pd is used instead of Pt as the catalyst metal, the amount of Pt to be used can be reduced and the cost can be reduced.

本発明に係る触媒付パティキュレートフィルタにおいて、触媒層は、ZrCe系複合酸化物にロジウム(Rh)が含有されたRh含有ZrCe系複合酸化物をさらに含むことが好ましい。   In the particulate filter with catalyst according to the present invention, the catalyst layer preferably further includes an Rh-containing ZrCe-based composite oxide in which rhodium (Rh) is contained in the ZrCe-based composite oxide.

ZrCe系複合酸化物は、上記の通り、高い酸素吸蔵放出能を有し、酸素交換反応を起こして反応活性が高い酸素を放出できると考えられている。このため、PMの燃焼に伴ってその燃焼部位の酸素が局部的に消費されても、ZrCe系複合酸化物によって酸素が速やかに補われてPM燃焼が維持される。また、Rhを含むことにより酸素吸蔵放出及び酸素交換反応を促進できて、且つ、触媒と接触しないPMに対して、活性の持続性が高い脱離散素を供給する効果により、触媒層とPMとの間に隙間が形成された後の緩慢燃焼領域のPM燃焼速度を特に向上できる   As described above, it is considered that the ZrCe-based composite oxide has a high oxygen storage / release ability and can release oxygen having a high reaction activity by causing an oxygen exchange reaction. For this reason, even if oxygen of the combustion part is consumed locally with combustion of PM, oxygen is rapidly supplemented by ZrCe system complex oxide, and PM combustion is maintained. In addition, the inclusion of Rh can promote the oxygen storage / release and the oxygen exchange reaction, and the effect of supplying de-discrete elements with high activity persistence to PM that does not come into contact with the catalyst. Especially, the PM combustion rate in the slow combustion region after the gap is formed can be improved.

本発明に係るパティキュレートフィルタによると、急速燃焼領域及び緩慢燃焼領域におけるPM燃焼性能を向上できるため、PMの燃焼が効率良く進めることができ、燃費性能も向上できる。さらに、触媒金属として用いられるPtの量を低減できるため、コストを低減することも可能となる。   According to the particulate filter according to the present invention, the PM combustion performance in the rapid combustion region and the slow combustion region can be improved, so that the PM combustion can be advanced efficiently and the fuel efficiency can be improved. Furthermore, since the amount of Pt used as the catalyst metal can be reduced, the cost can also be reduced.

触媒層に堆積したPMが燃焼していくときのPM残存割合の経時変化を模式的に示すグラフ図である。It is a graph which shows typically a time-dependent change of PM residual ratio when PM deposited on the catalyst layer burns. 触媒層にPM堆積層が接触している状態(図1の急速燃焼領域における状態)を示す電子顕微鏡写真である。It is an electron micrograph which shows the state (state in the rapid combustion area | region of FIG. 1) which PM deposit layer is contacting the catalyst layer. 急速燃焼領域におけるPMの燃焼メカニズムを示す模式図である。It is a schematic diagram which shows the combustion mechanism of PM in a rapid combustion area | region. 触媒層とPMの堆積層との間に隙間ができた状態(図1の緩慢燃焼領域における状態)を示す電子顕微鏡写真である。It is an electron micrograph which shows the state (state in the slow combustion area | region of FIG. 1) with which the clearance gap was made between the catalyst layer and the deposit layer of PM. 緩慢燃焼領域におけるPMの燃焼メカニズムを示す模式図である。It is a schematic diagram which shows the combustion mechanism of PM in a slow combustion area | region. パティキュレートフィルタをエンジンの排ガス通路に配置した状態を示す図である。It is a figure which shows the state which has arrange | positioned the particulate filter in the exhaust gas path of an engine. 同フィルタを模式的に示す正面図である。It is a front view which shows the same filter typically. 同フィルタを模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows the same filter typically. 同フィルタの排ガス通路壁を模式的に示す拡大断面図である。It is an expanded sectional view showing typically the exhaust gas passage wall of the filter. ZrCe系複合酸化物が活性アルミナ粒子に担持された複合粒子にPd及びPtが担持された触媒材と、ZrCe系複合酸化物が活性アルミナ粒子に担持された複合粒子にPtのみが担持された触媒材とのNO生成能を比較するグラフ図である。A catalyst material in which Pd and Pt are supported on composite particles in which ZrCe-based composite oxide is supported on activated alumina particles, and a catalyst in which only Pt is supported on composite particles in which ZrCe-based composite oxide is supported on active alumina particles it is a graph comparing the NO 2 generation ability with product. 本発明の実施形態の触媒層を模式的に示す図である。It is a figure which shows typically the catalyst layer of embodiment of this invention. 本発明の実施例及び比較例に係る触媒付パティキュレートフィルタのカーボン燃焼速度を示すグラフ図である。It is a graph which shows the carbon burning rate of the particulate filter with a catalyst which concerns on the Example and comparative example of this invention.

以下、本発明を実施するための形態を図面に基づいて説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものでない。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. The following description of the preferred embodiments is merely exemplary in nature and is not intended to limit the invention, its application, or its application.

<パティキュレートフィルタの構造>
以下、PMを捕集するためのパティキュレートフィルタの構造について説明する。
<Particulate filter structure>
Hereinafter, the structure of the particulate filter for collecting PM will be described.

図6はディーゼルエンジンの排ガス通路11に配置されたパティキュレートフィルタ(以下、単に「フィルタ」という。)10を示す。フィルタ10よりも排ガス流の上流側の排ガス通路11には、酸化物等からなるサポート材にPt、Pd等に代表される触媒金属を担持した酸化触媒(図示省略)を配置することができる。配置される酸化触媒に、本実施形態に係る排ガス成分浄化触媒材を用いることができる。このような酸化触媒をフィルタ10の上流側に配置するときは、該酸化触媒によって排ガス中のHC、COを酸化させ、その酸化燃焼熱でフィルタ10に流入する排ガス温度を高めてフィルタ10を加熱することができ、PMの燃焼除去に有利になる。また、NOが酸化触媒でNOに酸化され、該NOがフィルタ10にPMを燃焼させる酸化剤として供給されることになる。 FIG. 6 shows a particulate filter (hereinafter simply referred to as “filter”) 10 arranged in the exhaust gas passage 11 of the diesel engine. In the exhaust gas passage 11 on the upstream side of the exhaust gas flow from the filter 10, an oxidation catalyst (not shown) in which a catalyst metal typified by Pt, Pd or the like is supported on an oxide or the like support material can be disposed. The exhaust gas component purification catalyst material according to the present embodiment can be used for the oxidation catalyst to be disposed. When such an oxidation catalyst is arranged on the upstream side of the filter 10, HC and CO in the exhaust gas are oxidized by the oxidation catalyst, and the temperature of the exhaust gas flowing into the filter 10 is increased by the oxidation combustion heat to heat the filter 10. This is advantageous for PM removal by combustion. Further, NO is oxidized to NO 2 by the oxidation catalyst, and the NO 2 is supplied to the filter 10 as an oxidant for burning PM.

図7及び図8に模式的に示すように、フィルタ10は、ハニカム構造をなしており、互いに平行に延びる多数の排ガス通路12、13を備えている。すなわち、フィルタ10は、下流端が栓14により閉塞された排ガス流入路12と、上流端が栓14により閉塞された排ガス流出路13とが交互に設けられ、排ガス流入路12と排ガス流出路13とは薄肉の隔壁15を介して隔てられている。なお、図7においてハッチングを付した部分は排ガス流出路13の上流端の栓14を示している。   As schematically shown in FIGS. 7 and 8, the filter 10 has a honeycomb structure and includes a large number of exhaust gas passages 12 and 13 extending in parallel to each other. That is, in the filter 10, the exhaust gas inflow path 12 whose downstream end is blocked by the plug 14 and the exhaust gas outflow path 13 whose upstream end is blocked by the plug 14 are alternately provided, and the exhaust gas inflow path 12 and the exhaust gas outflow path 13 are provided. Is separated by a thin wall 15. In FIG. 7, hatched portions indicate the plugs 14 at the upstream end of the exhaust gas outflow passage 13.

フィルタ10は、前記隔壁15を含むフィルタ本体がコージェライト、SiC、Si、サイアロン、AlTiOのような無機多孔質材料から形成されている。排ガス流入路12内に流入した排ガスは図8において矢印で示したように周囲の隔壁15を通って隣接する排ガス流出路13内に流出する。すなわち、図9に示すように、隔壁15は排ガス流入路12と排ガス流出路13とを連通する微小な細孔(排ガス通路)16を有し、この細孔16を排ガスが通る。PMは主に排ガス流入路12及び細孔16の壁部に捕捉され堆積する。 In the filter 10, the filter main body including the partition wall 15 is formed of an inorganic porous material such as cordierite, SiC, Si 3 N 4 , sialon, or AlTiO 3 . The exhaust gas flowing into the exhaust gas inflow passage 12 flows out into the adjacent exhaust gas outflow passage 13 through the surrounding partition 15 as shown by the arrows in FIG. That is, as shown in FIG. 9, the partition wall 15 has minute pores (exhaust gas passages) 16 that connect the exhaust gas inflow passage 12 and the exhaust gas outflow passage 13, and the exhaust gas passes through the pores 16. PM is trapped and accumulated mainly in the exhaust gas inlet 12 and the walls of the pores 16.

上記フィルタ本体の排ガス通路(排ガス流入路12、排ガス流出路13及び細孔16)を形成する壁面には触媒層17が形成されている。なお、排ガス流出路13側の壁面に触媒層を形成することは必ずしも要しない。   A catalyst layer 17 is formed on the wall surface forming the exhaust gas passage (exhaust gas inflow passage 12, exhaust gas outflow passage 13 and pore 16) of the filter body. It is not always necessary to form a catalyst layer on the wall surface on the exhaust gas outflow passage 13 side.

<触媒材について>
次に、本発明の実施形態に係るパティキュレートフィルタに用いられる触媒材について説明する。
<About catalyst material>
Next, the catalyst material used for the particulate filter according to the embodiment of the present invention will be described.

本発明者らは、PM燃焼性能が良好な触媒材について、実験・研究を進めた結果、ZrとCeとを含むZrCe系複合酸化物が活性アルミナ粒子に担持された複合粒子に、Pd及びPtが担持されたPdPt担持複合粒子を触媒材として用いることを見出した。ここで、このPdPt担持複合粒子と、上記複合粒子(ZrCe系複合酸化物が活性アルミナ粒子に担持された複合粒子)にPtのみを担持したPt担持複合粒子とを用いて行ったNO酸化性能試験及びその結果について以下に説明する。   As a result of conducting experiments and research on a catalyst material having good PM combustion performance, the present inventors have determined that Pd and Pt are added to composite particles in which a ZrCe-based composite oxide containing Zr and Ce is supported on activated alumina particles. It has been found that PdPt-supported composite particles on which is supported are used as a catalyst material. Here, the NO oxidation performance test was performed using the PdPt-supported composite particles and the Pt-supported composite particles in which only the Pt was supported on the composite particles (composite particles in which the ZrCe-based composite oxide was supported on the activated alumina particles). The results will be described below.

NO酸化性能試験では、PdPt担持複合粒子又はPt担持複合粒子をそれぞれ触媒材として担持したサンプルフィルタを作製し、このサンプルフィルタを用いてそれぞれのNO酸化性能を評価した。なお、サンプルフィルタは、コージェライト担体(25cc、4.5mil/400cpsi)に上記の各触媒を100g/L(2.5g)コーティングした後に、500℃で2時間焼成することにより作製した。なお、触媒金属の含有量は、0.3g/Lとし、PdPt担持複合粒子においてPt:Pdは、2:1(質量比)とした。また、ZrCe系複合酸化物として、ランタン(La)及びイットリウム(Y)を含むZrCeLaYOを用い、上記複合粒子におけるZrCeLaYO:Al(活性アルミナ)を20:80(質量比)とした。 In the NO oxidation performance test, sample filters each carrying PdPt-supported composite particles or Pt-supported composite particles as catalyst materials were prepared, and each NO oxidation performance was evaluated using this sample filter. The sample filter was prepared by coating the above catalyst with 100 g / L (2.5 g) on a cordierite support (25 cc, 4.5 mil / 400 cpsi), and then calcining at 500 ° C. for 2 hours. The catalyst metal content was 0.3 g / L, and Pt: Pd was 2: 1 (mass ratio) in the PdPt-supported composite particles. Moreover, ZrCeLaYO x containing lanthanum (La) and yttrium (Y) was used as the ZrCe-based composite oxide, and the ZrCeLaYO x : Al 2 O 3 (active alumina) in the composite particles was set to 20:80 (mass ratio). .

このようにして得られたサンプルフィルタを模擬ガス流通反応装置に取り付け、模擬排ガス(CO;400ppm、HC(C);200ppm、NO;500ppm、HO:10%、残N)をフィルタに通した。このときの模擬排ガスの流量を35L/minとし、空間速度を84000/hとした。また、温度条件としては、フィルタ入口の温度で100℃から30℃/minの昇温速度で600℃にまで上昇させた。このような条件で温度を上げながら、ガス中のNO濃度をフィルタ出口においてリアルタイムで測定した。そして、以下の式を用いてNO酸化率を算出した。 The sample filter thus obtained was attached to a simulated gas flow reactor, and simulated exhaust gas (CO; 400 ppm, HC (C 3 H 6 ); 200 ppm, NO; 500 ppm, H 2 O: 10%, remaining N 2 ) Was passed through the filter. The flow rate of the simulated exhaust gas at this time was 35 L / min, and the space velocity was 84000 / h. As temperature conditions, the temperature at the filter inlet was increased from 100 ° C. to 600 ° C. at a temperature increase rate of 30 ° C./min. While increasing the temperature under these conditions, the NO concentration in the gas was measured in real time at the filter outlet. And the NO oxidation rate was computed using the following formula | equation.

NO酸化率(%)
=100×{[初期(100℃時)NO濃度(ppm)]−[NO濃度(ppm)]}/[初期NO濃度(ppm)]
その結果、図10に示すように、PdPt担持複合粒子は、Pt担持複合粒子よりもNO酸化性能が顕著に高いことが認められた。すなわち、触媒材として、PdPt担持複合粒子を用いると、排ガス中のNOを高効率でNOに酸化できるため、このNOが酸化剤として働き、PM燃焼性能を向上できる。
NO oxidation rate (%)
= 100 x {[Initial (at 100 ° C) NO concentration (ppm)]-[NO concentration (ppm)]} / [Initial NO concentration (ppm)]
As a result, as shown in FIG. 10, it was confirmed that the PdPt-supported composite particles had significantly higher NO oxidation performance than the Pt-supported composite particles. That is, when PdPt-supported composite particles are used as the catalyst material, NO in the exhaust gas can be oxidized to NO 2 with high efficiency, so that this NO 2 acts as an oxidant and PM combustion performance can be improved.

本発明者らは、さらに、触媒材の粒子の表面積を増大して排ガスとの接触効率を向上できるようにするために、上記のようなNO酸化性能が高い複合粒子において、活性アルミナ粒子にZrCe系複合酸化物を担持せずに、それぞれに触媒金属を担持するようにした。具体的に、ZrとCeとを含むZrCe系複合酸化物にPdが担持されたPd担持ZrCe系複合酸化物と、活性アルミナ粒子にPtが担持されたPt担持活性アルミナ粒子とを含む触媒材を用いて、PM燃焼性能を向上できる触媒層を有する触媒付パティキュレートフィルタを構成した。以下に、本実施形態に係る触媒付パティキュレートフィルタにおける触媒層の構成について説明する。   In order to increase the surface area of the particles of the catalyst material and improve the contact efficiency with the exhaust gas, the present inventors further added ZrCe to the activated alumina particles in the composite particles having high NO oxidation performance as described above. The catalyst metal was supported on each of them without supporting the composite oxide. Specifically, a catalyst material including a Pd-supported ZrCe-based composite oxide in which Pd is supported on a ZrCe-based composite oxide containing Zr and Ce, and Pt-supported active alumina particles in which Pt is supported on active alumina particles. A catalyst-attached particulate filter having a catalyst layer capable of improving PM combustion performance was used. Below, the structure of the catalyst layer in the particulate filter with a catalyst which concerns on this embodiment is demonstrated.

図11に示すように、本実施形態では、フィルタの排ガス通路壁における壁面(フィルタ担体21)の表面に触媒層22が形成されており、触媒層22には、活性アルミナ粒子23にPt24が担持されたPt担持活性アルミナ粒子と、ZrとCeとを含むZrCe系複合酸化物25にPd26が担持されたPd担持ZrCe系複合酸化物とが含まれている。なお、図11に示すように、ZrCe系複合酸化物25にはPd26及びPt24の両方が担持されていても構わない。なお、ZrCe系複合酸化物25は、Zr及びCe以外のイットリウム(Y)及びランタン(La)等の希土類元素を含んでいても構わない。ここで、触媒層22に含まれる活性アルミナ粒子23、Pt24、ZrCe系複合酸化物25及びPd26の構成比率は、特に限定されず、適宜調製することができる。   As shown in FIG. 11, in the present embodiment, a catalyst layer 22 is formed on the wall surface (filter carrier 21) of the exhaust gas passage wall of the filter, and Pt 24 is supported on the activated alumina particles 23 in the catalyst layer 22. The Pt-supported activated alumina particles and the Pd-supported ZrCe-based composite oxide in which Pd26 is supported on the ZrCe-based composite oxide 25 containing Zr and Ce are included. As shown in FIG. 11, both Pd26 and Pt24 may be supported on the ZrCe-based composite oxide 25. The ZrCe-based composite oxide 25 may contain a rare earth element such as yttrium (Y) and lanthanum (La) other than Zr and Ce. Here, the constituent ratios of the activated alumina particles 23, Pt24, ZrCe-based composite oxide 25 and Pd26 contained in the catalyst layer 22 are not particularly limited, and can be appropriately prepared.

また、触媒層22には、上記の粒子の他に、ZrCe系複合酸化物28にロジウム(Rh)27が含有されたRh含有ZrCe系複合酸化物をさらに含んでいてもよい。このようにすると、上述の通り、Rh含有ZrCe系複合酸化物は、触媒と接触しないPMに対して、活性の持続性が高い脱離散素を供給できるため、触媒層とPMとの間に隙間が形成された後の緩慢燃焼領域のPM燃焼速度を特に向上できる。なお、Rh27は、ZrCe系複合酸化物28に含まれていれば表面に担持されることに限らず、例えば固溶されてZrCe系複合酸化物28に含まれていてもよい(ドープ型)。また、Rh27を含有するZrCe系複合酸化物28の組成は、ZrとCeとを含んでいれば、上記のPd26を担持するZrCe系複合酸化物25の組成と同一でなくても構わない。また、粒径も同一でなくても構わない。   In addition to the above particles, the catalyst layer 22 may further include an Rh-containing ZrCe composite oxide in which rhodium (Rh) 27 is contained in the ZrCe composite oxide 28. In this way, as described above, the Rh-containing ZrCe-based composite oxide can supply de-discrete elements having high activity persistence to PM that does not contact the catalyst, and therefore, there is a gap between the catalyst layer and the PM. In particular, the PM combustion rate in the slow combustion region after the formation of can be improved. The Rh27 is not limited to be supported on the surface as long as it is contained in the ZrCe-based composite oxide 28, and may be contained in the ZrCe-based composite oxide 28 after being dissolved, for example (dope type). Further, the composition of the ZrCe composite oxide 28 containing Rh27 may not be the same as the composition of the ZrCe composite oxide 25 supporting Pd26 as long as it contains Zr and Ce. Further, the particle diameters may not be the same.

また、この触媒層22には、バリウム(Ba)及びストロンチウム(Sr)等のアルカリ土類金属が含まれていてもよい。このようにすると、Pdが排ガス中の硫黄(S)成分により被毒されるのを防止することができる。   The catalyst layer 22 may contain an alkaline earth metal such as barium (Ba) and strontium (Sr). In this way, it is possible to prevent Pd from being poisoned by the sulfur (S) component in the exhaust gas.

<触媒材の調製方法>
次に、本発明の実施形態に係るパティキュレートフィルタに設けられる触媒材の調製方法について説明する。ここでは、ZrとCeとを含むZrCe系複合酸化物として、ZrCeLaY複合酸化物を調製する。
<Method for preparing catalyst material>
Next, a method for preparing a catalyst material provided in the particulate filter according to the embodiment of the present invention will be described. Here, a ZrCeLaY composite oxide is prepared as a ZrCe-based composite oxide containing Zr and Ce.

まず、オキシ硝酸ジルコニル溶液と硝酸ネオジム6水和物と硝酸ランタンと硝酸イットリウムとをイオン交換水に溶かす。これに28質量%アンモニア水の8倍希釈液を混合して中和させることにより、ZrCeLaY複合酸化物を含む前駆体(共沈体)を得る。この共沈物を遠心分離し、上澄み液を除去する脱水操作と、イオン交換水を加えて撹拌する水洗操作とを交互に必要回数繰り返す。最終的に脱水を行った後の共沈物を、大気中において150℃で一昼夜乾燥させた後、ボールミルにより平均粒子径100nm程度まで粉砕を行う。その後、大気中において500℃で2時間焼成することによりZrCeLaY複合酸化物(ZrCeLaYO)を得ることができる。 First, a zirconyl oxynitrate solution, neodymium nitrate hexahydrate, lanthanum nitrate, and yttrium nitrate are dissolved in ion-exchanged water. A precursor (coprecipitate) containing a ZrCeLaY composite oxide is obtained by mixing and neutralizing an 8-fold diluted solution of 28% by mass ammonia water. This coprecipitate is centrifuged, and the dehydration operation for removing the supernatant and the water washing operation for adding ion-exchanged water and stirring are repeated alternately as many times as necessary. The co-precipitate after the final dehydration is dried in the atmosphere at 150 ° C. for one day, and then pulverized to a mean particle diameter of about 100 nm by a ball mill. Then, ZrCeLaY complex oxide (ZrCeLaYO x ) can be obtained by firing at 500 ° C. for 2 hours in the air.

次に、得られたZrCeLaY複合酸化物にPd及びPtを担持する方法について説明する。ここでは、担持方法として蒸発乾固法を説明する。   Next, a method for supporting Pd and Pt on the obtained ZrCeLaY composite oxide will be described. Here, the evaporation to dryness method will be described as the carrying method.

まず、上記ZrCeLaY複合酸化物にイオン交換水を加えてスラリー状にし、それをスターラー等により十分に撹拌する。続いて、撹拌しながらそのスラリーに所定量のジニトロジアミンPd硝酸溶液、及びジニトロジアミンPt硝酸溶液を滴下し、十分に撹拌する。その後、加熱しながらさらに撹拌を続けて、水分を完全に蒸発させる。蒸発後、大気中において500℃で2時間焼成することにより、上記ZrCe系複合酸化物にPd及びPtが担持されたPdPt担持ZrCe系複合酸化物として、PdPt担持ZrCeLaY複合酸化物が得られる。なお、Pdのみを担持させる場合は、ジニトロジアミンPd硝酸溶液のみを用いて上記の方法を行えばよい。   First, ion exchange water is added to the ZrCeLaY composite oxide to form a slurry, which is sufficiently stirred with a stirrer or the like. Subsequently, a predetermined amount of dinitrodiamine Pd nitric acid solution and dinitrodiamine Pt nitric acid solution are dropped into the slurry while stirring, and the mixture is sufficiently stirred. Thereafter, stirring is continued while heating to completely evaporate water. After evaporation, the PdPt-supported ZrCeLaY composite oxide is obtained as the PdPt-supported ZrCe-based composite oxide in which Pd and Pt are supported on the ZrCe-based composite oxide by firing at 500 ° C. for 2 hours in the air. When only Pd is supported, the above method may be performed using only a dinitrodiamine Pd nitric acid solution.

また、活性アルミナ粒子にPtを担持させる方法は、上述の蒸発乾固法において、触媒金属溶液としてジニトロジアミンPt硝酸溶液を採用することによって得ることができる。   Moreover, the method of carrying Pt on the activated alumina particles can be obtained by adopting a dinitrodiamine Pt nitric acid solution as the catalyst metal solution in the above-mentioned evaporation to dryness method.

次に、CeとZrとを含み、さらにRhを含有するRh含有ZrCe系複合酸化物として、RhドープCeZrNdO複合酸化物の調製方法について説明する。 Next, a method for preparing an Rh-doped CeZrNdO x composite oxide as an Rh-containing ZrCe-based composite oxide containing Ce and Zr and further containing Rh will be described.

まず、硝酸セリウム6水和物とオキシ硝酸ジルコニル溶液と硝酸ネオジム6水和物と硝酸ロジウム溶液とをイオン交換水に溶かす。この硝酸塩溶液に28質量%アンモニア水の8倍希釈液を混合して中和させることにより、共沈物を得る。この共沈物を含む溶液を遠心分離器にかけて上澄み液を除去する脱水操作と、イオン交換水を加えて撹拌する水洗操作とを交互に必要回数繰り返す。最終的に脱水を行った後の共沈物を、大気中において150℃で一昼夜乾燥させた後、ボールミルにより平均粒子径100nm程度まで粉砕する。その後、大気中において500℃で2時間焼成することによりRhドープCeZrNdO複合酸化物粒子材を得ることができる。なお、ここにPtを担持するには、ジニトロジアミンPt硝酸溶液のみを用いて、上記と同様に、蒸発乾固法を用いればよい。 First, cerium nitrate hexahydrate, zirconyl oxynitrate solution, neodymium nitrate hexahydrate, and rhodium nitrate solution are dissolved in ion-exchanged water. A coprecipitate is obtained by mixing and neutralizing this nitrate solution with an 8-fold diluted solution of 28% by mass ammonia water. A dehydration operation in which the solution containing the coprecipitate is centrifuged to remove the supernatant and a water washing operation in which ion-exchanged water is added and stirred are repeated alternately as many times as necessary. The coprecipitate after the final dehydration is dried in the atmosphere at 150 ° C. for a whole day and night, and then pulverized to an average particle size of about 100 nm by a ball mill. Thereafter, the Rh-doped CeZrNdO x composite oxide particle material can be obtained by firing at 500 ° C. for 2 hours in the air. In addition, in order to carry | support Pt here, what is necessary is just to use the evaporative drying method similarly to the above using only dinitrodiamine Pt nitric acid solution.

上記のようにして得られた各粒子材に、イオン交換水及びバインダを加え、混合してスラリー状にする。このスラリーをフィルタにコーティングし、乾燥させた後、500℃で2時間焼成することにより、触媒付パティキュレートフィルタが得られる。   Ion exchange water and a binder are added to each particle material obtained as described above and mixed to form a slurry. The slurry is coated on a filter, dried, and then calcined at 500 ° C. for 2 hours to obtain a particulate filter with catalyst.

以下に、本発明に係る触媒付パティキュレートフィルタを詳細に説明するための実施例を示す。   Below, the Example for demonstrating in detail the particulate filter with a catalyst which concerns on this invention is shown.

本実施例では、触媒材として上記のPt担持Alと、Pd担持ZrCeLaYO又はPdPt担持ZrCeLaYOと、RhドープCeZrNdO複合酸化物又はこれにPtを担持したPt/RhドープCeZrNdO複合酸化物とを用い、触媒材に含まれるPdとPtとの比率を変えて、それぞれのカーボン燃焼速度を検討した。また、比較例として、PdでなくPtのみがZrCeLaYOに担持されているPt担持ZrCeLaYOと、Pdが活性アルミナ粒子に担持されたPd担持Al粒子とを用いた場合について検討した。各実施例及び比較例の触媒材の組成を以下の表1に示す。なお、表1に示す各比率は、質量比を示している。 In this example, the above-mentioned Pt-supported Al 2 O 3 as catalyst material, Pd-supported ZrCeLaYO x or PdPt-supported ZrCeLaYO x , Rh-doped CeZrNdO x composite oxide, or Pt / Rh-doped CeZrNdO x composite supporting Pt on this. Each carbon combustion rate was examined by using an oxide and changing the ratio of Pd and Pt contained in the catalyst material. Further, as a comparative example was examined for the case where only Pt not Pd was used Pt-supported ZrCeLaYO x carried on the ZrCeLaYO x, Pd is a supported Pd supported Al 2 O 3 particles to the active alumina particles. The composition of the catalyst material of each example and comparative example is shown in Table 1 below. In addition, each ratio shown in Table 1 has shown mass ratio.

実施例1〜16の触媒材に含まれるPt担持Alと、Pd担持ZrCeLaYO又はPdPt担持ZrCeLaYOと、実施例15の触媒材に含まれるRhドープCeZrNdOと、実施例16の触媒材に含まれるPt/RhドープCeZrNdOとは、上述の通りに調製した。各実施例では、それらをフィルタにコーティングすることによりサンプルフィルタ(触媒付パティキュレートフィルタ)を得た。なお、触媒材に含まれるZrCeLaYとAlとの構成比率は、20:80(質量比)とした。まt、Pd担持又はPdPt担持ZrCeLaYOにおけるZrCeLaYOの構成比率は、ZrO:CeO:La:Y=39:54:5:2(質量比)とした。また、RhドープCeZrNdO及びPt/RhドープCeZrNdOでは、Rhが0.1質量%であり、他のCeZrNdOの構成比率は、CeO:ZrO:Nd=28:62:10(質量比)とした。 Pt-supported Al 2 O 3 contained in the catalyst materials of Examples 1 to 16, Pd-supported ZrCeLaYO x or PdPt-supported ZrCeLaYO x , Rh-doped CeZrNdO x contained in the catalyst material of Example 15, and catalyst of Example 16 The Pt / Rh-doped CeZrNdO x contained in the material was prepared as described above. In each Example, the sample filter (particulate filter with catalyst) was obtained by coating them on the filter. The constituent ratio of ZrCeLaY and Al 2 O 3 contained in the catalyst material was 20:80 (mass ratio). Also t, component ratio ZrCeLaYO x in Pd supported or PdPt carrying ZrCeLaYO x is, ZrO 2: CeO 2: La 2 O 3: Y 2 O 3 = 39: 54: 5: and 2 (weight ratio). Further, in Rh-doped CeZrNdO x and Pt / Rh-doped CeZrNdO x , Rh is 0.1% by mass, and the composition ratio of other CeZrNdO x is CeO 2 : ZrO 2 : Nd 2 O 3 = 28: 62: 10 (Mass ratio).

また、各実施例及び比較例において、フィルタへの複合粒子のコーティング量は、20g/Lとし、Pd、Pt及びRhの総貴金属量は、0.3g/Lとした。それらの貴金属の構成比は、表1の通りであり、Pt、Pd及びRhを含む場合は、Pt:Pd:Rhを0.045:0.045:0.01(質量比)とした。   In each example and comparative example, the coating amount of the composite particles on the filter was 20 g / L, and the total amount of noble metals of Pd, Pt, and Rh was 0.3 g / L. The composition ratios of these noble metals are as shown in Table 1. When Pt, Pd and Rh were included, Pt: Pd: Rh was set to 0.045: 0.045: 0.01 (mass ratio).

各実施例及び比較例の触媒材をフィルタにコーティングして得られたサンプルフィルタに、カーボン(カーボンブラック)を堆積させてカーボン燃焼速度を測定した。   Carbon (carbon black) was deposited on the sample filter obtained by coating the filter with the catalyst material of each Example and Comparative Example, and the carbon burning rate was measured.

カーボンの堆積は、担体容量1L当たり5g/Lのカーボンが堆積するように行った。5g/L相当のカーボンをイオン交換水中でスターラーを用いて撹拌した後、サンプルフィルタの入口側を浸漬させ、出口側からアスピレータを用いて吸引した。吸水性のシートの上に載せて余分な水分を除去した後、150℃、2時間の乾燥処理を行った。   The carbon was deposited so that 5 g / L of carbon was deposited per liter of the carrier volume. After carbon equivalent to 5 g / L was stirred in ion-exchanged water using a stirrer, the inlet side of the sample filter was immersed and sucked from the outlet side using an aspirator. After excess water was removed by placing on a water-absorbent sheet, drying treatment was performed at 150 ° C. for 2 hours.

得られた各サンプルフィルタを模擬ガス流通反応装置に取り付け、Nガスを流通させながらそのガス温度を上昇させた。フィルタ入口温度が540℃で安定した後、Nガスから模擬排ガス(O;7.5%,NO;300ppm,残N)に切り換え、該模擬排ガスを空間速度40000/hで流した。そして、カーボンが燃焼することにより生じるCO及びCOのガス中濃度をフィルタ出口においてリアルタイムで測定し、それらの濃度から、下記の計算式を用いて、所定時間毎に、カーボン燃焼速度(単位時間当たりのPM燃焼量)を計算した。 Each of the obtained sample filters was attached to a simulated gas flow reactor, and the gas temperature was raised while flowing N 2 gas. After the filter inlet temperature was stabilized at 540 ° C., the simulated exhaust gas was switched from N 2 gas to simulated exhaust gas (O 2 ; 7.5%, NO; 300 ppm, remaining N 2 ), and flowed at a space velocity of 40000 / h. Then, the CO and CO 2 gas concentrations produced by the combustion of carbon are measured in real time at the filter outlet, and from these concentrations, the carbon combustion rate (unit time) is determined at predetermined intervals using the following formula. Per PM combustion amount) was calculated.

カーボン燃焼速度(g/h)
={ガス流速(L/h)×[(CO+CO)濃度(ppm)/(1×10)]}×12(g/mol)/22.4(L/mol)
上記所定時間毎のカーボン燃焼速度に基づいてカーボン燃焼量積算値の経時変化を求め、カーボン燃焼率が0%から50%、50%から90%及び0%から90%に達するまでに要した時間とその間のカーボン燃焼量の積算値とからカーボン燃焼速度(フィルタ1Lでの1分間当たりのPM燃焼量(mg/min-L))を求めた。その結果を図12に示す。
Carbon burning rate (g / h)
= {Gas flow rate (L / h) x [(CO + CO 2 ) concentration (ppm) / (1 x 10 6 )]} x 12 (g / mol) /22.4 (L / mol)
The time required for the carbon combustion rate to reach 0% to 50%, 50% to 90%, and 0% to 90% is obtained based on the carbon combustion rate for each predetermined time. The carbon combustion rate (PM combustion amount per minute (1 mg / min-L) in the filter 1 L) was obtained from the integrated value of the carbon combustion amount in the meantime. The result is shown in FIG.

図12に示すように、実施例1〜16と比較例1及び2とを比較すると、Pt担持Alと、Pd担持ZrCeLaYO又はPdPt担持ZrCeLaYOとを含む実施例1〜16の方が、それらを含まない比較例1及び2よりも、明らかにカーボン燃焼性能が優れている。 As shown in FIG. 12, when Examples 1 to 16 are compared with Comparative Examples 1 and 2, Examples 1 to 16 including Pt-supported Al 2 O 3 and Pd-supported ZrCeLaYO x or PdPt-supported ZrCeLaYO x However, the carbon combustion performance is clearly superior to Comparative Examples 1 and 2 that do not contain them.

Pt担持Alと、Pd担持ZrCeLaYOとを含み、PdとPtとの質量比が異なる実施例1〜7を互いに比較すると、Pdの量が多いほど急速燃焼領域(カーボン燃焼率が0%〜50%)における燃焼速度が向上し、緩慢燃焼領域(カーボン燃焼率が50%〜90%)における燃焼速度が低減する傾向が見られた。その結果、トータルのカーボン燃焼速度は、実施例1〜7ではほぼ同一であった。 When Examples 1 to 7 including Pt-supported Al 2 O 3 and Pd-supported ZrCeLaYO x and having different mass ratios of Pd and Pt were compared with each other, the greater the amount of Pd, the faster the combustion range (the carbon combustion rate was 0). % To 50%), and the combustion rate in the slow combustion region (carbon combustion rate is 50% to 90%) tends to decrease. As a result, the total carbon burning rate was almost the same in Examples 1-7.

Pt担持Alと、PdPt担持ZrCeLaYOとを含み、PdとPtとの質量比が異なる実施例8〜14を互いに比較すると、実施例1〜7と同様に、Pdの量が多いほど急速燃焼領域における燃焼速度が向上し、緩慢燃焼領域における燃焼速度が低減する傾向が見られ、トータルのカーボン燃焼速度は、実施例1〜7ではほぼ同一であった。また、実施例1〜7と実施例8〜14とにおける、互いにPdとPtとの構成比が同一のものを比較すると、何れの場合もPdPt担持ZrCeLaYOとを含む実施例8〜14の方がカーボン燃焼速度が高かった。すなわち、ZrCeLaYOとにPdだけでなく、Ptも担持することによって、カーボン燃焼性能を向上できることが示唆された。 When Examples 8 to 14 including Pt-supported Al 2 O 3 and PdPt-supported ZrCeLaYO x and having different mass ratios of Pd and Pt are compared with each other, as in Examples 1 to 7, the amount of Pd increases. There was a tendency for the combustion rate in the rapid combustion region to improve and the combustion rate in the slow combustion region to decrease, and the total carbon combustion rate was almost the same in Examples 1-7. Further, when Examples 1 to 7 and Examples 8 to 14 having the same composition ratio of Pd and Pt are compared with each other, Examples 8 to 14 including PdPt-supported ZrCeLaYO x in any case. However, the carbon burning rate was high. That is, it was suggested that carbon combustion performance can be improved by supporting not only Pd but also Pt on ZrCeLaYO x .

実施例1〜14と、RhドープCeZrNdOを含む実施例15とを比較すると、実施例15では、RhドープCeZrNdOにより、緩慢燃焼領域における燃焼速度が向上したため、トータルのカーボン燃焼速度が実施例1〜14よりも高かった。さらに、Pt/RhドープCeZrNdOを含む実施例16では、実施例15よりもさらにトータルのカーボン燃焼速度の向上が認められた。 Comparing Examples 1 to 14 with Example 15 containing Rh-doped CeZrNdO x , in Example 15, since the combustion rate in the slow combustion region was improved by Rh-doped CeZrNdO x , the total carbon burning rate was It was higher than 1-14. Furthermore, in Example 16 containing Pt / Rh-doped CeZrNdO x , a further improvement in the total carbon burning rate was recognized as compared with Example 15.

これらに対して、Ptの代わりにPdが担持されたPd担持Alと、Pdの代わりにPtが担持されたPt担持ZrCeLaYOとを含んでいる比較例1及び2では、急速燃焼領域及び緩慢燃焼領域の両方において、燃焼速度が小さい結果が得られ、実施例1〜16よりもトータルのカーボン燃焼速度は小さかった。 On the other hand, in Comparative Examples 1 and 2 containing Pd-supported Al 2 O 3 supporting Pd instead of Pt and Pt-supporting ZrCeLaYO x supporting Pt instead of Pd, the rapid combustion region In both the slow combustion region and the slow combustion region, results with a low combustion rate were obtained, and the total carbon combustion rate was lower than in Examples 1-16.

以上の通り、Pd担持又はPdPt担持ZrCe系複合酸化物と、Pt担持活性アルミナ粒子とを含む粒子材を触媒材として用いることにより、トータルのPM燃焼性能を向上できることが示唆された。   As described above, it was suggested that the total PM combustion performance can be improved by using a particulate material containing Pd-supported or PdPt-supported ZrCe-based composite oxide and Pt-supported activated alumina particles as a catalyst material.

10 フィルタ
11 排ガス通路
12 排ガス流入路(排ガス通路)
13 排ガス流出路(排ガス通路)
14 栓
15 隔壁
16 細孔(排ガス通路)
17 触媒層
21 フィルタ担体
22 触媒層
23 活性アルミナ粒子
24 白金(Pt)
25 ZrCe系複合酸化物(Pd担持)
26 パラジウム(Pd)
27 ロジウム(Rh)
28 ZrCe系複合酸化物(Rh含有)
10 Filter 11 Exhaust gas passage 12 Exhaust gas inflow passage (exhaust gas passage)
13 Exhaust gas outflow passage (exhaust gas passage)
14 plug 15 partition 16 pore (exhaust gas passage)
17 catalyst layer 21 filter carrier 22 catalyst layer 23 activated alumina particles 24 platinum (Pt)
25 ZrCe complex oxide (supporting Pd)
26 Palladium (Pd)
27 Rhodium (Rh)
28 ZrCe complex oxide (containing Rh)

Claims (3)

排ガス中のパティキュレートを捕集するフィルタの排ガス通路壁に、触媒層が設けられた触媒付パティキュレートフィルタであって、
前記触媒層は、ジルコニウム(Zr)とセリウム(Ce)とを含むZrCe系複合酸化物に触媒金属としてパラジウム(Pd)が担持されたPd担持ZrCe系複合酸化物と、活性アルミナ粒子に触媒金属として白金(Pt)が担持されたPt担持活性アルミナ粒子とを含むことを特徴とする触媒付パティキュレートフィルタ。
A particulate filter with a catalyst in which a catalyst layer is provided on an exhaust gas passage wall of a filter that collects particulates in exhaust gas,
The catalyst layer includes a Pd-supported ZrCe composite oxide in which palladium (Pd) is supported as a catalyst metal on a ZrCe composite oxide containing zirconium (Zr) and cerium (Ce), and active alumina particles as a catalyst metal. A particulate filter with catalyst, comprising Pt-supported activated alumina particles on which platinum (Pt) is supported.
前記Pd担持ZrCe系複合酸化物には、さらにPtが担持されていることを特徴とする請求項1に記載の触媒付パティキュレートフィルタ。   The particulate filter with catalyst according to claim 1, wherein Pt is further supported on the Pd-supported ZrCe-based composite oxide. 前記触媒層は、前記ZrCe系複合酸化物にロジウム(Rh)が含有されたRh含有ZrCe系複合酸化物をさらに含むことを特徴とする請求項1又は2に記載の触媒付パティキュレートフィルタ。   3. The particulate filter with catalyst according to claim 1, wherein the catalyst layer further includes an Rh-containing ZrCe composite oxide in which rhodium (Rh) is contained in the ZrCe composite oxide.
JP2012276053A 2012-12-18 2012-12-18 Particulate filter with catalyst Active JP5954159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012276053A JP5954159B2 (en) 2012-12-18 2012-12-18 Particulate filter with catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012276053A JP5954159B2 (en) 2012-12-18 2012-12-18 Particulate filter with catalyst

Publications (2)

Publication Number Publication Date
JP2014117680A true JP2014117680A (en) 2014-06-30
JP5954159B2 JP5954159B2 (en) 2016-07-20

Family

ID=51173025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012276053A Active JP5954159B2 (en) 2012-12-18 2012-12-18 Particulate filter with catalyst

Country Status (1)

Country Link
JP (1) JP5954159B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016155112A (en) * 2015-02-26 2016-09-01 マツダ株式会社 Particulate filter with catalyst
WO2020200398A1 (en) * 2019-03-29 2020-10-08 Umicore Ag & Co. Kg Catalytically active particulate filter
US11623179B2 (en) 2017-12-19 2023-04-11 Umicore Ag & Co. Kg Catalytically active particulate filter
US11628400B2 (en) 2017-12-19 2023-04-18 Umicore Ag & Co. Kg Catalytically active particulate filter
US11702971B2 (en) 2017-12-19 2023-07-18 Umicore Ag & Co. Kg Catalytically active particulate filter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005329318A (en) * 2004-05-19 2005-12-02 Mazda Motor Corp Diesel particulate filter
JP2010269270A (en) * 2009-05-22 2010-12-02 Sumitomo Osaka Cement Co Ltd Honeycomb structure type filter
US20120124974A1 (en) * 2010-11-24 2012-05-24 Basf Corporation Advanced Catalyzed Soot Filters And Method Of Making And Using The Same
JP2012172597A (en) * 2011-02-22 2012-09-10 Honda Motor Co Ltd Exhaust purification filter
JP2014527909A (en) * 2011-09-23 2014-10-23 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se High HC gas conversion rate and high CO gas conversion rate diesel oxidation catalyst with layered structure containing ceria composition as palladium support material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005329318A (en) * 2004-05-19 2005-12-02 Mazda Motor Corp Diesel particulate filter
JP2010269270A (en) * 2009-05-22 2010-12-02 Sumitomo Osaka Cement Co Ltd Honeycomb structure type filter
US20120124974A1 (en) * 2010-11-24 2012-05-24 Basf Corporation Advanced Catalyzed Soot Filters And Method Of Making And Using The Same
JP2012172597A (en) * 2011-02-22 2012-09-10 Honda Motor Co Ltd Exhaust purification filter
JP2014527909A (en) * 2011-09-23 2014-10-23 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se High HC gas conversion rate and high CO gas conversion rate diesel oxidation catalyst with layered structure containing ceria composition as palladium support material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016155112A (en) * 2015-02-26 2016-09-01 マツダ株式会社 Particulate filter with catalyst
US11623179B2 (en) 2017-12-19 2023-04-11 Umicore Ag & Co. Kg Catalytically active particulate filter
US11628400B2 (en) 2017-12-19 2023-04-18 Umicore Ag & Co. Kg Catalytically active particulate filter
US11702971B2 (en) 2017-12-19 2023-07-18 Umicore Ag & Co. Kg Catalytically active particulate filter
US12128357B2 (en) 2017-12-19 2024-10-29 Umicore Ag & Co. Kg Catalytically active particulate filter
WO2020200398A1 (en) * 2019-03-29 2020-10-08 Umicore Ag & Co. Kg Catalytically active particulate filter
CN113646064A (en) * 2019-03-29 2021-11-12 优美科股份公司及两合公司 Catalytically active particulate filter
EP4029592A1 (en) * 2019-03-29 2022-07-20 UMICORE AG & Co. KG Catalytically active particulate filter
US12161998B2 (en) 2019-03-29 2024-12-10 Umicore Ag & Co. Kg Catalytically active particulate filter

Also Published As

Publication number Publication date
JP5954159B2 (en) 2016-07-20

Similar Documents

Publication Publication Date Title
JP5954159B2 (en) Particulate filter with catalyst
JP5023969B2 (en) Exhaust gas component purification catalyst material and particulate filter with the catalyst material
JP5991162B2 (en) Particulate filter with catalyst
JP5861475B2 (en) Exhaust gas component purification catalyst material and particulate filter with catalyst material comprising the same
JP2013117190A (en) Particulate filter with catalyst
JP5023968B2 (en) Exhaust gas component purification catalyst material and particulate filter with the catalyst material
JP4985299B2 (en) Exhaust gas component purification catalyst material and particulate filter with the catalyst material
JP5974850B2 (en) Particulate filter with catalyst
JP5954031B2 (en) Particulate matter combustion catalyst
JP5023950B2 (en) Exhaust gas component purification catalyst material and particulate filter with the catalyst material
JP4858394B2 (en) Exhaust gas component purification catalyst material and particulate filter with the catalyst material
JP5834925B2 (en) Particulate filter with catalyst
JP6627813B2 (en) Method for producing particulate filter with catalyst
JP5939140B2 (en) Particulate filter with catalyst
JP6194699B2 (en) Manufacturing method of particulate filter with catalyst
JP5949520B2 (en) Particulate filter with catalyst
JP5029273B2 (en) Particulate filter
JP5034871B2 (en) Exhaust gas component purification catalyst material and particulate filter with the catalyst material
JP5942812B2 (en) Particulate filter with catalyst
JP5834924B2 (en) Particulate filter with catalyst
JP5880160B2 (en) Particulate filter with catalyst
JP6202022B2 (en) Particulate filter with catalyst
JP5979014B2 (en) Manufacturing method of particulate filter with catalyst
JP5954134B2 (en) Particulate filter with catalyst
CN105473222B (en) Exhaust gas catalytic conversion and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160530

R150 Certificate of patent or registration of utility model

Ref document number: 5954159

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150