[go: up one dir, main page]

JP2014113510A - Ceramic honeycomb filter and manufacturing method thereof - Google Patents

Ceramic honeycomb filter and manufacturing method thereof Download PDF

Info

Publication number
JP2014113510A
JP2014113510A JP2012039758A JP2012039758A JP2014113510A JP 2014113510 A JP2014113510 A JP 2014113510A JP 2012039758 A JP2012039758 A JP 2012039758A JP 2012039758 A JP2012039758 A JP 2012039758A JP 2014113510 A JP2014113510 A JP 2014113510A
Authority
JP
Japan
Prior art keywords
ceramic honeycomb
ceramic
cell
structures
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012039758A
Other languages
Japanese (ja)
Inventor
Shunji Okazaki
俊二 岡崎
Wataru Soga
航 曽我
Junji Komatsu
順二 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2012039758A priority Critical patent/JP2014113510A/en
Priority to PCT/JP2012/058267 priority patent/WO2012137655A1/en
Priority to CN201280026598.0A priority patent/CN103648605B/en
Publication of JP2014113510A publication Critical patent/JP2014113510A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2478Structures comprising honeycomb segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/247Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2455Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the whole honeycomb or segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2474Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the walls along the length of the honeycomb
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2482Thickness, height, width, length or diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2484Cell density, area or aspect ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/249Quadrangular e.g. square or diamond
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2279/00Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses
    • B01D2279/30Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses for treatment of exhaust gases from IC Engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • C04B2235/3445Magnesium silicates, e.g. forsterite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Filtering Materials (AREA)
  • Ceramic Products (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ceramic honeycomb filter, hardly causing melting damage even if the filter is regenerated, hardly causing clogging with ash and reducing an increase in pressure loss, by suppressing the pressure loss when exhaust gas passes, while maintaining collection performance of PM.SOLUTION: A plurality of ceramic honeycomb structures are joined in an exhaust gas-flowing direction on its end surface, and mutual partition walls of at least a part of the plurality of ceramic honeycomb structures are deviatively joined on a cross section orthogonal to the exhaust gas-flowing direction, and in a joined upstream side cell, the cell opening area ratio A=(A/A) being the ratio of the cell opening area Aon the cross section vertical to the exhaust gas-flowing direction and the cell opening area Ain which the cell opening area Aof the cell is reduced by the partition wall of the joined downstream side ceramic honeycomb structure has the average value of 0.9 or less in an optional 5 cells×5 cells=25 cells, and roughness (a maximum height Rz) of a partition wall end surface and a partition wall surface of the downstream side ceramic honeycomb structure is 15 μm or more.

Description

本発明は、ディーゼルエンジン等の内燃機関から排出される排気ガスの浄化に用いられるセラミックハニカムフィルタ及びその製造方法に関するものである。   The present invention relates to a ceramic honeycomb filter used for purifying exhaust gas discharged from an internal combustion engine such as a diesel engine and a method for manufacturing the same.

ディーゼルエンジン等の内燃機関から排出される排気ガス中には粒子状物質(Particulate Matters、以下「PM」という)が多量に含まれている。このPMが大気中に放出されると環境汚染を引き起こすため、PMを捕集するためのフィルタが搭載されている。このフィルタは、例えば特許文献1に開示されているように、図10に示す多孔質の隔壁51で区画形成される流体を流通するセル52a、52bを備え、セルの端面が交互に目封止され、流体の流入側端部aが開口されかつ流体の流出側端部bが目封止材53bで目封止されたセル52aと、流体の流入側端部aが目封止材53aで目封止されかつ流体の流出側端部bが開口されたセル52bとが交互に配設されてなる構造を有したセラミックハニカム構造体50である。このセラミックハニカム構造体の流入側端部aが開口されたセル52aに流入した排気ガスは、隣接するセルへ多孔質の隔壁51を通過する際に、排気ガス中のPMが隔壁に捕集され、排気ガス中のPMを捕集する。   Exhaust gas discharged from internal combustion engines such as diesel engines contains a large amount of particulate matter (Particulate Matters, hereinafter referred to as “PM”). When this PM is released into the atmosphere, environmental pollution is caused, so a filter for collecting PM is mounted. For example, as disclosed in Patent Document 1, this filter includes cells 52a and 52b through which a fluid is formed by a porous partition wall 51 shown in FIG. 10, and the end faces of the cells are alternately plugged. A cell 52a in which the fluid inflow end a is opened and the fluid outflow end b is plugged with a plugging material 53b, and the fluid inflow end a is a plugging material 53a. This is a ceramic honeycomb structure 50 having a structure in which cells 52b, which are plugged and whose fluid outlet end b is opened, are alternately arranged. When the exhaust gas flowing into the cell 52a in which the inflow side end a of the ceramic honeycomb structure is opened passes through the porous partition wall 51 to the adjacent cell, PM in the exhaust gas is collected by the partition wall. Collect PM in exhaust gas.

特開2001−269585号公報JP 2001-269585 A 特開2004−251137号公報JP 2004-251137 A

しかしながら、特許文献1に記載されるようなPMを捕集する構造のセラミックハニカム構造体は、すべての流通孔がその一端部の何れかにおいて目封止されているため、排気ガスが通過する際の圧力損失が高くなる問題を有していた   However, in the ceramic honeycomb structure having a structure for collecting PM as described in Patent Document 1, all the flow holes are plugged at any one end thereof, so that the exhaust gas passes through. Had the problem of increased pressure loss

さらに、ディーゼルエンジンから排出されるPMを捕集し続けると、捕集されたPMはフィルタ内に堆積し、フィルタ性能が低下するため、フィルタを加熱するなどして堆積したPMを燃焼除去してフィルタを再生させる必要がある。しかし、車両の運転状況により、多量のPMが捕集された状態で再生されると、多量のPMが燃焼することで発熱が大きくなり、フィルタであるセラミックハニカム構造体の隔壁が溶損する場合があった。さらに、捕集されたPMを燃焼しても消失しない固形物であるアッシュ(灰分)が徐々に堆積し、フィルタが目詰まりしやすくなる問題があった。   Furthermore, if the PM discharged from the diesel engine continues to be collected, the collected PM accumulates in the filter and the filter performance deteriorates. Therefore, the accumulated PM is burned and removed by heating the filter. The filter needs to be regenerated. However, if a large amount of PM is regenerated in a state where a large amount of PM is collected depending on the driving conditions of the vehicle, a large amount of PM burns, heat generation increases, and the partition walls of the ceramic honeycomb structure that is a filter may melt. there were. Furthermore, there is a problem that ash (ash), which is a solid that does not disappear even when the collected PM is burned, gradually accumulates, and the filter is easily clogged.

これを解決しようと、特許文献2には、図11に示す、多孔質の隔壁61により仕切られ排気ガスが流通するセル62a、62bを有するセラミックハニカム構造体の片側の端面bおいてのみ、一部のセル62aの一方の端部bを目封止63bしてなるセラミックハニカム構造体60を開示しているが、セル62bは、一方の端面aからもう一方の端面へ連通しているため、PMの捕集性能を維持するには十分ではなかった。   In order to solve this, Patent Document 2 discloses that only on one end face b of the ceramic honeycomb structure having cells 62a and 62b through which exhaust gas flows, which is partitioned by a porous partition wall 61, shown in FIG. Disclosed is a ceramic honeycomb structure 60 in which one end b of the cell 62a is plugged 63b, but the cell 62b communicates from one end surface a to the other end surface. It was not enough to maintain the PM collection performance.

本発明は、上記課題に鑑みてなされたものであり、PMの捕集性能を維持しつつ、排気ガスが通過する際の圧力損失を低く抑え、フィルタを再生しても溶損し難く、アッシュによる目詰まりが生じ難く、圧力損失の上昇が低い、セラミックハニカムフィルタを得ることにある。   The present invention has been made in view of the above problems, and while maintaining the PM collection performance, suppresses the pressure loss when the exhaust gas passes through, and is difficult to melt even if the filter is regenerated. The object is to obtain a ceramic honeycomb filter in which clogging is unlikely to occur and the increase in pressure loss is low.

本発明者らは、PMの捕集性能を維持しつつ、排気ガスが通過する際の圧力損失を低く抑え、フィルタを再生しても溶損し難く、アッシュによる目詰まりが生じ難い、セラミックハニカムフィルタを得るために鋭意検討の結果、従来技術のセラミックハニカムフィルタにおいて、排気ガスが通過する際の圧力損失が高くなること、および、アッシュ(灰分)が堆積してフィルタが目詰まりすることの要因が、流出側端部および流入側端部に形成されている目封止材が存在することであることを突き止めた。そして、目封止材を形成しなくても、PMの捕集性能を維持することができるセラミックハニカムフィルタの構造について鋭意検討した結果本発明に想到した。   The present inventors have suppressed the pressure loss when exhaust gas passes while maintaining the PM collection performance, are not easily damaged even when the filter is regenerated, and are not easily clogged by ash. As a result of intensive investigations to obtain the above, in the ceramic honeycomb filter of the prior art, the pressure loss when exhaust gas passes increases, and the factor that ash (ash) accumulates and the filter is clogged The plugging material formed at the outflow side end and the inflow side end was found to be present. As a result of intensive studies on the structure of the ceramic honeycomb filter capable of maintaining the PM collection performance without forming the plugging material, the present invention has been conceived.

本発明のセラミックハニカムフィルタは、排気ガス中の微粒子を除去するためのセラミックハニカムフィルタであって、多孔質の隔壁により仕切られたセルを有する複数のセラミックハニカム構造体が、前記セラミックハニカム構造体の端面において排気ガスが流通する方向に接合され、前記複数のセラミックハニカム構造体は、前記排気ガスが流通する方向に直交する断面において、少なくとも一部の前記複数のセラミックハニカム構造体の隔壁同士が、ずれて接合され、前記接合された複数のセラミックハニカム構造体の排気ガスが流通する上流側のセラミックハニカム構造体のセルにおいて、排気ガス流通方向に垂直な断面におけるセル開口面積A01と、前記セルのセル開口面積A01が前記接合された下流側のセラミックハニカム構造体の隔壁によって減少したセル開口面積A02と、の比であるセル開口面積比A0=(A02/A01)が、任意の5セル×5セル=25セルにおける平均値が0.9以下であり、前記下流側のセラミックハニカム構造体の隔壁端面の粗さ(最大高さRz)が15μm以上、隔壁表面の粗さ(最大高さRz)が15μm以上であることを特徴とする。 The ceramic honeycomb filter of the present invention is a ceramic honeycomb filter for removing particulates in exhaust gas, wherein a plurality of ceramic honeycomb structures having cells partitioned by porous partition walls are formed of the ceramic honeycomb structure. The end faces are joined in the direction in which the exhaust gas flows, and the plurality of ceramic honeycomb structures have at least some of the partition walls of the plurality of ceramic honeycomb structures in a cross section orthogonal to the direction in which the exhaust gas flows. A cell opening area A 01 in a cross section perpendicular to the exhaust gas flow direction in the cells of the upstream-side ceramic honeycomb structure in which exhaust gases of the plurality of bonded ceramic honeycomb structures are circulated and flowed. ceramic honeycomb structural cell opening area a 01 of the joined downstream The cell opening area A 02 that is reduced by the partition wall, the specific cell opening area ratio A 0 = a in (A 02 / A 01), the average value at any desired 5 cells × 5 cells = 25 cells be 0.9 or less Further, the partition wall end face roughness (maximum height Rz) of the downstream ceramic honeycomb structure is 15 μm or more, and the partition wall surface roughness (maximum height Rz) is 15 μm or more.

本発明のセラミックハニカムフィルタにおいて、前記セルにおける前記セル開口面積比(A0)と、前記セルに隣接するセルにおけるセル開口面積比(A1、A2、A3、A4・・・)との差の絶対値が、任意の5セル×5セル=25セルにおける最大値が0.10以上1.0未満であることが好ましい。 In the ceramic honeycomb filter of the present invention, the cell opening area ratio (A 0 ) in the cells and the cell opening area ratios (A 1 , A 2 , A 3 , A 4 ...) In the cells adjacent to the cells As for the absolute value of the difference, the maximum value in an arbitrary 5 cells × 5 cells = 25 cells is preferably 0.10 or more and less than 1.0.

本発明のセラミックハニカムフィルタにおいて、前記複数のセラミックハニカム構造体の隔壁同士が、隔壁厚さの方向に前記隔壁同士の最短間隔が隔壁ピッチの0.1倍以上0.5倍未満でずれて接合されていることが好ましい。   In the ceramic honeycomb filter of the present invention, the partition walls of the plurality of ceramic honeycomb structures are joined in the direction of the partition wall thickness so that the shortest distance between the partition walls is shifted by 0.1 to less than 0.5 times the partition wall pitch. Is preferred.

本発明のセラミックハニカムフィルタにおいて、前記複数のセラミックハニカム構造体の隔壁同士が、前記端面の中心を軸として35〜55°の角度ずれた位置で接合されていることが好ましい。   In the ceramic honeycomb filter of the present invention, it is preferable that the partition walls of the plurality of ceramic honeycomb structures are joined at a position shifted by an angle of 35 to 55 ° with the center of the end face as an axis.

本発明のセラミックハニカムフィルタにおいて、前記複数のセラミックハニカム構造体は2個以上15個以下であることが好ましい。   In the ceramic honeycomb filter of the present invention, the number of the ceramic honeycomb structures is preferably 2 or more and 15 or less.

本発明のセラミックハニカムフィルタにおいて、前記排気ガスが流通する方向に直交する断面において、前記セルは略四角形状で、隅部が円弧状であり、一方の対向する隅部の曲率半径は他方の対向する隅部の曲率半径より大きいことが好ましい。   In the ceramic honeycomb filter of the present invention, in the cross section orthogonal to the direction in which the exhaust gas flows, the cell has a substantially quadrangular shape, the corner has an arc shape, and the curvature radius of one opposite corner is opposite to the other. It is preferable that the radius of curvature of the corner to be larger is larger.

本発明のセラミックハニカムフィルタにおいて、前記接合された複数のセラミックハニカム構造体の端面間が0.01〜3.0mmの間隔を有することが好ましい。   In the ceramic honeycomb filter of the present invention, it is preferable that the end surfaces of the plurality of joined ceramic honeycomb structures have an interval of 0.01 to 3.0 mm.

本発明のセラミックハニカムフィルタにおいて、前記複数のセラミックハニカム構造体の開口率が75%以下であることことが好ましい。   In the ceramic honeycomb filter of the present invention, it is preferable that an opening ratio of the plurality of ceramic honeycomb structures is 75% or less.

本発明のセラミックハニカムフィルタにおいて、前記複数のセラミックハニカム構造体が、隣接するセラミックハニカム構造体同士の開口率が異なるように接合されていることが好ましい。   In the ceramic honeycomb filter of the present invention, it is preferable that the plurality of ceramic honeycomb structures are joined so that the aperture ratios of adjacent ceramic honeycomb structures are different.

前記複数のセラミックハニカム構造体は、排気ガスが流通する方向に平行する断面において、隣接する隔壁同士が略平行であるとともに、前記セラミックハニカム構造体の外周部のセルの1〜5個が、そのセルの一部もしくは端部が、外周面を形成していることが好ましい。   In the plurality of ceramic honeycomb structures, in the cross section parallel to the direction in which the exhaust gas flows, adjacent partition walls are substantially parallel to each other, and 1 to 5 cells in the outer peripheral portion of the ceramic honeycomb structure are It is preferable that a part or end of the cell forms an outer peripheral surface.

本発明のセラミックハニカムフィルタの製造方法は、複数のセラミックハニカム構造体が接合されてなるセラミックハニカムフィルタの製造方法であって、セラミック坏土をハニカム状に押出成形し、所定長さに切断し、乾燥後の複数のセラミックハニカム乾燥体を前記セラミックハニカム乾燥体の端面において、隔壁同士をずらして載置し、載置された複数のセラミックハニカム乾燥体を焼成して複数のセラミックハニカム構造体とすることを特徴とする。   A method for manufacturing a ceramic honeycomb filter of the present invention is a method for manufacturing a ceramic honeycomb filter in which a plurality of ceramic honeycomb structures are joined, and a ceramic clay is extruded into a honeycomb shape, cut into a predetermined length, The dried ceramic honeycomb dried bodies are placed on the end face of the ceramic honeycomb dried body with the partition walls being shifted from each other, and the placed ceramic honeycomb dried bodies are fired to form a plurality of ceramic honeycomb structures. It is characterized by that.

本発明のセラミックハニカムフィルタの製造方法において、前記焼成後、前記複数のセラミックハニカム構造体の外周部にコート材を塗布することが好ましい。   In the method for manufacturing a ceramic honeycomb filter of the present invention, it is preferable that a coating material is applied to the outer peripheral portions of the plurality of ceramic honeycomb structures after the firing.

また、本発明のセラミックハニカムフィルタの製造方法は、複数のセラミックハニカム構造体が接合されてなるセラミックハニカムフィルタの製造方法であって、セラミック坏土をハニカム状に押出成形し、所定長さに切断し、乾燥後の複数のセラミックハニカム乾燥体を前記セラミックハニカム乾燥体の端面において、隔壁同士をずらして載置し、前記載置された複数のセラミックハニカム乾燥体の外周部にコート材を塗布し、焼成することを特徴とする。   The method for manufacturing a ceramic honeycomb filter of the present invention is a method for manufacturing a ceramic honeycomb filter in which a plurality of ceramic honeycomb structures are joined. The ceramic clay is extruded into a honeycomb shape and cut into a predetermined length. Then, a plurality of dried ceramic honeycomb dried bodies are placed on the end face of the ceramic honeycomb dried body with the partition walls being shifted from each other, and a coating material is applied to the outer peripheral portion of the plurality of ceramic honeycomb dried bodies placed above. And firing.

また、本発明のセラミックハニカムフィルタの製造方法は、複数のセラミックハニカム構造体が接合されてなるセラミックハニカムフィルタの製造方法であって、セラミック坏土をハニカム状に押出成形し、所定長さに切断し、乾燥、焼成後の複数のセラミックハニカム構造体を前記セラミックハニカム構造体の端面において、隔壁同士をずらして載置し、前記載置された複数のセラミックハニカム構造体の外周部にコート材を塗布することを特徴とする。   The method for manufacturing a ceramic honeycomb filter of the present invention is a method for manufacturing a ceramic honeycomb filter in which a plurality of ceramic honeycomb structures are joined. The ceramic clay is extruded into a honeycomb shape and cut into a predetermined length. A plurality of ceramic honeycomb structures after drying and firing are placed on the end face of the ceramic honeycomb structure with the partition walls being shifted from each other, and a coating material is applied to the outer peripheral portion of the plurality of ceramic honeycomb structures placed as described above It is characterized by applying.

本発明のセラミックハニカムフィルタの製造方法において、前記セラミックハニカム構造体の端面の周縁部に接合材を配置し、前記複数のセラミックハニカム構造体が前記接合材を介して載置されることが好ましい。   In the method for manufacturing a ceramic honeycomb filter of the present invention, it is preferable that a bonding material is disposed on a peripheral portion of an end face of the ceramic honeycomb structure, and the plurality of ceramic honeycomb structures are placed via the bonding material.

本発明のセラミックハニカムフィルタの製造方法において、前記複数のセラミックハニカム構造体のうちの1つのセラミックハニカム構造体の端面上において、一方の外周端から他方の外周端まで形成されている任意の隔壁に、位置決め部材を略一致させた後、前記1つのセラミックハニカム構造体を、X方向、または、Y方向に移動、もしくは、X方向、Y方向の両方向に移動、もしくは、前記端面の中心を軸として回転移動させ、前記移動した1つのセラミックハニカム構造体の端面上に、他のセラミックハニカム構造体を載置するにあたって、前記他のセラミックハニカム構造体の端面上において、一方の外周端から他方の外周端まで形成されている任意の隔壁に位置決め部材を略一致させて載置することにより、隔壁同士をずらして載置されることが好ましい。   In the method for manufacturing a ceramic honeycomb filter of the present invention, an arbitrary partition wall formed from one outer peripheral end to the other outer peripheral end on the end face of one ceramic honeycomb structure of the plurality of ceramic honeycomb structures. Then, after substantially aligning the positioning members, the one ceramic honeycomb structure is moved in the X direction or the Y direction, or moved in both the X direction and the Y direction, or the center of the end face is used as an axis. When the other ceramic honeycomb structure is placed on the end surface of the moved one ceramic honeycomb structure, the outer periphery of the other ceramic honeycomb structure is moved from one outer peripheral end to the other outer periphery. By placing the positioning member approximately in line with any partition formed up to the end, the partitions are shifted from each other. It is preferably location.

本発明のセラミックハニカムフィルタの製造方法において、前記位置決め部材が、金属、及び/又は非金属からなる線状部材、もしくは光線であることが好ましい。   In the method for manufacturing a ceramic honeycomb filter of the present invention, the positioning member is preferably a linear member made of a metal and / or a non-metal, or a light beam.

本発明によれば、PMの捕集性能を維持しつつ、排気ガスが通過する際の圧力損失を低く抑え、再生しても溶損し難く、アッシュで目詰まりが生じ難い、セラミックハニカムフィルタを得ることができる。   According to the present invention, while maintaining the PM collection performance, the pressure loss when exhaust gas passes is kept low, and it is difficult to melt even if regenerated and clogging is difficult to occur in ash, thereby obtaining a ceramic honeycomb filter. be able to.

(a)本発明の実施例であるセラミックハニカムフィルタを示した模式断面図。(b)(a)を端面側から見た図。(a) A schematic cross-sectional view showing a ceramic honeycomb filter as an example of the present invention. (b) The figure which looked at (a) from the end surface side. 図1(a)のB−B部での断面拡大矢視図。The cross-sectional enlarged arrow line view in the BB part of Fig.1 (a). (a)本発明の別の実施例であるセラミックハニカムフィルタを示した模式断面図。(b)(a)を端面側から見た図。(a) A schematic cross-sectional view showing a ceramic honeycomb filter according to another embodiment of the present invention. (b) The figure which looked at (a) from the end surface side. 図3(a)のC−C部での断面拡大矢視図。FIG. 4 is an enlarged cross-sectional view taken along the line CC in FIG. 本発明に係るセラミックハニカム構造体の隔壁交差部を示す図。The figure which shows the partition intersection part of the ceramic honeycomb structure which concerns on this invention. 本発明に係るセラミックハニカム構造体を押出成形する際に用いる口金を成形体の出口側から見た図。The figure which looked at the nozzle | cap | die used when extrusion-molding the ceramic honeycomb structure which concerns on this invention from the exit side of the molded object. 本発明の実施例17に係るセラミックハニカムフィルタを示した模式断面図。FIG. 16 is a schematic cross-sectional view showing a ceramic honeycomb filter according to Example 17 of the present invention. 本発明の実施例25に係るセラミックハニカムフィルタを示した模式断面図。Fig. 25 is a schematic sectional view showing a ceramic honeycomb filter according to Example 25 of the present invention. 本発明において、セラミックハニカム構造体の外周部のセルが、その流通路の一部もしくは端部が、外周面を形成していることを示した模式断面図。In this invention, the cell of the outer peripheral part of a ceramic honeycomb structure WHEREIN: The schematic cross section which showed that a part or edge part of the flow path formed the outer peripheral surface. 従来技術である特許文献1に記載されるセラミックハニカムフィルタを示した模式断面図。The schematic cross section which showed the ceramic honeycomb filter described in patent document 1 which is a prior art. 従来技術である特許文献2に記載されるセラミックハニカムフィルタを示した模式断面図。The schematic cross section which showed the ceramic honeycomb filter described in patent document 2 which is a prior art. (a)本発明において、排気ガスが流通する上流側のセラミックハニカム構造体11の任意のセルのセル開口面積を示した模式図。(b)接合された下流側のセラミックハニカム構造体12の隔壁121によって減少したセル開口面積を示した模式図。(a) Schematic diagram showing the cell opening area of an arbitrary cell of the upstream ceramic honeycomb structure 11 through which exhaust gas flows in the present invention. (b) A schematic view showing the cell opening area reduced by the partition wall 121 of the bonded ceramic honeycomb structure 12 on the downstream side. (a)(c)本発明の実施例であるセラミックハニカムフィルタを示した模式断面図。(b)(d)を端面側から見た図。(a) (c) The schematic cross section which showed the ceramic honeycomb filter which is an Example of this invention. (b) The figure which looked at (d) from the end surface side. 本発明における複数のセラミックハニカム構造体を端面において隔壁同士が、隔壁厚さの方向にずれて載置する方法を示した模式図。The schematic diagram which showed the method in which the partition was shifted in the direction of partition wall thickness in the end surface, and the some ceramic honeycomb structure in this invention was mounted | worn. 本発明における複数のセラミックハニカム構造体を端面において隔壁同士が、端面の中心を軸として回転されてずれて載置する方法を示した模式図。The schematic diagram which showed the method by which the partition was rotated centering on the center of an end surface, and shifted | deviated to the some ceramic honeycomb structure in this invention.

以下、本発明を実施するための形態について説明するが、本発明は以下の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基いて、適宜、設計の変更、改良等が加えられることはいうまでもない。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described. However, the present invention is not limited to the following embodiments, and may be appropriately selected based on ordinary knowledge of a person skilled in the art without departing from the gist of the present invention. Needless to say, design changes and improvements can be made.

図1、図2、図3、図4に本発明のセラミックハニカムフィルタの実施の形態の1例を示す。本発明のセラミックハニカムフィルタ10は、多孔質の隔壁により仕切られたセルを有する複数のセラミックハニカム構造体11、12が、前記セラミックハニカム構造体の端面において排気ガスが流通する方向に接合され、前記複数のセラミックハニカム構造体11、12は、前記排気ガスが流通する方向に直交する断面において、少なくとも一部の前記複数のセラミックハニカム構造体の隔壁同士が、ずれて接合され、前記接合された複数のセラミックハニカム構造体11、12の排気ガスが流通する上流側のセラミックハニカム構造体11のセルにおいて、排気ガス流通方向に垂直な断面におけるセル開口面積A01と、前記セルのセル開口面積A01が前記接合された下流側のセラミックハニカム構造体12の隔壁121によって減少したセル開口面積A02と、の比であるセル開口面積比A0=(A02/A01)が、任意の5セル×5セル=25セルにおける平均値が0.9以下であり、前記下流側のセラミックハニカム構造体12の隔壁端面の粗さ(最大高さRz)が15μm以上、隔壁表面の粗さ(最大高さRz)が15μm以上である。これにより、上流側のセラミックハニカム構造体11のセルの出口部に、下流側のセラミックハニカム構造体12の隔壁121が存在することとなり、排気ガスが流通する流路が接合部で狭められることになる。このため、セラミックハニカムフィルタに流入した排気ガスは、上流側のセラミックハニカム構造体11のセルに流入した後、接合された下流側のセラミックハニカム構造体12のセルへ流通する際、接合部の狭まった流路により隣接するセルとの間で圧力差が生じ、さらに、隔壁端面及び隔壁表面の粗さ(最大高さRz)が15μm以上であることにより、排気ガス中のPMが、排気ガスが流通するセルに存在する下流側のセラミックハニカム構造体の隔壁端面や隔壁表面に捕捉されるのである。また、流路がセラミックハニカムハニカムフィルタの入口側端面から出口側端面まで連通しているため、PMの捕集性能を維持しつつ、排気ガスが流通する際の圧力損失を低く抑えることができる。
さらに、排気ガス中のPMは、接合された下流側のセラミックハニカム構造体の隔壁端面や隔壁表面に捕捉され、捕捉されなかったごく一部のPMはセルから排出されるので、PMが多量に堆積することがなく、フィルタを再生させるためにPMを燃焼しても、燃焼による発熱が大きくならないので、セラミックハニカム構造体が溶損し難くなる。さらに、PMが燃焼した後に残るアッシュが、セラミックハニカムフィルタから流出し易くなるので、目詰まりが生じ難い。
尚、本発明のセラミックハニカムフィルタ10は、隔壁同士がずれて接合された複数のセラミックハニカム構造体11、12の外周を、外周壁5が形成されていることで、セラミックハニカムフィルタの強度が向上するので好ましい。
FIG. 1, FIG. 2, FIG. 3 and FIG. 4 show an example of an embodiment of the ceramic honeycomb filter of the present invention. In the ceramic honeycomb filter 10 of the present invention, a plurality of ceramic honeycomb structures 11 and 12 having cells partitioned by porous partition walls are joined in the direction in which exhaust gas flows at the end face of the ceramic honeycomb structure, In the plurality of ceramic honeycomb structures 11 and 12, in the cross section perpendicular to the direction in which the exhaust gas flows, at least some of the partition walls of the plurality of ceramic honeycomb structures are bonded to each other in a shifted manner. In the cells of the ceramic honeycomb structure 11 on the upstream side through which the exhaust gas of the ceramic honeycomb structures 11 and 12 flows, the cell opening area A 01 in the cross section perpendicular to the exhaust gas flowing direction and the cell opening area A 01 of the cell in but a cell opening area a 02 that is reduced by the partition wall 121 of the ceramic honeycomb structure 12 of the joined downstream, the ratio of That cell opening area ratio A 0 = has (A 02 / A 01), and the average value is 0.9 or less at any 5 cells × 5 cells = 25 cells, crude partition wall end surface of the downstream ceramic honeycomb structure 12 of The height (maximum height Rz) is 15 μm or more, and the roughness of the partition wall surface (maximum height Rz) is 15 μm or more. As a result, the partition wall 121 of the downstream ceramic honeycomb structure 12 exists at the outlet of the cell of the upstream ceramic honeycomb structure 11, and the flow path through which the exhaust gas flows is narrowed at the joint. Become. Therefore, when the exhaust gas flowing into the ceramic honeycomb filter flows into the cells of the upstream ceramic honeycomb structure 12 after flowing into the cells of the upstream ceramic honeycomb structure 11, the joint portion narrows. Due to the flow path, a pressure difference is generated between adjacent cells, and the roughness (maximum height Rz) of the partition wall end face and the partition wall surface is 15 μm or more, so that the PM in the exhaust gas is reduced by the exhaust gas. It is captured by the partition wall end face and partition wall surface of the downstream ceramic honeycomb structure existing in the circulating cell. In addition, since the flow path communicates from the inlet side end face to the outlet side end face of the ceramic honeycomb filter, the pressure loss when the exhaust gas flows can be kept low while maintaining the PM collection performance.
Furthermore, PM in the exhaust gas is trapped on the partition wall end face and partition wall surface of the joined downstream ceramic honeycomb structure, and a small part of the PM that is not trapped is discharged from the cell. Even if PM is burned to regenerate the filter without accumulating, the heat generated by the combustion does not increase, and the ceramic honeycomb structure is difficult to melt. Furthermore, since the ash remaining after PM burns easily flows out of the ceramic honeycomb filter, clogging hardly occurs.
In the ceramic honeycomb filter 10 of the present invention, the strength of the ceramic honeycomb filter is improved by forming the outer peripheral wall 5 on the outer periphery of the plurality of ceramic honeycomb structures 11 and 12 in which the partition walls are displaced from each other. This is preferable.

セル開口面積比は次のようにして算出する。接合されたセラミックハニカムフィルタの端面から光を透過させ、他方の端面でセルの開口を写真撮影する。もしくは、接合部から排気ガスが流通する方向と平行な両方向に10mm以内の範囲で、排気ガスが流通する方向と直交するように切断し、切断した一方の端面から光を透過させ、切断した他方の端面でセルの開口を写真撮影する。撮影した写真を画像解析装置で、セルのセル開口面積A01と、前記セルのセル開口面積A01が接合された下流側のセラミックハニカム構造体の隔壁によって減少したセル開口面積A02とを算出し、(A02/A01)として各セルの開口面積比を算出する。 The cell opening area ratio is calculated as follows. Light is transmitted from the end face of the joined ceramic honeycomb filter, and the opening of the cell is photographed at the other end face. Or, cut in the range within 10mm in both directions parallel to the direction in which exhaust gas flows from the joint, perpendicular to the direction in which exhaust gas flows, and transmit light from one of the cut end faces, and the other cut Take a picture of the opening of the cell at the end face. The photographed photograph is used to calculate the cell opening area A 01 of the cell and the cell opening area A 02 reduced by the partition wall of the downstream ceramic honeycomb structure to which the cell opening area A 01 of the cell is joined. Then, the aperture area ratio of each cell is calculated as (A 02 / A 01 ).

ここで、セラミックハニカムフィルタに流入した排気ガスが、上流側のセラミックハニカム構造体11のセルに流入した後、接合された下流側のセラミックハニカム構造体12のセルへ流通する際、接合部の狭まった流路により隣接するセルとの間で圧力差が生じ、排気ガス中のPMが、排気ガスが流通するセルに存在する下流側のセラミックハニカム構造体の隔壁端面や隔壁表面に捕捉され易くなるためには、セル開口面積比A0=(A02/A01)は、任意の5セル×5セル=25セルにおける平均値が0.85以下であることが好ましく、隔壁端面の粗さ(最大高さRz)は20μm以上、隔壁表面の粗さ(最大高さRz)は20μm以上であることが好ましい。さらに好ましくは、セル開口面積比A0=(A02/A01)は、任意の5セル×5セル=25セルにおける平均値が0.80以下であり、隔壁端面及び隔壁表面の粗さ(最大高さRz)は25μm以上である。さらに、隔壁端面の粗さよりも、隔壁表面の粗さが大きいほうが、PMが隔壁表面に捕捉され易くなるため好ましい。 Here, when the exhaust gas flowing into the ceramic honeycomb filter flows into the cells of the upstream ceramic honeycomb structure 12 after flowing into the cells of the upstream ceramic honeycomb structure 11, the joint portion is narrowed. The flow path creates a pressure difference between adjacent cells, and PM in the exhaust gas is easily trapped on the partition wall end face and partition wall surface of the downstream ceramic honeycomb structure existing in the cell through which the exhaust gas flows. For this purpose, the cell opening area ratio A 0 = (A 02 / A 01 ) is preferably 0.85 or less in average for any 5 cells × 5 cells = 25 cells, and the roughness (maximum height) of the partition wall end face The thickness Rz) is preferably 20 μm or more, and the partition wall surface roughness (maximum height Rz) is preferably 20 μm or more. More preferably, the cell opening area ratio A 0 = (A 02 / A 01 ) has an average value of 0.80 or less for any 5 cells × 5 cells = 25 cells, and the roughness (maximum height) Rz) is 25 μm or more. Furthermore, it is preferable that the roughness of the partition wall surface is larger than the roughness of the partition wall end face because PM is easily captured on the partition wall surface.

本発明のセラミックハニカムフィルタにおいて、セラミックハニカムフィルタに流入した排気ガスが、上流側のセラミックハニカム構造体11のセルに流入した後、接合された下流側のセラミックハニカム構造体12のセルへ流通する際、接合部の狭まった流路により隣接するセルとの間で生じる圧力差が大きくなり、排気ガス中のPMが、排気ガスが流通するセルに存在する下流側のセラミックハニカム構造体の隔壁端面や隔壁表面に捕捉され易くなるためには、セルにおけるセル開口面積比(A0)と、前記セルに隣接するセルにおけるセル開口面積比(A1、A2、A3、A4・・・)との差の絶対値が、任意の5セル×5セル=25セルにおける最大値が0.10以上1.0未満であることが好ましく、さらに好ましくは0.20以上0.5以下である。 In the ceramic honeycomb filter of the present invention, when the exhaust gas flowing into the ceramic honeycomb filter flows into the cells of the ceramic honeycomb structure 12 on the downstream side after flowing into the cells of the ceramic honeycomb structure 11 on the upstream side, The pressure difference generated between adjacent cells is increased by the flow path having a narrow joint, and the PM in the exhaust gas is separated from the partition wall end face of the downstream ceramic honeycomb structure existing in the cell through which the exhaust gas flows. In order to be easily captured on the partition wall surface, the cell opening area ratio (A 0 ) in the cell and the cell opening area ratio (A 1 , A 2 , A 3 , A 4 ...) In the cell adjacent to the cell. The absolute value of the difference between the maximum value in any 5 cells × 5 cells = 25 cells is preferably 0.10 or more and less than 1.0, and more preferably 0.20 or more and 0.5 or less.

ここで、セルに隣接するセルにおけるセル開口面積比とは、例えば、四角形セルの場合、図12に示すように、上流側のセラミックハニカム構造体11において、セル開口面積A01を有するセルに隣接するセルのセル開口面積A11、A21、A31、A41、が、接合された下流側のセラミックハニカム構造体12の隔壁121によって減少したセル開口面積A12、A22、A32、A42との比、つまり、A1=(A12/A11)、A2=(A22/A21)、A3=(A32/A31)、A4=(A42/A41)のことを意味する。そして、セルにおけるセル開口面積比(A0)と、前記セルに隣接するセルにおけるセル開口面積比(A1、A2、A3、A4)との差の絶対値とは、(A0−A1)、(A0−A2)、(A0−A3)、(A0−A4)の絶対値であり、これらの値のうち、任意の5セル×5セル=25セルにおける最大のものが0.10以上1.0未満であることが好ましいのである。 Here, the cell opening area ratio in the cell adjacent to the cell, for example, in the case of square cells, as shown in FIG. 12, in the ceramic honeycomb structure 11 on the upstream side, adjacent to the cell having a cell opening area A 01 Cell opening areas A 11 , A 21 , A 31 , A 41 of the cells to be reduced are reduced by the partition walls 121 of the joined ceramic honeycomb structure 12 on the downstream side, A 12 , A 22 , A 32 , A 42 , ie, A 1 = (A 12 / A 11 ), A 2 = (A 22 / A 21 ), A 3 = (A 32 / A 31 ), A 4 = (A 42 / A 41 ) Means that. The absolute value of the difference between the cell opening area ratio (A 0 ) in the cell and the cell opening area ratio (A 1 , A 2 , A 3 , A 4 ) in the cell adjacent to the cell is (A 0 -A 1 ), (A 0 -A 2 ), (A 0 -A 3 ), (A 0 -A 4 ) absolute values, and among these values, arbitrary 5 cells × 5 cells = 25 cells It is preferable that the maximum value of is 0.10 or more and less than 1.0.

本発明のセラミックハニカムフィルタにおいて、セル開口面積比A0=(A02/A01)が、任意の5セル×5セル=25セルにおける平均値を0.9以下とする具体的な態様として、図1、図2に示すように、複数のセラミックハニカム構造体の隔壁同士が、隔壁厚さの方向に前記隔壁同士の最短間隔が隔壁ピッチの0.1倍以上0.5倍未満でずれて接合された態様とすることができる。複数のセラミックハニカム構造体の隔壁同士が、隔壁厚さの方向に前記隔壁同士の最短間隔が隔壁ピッチの0.1倍以上0.5倍未満でずれて接合されているとは、図2に示すように、複数のセラミックハニカム構造体11、12の隔壁111、121の間隔XもしくはYが隔壁ピッチの0.1倍以上0.5倍未満であることを言う。複数のセラミックハニカム構造体の隔壁同士が、隔壁厚さの方向に前記隔壁同士の最短間隔が隔壁ピッチの0.1倍以上でずれていることで、上流側のセラミックハニカム構造体のセルに流入した後、接合された下流側のセラミックハニカム構造体のセルへ流通する際、接合部の狭まった流路により隣接するセルとの間で生じる圧力差が大きくなり、排気ガス中のPMが、排気ガスが流通するセルに存在する下流側のセラミックハニカム構造体の隔壁端面や隔壁表面に捕捉され易くなるので好ましい。一方、隔壁同士の最短間隔の最大は、隔壁ピッチの0.5倍未満となることから、隔壁同士の最短間隔は、隔壁ピッチの0.1倍以上0.5倍未満とすることが好ましい。 In the ceramic honeycomb filter of the present invention, as a specific embodiment in which the cell opening area ratio A 0 = (A 02 / A 01 ) is an average value of 0.9 or less in any 5 cells × 5 cells = 25 cells, FIG. As shown in FIG. 2, the partition walls of the plurality of ceramic honeycomb structures are joined in the direction of the partition wall thickness, with the shortest distance between the partition walls being shifted by 0.1 to less than 0.5 times the partition wall pitch. be able to. The partition walls of the plurality of ceramic honeycomb structures are joined in the direction of the partition wall thickness so that the shortest distance between the partition walls is shifted by not less than 0.1 times and less than 0.5 times the partition wall pitch as shown in FIG. The interval X or Y between the partition walls 111 and 121 of the plurality of ceramic honeycomb structures 11 and 12 is 0.1 times or more and less than 0.5 times the partition wall pitch. After the partition walls of the plurality of ceramic honeycomb structures flow into the cells of the ceramic honeycomb structure on the upstream side because the shortest distance between the partition walls is shifted by not less than 0.1 times the partition wall pitch in the partition wall thickness direction. When flowing to the cells of the joined ceramic honeycomb structure on the downstream side, the pressure difference generated between adjacent cells is increased due to the narrow flow path of the joined portion, and the PM in the exhaust gas is reduced by the exhaust gas. This is preferable because it can be easily captured on the partition wall end face or partition wall surface of the downstream ceramic honeycomb structure existing in the circulating cell. On the other hand, since the maximum shortest distance between the partition walls is less than 0.5 times the partition wall pitch, the shortest distance between the partition walls is preferably 0.1 times or more and less than 0.5 times the partition wall pitch.

また、セル開口面積比A0=(A02/A01)が、任意の5セル×5セル=25セルにおける平均値を0.9以下とする具体的な別の態様として、図3、図4に示すように、複数のセラミックハニカム構造体の隔壁同士が、前記端面の中心を軸として35〜55°の角度ずれた位置で接合された態様とすることができる。複数のセラミックハニカム構造体の隔壁同士が、端面の中心を軸として35〜55°の角度ずれた位置で接合されているとは、図3、図4に示すように、複数のセラミックハニカム構造体11、12の隔壁111、121が角度θ=35〜55°を有して接合されていることを言う。 As another specific mode in which the cell opening area ratio A 0 = (A 02 / A 01 ) has an average value of 0.9 or less in any 5 cells × 5 cells = 25 cells, FIG. 3 and FIG. As shown, the partition walls of the plurality of ceramic honeycomb structures can be joined at a position shifted by an angle of 35 to 55 ° with the center of the end face as an axis. The partition walls of the plurality of ceramic honeycomb structures are joined at a position shifted by an angle of 35 to 55 ° with the center of the end face as an axis, as shown in FIGS. 3 and 4. This means that the partition walls 111 and 121 of 11 and 12 are joined with an angle θ = 35 to 55 °.

また、複数のセラミックハニカム構造体の隔壁同士が、隔壁厚さの方向に前記隔壁同士の最短間隔が隔壁ピッチの0.1倍以上0.5倍未満でずれたうえ、さらに、端面の中心を軸として35〜55°の角度ずらした位置で接合された態様とすること、もしくは、隔壁ピッチが異なる複数のセラミックハニカム構造体の端面の中心を軸として35〜55°の角度ずれた位置で接合された態様とすることも可能である。   Further, the partition walls of the plurality of ceramic honeycomb structures are shifted by not less than 0.1 times and less than 0.5 times the partition wall pitch in the direction of the partition wall thickness, and further, 35 to It is assumed that the bonding is performed at a position shifted by an angle of 55 °, or the bonding is performed at a position shifted by an angle of 35 to 55 ° about the center of the end face of a plurality of ceramic honeycomb structures having different partition wall pitches. It is also possible to do.

尚、複数のセラミックハニカム構造体の隔壁同士が、隔壁厚さの方向に前記隔壁同士の最短間隔が隔壁ピッチの0.1倍以上0.5倍未満でずれ、さらに、端面の中心を軸として35〜55°の角度ずれた位置で接合されているとは、複数のセラミックハニカム構造体の端面の中心を軸として回転した角度が35〜55°であり、この状態で、複数のセラミックハニカム構造体の端面の中心同士が隔壁ピッチの0.1倍以上0.5倍未満ずれていることを言う。   The partition walls of the plurality of ceramic honeycomb structures are shifted in the direction of the partition wall thickness by the shortest distance between the partition walls being 0.1 times or more and less than 0.5 times the partition wall pitch, and 35 to 55 ° about the center of the end face. Are joined at an angle shifted position of 35 to 55 ° around the center of the end faces of the plurality of ceramic honeycomb structures. In this state, the end faces of the plurality of ceramic honeycomb structures are This means that the centers are shifted from 0.1 to less than 0.5 times the partition wall pitch.

セラミックハニカムフィルタに流入した排気ガスが、上流側のセラミックハニカム構造体のセルに流入した後、接合された下流側のセラミックハニカム構造体のセルへ流通する際、接合部の狭まった流路により隣接するセルとの間で圧力差が生じ、排気ガス中のPMが、排気ガスが流通するセルに存在する下流側のセラミックハニカム構造体の隔壁端面や隔壁表面に捕捉されるので、前記複数のセラミックハニカム構造体は2個以上接合されている必要がある。接合される複数のセラミックハニカム構造体の数が多くなれば、PMを捕捉することができる接合された下流側のセラミックハニカム構造体の隔壁端面部が増加するため、PMの捕集性能が向上するのである。しかし、接合される複数のセラミックハニカム構造体の数が多くなれば、排気ガスが流通する際の圧力損失が高くなるので、前記複数のセラミックハニカム構造体は2個以上15個以下であることが好ましい。さらに好ましくは、2個以上12個以下である。また、接合される複数のセラミックハニカム構造体は、全てが同一にずれている必要は無く、隔壁同士の最短間隔が異なるずれ量のものの組み合わせや、端面の中心を軸として回転した角度が異なるずれ量のものの組み合わせや、それらの組み合わせであっても良い。   When the exhaust gas flowing into the ceramic honeycomb filter flows into the cells of the upstream ceramic honeycomb structure after flowing into the cells of the bonded ceramic honeycomb structure on the upstream side, the exhaust gas is adjoined by the flow path narrowed at the joint. A pressure difference occurs between the cells and the PM in the exhaust gas is trapped on the partition wall end face and the partition wall surface of the downstream ceramic honeycomb structure existing in the cell through which the exhaust gas flows. Two or more honeycomb structures need to be joined. When the number of the plurality of ceramic honeycomb structures to be joined increases, the partition wall end face portion of the joined downstream ceramic honeycomb structure that can capture PM increases, and thus the PM collection performance is improved. It is. However, if the number of the plurality of ceramic honeycomb structures to be joined increases, the pressure loss when the exhaust gas flows increases. Therefore, the number of the ceramic honeycomb structures may be 2 or more and 15 or less. preferable. More preferably, it is 2 or more and 12 or less. In addition, the ceramic honeycomb structures to be joined do not have to be displaced all at the same, but combinations of displacement amounts with different minimum distances between the partition walls, or displacements with different angles rotated about the center of the end face. Combinations of quantities or combinations thereof may be used.

また、本発明のセラミックハニカムフィルタは、前記排気ガスが流通する方向に直交する断面において、前記セルの隅部が円弧状であることで、接合部での強度が向上する。そして、セラミックハニカムフィルタに流入した排気ガスは、上流側のセラミックハニカム構造体のセルに流入した後、接合された下流側のセラミックハニカム構造体のセルへ流通する際、下流側のセラミックハニカム構造体の隔壁端面の面積が増加するのでPMが捕捉され易くなる。さらに、接合部の狭まった流路により隣接するセルとの間で圧力差が生じ易くなり、排気ガス中のPMが、排気ガスが流通するセルに存在する下流側のセラミックハニカム構造体の隔壁端面や隔壁表面に捕捉され易くなる。さらに、図5に示すように、排気ガスが流通する方向に直交する断面において、前記セルが略四角形状で、隅部が円弧状であり、一方の対向する隅部の曲率半径R1は他方の対向する隅部の曲率半径R2より大きいことで、隣接するセルとの間で生じる圧力差が大きくなり、排気ガス中のPMが隔壁に捕捉され易くなり、PMの捕集性能を良好に維持することができる。 In the ceramic honeycomb filter of the present invention, the corners of the cells have an arc shape in a cross section perpendicular to the direction in which the exhaust gas flows, whereby the strength at the joint is improved. When the exhaust gas flowing into the ceramic honeycomb filter flows into the cells of the upstream ceramic honeycomb structure after flowing into the cells of the upstream ceramic honeycomb structure, the downstream ceramic honeycomb structure Since the area of the partition wall end face increases, PM is easily captured. Furthermore, a pressure difference between adjacent cells is likely to occur due to the flow path with a narrow joint, and the partition wall end face of the downstream ceramic honeycomb structure in which PM in the exhaust gas exists in the cell through which the exhaust gas flows And is easily trapped on the partition wall surface. Further, as shown in FIG. 5, in the cross section orthogonal to the direction in which the exhaust gas flows, the cell has a substantially square shape, the corner has an arc shape, and the curvature radius R 1 of one opposing corner has the other Is larger than the radius of curvature R 2 at the opposite corners, the pressure difference generated between adjacent cells increases, PM in the exhaust gas is easily captured by the partition walls, and the PM collection performance is improved. Can be maintained.

本発明のセラミックハニカムフィルタは、接合された複数のセラミックハニカム構造体の端面間が0.01〜3.0mmの間隔を有することができる。これにより、上流側のセラミックハニカム構造体のセル出口部と、接合された下流側のセラミックハニカム構造体の隔壁端面や隔壁表面との間に、排気ガス中のPMが捕捉される空間がより広く形成されるので、PMの捕集性能が向上する。さらに、排気ガスが流通する際の圧力損失を低く抑えることができるので好ましい。但し、接合された複数のセラミックハニカム構造体の端面間が3.0mmを超えると、接合部の狭まった流路により隣接するセルとの間で生じる圧力差が小さくなり、排気ガス中のPMが隔壁に捕捉され難くなり、PMの捕集性能を良好に維持する機能が低下することもあるため好ましくない。尚、0.01〜3.0mmの間隔の形成については後述する。   In the ceramic honeycomb filter of the present invention, the interval between the end faces of the plurality of bonded ceramic honeycomb structures can be 0.01 to 3.0 mm. Thereby, a space for capturing PM in the exhaust gas is wider between the cell outlet portion of the upstream ceramic honeycomb structure and the partition wall end face and partition wall surface of the joined downstream ceramic honeycomb structure. Since it is formed, the PM collection performance is improved. Furthermore, it is preferable because the pressure loss when the exhaust gas flows can be kept low. However, when the distance between the end faces of the plurality of bonded ceramic honeycomb structures exceeds 3.0 mm, the pressure difference generated between the adjacent cells due to the narrow flow path of the bonded portion is reduced, and the PM in the exhaust gas is separated from the partition wall. This is not preferable because it may be difficult to be trapped and the function of maintaining good PM trapping performance may be deteriorated. The formation of the 0.01 to 3.0 mm interval will be described later.

本発明のセラミックハニカムフィルタは、複数のセラミックハニカム構造体の開口率が75%以下であることが良い。これにより、PMの捕集性能を維持しつつ、排気ガスが流通する際の圧力損失を低く抑えることができる。開口率が75%を超えると、セラミックハニカム構造体の強度が低下し、複数のセラミックハニカム構造体を接合することが困難となるので好ましくない。排気ガスが流通する際の圧力損失を低く抑えるには、開口率は40%以上であることが好ましい。   In the ceramic honeycomb filter of the present invention, the aperture ratio of the plurality of ceramic honeycomb structures is preferably 75% or less. Thereby, the pressure loss at the time of exhaust gas distribution can be suppressed low, maintaining PM collection performance. When the opening ratio exceeds 75%, the strength of the ceramic honeycomb structure is lowered, and it becomes difficult to join a plurality of ceramic honeycomb structures, which is not preferable. In order to suppress the pressure loss when the exhaust gas flows, the opening ratio is preferably 40% or more.

本発明のセラミックハニカムフィルタは、前記複数のセラミックハニカム構造体が、隣接するセラミックハニカム構造体同士の開口率が異なるように接合されても良い。これにより、接合部の狭まった流路により隣接するセルとの間で生じる圧力差が大きくなり、PMが良好に捕集されつつ、排気ガスが流通する際の圧力損失を低く抑えることができるので好ましい。   In the ceramic honeycomb filter of the present invention, the plurality of ceramic honeycomb structures may be joined such that adjacent ceramic honeycomb structures have different aperture ratios. As a result, the pressure difference generated between the adjacent cells is increased due to the narrow flow path of the joint, and the pressure loss when exhaust gas flows can be kept low while PM is well collected. preferable.

本発明のセラミックハニカムフィルタは、図9(a)(b)に示すように、排気ガスが流通する方向に平行する断面において、隣接する隔壁1同士が略平行であるとともに、前記セラミックハニカム構造体の外周部の1〜5個のセル2outが、そのセルの一部もしくは端部が、外周面4に開口していても良い。これにより、排気ガスが流通する方向に対して、隔壁が傾いているので、PMは、下流側のセラミックハニカム構造体の隔壁端面や隔壁表面の全域で捕捉され易くなる。そのため、PMが良好に捕集されつつ、排気ガスが流通する際の圧力損失を低く抑えることができるので好ましい。ただし、外周部の6個以上のセルがそのセルの一部もしくは端部が、外周面に開口していると、排気ガスが流通する際の圧力損失が大きくなるので好ましくない。 As shown in FIGS. 9 (a) and 9 (b), the ceramic honeycomb filter of the present invention has a structure in which adjacent partition walls 1 are substantially parallel to each other in a cross section parallel to the direction in which exhaust gas flows, and the ceramic honeycomb structure. 1 to 5 cells 2 out of the outer peripheral part of the cell may have a part or an end of the cell open to the outer peripheral surface 4. Thereby, since the partition wall is inclined with respect to the direction in which the exhaust gas flows, PM is easily trapped on the partition wall end face and the entire partition wall surface of the downstream ceramic honeycomb structure. Therefore, it is preferable because the pressure loss when exhaust gas flows can be kept low while PM is well collected. However, it is not preferable that six or more cells in the outer peripheral portion have a part or end of the cell opened in the outer peripheral surface because the pressure loss when the exhaust gas flows increases.

本発明のセラミックハニカムフィルタは、接合される複数のセラミックハニカム構造体の気孔率が50〜80%、隔壁厚さが0.20〜0.50mm、セルピッチが1.0〜3.0mmであることで、接合された下流側のセラミックハニカム構造体の隔壁端面や隔壁表面にPMが捕捉され易くなるので好ましい。さらに好ましくは、気孔率は55〜70%であり、隔壁厚さは0.25〜0.45mmであり、セルピッチは1.2〜2.0mmである。   The ceramic honeycomb filter of the present invention has a porosity of 50 to 80%, a partition wall thickness of 0.20 to 0.50 mm, and a cell pitch of 1.0 to 3.0 mm. This is preferable because PM is easily captured on the end face of the partition wall of the ceramic honeycomb structure on the side and the surface of the partition wall. More preferably, the porosity is 55 to 70%, the partition wall thickness is 0.25 to 0.45 mm, and the cell pitch is 1.2 to 2.0 mm.

本発明のセラミックハニカムフィルタは次のように製造することができる。
(セラミックハニカム構造体の製造)
セラミック原料に、バインダー、潤滑剤、造孔材、水を添加して混合、混練を行って、可塑化したセラミック坏土を作製する。セラミック原料は、コーディエライト、コーディエライト化原料、炭化珪素、珪素−炭化珪素系複合材料、窒化珪素、ムライト、アルミナ、スピネル、炭化珪素−コージェライト系複合材料、リチウムアルミニウムシリケート、チタン酸アルミニウム、からなる群から選択される少なくとも1種であることが好ましい。これらの中でも、コージェライト化原料が好ましい。コージェライト化原料とは、焼成によりコージェライトとなる原料を意味し、SiO2が42〜56質量%、Al2O3が30〜45質量%、MgOが12〜16質量%の範囲に入る化学組成となるように配合されたセラミックス原料である。具体的にはタルク、カオリン、仮焼カオリン、アルミナ、水酸化アルミニウム、及びシリカの中から選ばれた複数の無機原料を上記化学組成となるような割合で含むものが挙げられる。この時、造孔材に平均粒子径が5〜70μmを有する材料を用いることで、隔壁端面や隔壁表面の粗さ(最大高さRz)が15μm以上であるセラミックハニカム部材とすることができる。造孔材としては、焼成後のセラミックハニカム構造体の隔壁端面や隔壁表面に細孔が形成されることで粗さを15μm以上とすることができる材料であれば特に限定されないが、例えば、グラファイト、樹脂、発泡樹脂、発泡済樹脂、セラミックコーティング樹脂、コーンスターチ、小麦粉等を用いることができる。
The ceramic honeycomb filter of the present invention can be manufactured as follows.
(Manufacture of ceramic honeycomb structure)
A binder, a lubricant, a pore former, and water are added to a ceramic raw material, mixed and kneaded to prepare a plasticized ceramic clay. Ceramic raw materials are cordierite, cordierite forming raw material, silicon carbide, silicon-silicon carbide based composite material, silicon nitride, mullite, alumina, spinel, silicon carbide-cordierite based composite material, lithium aluminum silicate, aluminum titanate It is preferable that it is at least 1 sort (s) selected from the group which consists of. Among these, a cordierite forming raw material is preferable. The cordierite forming material means a raw material which becomes cordierite by firing, SiO 2 is 42 to 56 wt%, Al 2 O 3 is 30 to 45 wt%, the chemical that MgO is in the range of 12 to 16 wt% It is a ceramic raw material blended to have a composition. Specific examples include those containing a plurality of inorganic raw materials selected from talc, kaolin, calcined kaolin, alumina, aluminum hydroxide, and silica in a proportion such that the above chemical composition is obtained. At this time, by using a material having an average particle diameter of 5 to 70 μm for the pore former, a ceramic honeycomb member having a partition wall end face or partition wall surface roughness (maximum height Rz) of 15 μm or more can be obtained. The pore former is not particularly limited as long as it is a material that can have a roughness of 15 μm or more by forming pores on the partition wall end face and the partition wall surface of the fired ceramic honeycomb structure. Resin, foamed resin, foamed resin, ceramic coating resin, corn starch, flour and the like can be used.

次いで、セラミック坏土をハニカム状の押出成形用金型で押出成形して、所定長さのセラミックハニカム成形体を作製する。そして、セラミックハニカム成形体は、熱風炉、熱処理炉、マイクロ波等で乾燥させて、セラミックハニカム乾燥体とする。   Next, the ceramic clay is extruded using a honeycomb-shaped extrusion mold to produce a ceramic honeycomb molded body having a predetermined length. Then, the ceramic honeycomb formed body is dried in a hot air furnace, a heat treatment furnace, a microwave, or the like to obtain a ceramic honeycomb dried body.

ここで、押出成形用金型は、図6に示すように、押出成形用口金31に形成された成形溝32の角部に、曲面(R部)R1、R2を形成することで、図5に示すセラミックハニカム成形体の隔壁111の交差部であるセル隅部が円弧状で、一方の対向する隅部の曲率半径R1が他方の対向する隅部の曲率半径R2より大きく形成することができる。 Here, as shown in FIG. 6, the extrusion mold is formed with curved surfaces (R portions) R 1 and R 2 at the corners of the molding groove 32 formed in the extrusion die 31. The cell corner that is the intersection of the partition walls 111 of the ceramic honeycomb molded body shown in FIG. 5 has an arc shape, and the radius of curvature R 1 of one opposing corner is larger than the radius of curvature R 2 of the other opposing corner. can do.

(セラミックハニカムフィルタの製造)
次に、乾燥された複数のセラミックハニカム乾燥体の端面を、排気ガスが流通する方向と略直交するように砥石で研削する。前記造孔材を用いて製造されたセラミックハニカム部材の端面は、隔壁端面の粗さ(最大高さRz)を15μm以上とするために、粒度が#50〜#270程度の砥石を用いることが好ましい。そして、その端面において、隔壁同士をずらして載置し、載置された状態の複数のセラミックハニカム乾燥体を焼成することで、隔壁同士がずれて接合されたセラミックハニカムフィルタを得ることができる。
(Manufacture of ceramic honeycomb filters)
Next, the end faces of the dried ceramic honeycomb dried bodies are ground with a grindstone so as to be substantially orthogonal to the direction in which the exhaust gas flows. For the end face of the ceramic honeycomb member manufactured using the pore former, a grindstone having a grain size of about # 50 to # 270 may be used so that the roughness (maximum height Rz) of the partition wall end face is 15 μm or more. preferable. Then, on the end face, the partition walls are shifted and placed, and a plurality of ceramic honeycomb dried bodies in the mounted state are fired, whereby a ceramic honeycomb filter in which the partition walls are shifted and joined can be obtained.

焼成後、複数のセラミックハニカム構造体の外周部にコート材を塗布することで、複数のセラミックハニカム構造体が一体化され、複数のセラミックハニカム構造体が載置された接合部において破損し難くなる。
コート材としては、セラミック原料にバインダー、水を混合したものを用いることができる。セラミック原料としては、セラミックハニカム構造体と同材質、もしくは異なる材質であっても良く、コーディエライト、コーディエライト化原料、炭化珪素、珪素−炭化珪素系複合材料、窒化珪素、ムライト、アルミナ、シリカ、スピネル、炭化珪素−コージェライト系複合材料、リチウムアルミニウムシリケート、チタン酸アルミニウム、からなる群から選択される少なくとも1種を用いることができる。
After firing, a coating material is applied to the outer peripheral portions of the plurality of ceramic honeycomb structures, so that the plurality of ceramic honeycomb structures are integrated, and are less likely to be damaged at the joint where the plurality of ceramic honeycomb structures are placed. .
As the coating material, a ceramic raw material mixed with a binder and water can be used. The ceramic raw material may be the same material as the ceramic honeycomb structure or a different material. Cordierite, cordierite forming raw material, silicon carbide, silicon-silicon carbide based composite material, silicon nitride, mullite, alumina, At least one selected from the group consisting of silica, spinel, silicon carbide-cordierite composite material, lithium aluminum silicate, and aluminum titanate can be used.

また、乾燥された複数のセラミックハニカム乾燥体を、その端面において、隔壁同士をずらして載置し、載置された状態の複数のセラミックハニカム乾燥体の外周部にコート材を塗布し、焼成することで、隔壁同士がずれて接合されたセラミックハニカムフィルタを得ることもできる。この場合、セラミックハニカム構造体とコート材とが焼成一体化されているため、隔壁同士がずれて接合されたセラミックハニカムフィルタがより強固になるので好ましい。
コート材としては、セラミック原料にバインダー、水を混合したものを用いることができる。セラミック原料としては、セラミックハニカム構造体と同材質、もしくは異なる材質であっても良く、コーディエライト化原料、炭化珪素、珪素−炭化珪素系複合材料、ムライト、アルミナ、シリカ、スピネル、炭化珪素−コージェライト系複合材料、リチウムアルミニウムシリケート、チタン酸アルミニウム、からなる群から選択される少なくとも1種を用いることができる。
Moreover, the plurality of dried ceramic honeycomb dried bodies are placed with their partition walls being shifted from each other on the end face, and the coating material is applied to the outer peripheral portions of the plurality of ceramic honeycomb dried bodies in the placed state and fired. Thus, it is possible to obtain a ceramic honeycomb filter in which the partition walls are displaced and joined. In this case, since the ceramic honeycomb structure and the coating material are fired and integrated, the ceramic honeycomb filter in which the partition walls are displaced from each other and bonded is more preferable.
As the coating material, a ceramic raw material mixed with a binder and water can be used. The ceramic raw material may be the same material as the ceramic honeycomb structure or a different material, such as cordierite forming raw material, silicon carbide, silicon-silicon carbide based composite material, mullite, alumina, silica, spinel, silicon carbide At least one selected from the group consisting of cordierite-based composite materials, lithium aluminum silicate, and aluminum titanate can be used.

また、乾燥された複数のセラミックハニカム乾燥体を焼成し、焼成後の複数のセラミックハニカム構造体をその端面において、隔壁同士をずらして載置し、載置された状態の複数のセラミックハニカム構造体の外周部にコート材を塗布することで、隔壁同士がずれて接合されたセラミックハニカムフィルタを得ることもできる。   Moreover, the plurality of dried ceramic honeycomb dried bodies are fired, and the fired ceramic honeycomb structures are placed on their end faces with the partition walls being shifted from each other. By applying a coating material to the outer peripheral part of the ceramic honeycomb filter, the partition walls can be displaced and joined together.

また、図7に示すように、複数のセラミックハニカム構造体11、12、13、14の端面の角を、面取り6、もしくは、R部7を形成した後に、隔壁同士をずらして載置し、載置された状態の複数のセラミックハニカム構造体の外周部にコート材を塗布することで、隔壁同士がずれて接合されたセラミックハニカムフィルタを得ることもできる。これにより、複数のセラミックハニカム構造体が載置された接合部で、コート材が外周部よりも厚く形成されるので、接合部が強化されるため好ましい。
尚、複数のセラミックハニカム構造体の端面に形成する面取り、もしくは、R部は、複数のセラミックハニカム構造体の乾燥後、もしくは、焼成後の何れで形成しても構わない。
Moreover, as shown in FIG. 7, after forming the chamfer 6 or the R portion 7 at the corners of the end faces of the plurality of ceramic honeycomb structures 11, 12, 13, and 14, the partition walls are shifted and placed, By applying a coating material to the outer peripheral portions of the plurality of ceramic honeycomb structures that are placed, it is possible to obtain a ceramic honeycomb filter in which the partition walls are displaced and joined. Thereby, since the coating material is formed thicker than the outer peripheral portion at the joint portion where the plurality of ceramic honeycomb structures are placed, it is preferable because the joint portion is strengthened.
Note that the chamfering formed on the end faces of the plurality of ceramic honeycomb structures or the R portion may be formed either after drying or firing the plurality of ceramic honeycomb structures.

また、図9に示すような、外周部の1〜5個のセル2outが、そのセルの一部もしくは端部が、外周面4を形成しているセラミックハニカム構造体は、例えば、次のようにして得られる。押出成形されたセラミックハニカム成形体を乾燥して、セラミックハニカム乾燥体を得た後、この乾燥体の外周部を加工除去する。この時、加工除去した後のハニカム乾燥体の外周面4が隔壁1に対して傾くように加工し、外周部の1〜5個のセル2outの一部もしくは端部が、外周面4を形成するように加工する。次いで、この乾燥体の両端部を、外周面4に対して略直角となるように加工する。
もしくは、次のようにしても得られる。押出成形機により縦方向(重力方向)にセラミックハニカム成形体を押し出す過程で、押し出されたセラミックハニカム成形体の下端部で、その重量を支えるために付加する保持力の方向、大きさを調整することにより、排気ガスが流通する方向に対して、セルが湾曲したセラミックハニカム成形体を作製する。そして、このようにして得られたセラミックハニカム成形体を乾燥して、セラミックハニカム乾燥体とする。そして、この乾燥体の外周部を、加工除去した後のハニカム乾燥体の外周面4が隔壁1に対して傾くように加工し、外周部の1〜5個のセル2outの一部もしくは端部が外周面4を形成するように加工する。次いで、この乾燥体の両端部を、外周面4に対して略直角となるように加工する。尚、上記では、セラミックハニカム乾燥体の外周部を加工除去する例を示したが、セラミックハニカム乾燥体を焼成した後の焼成体の外周部を加工除去して得られることは言うまでもない。
Further, as shown in FIG. 9, the ceramic honeycomb structure in which 1 to 5 cells 2 out in the outer peripheral part and the part or the end of the cell form the outer peripheral surface 4 is, for example, It is obtained in this way. The extruded ceramic honeycomb molded body is dried to obtain a dried ceramic honeycomb body, and then the outer peripheral portion of the dried body is processed and removed. At this time, the honeycomb dried body after processing and removal is processed so that the outer peripheral surface 4 is inclined with respect to the partition wall 1, and a part or end of the 1 to 5 cells 2 out of the outer peripheral portion Process to form. Next, both ends of the dried body are processed so as to be substantially perpendicular to the outer peripheral surface 4.
Alternatively, it can be obtained as follows. In the process of extruding the ceramic honeycomb formed body in the longitudinal direction (gravity direction) with an extruder, the direction and size of the holding force applied to support the weight is adjusted at the lower end of the extruded ceramic honeycomb formed body. Thus, a ceramic honeycomb formed body in which the cells are curved with respect to the direction in which the exhaust gas flows is manufactured. The ceramic honeycomb formed body thus obtained is dried to obtain a ceramic honeycomb dried body. Then, the outer peripheral portion of the dried body is processed so that the outer peripheral surface 4 of the dried honeycomb body after processing is inclined with respect to the partition wall 1, and a part or end of 1 to 5 cells 2 out of the outer peripheral portion. The part is processed so as to form the outer peripheral surface 4. Next, both ends of the dried body are processed so as to be substantially perpendicular to the outer peripheral surface 4. In addition, although the example which processes and removes the outer peripheral part of a ceramic honeycomb dried body was shown above, it cannot be overemphasized that it can obtain by processing and removing the outer peripheral part of the sintered body after baking a ceramic honeycomb dried body.

(接合材)
隔壁同士をずらして載置された複数のセラミックハニカム構造体は、接合材を介して載置することもでき、複数のセラミックハニカム構造体の接合部が強化され、複数のセラミックハニカム構造体が載置された接合部において破損し難くなる。
図13(a)(b)に示すように、接合材21は、複数のセラミックハニカム構造体11、12の端面の周縁部に配置し、複数のセラミックハニカム構造体を接合材を介して載置することができる。接合材21は、乾燥されたセラミックハニカム構造体に配置しても良く、焼成後のセラミックハニカム構造体に配置しても良い。接合材が配置される、セラミックハニカム構造体の端面の周縁部とは、端面の最外周部から、セルピッチの5倍の範囲内を言う。また、図13(c)(d)に示すように、接合材は、前記周縁部の全域に配置する必要は無く、接合部において破損し難い程度に応じて、周縁部の所望部位に配置させても良い。
(Joining material)
The plurality of ceramic honeycomb structures placed with the partition walls being shifted can also be placed via a bonding material, the joint portions of the plurality of ceramic honeycomb structures are strengthened, and the plurality of ceramic honeycomb structures are placed. It becomes difficult to break at the placed joint.
As shown in FIGS. 13 (a) and 13 (b), the bonding material 21 is disposed at the peripheral edge portion of the end faces of the plurality of ceramic honeycomb structures 11 and 12, and the plurality of ceramic honeycomb structures are placed via the bonding material. can do. The bonding material 21 may be disposed on the dried ceramic honeycomb structure or may be disposed on the fired ceramic honeycomb structure. The peripheral edge portion of the end face of the ceramic honeycomb structure in which the bonding material is disposed refers to a range of 5 times the cell pitch from the outermost peripheral portion of the end face. Further, as shown in FIGS. 13 (c) and 13 (d), the bonding material does not need to be disposed over the entire peripheral portion, and is disposed at a desired portion of the peripheral portion according to the degree to which the bonding portion is not easily damaged. May be.

前記接合材としては、例えば、次のようなものを用いることができる。セラミック原料にセラミックファイバー、無機バインダー等を混合したもの、或いは耐熱性を有するセラミックファイバー、セラミックス粒子、セメント等を単独で或いは混合して用いることができる。更に必要に応じて有機バインダー、無機バインダー等を混合することもできる。セラミック原料としては、セラミックハニカム構造体と同材質、もしくは異なる材質であっても良く、コーディエライト、コーディエライト化原料、炭化珪素、珪素−炭化珪素系複合材料、ムライト、アルミナ、シリカ、スピネル、炭化珪素−コージェライト系複合材料、リチウムアルミニウムシリケート、チタン酸アルミニウム、からなる群から選択される少なくとも1種を用いることができる。   As the bonding material, for example, the following can be used. Ceramic materials mixed with ceramic fibers and inorganic binders, or ceramic fibers having heat resistance, ceramic particles, cement, and the like can be used alone or in combination. Furthermore, an organic binder, an inorganic binder, etc. can also be mixed as needed. The ceramic raw material may be the same material as the ceramic honeycomb structure or a different material. Cordierite, cordierite forming raw material, silicon carbide, silicon-silicon carbide based composite material, mullite, alumina, silica, spinel At least one selected from the group consisting of silicon carbide-cordierite composite material, lithium aluminum silicate, and aluminum titanate can be used.

図13に示すように、前記接合材21を介して複数のセラミックハニカム構造体11、12が載置されることで、複数のセラミックハニカム構造体11、12の端面間を0.01〜3.0mmの間隔とすることができる。接合材21は、端面上に配置するが、端面のセル内にも配置することもでき、これにより、複数のセラミックハニカム構造体を強固に接合することができる。   As shown in FIG. 13, a plurality of ceramic honeycomb structures 11 and 12 are placed via the bonding material 21 so that a gap between the end faces of the plurality of ceramic honeycomb structures 11 and 12 is 0.01 to 3.0 mm. It can be. The bonding material 21 is disposed on the end surface, but can also be disposed in the cells on the end surface, whereby a plurality of ceramic honeycomb structures can be firmly bonded.

(隔壁同士をずらして載置する方法)
次に、複数のセラミックハニカム構造体を端面において隔壁同士をずらして載置する方法について説明する。
セラミックハニカム構造体の端面を切削、もしくは研削加工して、セラミックハニカム構造体の全長を所定の長さにする。ここで、全長は、接合されるセラミックハニカム構造体の数によって、適宜決めることができ、接合される全てのセラミックハニカム構造体の全長を同一にすることが好ましいが、全てのセラミックハニカム構造体の全長を同一にする必要はなく、全長の異なるセラミックハニカム構造体を接合しても構わない。尚、端面を加工されるセラミックハニカム構造体は、乾燥後で未焼成のもの、焼成後のものの何れでも良いことは言うまでもない。
(Method of placing the partition walls while shifting them)
Next, a method for placing a plurality of ceramic honeycomb structures with the partition walls shifted from each other on the end surfaces will be described.
The end face of the ceramic honeycomb structure is cut or ground to make the total length of the ceramic honeycomb structure a predetermined length. Here, the total length can be determined as appropriate depending on the number of ceramic honeycomb structures to be joined, and it is preferable that all ceramic honeycomb structures to be joined have the same overall length. It is not necessary for the overall length to be the same, and ceramic honeycomb structures having different overall lengths may be joined. Needless to say, the ceramic honeycomb structure whose end face is processed may be either unfired after drying or fired.

図14、図15に複数のセラミックハニカム構造体を端面において隔壁同士をずらせて載置し、接合するための接合装置80を示す。接合装置80は、複数のセラミックハニカム構造体を載置するためのテーブル81と、位置決め部材から構成される。位置決め部材には、金属、及び/又は非金属からなる線状部材、もしくは光線を用いることができ、金属、及び/又は非金属からなる線状部材として、鋼線、銅線、セラミック繊維線、ナイロン繊維、糸、紐等を、光線として、ビーム光線、レーザー光線等を用いることができる。図14、図15に示す接合装置80では、位置決め部材として、2つのレーザー光源82、83で構成される。テーブル81は、水平面上をX、Y方向に移動することができるともに、テーブル81の中心を軸として回転することができる。2つのレーザー光源82、83は、各レーザー光の光軸821、831が直交する位置に配置されている。そして、レーザー光源82、83は、各支柱84、85に支持されて上下方向に移動することができ、任意の位置で固定することができる。   FIG. 14 and FIG. 15 show a joining device 80 for mounting and joining a plurality of ceramic honeycomb structures with their partition walls shifted from each other at their end faces. The joining apparatus 80 includes a table 81 for placing a plurality of ceramic honeycomb structures and a positioning member. As the positioning member, a linear member made of metal and / or non-metal, or a light beam can be used, and as a linear member made of metal and / or non-metal, steel wire, copper wire, ceramic fiber wire, Nylon fiber, thread, string or the like can be used as a light beam, such as a beam beam, a laser beam, or the like. 14 and 15 includes two laser light sources 82 and 83 as positioning members. The table 81 can move in the X and Y directions on the horizontal plane, and can rotate around the center of the table 81 as an axis. The two laser light sources 82 and 83 are arranged at positions where the optical axes 821 and 831 of the respective laser beams are orthogonal to each other. The laser light sources 82 and 83 are supported by the respective columns 84 and 85 and can move in the vertical direction, and can be fixed at arbitrary positions.

次に、複数のセラミックハニカム構造体が端面において隔壁同士が、隔壁厚さの方向にずれて載置する方法を示す。
(a1)まず、レーザー光源82、83を1個目のセラミックハニカム構造体11の全長の長さと略一致する位置に固定して電源をONにする。そして、テーブル81上に、1個目のセラミックハニカム構造体11をその端面上において一方の外周端から他方の外周端まで形成されている任意の隔壁111-2とレーザー光の光軸821とが略一致するように、さらに、任意の隔壁111-2に直行する方向の隔壁111-3とレーザー光の光軸831とが略一致するように載置する(図14(a))。
(b1)次に、テーブル81をX方向、もしくは、Y方向、または、X方向、Y方向の両方向に、隔壁ピッチの0.1倍以上0.5倍未満の範囲で移動させる(図14(b))。
(c1)次に、レーザー光源82、83を2個目のセラミックハニカム構造体12の全長の長さと略一致する位置に移動させて固定する。そして、2個目のセラミックハニカム構造体12をその端面上において一方の外周端から他方の外周端まで形成されている任意の隔壁121-2とレーザー光の光軸821とが略一致するように、さらに、任意の隔壁121-2に直行する方向の隔壁121-3とレーザー光の光軸831とが略一致するように載置する(図14(c))。
(d1)次に、テーブル81をX方向、もしくは、Y方向、または、X方向、Y方向の両方向に、隔壁ピッチの0.1倍以上0.5倍未満の範囲で移動させる(図14(d))。
(e1)次に、レーザー光源82、83を3個目のセラミックハニカム構造体13の全長の長さと略一致する位置に移動させて固定する。そして、3個目のセラミックハニカム構造体13をその端面上において一方の外周端から他方の外周端まで形成されている任意の隔壁131-2とレーザー光の光軸821とが略一致するように、さらに、任意の隔壁131-2に直行する方向の隔壁131-3とレーザー光の光軸831とが略一致するように載置する(図14(e))。
セラミックハニカム構造体を4個以上載置する場合は、以降同様に(b1)〜(e1)を繰り返すことで、所望の数のセラミックハニカム構造体を載置することができる。
Next, a method will be described in which a plurality of ceramic honeycomb structures are placed with their partition walls shifted from each other in the direction of the partition wall thickness at the end faces.
(a 1 ) First, the laser light sources 82 and 83 are fixed at a position substantially coincident with the length of the first ceramic honeycomb structure 11 to turn on the power. On the table 81, an arbitrary partition wall 111-2 formed on the end surface of the first ceramic honeycomb structure 11 from one outer peripheral end to the other outer peripheral end, and an optical axis 821 of the laser beam. Further, the partition wall 111-3 in a direction perpendicular to the arbitrary partition wall 111-2 and the optical axis 831 of the laser beam are mounted so as to substantially match (FIG. 14 (a)).
(b 1 ) Next, the table 81 is moved in the X direction, the Y direction, or both the X direction and the Y direction within a range not less than 0.1 times and less than 0.5 times the partition wall pitch (FIG. 14 (b)). .
(c 1 ) Next, the laser light sources 82 and 83 are moved and fixed to positions that substantially coincide with the total length of the second ceramic honeycomb structure 12. Then, on the end face of the second ceramic honeycomb structure 12, an arbitrary partition wall 121-2 formed from one outer peripheral end to the other outer peripheral end and the optical axis 821 of the laser beam substantially coincide with each other. Furthermore, the partition 121-3 in a direction perpendicular to the arbitrary partition 121-2 and the optical axis 831 of the laser beam are mounted so as to substantially coincide (FIG. 14 (c)).
(d 1 ) Next, the table 81 is moved in the X direction, the Y direction, or both the X direction and the Y direction within a range not less than 0.1 times and less than 0.5 times the partition wall pitch (FIG. 14 (d)). .
(e 1 ) Next, the laser light sources 82 and 83 are moved and fixed to positions that substantially coincide with the total length of the third ceramic honeycomb structure 13. Then, on the end surface of the third ceramic honeycomb structure 13, an arbitrary partition wall 131-2 formed from one outer peripheral end to the other outer peripheral end and the optical axis 821 of the laser beam substantially coincide with each other. Furthermore, the partition 131-3 in the direction perpendicular to the arbitrary partition 131-2 and the optical axis 831 of the laser beam are placed so as to substantially coincide (FIG. 14 (e)).
When four or more ceramic honeycomb structures are mounted, a desired number of ceramic honeycomb structures can be mounted by repeating (b 1 ) to (e 1 ) in the same manner.

複数のセラミックハニカム構造体が端面において隔壁同士が、端面の中心を軸として回転されてずれて載置する場合は、次のように行う。
(a2)レーザー光源82を1個目のセラミックハニカム構造体11の全長の長さと略一致する位置に固定して電源をONにする。そして、テーブル81上に、1個目のセラミックハニカム構造体11をその端面上において一方の外周端から他方の外周端まで形成されている任意の隔壁111-2とレーザー光の光軸821とが略一致するように載置する(図15(a))。
(b2)次に、テーブル81を35〜55°の角度範囲で回転移動させる(図15(b))。
(c2)次に、レーザー光源82を2個目のセラミックハニカム構造体12の全長の長さと略一致する位置に移動させて固定する。そして、2個目のセラミックハニカム構造体12をその端面上において一方の外周端から他方の外周端まで形成されている任意の隔壁121-2とレーザー光の光軸821とが略一致するように載置する(図15(c))。
(d2)次に、テーブル81を35〜55°の角度範囲で回転移動させる(図15(d))。
(e2)次に、レーザー光源82を3個目のセラミックハニカム構造体13の全長の長さと略一致する位置に移動させて固定する。そして、3個目のセラミックハニカム構造体13をその端面上において一方の外周端から他方の外周端まで形成されている任意の隔壁131-2とレーザー光の光軸821とが略一致するように載置する(図15(e))。
セラミックハニカム構造体を4個以上載置する場合は、以降同様に(b2)〜(e2)を繰り返すことで、所望の数のセラミックハニカム構造体を載置することができる。
In the case where a plurality of ceramic honeycomb structures are mounted with the partition walls being rotated and displaced with the center of the end surface as an axis at the end surface, the following is performed.
(a 2 ) The laser light source 82 is fixed at a position substantially coincident with the total length of the first ceramic honeycomb structure 11 and the power is turned on. On the table 81, an arbitrary partition wall 111-2 formed on the end surface of the first ceramic honeycomb structure 11 from one outer peripheral end to the other outer peripheral end, and an optical axis 821 of the laser beam. It is mounted so as to substantially match (FIG. 15 (a)).
(b 2 ) Next, the table 81 is rotationally moved within an angle range of 35 to 55 ° (FIG. 15 (b)).
(c 2 ) Next, the laser light source 82 is moved and fixed to a position substantially coincident with the total length of the second ceramic honeycomb structure 12. Then, on the end face of the second ceramic honeycomb structure 12, an arbitrary partition wall 121-2 formed from one outer peripheral end to the other outer peripheral end and the optical axis 821 of the laser beam substantially coincide with each other. Place it (Fig. 15 (c)).
(d 2 ) Next, the table 81 is rotated and moved within an angle range of 35 to 55 ° (FIG. 15 (d)).
(e 2 ) Next, the laser light source 82 is moved and fixed to a position substantially coincident with the total length of the third ceramic honeycomb structure 13. Then, on the end surface of the third ceramic honeycomb structure 13, an arbitrary partition wall 131-2 formed from one outer peripheral end to the other outer peripheral end and the optical axis 821 of the laser beam substantially coincide with each other. Place it (Fig. 15 (e)).
When four or more ceramic honeycomb structures are mounted, a desired number of ceramic honeycomb structures can be mounted by repeating (b 2 ) to (e 2 ) in the same manner.

上記の説明では、位置決め部材として、レーザー光源を用いた例で示したが、セラミックハニカム構造体の端面上において、一方の外周端から他方の外周端まで形成されている任意の隔壁と略一致させることができる部材であれば、例えば糸、紐、鋼線、光線等を利用することができる。   In the above description, an example in which a laser light source is used as the positioning member is shown. However, on the end face of the ceramic honeycomb structure, it is substantially matched with an arbitrary partition formed from one outer peripheral end to the other outer peripheral end. For example, a thread, a string, a steel wire, a light beam, or the like can be used as long as it can be used.

以下、本発明について実施例を用いてより詳細に説明するが、本発明はこれらの実施例に限られるものではない。
カオリン、タルク、シリカ、アルミナ粉末を調整し、質量比で、SiO2:48〜52%、Al2O3:33〜37%、MgO:12〜15%となるコーディエライト質のセラミックハニカム構造体形成用セラミックス原料を準備し、これにメチルセルロース、ヒドロキシプロピルメチルセルロースなどのバインダーをセラミックス原料に対して8%、潤滑剤、平均粒子径が40μmを有する発泡済み中空樹脂の造孔材を7.0%添加し、乾式で十分混合した後、規定量の水を添加、十分な混練を行って可塑化したセラミック坏土を作製した。次に、成形溝の角部に曲面(R部)を形成した押出成形用金型を用いて坏土を押出し成形し、全長300mmの長さに切断して、外径270mm、長さ300mmのセラミックハニカム成形体を作製し、マイクロ波乾燥機で20分間乾燥して乾燥体とする。そして、この乾燥体の外周部を、外周部の0〜8個のセルの一部もしくは端部が外周面を形成するように、外周面と隔壁との傾きを変更して外周部を加工する。そして、この乾燥体を長さ150mm、75mm、37.5mm、25mmに切断して、表1に示すセル数を有する未焼成のセラミックハニカム乾燥体A〜Lを得た。また、この未焼成の乾燥体を焼成炉で8日間のスケジュールで最高温度1410℃で焼成を行い、焼成済みのセラミックハニカム構造体A〜Lを得た。
EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example, this invention is not limited to these Examples.
Cordierite-type ceramic honeycomb structure in which kaolin, talc, silica, and alumina powder are prepared and the mass ratio is SiO 2 : 48 to 52%, Al 2 O 3 : 33 to 37%, MgO: 12 to 15% Prepare body forming ceramic raw material, and add binder of methylcellulose, hydroxypropylmethylcellulose, etc. to ceramic raw material 8%, lubricant and foamed hollow resin pore former with average particle size of 40μm added 7.0% Then, after thoroughly mixing in a dry method, a specified amount of water was added and sufficient kneading was performed to produce a plasticized ceramic clay. Next, the clay is extruded and molded using an extrusion mold having a curved surface (R portion) at the corner of the molding groove, cut to a total length of 300 mm, an outer diameter of 270 mm, and a length of 300 mm. A ceramic honeycomb formed body is prepared and dried by a microwave dryer for 20 minutes to obtain a dried body. Then, the outer peripheral portion of the dried body is processed by changing the inclination of the outer peripheral surface and the partition so that a part or end of 0 to 8 cells of the outer peripheral portion forms the outer peripheral surface. . Then, this dried body was cut into lengths of 150 mm, 75 mm, 37.5 mm, and 25 mm to obtain unfired ceramic honeycomb dried bodies A to L having the number of cells shown in Table 1. Further, this unfired dried body was fired in a firing furnace at a maximum temperature of 1410 ° C. on an 8-day schedule to obtain fired ceramic honeycomb structures A to L.

(実施例1、2)
長さが150mmの未焼成のハニカム構造体Cを接合装置80に載置して、表2に示すずれ量となるように、未焼成の2個のハニカム構造体Cを接合材を介さずに当接した。そして、当接されたセラミックハニカム構造体を、焼成炉で8日間のスケジュールで最高温度1410℃で焼成を行った。そして、焼成後の当接されたセラミックハニカム構造体の外周部に、コーディエライト、バインダー、水からなるスラリーをコートし、乾燥後、外径270mm、全長300mmである実施例1、2のセラミックハニカムフィルタを得た。このセラミックハニカムフィルタを各2個作製した。
(Examples 1 and 2)
The unfired honeycomb structure C having a length of 150 mm is placed on the joining device 80, and the two unfired honeycomb structures C are put through the joining material so that the deviation amount shown in Table 2 is obtained. Abutted. The abutted ceramic honeycomb structure was fired at a maximum temperature of 1410 ° C. in a firing furnace on an 8-day schedule. Then, the ceramics of Examples 1 and 2 having an outer diameter of 270 mm and an overall length of 300 mm, coated with a slurry made of cordierite, binder, and water on the outer peripheral portion of the ceramic honeycomb structure abutted after firing, and dried. A honeycomb filter was obtained. Two ceramic honeycomb filters were produced.

(実施例3、9、15)
長さが150mmの未焼成のハニカム構造体Cを接合装置80に載置して、表2に示すずれ量となるように、未焼成の2個のハニカム構造体Cを接合材を介して当接した。接合材として、コーディエライト化原料とバインダー、水を用いて、セラミックハニカム構造体の最外周からセルピッチの2倍の範囲内の端面上のみに配置した。そして、当接されたセラミックハニカム構造体を、焼成炉で8日間のスケジュールで最高温度1410℃で焼成を行った。そして、外径266.7mm、全長301mmである実施例3、9、15のセラミックハニカムフィルタを得た。このセラミックハニカムフィルタを各2個作製した。
(Examples 3, 9, and 15)
The unfired honeycomb structure C having a length of 150 mm is placed on the joining device 80, and the two unfired honeycomb structures C are pressed through the joining material so as to have the displacement shown in Table 2. Touched. Cordierite-forming raw materials, binders, and water were used as bonding materials, and they were disposed only on the end surfaces within the range of twice the cell pitch from the outermost periphery of the ceramic honeycomb structure. The abutted ceramic honeycomb structure was fired at a maximum temperature of 1410 ° C. in a firing furnace on an 8-day schedule. Then, ceramic honeycomb filters of Examples 3, 9, and 15 having an outer diameter of 266.7 mm and a total length of 301 mm were obtained. Two ceramic honeycomb filters were produced.

(実施例4、10、16)
長さが150mmの未焼成のハニカム構造体Cを接合装置80に載置して、表2に示すずれ量となるように、未焼成の2個のハニカム構造体Cを接合材を介して当接した。接合材として、コーディエライト化原料とバインダー、水を用いて、セラミックハニカム構造体の最外周からセルピッチの2倍の範囲内の端面上のみに配置した。そして、当接されたセラミックハニカム構造体を、焼成炉で8日間のスケジュールで最高温度1410℃で焼成を行った。そして、焼成後の当接されたセラミックハニカム構造体の外周部に、コーディエライト、バインダー、水からなるスラリーをコートし、乾燥後、外径270mm、全長301mmである実施例4、10、16のセラミックハニカムフィルタを得た。このセラミックハニカムフィルタを各2個作製した。
(Examples 4, 10, and 16)
The unfired honeycomb structure C having a length of 150 mm is placed on the joining device 80, and the two unfired honeycomb structures C are pressed through the joining material so as to have the displacement shown in Table 2. Touched. Cordierite-forming raw materials, binders, and water were used as bonding materials, and they were disposed only on the end surfaces within the range of twice the cell pitch from the outermost periphery of the ceramic honeycomb structure. The abutted ceramic honeycomb structure was fired at a maximum temperature of 1410 ° C. in a firing furnace on an 8-day schedule. Then, a slurry made of cordierite, a binder, and water is coated on the outer peripheral portion of the ceramic honeycomb structure that has been abutted after firing, and after drying, Examples 4, 10, and 16 having an outer diameter of 270 mm and an overall length of 301 mm A ceramic honeycomb filter was obtained. Two ceramic honeycomb filters were produced.

(実施例5、11)
長さが150mmの未焼成のハニカム構造体Dを接合装置80に載置して、表2に示すずれ量となるように、未焼成の2個のハニカム構造体Dを接合材を介して当接した。2個のハニカム構造体は、接合材として、コーディエライト化原料を用いて、ハニカム構造体の最外周からセルピッチの2倍の範囲内の端面上のみに配置した。そして、当接されたセラミックハニカム構造体を、焼成炉で8日間のスケジュールで最高温度1410℃で焼成を行った。そして、焼成後の当接されたセラミックハニカム構造体の外周部に、コーディエライト、バインダー、水からなるスラリーをコートし、乾燥後、外径270mm、全長301mmである実施例5、11のセラミックハニカムフィルタを得た。このセラミックハニカムフィルタを各2個作製した。
(Examples 5 and 11)
The unfired honeycomb structure D having a length of 150 mm is placed on the joining device 80, and the two unfired honeycomb structures D are pressed through the joining material so as to have the displacement shown in Table 2. Touched. The two honeycomb structures were arranged only on the end face within the range of twice the cell pitch from the outermost periphery of the honeycomb structure using a cordierite forming raw material as a bonding material. The abutted ceramic honeycomb structure was fired at a maximum temperature of 1410 ° C. in a firing furnace on an 8-day schedule. Then, a ceramic slurry of Examples 5 and 11 having an outer diameter of 270 mm and an overall length of 301 mm is coated on the outer peripheral portion of the ceramic honeycomb structure abutted after firing with a slurry made of cordierite, a binder, and water and dried. A honeycomb filter was obtained. Two ceramic honeycomb filters were produced.

(実施例6、7)
長さが75mmの未焼成のハニカム構造体Dを接合装置80に載置して、表2に示すずれ量となるように、未焼成の2個のハニカム構造体Dと、未焼成の2個のハニカム構造体Jの計4個を接合材を介して当接した。4個のハニカム構造体は、接合材として、コーディエライト化原料を用いて、ハニカム構造体の最外周からセルピッチの2倍の範囲内の端面上と端面から3mmのセル内に配置した。そして、当接されたセラミックハニカム構造体を、焼成炉で8日間のスケジュールで最高温度1410℃で焼成を行った。そして、焼成後の当接されたセラミックハニカム構造体の外周部に、コーディエライト、バインダー、水からなるスラリーをコートし、乾燥後、外径270mm、全長303mmである実施例6〜7のセラミックハニカムフィルタを得た。このセラミックハニカムフィルタを各2個作製した。
(Examples 6 and 7)
An unfired honeycomb structure D having a length of 75 mm is placed on the joining device 80, and two unfired honeycomb structures D and two unfired honeycomb structures D are set so as to have the deviation amounts shown in Table 2. A total of four honeycomb structures J were brought into contact with each other through a bonding material. The four honeycomb structures were arranged on the end face within a range twice the cell pitch from the outermost periphery of the honeycomb structure and in a cell 3 mm from the end face by using a cordierite forming raw material as a bonding material. The abutted ceramic honeycomb structure was fired at a maximum temperature of 1410 ° C. in a firing furnace on an 8-day schedule. Then, a ceramic slurry of Examples 6 to 7 having an outer diameter of 270 mm and an overall length of 303 mm is coated on the outer peripheral portion of the contacted ceramic honeycomb structure after firing with a slurry made of cordierite, a binder, and water. A honeycomb filter was obtained. Two ceramic honeycomb filters were produced.

(実施例8)
長さが75mmの未焼成のハニカム構造体Dを接合装置80に載置して、未焼成の2個のハニカム構造体Dと、未焼成の2個のハニカム構造体Jの計4個を、D−D−J−Jの順で接合材を介して当接した。当接時、ハニカム構造体DとDとの間のずれ量は、隔壁ピッチの0.1倍、ハニカム構造体DとJとの間のずれ量は、隔壁ピッチの0.3倍、ハニカム構造体JとJとの間のずれ量は隔壁ピッチの0.1倍とした。そして、4個のハニカム構造体は、接合材として、コーディエライト化原料を用いて、ハニカム構造体の最外周からセルピッチの2倍の範囲内の端面上と端面から3mmのセル内に配置した。そして、当接されたセラミックハニカム構造体を、焼成炉で8日間のスケジュールで最高温度1410℃で焼成を行った。そして、焼成後の当接されたセラミックハニカム構造体の外周部に、コーディエライト、バインダー、水からなるスラリーをコートし、乾燥後、外径270mm、全長303mmである実施例8のセラミックハニカムフィルタを得た。このセラミックハニカムフィルタを各2個作製した。
(Example 8)
An unfired honeycomb structure D having a length of 75 mm is placed on the joining device 80, and a total of four of the unfired two honeycomb structures D and the unfired two honeycomb structures J are obtained. It contact | abutted through the joining material in order of DDJJ. At the time of contact, the displacement amount between the honeycomb structures D and D is 0.1 times the partition wall pitch, and the displacement amount between the honeycomb structures D and J is 0.3 times the partition wall pitch, and the honeycomb structures J and J The amount of deviation between them was 0.1 times the partition wall pitch. Then, the four honeycomb structures were arranged on the end face within the range of twice the cell pitch from the outermost periphery of the honeycomb structure and in a cell 3 mm from the end face, using cordierite forming raw material as a bonding material. . The abutted ceramic honeycomb structure was fired at a maximum temperature of 1410 ° C. in a firing furnace on an 8-day schedule. Then, a ceramic honeycomb filter of Example 8 having an outer diameter of 270 mm and an overall length of 303 mm is coated on the outer peripheral portion of the fired ceramic honeycomb structure after contact with a slurry made of cordierite, a binder, and water. Got. Two ceramic honeycomb filters were produced.

(実施例12〜13)
長さが75mmの未焼成のハニカム構造体Dを接合装置80に載置して、表2に示すずれ量となるように、未焼成の2個のハニカム構造体Dと、未焼成の2個のハニカム構造体Iの計4個を接合材を介して当接した。4個のハニカム構造体は、接合材として、コーディエライト化原料を用いて、ハニカム構造体の最外周からセルピッチの2倍の範囲内の端面上と端面から3mmのセル内に配置した。そして、当接されたセラミックハニカム構造体を、焼成炉で8日間のスケジュールで最高温度1410℃で焼成を行った。そして、焼成後の当接されたセラミックハニカム構造体の外周部に、コーディエライト、バインダー、水からなるスラリーをコートし、乾燥後、外径270mm、全長303mmである実施例12〜13のセラミックハニカムフィルタを得た。このセラミックハニカムフィルタを各2個作製した。
(Examples 12 to 13)
An unfired honeycomb structure D having a length of 75 mm is placed on the joining device 80, and two unfired honeycomb structures D and two unfired honeycomb structures D are set so as to have the deviation amounts shown in Table 2. A total of four honeycomb structures I were brought into contact with each other through a bonding material. The four honeycomb structures were arranged on the end face within a range twice the cell pitch from the outermost periphery of the honeycomb structure and in a cell 3 mm from the end face by using a cordierite forming raw material as a bonding material. The abutted ceramic honeycomb structure was fired at a maximum temperature of 1410 ° C. in a firing furnace on an 8-day schedule. Then, a ceramic slurry of Examples 12 to 13 having an outer diameter of 270 mm and an overall length of 303 mm is coated on the outer peripheral portion of the contacted ceramic honeycomb structure after firing with a slurry made of cordierite, a binder, and water, and after drying. A honeycomb filter was obtained. Two ceramic honeycomb filters were produced.

(実施例14)
長さが75mmの未焼成のハニカム構造体Dを接合装置80に載置して、焼成の2個のハニカム構造体Dと、未焼成の2個のハニカム構造体Iの計4個を、D−D−I−Iの順で接合材を介して当接した。接合時、ハニカム構造体DとDとの間のずれ量は、端面の中心を軸として10°の角度、ハニカム構造体DとJとの間のずれ量は端面の中心を軸として45°の角度、ハニカム構造体IとIとの間のずれ量は端面の中心を軸として10°の角度とした。そして、4個のハニカム構造体は、接合材として、コーディエライト化原料を用いて、ハニカム構造体の最外周からセルピッチの2倍の範囲内の端面上と端面から3mmのセル内に配置した。そして、当接されたセラミックハニカム構造体を、焼成炉で8日間のスケジュールで最高温度1410℃で焼成を行った。そして、焼成後の当接されたセラミックハニカム構造体の外周部に、コーディエライト、バインダー、水からなるスラリーをコートし、乾燥後、外径270mm、全長303mmである実施例14のセラミックハニカムフィルタを得た。このセラミックハニカムフィルタを各2個作製した。
(Example 14)
An unfired honeycomb structure D having a length of 75 mm was placed on the joining device 80, and a total of four fired honeycomb structures D and two unfired honeycomb structures I were It contact | abutted through the joining material in order of -D-I-I. At the time of joining, the shift amount between the honeycomb structures D and D is an angle of 10 ° with the center of the end face as an axis, and the shift amount between the honeycomb structures D and J is 45 ° with the center of the end face as an axis. The angle and the amount of deviation between the honeycomb structures I and I were 10 ° with the center of the end face as the axis. Then, the four honeycomb structures were arranged on the end face within the range of twice the cell pitch from the outermost periphery of the honeycomb structure and in a cell 3 mm from the end face, using cordierite forming raw material as a bonding material. . The abutted ceramic honeycomb structure was fired at a maximum temperature of 1410 ° C. in a firing furnace on an 8-day schedule. Then, a ceramic honeycomb filter of Example 14 having an outer diameter of 270 mm and an overall length of 303 mm is coated on the outer peripheral portion of the contacted ceramic honeycomb structure after firing with a slurry made of cordierite, a binder, and water, and dried. Got. Two ceramic honeycomb filters were produced.

(実施例17、21〜22)
長さが75mmの焼成済みのハニカム構造体Dを接合装置80に載置して、表2に示すずれ量となるように、焼成済みの4個のハニカム構造体Dを接合材を介して当接した。4個のハニカム構造体は、接合材として、コーディエライトを用いて、ハニカム構造体の最外周からセルピッチの2倍の範囲内の端面上と端面から3mmのセル内に配置した。そして、当接されたセラミックハニカム構造体の外周部に、シリカ、バインダー、水からなるスラリーをコートし、乾燥後、外径270mm、全長303mmである実施例17、外径270mm、全長301.5mmである実施例21、外径270mm、全長307.5mmである実施例22のセラミックハニカムフィルタを得た。このセラミックハニカムフィルタを2個作製した。
(Examples 17, 21-22)
The fired honeycomb structure D having a length of 75 mm is placed on the joining device 80, and the four fired honeycomb structures D are pressed through the joining material so as to have the displacement shown in Table 2. Touched. The four honeycomb structures were arranged using cordierite as a bonding material on the end face within a range twice the cell pitch from the outermost periphery of the honeycomb structure and in a cell 3 mm from the end face. Then, a slurry made of silica, binder, and water was coated on the outer peripheral portion of the abutted ceramic honeycomb structure, and after drying, Example 17 having an outer diameter of 270 mm and an overall length of 303 mm, an outer diameter of 270 mm and an overall length of 301.5 mm A ceramic honeycomb filter of Example 22 having an outer diameter of 270 mm and an overall length of 307.5 mm was obtained. Two ceramic honeycomb filters were produced.

(実施例18)
長さが75mmの焼成済みのハニカム構造体Eを接合装置80に載置して、表2に示すずれ量となるように、焼成済みの4個のハニカム構造体Eを接合材を介して当接した。4個のハニカム構造体は、接合材として、コーディエライトを用いて、ハニカム構造体の最外周からセルピッチの2倍の範囲内の端面上と端面から3mmのセル内に配置した。そして、当接されたセラミックハニカム構造体の外周部に、シリカ、バインダー、水からなるスラリーをコートし、乾燥後、外径270mm、全長303mmである実施例18のセラミックハニカムフィルタを得た。このセラミックハニカムフィルタを2個作製した。
(Example 18)
The fired honeycomb structure E having a length of 75 mm is placed on the joining device 80, and the four fired honeycomb structures E are pressed through the joining material so as to have the displacement shown in Table 2. Touched. The four honeycomb structures were arranged using cordierite as a bonding material on the end face within a range twice the cell pitch from the outermost periphery of the honeycomb structure and in a cell 3 mm from the end face. And the slurry which consists of a silica, a binder, and water was coated on the outer peripheral part of the contacted ceramic honeycomb structure, and after drying, a ceramic honeycomb filter of Example 18 having an outer diameter of 270 mm and a total length of 303 mm was obtained. Two ceramic honeycomb filters were produced.

(実施例19)
長さが75mmの焼成済みのハニカム構造体Fを接合装置80に載置して、表2に示すずれ量となるように、焼成済みの4個のハニカム構造体Fを接合材を介して当接した。4個のハニカム構造体は、接合材として、コーディエライトを用いて、ハニカム構造体の最外周からセルピッチの2倍の範囲内の端面上と端面から3mmのセル内に配置した。そして、当接されたセラミックハニカム構造体の外周部に、シリカ、バインダー、水からなるスラリーをコートし、乾燥後、外径270mm、全長303mmである実施例19のセラミックハニカムフィルタを得た。このセラミックハニカムフィルタを2個作製した。
(Example 19)
The fired honeycomb structure F having a length of 75 mm is placed on the joining apparatus 80, and the four fired honeycomb structures F are pressed through the joining material so as to have the displacement shown in Table 2. Touched. The four honeycomb structures were arranged using cordierite as a bonding material on the end face within a range twice the cell pitch from the outermost periphery of the honeycomb structure and in a cell 3 mm from the end face. And the slurry which consists of a silica, a binder, and water was coated to the outer peripheral part of the contacted ceramic honeycomb structure, and after drying, the ceramic honeycomb filter of Example 19 having an outer diameter of 270 mm and an overall length of 303 mm was obtained. Two ceramic honeycomb filters were produced.

(実施例20)
長さが75mmの焼成済みのハニカム構造体Gを接合装置80に載置して、表2に示すずれ量となるように、焼成済みの4個のハニカム構造体Gを接合材を介して当接した。4個のハニカム構造体は、接合材として、コーディエライトを用いて、ハニカム構造体の最外周からセルピッチの2倍の範囲内の端面上と端面から3mmのセル内に配置した。そして、当接されたセラミックハニカム構造体の外周部に、シリカ、バインダー、水からなるスラリーをコートし、乾燥後、外径270mm、全長303mmである実施例20のセラミックハニカムフィルタを得た。このセラミックハニカムフィルタを2個作製した。
(Example 20)
The fired honeycomb structure G having a length of 75 mm is placed on the joining device 80, and the four fired honeycomb structures G are pressed through the joining material so as to have the displacement shown in Table 2. Touched. The four honeycomb structures were arranged using cordierite as a bonding material on the end face within a range twice the cell pitch from the outermost periphery of the honeycomb structure and in a cell 3 mm from the end face. And the slurry which consists of a silica, a binder, and water was coated on the outer peripheral part of the contacted ceramic honeycomb structure, and after drying, a ceramic honeycomb filter of Example 20 having an outer diameter of 270 mm and a total length of 303 mm was obtained. Two ceramic honeycomb filters were produced.

(実施例23)
長さが75mmの焼成済みのハニカム構造体Bを接合装置80に載置して、表2に示すずれ量となるように、焼成済みのハニカム構造体D、H、Jを接合材を介して当接した。4個のハニカム構造体は、接合材として、コーディエライトを用いて、ハニカム構造体の最外周からセルピッチの2倍の範囲内の端面上と端面から3mmのセル内に配置した。そして、当接されたセラミックハニカム構造体の外周部に、シリカ、バインダー、水からなるスラリーをコートし、乾燥後、外径270mm、全長303mmである実施例23のセラミックハニカムフィルタを得た。このセラミックハニカムフィルタを2個作製した。
(Example 23)
The fired honeycomb structure B having a length of 75 mm is placed on the joining device 80, and the fired honeycomb structures D, H, and J are placed through the joining material so as to have the deviation amounts shown in Table 2. Abutted. The four honeycomb structures were arranged using cordierite as a bonding material on the end face within a range twice the cell pitch from the outermost periphery of the honeycomb structure and in a cell 3 mm from the end face. And the slurry which consists of a silica, a binder, and water was coated to the outer peripheral part of the contacted ceramic honeycomb structure, and after drying, the ceramic honeycomb filter of Example 23 having an outer diameter of 270 mm and an overall length of 303 mm was obtained. Two ceramic honeycomb filters were produced.

(実施例24)
長さが37.5mmの焼成済みのハニカム構造体A、B、D、H、I、J、K、Lの両端面の角を3mm面取りした。そして、焼成済みのハニカム構造体Aを接合装置80に載置して、表2に示すずれ量となるように、焼成済みのハニカム構造体B、D、H、I、J、K、Lの計8個を接合材を介して当接した。8個のハニカム構造体は、接合材として、コーディエライトを用いて、ハニカム構造体の最外周からセルピッチの3倍の範囲内の端面上と端面から3mmのセル内に配置した。そして、当接されたセラミックハニカム構造体の外周部に、シリカ、バインダー、水からなるスラリーをコートし、乾燥後、外径270mm、全長307mmである実施例24のセラミックハニカムフィルタを得た。このセラミックハニカムフィルタを2個作製した。
(Example 24)
The corners of both end faces of the fired honeycomb structures A, B, D, H, I, J, K, and L having a length of 37.5 mm were chamfered by 3 mm. Then, the fired honeycomb structure A is placed on the joining device 80, and the fired honeycomb structures B, D, H, I, J, K, and L are set so as to have the deviation amounts shown in Table 2. A total of 8 pieces were brought into contact with each other through the bonding material. The eight honeycomb structures were arranged using cordierite as a bonding material on the end face within a range of three times the cell pitch from the outermost periphery of the honeycomb structure and in a cell 3 mm from the end face. And the slurry which consists of a silica, a binder, and water was coated on the outer peripheral part of the contacted ceramic honeycomb structure, and after drying, a ceramic honeycomb filter of Example 24 having an outer diameter of 270 mm and a total length of 307 mm was obtained. Two ceramic honeycomb filters were produced.

(実施例25)
長さが25mmの焼成済みのハニカム構造体Dの両端面の角を3mm面取りした。そして、焼成済みのハニカム構造体Dを接合装置80に載置して、表2に示すずれ量となるように、焼成済みの12個のハニカム構造体Dを接合材を介して当接した。12個のハニカム構造体は、接合材として、コーディエライトを用いて、ハニカム構造体の最外周からセルピッチの3倍の範囲内の端面上と端面から3mmのセル内に配置した。そして、当接されたセラミックハニカム構造体の外周部に、シリカ、バインダー、水からなるスラリーをコートし、乾燥後、外径270mm、全長311mmである実施例25のセラミックハニカムフィルタを得た(図8)。このセラミックハニカムフィルタを2個作製した。
(Example 25)
The corners of both end faces of the fired honeycomb structure D having a length of 25 mm were chamfered by 3 mm. Then, the fired honeycomb structure D was placed on the joining device 80, and the 12 fired honeycomb structures D were brought into contact with each other through the joining material so as to have a deviation amount shown in Table 2. The twelve honeycomb structures were arranged on the end face within a range of three times the cell pitch from the outermost periphery of the honeycomb structure and in a cell 3 mm from the end face using cordierite as a bonding material. Then, a slurry made of silica, binder, and water was coated on the outer peripheral portion of the abutted ceramic honeycomb structure, and after drying, a ceramic honeycomb filter of Example 25 having an outer diameter of 270 mm and a total length of 311 mm was obtained (FIG. 8). Two ceramic honeycomb filters were produced.

(実施例26)
長さが25mmの焼成済みのハニカム構造体Dの両端面の角を3mm面取りした。そして、焼成済みのハニカム構造体Dを接合装置80に載置して、表2に示すずれ量となるように、焼成済みの13個のハニカム構造体Dを接合材を介して当接した。13個のハニカム構造体は、接合材として、コーディエライトを用いて、ハニカム構造体の最外周からセルピッチの3倍の範囲内の端面上と端面から3mmのセル内に配置した。そして、当接されたセラミックハニカム構造体の外周部に、シリカ、バインダー、水からなるスラリーをコートし、乾燥後、外径270mm、全長337mmである実施例26セラミックハニカムフィルタを得た。このセラミックハニカムフィルタを2個作製した。
(Example 26)
The corners of both end faces of the fired honeycomb structure D having a length of 25 mm were chamfered by 3 mm. Then, the fired honeycomb structure D was placed on the joining device 80, and the 13 fired honeycomb structures D were brought into contact with each other through the joining material so as to have a deviation amount shown in Table 2. Thirteen honeycomb structures were arranged on the end face within a range of three times the cell pitch from the outermost periphery of the honeycomb structure and in a cell 3 mm from the end face, using cordierite as a bonding material. And the slurry which consists of a silica, a binder, and water was coated to the outer peripheral part of the contacted ceramic honeycomb structure, and after drying, an Example 26 ceramic honeycomb filter having an outer diameter of 270 mm and an overall length of 337 mm was obtained. Two ceramic honeycomb filters were produced.

(実施例27)
長さが25mmの焼成済みのハニカム構造体Dの両端面の角を3mm面取りした。そして、焼成済みのハニカム構造体Dを接合装置80に載置して、表2に示すずれ量となるように、焼成済みの12個のハニカム構造体Dを接合材を介して当接した。12個のハニカム構造体は、接合材として、コーディエライトを用いて、ハニカム構造体の最外周からセルピッチの3倍の範囲内の端面上と端面から3mmのセル内に配置し、ハニカム構造体同士の隙間は、上流側から順に3.0mm、3.0mm、3.0mm、3.0mm、2.0mm、2.0mm、2.0mm、2.0mm、1.0mm、1.0mm、1.0mmとした。そして、当接されたセラミックハニカム構造体の外周部に、シリカ、バインダー、水からなるスラリーをコートし、乾燥後、外径270mm、全長323mmである実施例27のセラミックハニカムフィルタを得た。このセラミックハニカムフィルタを2個作製した。
(Example 27)
The corners of both end faces of the fired honeycomb structure D having a length of 25 mm were chamfered by 3 mm. Then, the fired honeycomb structure D was placed on the joining device 80, and the 12 fired honeycomb structures D were brought into contact with each other through the joining material so as to have a deviation amount shown in Table 2. Twelve honeycomb structures are arranged using cordierite as a bonding material on the end surface within the range of three times the cell pitch from the outermost periphery of the honeycomb structure and in a cell 3 mm from the end surface. The gaps between them were 3.0 mm, 3.0 mm, 3.0 mm, 3.0 mm, 2.0 mm, 2.0 mm, 2.0 mm, 2.0 mm, 1.0 mm, 1.0 mm and 1.0 mm in order from the upstream side. And the slurry which consists of a silica, a binder, and water was coated to the outer peripheral part of the contacted ceramic honeycomb structure, and after drying, the ceramic honeycomb filter of Example 27 having an outer diameter of 270 mm and a total length of 323 mm was obtained. Two ceramic honeycomb filters were produced.

(実施例28)
長さが25mmの焼成済みのハニカム構造体Dの両端面の角を3mm面取りした。そして、焼成済みのハニカム構造体Dを接合装置80に載置して、表2に示すずれ量となるように、焼成済みの6個のハニカム構造体Dを接合材を介して当接した。6個のハニカム構造体は、ハニカム構造体同士の隙間が2mmとなるように、接合材として、コーディエライトを用いて、ハニカム構造体の最外周からセルピッチの3倍の範囲内の端面上と端面から3mmのセル内に配置して、実施例28のセラミックハニカムフィルタの上流側部材とした。同様に、両端面の角を3mm面取りした長さが25mmの焼成済みのハニカム構造体Dを接合装置80に載置して、表2に示すずれ量となるように、焼成済みの6個のハニカム構造体Dを接合材を介して当接した。6個のハニカム構造体は、ハニカム構造体同士の隙間が1mmとなるように、接合材として、コーディエライトを用いて、ハニカム構造体の最外周からセルピッチの3倍の範囲内の端面上と端面から3mmのセル内に配置して、実施例28のセラミックハニカムフィルタの下流側部材とした。そして、上流側部材と下流側部材とを表2に示すずれ量となるように、接合材を介して当接した。上流側部材と下流側部材との隙間が3.0mmとなるように、接合材として、コーディエライトを用いて、ハニカム構造体の最外周からセルピッチの3倍の範囲内の端面上と端面から3mmのセル内に配置した。そして、当接されたセラミックハニカム構造体の外周部に、シリカ、バインダー、水からなるスラリーをコートし、乾燥後、外径270mm、全長318mmである実施例28のセラミックハニカムフィルタを得た。このセラミックハニカムフィルタを2個作製した。
(Example 28)
The corners of both end faces of the fired honeycomb structure D having a length of 25 mm were chamfered by 3 mm. Then, the fired honeycomb structure D was placed on the joining device 80, and the six fired honeycomb structures D were brought into contact with each other through the joining material so as to have a deviation amount shown in Table 2. The six honeycomb structures are made of cordierite as a bonding material so that the gap between the honeycomb structures is 2 mm, and on the end face within the range of three times the cell pitch from the outermost periphery of the honeycomb structure. An upstream member of the ceramic honeycomb filter of Example 28 was disposed in a cell 3 mm from the end face. Similarly, the fired honeycomb structure D having a length of 25 mm with chamfered corners of both end faces of 25 mm is placed on the joining device 80, and the fired six pieces so as to have the deviation shown in Table 2 are obtained. The honeycomb structure D was brought into contact with the bonding material. The six honeycomb structures are made of cordierite as a bonding material so that the gap between the honeycomb structures is 1 mm, and on the end face within the range of three times the cell pitch from the outermost periphery of the honeycomb structure. Arranged in a cell 3 mm from the end face, a downstream member of the ceramic honeycomb filter of Example 28 was obtained. Then, the upstream member and the downstream member were brought into contact with each other through the bonding material so as to have a deviation amount shown in Table 2. Cordierite is used as the bonding material so that the gap between the upstream member and the downstream member is 3.0 mm, and 3 mm from the end surface within the range of 3 times the cell pitch from the outermost periphery of the honeycomb structure. Placed in the cell. And the slurry which consists of a silica, a binder, and water was coated to the outer peripheral part of the contacted ceramic honeycomb structure, and after drying, the ceramic honeycomb filter of Example 28 having an outer diameter of 270 mm and a total length of 318 mm was obtained. Two ceramic honeycomb filters were produced.

上記で得られたセラミックハニカムフィルタに対し、PM捕集率と圧力損失、耐溶損性、アッシュによる目詰まりを測定した。
PM捕集率は、ハニカムフィルタに対して、微粒子発生器により空気流量10Nm3/minで、粒径0.042μmのカーボン粉を3g/hで2時間投入した際の、ハニカムフィルタが捕集したカーボン粉の重量と投入したカーボン粉の重量から、捕集率を算出した。そして、捕集効率が、
85%以上の場合を(◎◎)、
70%以上85%未満の場合を(◎)、
50%以上70%未満の場合を(○)、
30%以上50%未満の場合を(△)、及び
30%未満の場合を(×)
として捕集効率を評価した。
圧力損失は、圧力損失テストスタンドにて、空気流量7.5Nm3/min時のハニカムフィルタ入口側と出口側の差圧を圧力損失として評価を行った。そして、圧力損失が、
1.0 kPaを越える場合を(×)、
0.8 kPaを超え1.0 kPa以下の場合を(△)、
0.6 kPaを超え0.8 kPa以下の場合を(○)、及び
0.6 kPa以下の場合を(◎)
として初期圧力損失を評価した。評価結果を表2に示す。
With respect to the ceramic honeycomb filter obtained above, PM collection rate, pressure loss, melt resistance, and clogging due to ash were measured.
The PM collection rate is the carbon collected by the honeycomb filter when carbon powder with a particle size of 0.042μm was added at 3g / h for 2 hours with a fine particle generator at a flow rate of 10Nm 3 / min. The collection rate was calculated from the weight of the powder and the weight of the charged carbon powder. And the collection efficiency is
In the case of 85% or more (◎◎),
70% or more and less than 85% (◎),
50% or more and less than 70% (○),
(△) when 30% or more and less than 50%, and
Less than 30% (×)
The collection efficiency was evaluated as
The pressure loss was evaluated on the pressure loss test stand using the differential pressure between the inlet side and the outlet side of the honeycomb filter when the air flow rate was 7.5 Nm 3 / min as the pressure loss. And the pressure loss is
When exceeding 1.0 kPa (×),
(0.8) when 0.8 kPa and 1.0 kPa
(0.6) when 0.6 kPa and 0.8 kPa
When the pressure is 0.6 kPa or less (◎)
As an initial pressure loss was evaluated. The evaluation results are shown in Table 2.

耐溶損性は、PM捕集率の測定において、セラミックハニカムフィルタへのカーボン粉の投入を継続し、ハニカムフィルタに捕集された微粒子が6g/Lとなるまで行った後、これらのハニカムフィルタを排気試験装置(図示せず)に装着し、バーナーによる燃焼ガスによりカーボン粉に着火させ、溶損発生の有無を確認して評価した。この時の昇温速度は毎秒1.6℃とし、600℃到達後、燃焼ガスの導入を停止し、捕集されたカーボン粉による自己燃焼を行わせる。燃焼が終了し、冷却後のハニカムフィルタに対して、X線による内部溶損発生の有無の確認を行ったうえで、溶損が認められなかったものについては、捕集させるカーボン粉を2g/Lづつ増加させ、溶損が発生するまで繰り返し溶損試験を行い、溶損が発生しなかったカーボン捕集量の最大値を耐溶損カーボン捕集量として耐溶損性の指標として表した。そして、耐溶損性の指標が、
20g以上の場合を(◎)
14g以上18g以下の場合を(○)
8g以上12g以下の場合を(△)
6g以下の場合を(×)
として耐溶損性を評価した。評価結果を表2に示す。
In the measurement of the PM collection rate, the carbon powder is continuously added to the ceramic honeycomb filter until the fine particles collected in the honeycomb filter become 6 g / L. The sample was mounted on an exhaust test device (not shown), and the carbon powder was ignited by combustion gas from a burner, and the presence or absence of melting damage was confirmed and evaluated. The heating rate at this time is set to 1.6 ° C. per second, and after reaching 600 ° C., the introduction of the combustion gas is stopped and self-combustion with the collected carbon powder is performed. After confirming the presence or absence of internal melting damage by X-rays on the honeycomb filter after the combustion was finished and after cooling, the carbon powder to be collected was 2g / The increase in L was repeated, and the erosion test was repeated until erosion occurred, and the maximum value of the amount of carbon that did not cause erosion was expressed as an index of erosion resistance as the refractory carbon collection. And the index of the erosion resistance is
In case of 20g or more (◎)
Cases of 14g to 18g (○)
In the case of 8g to 12g (△)
For cases of 6g or less (×)
The melt resistance was evaluated. The evaluation results are shown in Table 2.

アッシュによる目詰まりの評価は、耐溶損性試験を終了したハニカムフィルタを排気ガスが流通する方向と平行な方向に切断し写真撮影する。このうち、任意の10セルについて、画像解析でアッシュの堆積量を画像面積として算出し、比較例1でのアッシュ堆積量を100として相対的に評価した。そして、アッシュの堆積量が比較例1に対して、
70以下の場合を(◎)
70を超え80以下の場合を(○)
80を超え90以下の場合を(△)
90を超え100以下の場合を(×)
としてアッシュによる目詰まりを評価した。評価結果を表2に示す。
For evaluation of clogging by ash, the honeycomb filter that has been subjected to the erosion resistance test is cut in a direction parallel to the direction in which the exhaust gas circulates and photographed. Among these, for any 10 cells, the ash deposition amount was calculated as an image area by image analysis, and the ash deposition amount in Comparative Example 1 was relatively evaluated as 100. And, the amount of ash deposited relative to Comparative Example 1,
For cases below 70 (◎)
Cases exceeding 70 and 80 or less (○)
When over 80 and below 90 (△)
When exceeding 90 and 100 or less (×)
As clogging due to ash was evaluated. The evaluation results are shown in Table 2.

各実施例で作製したセラミックハニカムフィルタの残りの1個から試験片を切り出し、セラミックハニカム構造体A〜Lの気孔率、平均細孔径、隔壁端面及び隔壁表面の粗さの測定を行った。
気孔率、平均細孔径は、水銀圧入法により測定した。セラミックハニカムフィルタから切り出した試験片(10 mm×10 mm×10 mm)を、Micromeritics社製オートポアIIIの測定セル内にセットし、セル内を減圧した後、水銀を導入して加圧した。加圧時の圧力と試験片内に存在する細孔中に押し込まれた水銀の体積との関係から、細孔径と累積細孔容積との関係を求めた。水銀を導入する圧力は、0.5 psi(0.35×10-3 kgf/mm2)とし、圧力から細孔径を算出する際の常数は、接触角=130°、表面張力484 dyne/cmとした。このとき、気孔率は、全細孔容積の測定値から、コージェライトの真比重を2.52 g/cm3として、計算によって求めた。そして、前記水銀圧入方により求めた細孔径と累積細孔容積との関係から、累積細孔容積が50%となる細孔径を細孔の平均細孔径とした。
隔壁端面及び隔壁表面の粗さである最大高さRzは、ミツトヨ製表面粗さ計SURFTESTにより、先端の曲率半径5μmの触針を用いて、隔壁端面及び隔壁表面を長手方向2mmに亘って測定して、JIS B 0601-2001に準じて求め、3ケ所の測定値の平均とした。これらの結果を表3に示す。
A test piece was cut out from the remaining one of the ceramic honeycomb filters produced in each Example, and the porosity, average pore diameter, partition wall end face and partition wall roughness of the ceramic honeycomb structures A to L were measured.
The porosity and average pore diameter were measured by mercury porosimetry. A test piece (10 mm × 10 mm × 10 mm) cut out from the ceramic honeycomb filter was set in a measurement cell of Autopore III manufactured by Micromeritics, and the inside of the cell was decompressed, and mercury was introduced and pressurized. From the relationship between the pressure during pressurization and the volume of mercury pushed into the pores present in the test piece, the relationship between the pore diameter and the cumulative pore volume was determined. The pressure for introducing mercury was 0.5 psi (0.35 × 10 −3 kgf / mm 2), and the constants for calculating the pore diameter from the pressure were a contact angle = 130 ° and a surface tension of 484 dyne / cm. At this time, the porosity was obtained by calculation from the measured value of the total pore volume, assuming that the true specific gravity of cordierite was 2.52 g / cm 3. Then, from the relationship between the pore diameter determined by the mercury intrusion method and the cumulative pore volume, the pore diameter at which the cumulative pore volume is 50% was defined as the average pore diameter of the pores.
The maximum height Rz, which is the roughness of the partition wall end face and the partition wall surface, was measured with a Mitutoyo surface roughness meter SURFTEST over the 2 mm longitudinal direction of the partition wall end face and the partition wall surface using a stylus with a tip radius of curvature of 5 μm. Then, it was obtained according to JIS B 0601-2001, and was taken as the average of the measured values at three locations. These results are shown in Table 3.

(比較例1〜3)
比較例1では、特許文献1に記載されている、セルの端面が交互に目封止されたセラミックハニカムフィルタを作製し、実施例と同様に評価を行った。実施例と同様にセラミック坏土を作製し、成形溝の角部に曲面(R部)が形成されていない押出成形用金型を用いて坏土を押出し成形し、外径270mm、長さ300mmのセラミックハニカム成形体を作製し、マイクロ波乾燥機で20分間乾燥して乾燥体とし、表1に示すセル数を有する未焼成のセラミックハニカム乾燥体Mを得た。この未焼成の乾燥体を焼成炉で8日間のスケジュールで最高温度1410℃で焼成を行い、焼成済みのセラミックハニカム構造体Mとした。このセラミックハニカム構造体のセルの両端面を目封止材で交互に目封止を行い、外径270mm、全長300mmである比較例1のセラミックハニカムフィルタを作製した。
(Comparative Examples 1-3)
In Comparative Example 1, a ceramic honeycomb filter described in Patent Document 1 in which the end faces of the cells were alternately plugged was produced and evaluated in the same manner as in the example. A ceramic clay is prepared in the same manner as in the examples, and the clay is extruded using an extrusion mold in which the curved surface (R portion) is not formed at the corner of the forming groove, and the outer diameter is 270 mm and the length is 300 mm. The ceramic honeycomb formed body was prepared and dried with a microwave dryer for 20 minutes to obtain a dried body, and an unfired ceramic honeycomb dried body M having the number of cells shown in Table 1 was obtained. This unfired dried body was fired at a maximum temperature of 1410 ° C. in a firing furnace for 8 days to obtain a fired ceramic honeycomb structure M. The both ends of the cells of this ceramic honeycomb structure were plugged alternately with a plugging material to produce a ceramic honeycomb filter of Comparative Example 1 having an outer diameter of 270 mm and a total length of 300 mm.

比較例2では、特許文献2に記載されている、セラミックハニカム構造体片方の端面においてのみセルが交互に目封止されたセラミックハニカムフィルタを作製し、実施例と同様に評価を行った。焼成済みのセラミックハニカム構造体Mの一方の端面においてのみ目封止材で交互に目封止を行い、外径270mm、全長300mmである比較例2のセラミックハニカムフィルタを作製した。   In Comparative Example 2, a ceramic honeycomb filter described in Patent Document 2 in which cells were alternately plugged only on one end face of the ceramic honeycomb structure was produced and evaluated in the same manner as in the example. Plugging was alternately carried out with a plugging material only on one end face of the fired ceramic honeycomb structure M to produce a ceramic honeycomb filter of Comparative Example 2 having an outer diameter of 270 mm and a total length of 300 mm.

比較例3では、実施例17において、ずれ量を0として作製したこと以外は、実施例17と同様に作製して評価を行った。   In Comparative Example 3, evaluation was performed in the same manner as in Example 17 except that the amount of deviation was set to 0 in Example 17.

Figure 2014113510
Figure 2014113510

Figure 2014113510
Figure 2014113510

Figure 2014113510
Figure 2014113510

表2に示すように、本発明のセラミックハニカムフィルタは、PMの捕集性能を維持しつつ、排気ガスが通過する際の圧力損失を低く抑えることができることがわかる、一方、比較例1のセラミックハニカムフィルタは、PM捕集率は良好であるが、圧力損失に問題がある。比較例2、3のセラミックハニカムフィルタは、PM捕集性能が不十分である。   As shown in Table 2, it can be seen that the ceramic honeycomb filter of the present invention can suppress the pressure loss when the exhaust gas passes while maintaining the PM collection performance, whereas the ceramic of Comparative Example 1 The honeycomb filter has a good PM collection rate, but has a problem in pressure loss. The ceramic honeycomb filters of Comparative Examples 2 and 3 have insufficient PM collection performance.

1:隔壁
2:セル
4:外周面
5:外周壁
6:面取り
7:R部
10:セラミックハニカムフィルタ
11:上流側のセラミックハニカム構造体
12:下流側のセラミックハニカム構造体
21:接合材
31:押出成形用口金
32:成形溝
50、60:従来技術のセラミックハニカムフィルタ
51、61:隔壁
52a、52b、62a、62b:セル
53a、53b、63b:目封止部
80:接合装置
81:テーブル
82、83:レーザー光源
84、85:支柱
111:上流側セラミックハニカム構造体の隔壁
121:下流側セラミックハニカム構造体の隔壁
821、831:レーザー光の光軸
X、Y:複数のセラミックハニカム構造体の隔壁同士の隔壁間隔
θ:複数のセラミックハニカム構造体の隔壁同士の隔壁角度
01、A11、A21、A31、A41:上流側のセラミックハニカム構造体におけるセル開口面積
02、A12、A22、A32、A42:接合された下流側のセラミックハニカム構造体の隔壁によって減少したセル開口面積
1:セルでの一方の対向する隅部の曲率半径
2:セルでの他方の対向する隅部の曲率半径


1: partition wall 2: cell 4: outer peripheral surface 5: outer peripheral wall 6: chamfer 7: R portion 10: ceramic honeycomb filter 11: upstream ceramic honeycomb structure 12: downstream ceramic honeycomb structure 21: bonding material 31: Extrusion die 32: Molding groove 50, 60: Conventional ceramic honeycomb filter 51, 61: Partition walls 52a, 52b, 62a, 62b: Cells 53a, 53b, 63b: Plugging portions 80: Joining device 81: Table 82 83: Laser light source 84, 85: Strut 111: Partition wall of upstream ceramic honeycomb structure 121: Partition wall 821 of downstream ceramic honeycomb structure, 831: Optical axis X, Y of laser beam: Plurality of ceramic honeycomb structures Partition space θ between the partition walls: partition wall angles A 01 , A 11 , A 2 between the partition walls of the plurality of ceramic honeycomb structures 1 , A 31 , A 41 : Cell opening area in the upstream ceramic honeycomb structure A 02 , A 12 , A 22 , A 32 , A 42 : Cells reduced by the partition walls of the joined downstream ceramic honeycomb structure Opening area R 1 : radius of curvature of one opposite corner of the cell R 2 : radius of curvature of the other opposite corner of the cell


Claims (17)

排気ガス中の微粒子を除去するためのセラミックハニカムフィルタであって、多孔質の隔壁により仕切られたセルを有する複数のセラミックハニカム構造体が、前記セラミックハニカム構造体の端面において排気ガスが流通する方向に接合され、前記複数のセラミックハニカム構造体は、前記排気ガスが流通する方向に直交する断面において、少なくとも一部の前記複数のセラミックハニカム構造体の隔壁同士が、ずれて接合され、前記接合された複数のセラミックハニカム構造体の排気ガスが流通する上流側のセラミックハニカム構造体のセルにおいて、排気ガス流通方向に垂直な断面におけるセル開口面積A01と、前記セルのセル開口面積A01が前記接合された下流側のセラミックハニカム構造体の隔壁によって減少したセル開口面積A02と、の比であるセル開口面積比A0=(A02/A01)が、任意の5セル×5セル=25セルにおける平均値が0.9以下であり、前記下流側のセラミックハニカム構造体の隔壁端面の粗さ(最大高さRz)が15μm以上、隔壁表面の粗さ(最大高さRz)が15μm以上であることを特徴とするセラミックハニカムフィルタ。 A ceramic honeycomb filter for removing fine particles in exhaust gas, wherein a plurality of ceramic honeycomb structures having cells partitioned by porous partition walls flow in the exhaust gas at the end face of the ceramic honeycomb structure. The plurality of ceramic honeycomb structures are bonded to each other in such a manner that at least some of the partition walls of the plurality of ceramic honeycomb structures are displaced from each other in a cross section perpendicular to the direction in which the exhaust gas flows. Further, in the cells of the upstream ceramic honeycomb structure through which the exhaust gas of the plurality of ceramic honeycomb structures flows, the cell opening area A 01 in the cross section perpendicular to the exhaust gas flowing direction and the cell opening area A 01 of the cell are Cell opening area A reduced by partition walls of bonded downstream ceramic honeycomb structure The cell opening area ratio A 0 = (A 02 / A 01 ), which is the ratio of 02 , is an average value of 0.9 or less in an arbitrary 5 cells × 5 cells = 25 cells, and the downstream ceramic honeycomb structure A ceramic honeycomb filter having a partition wall end surface roughness (maximum height Rz) of 15 μm or more and a partition wall surface roughness (maximum height Rz) of 15 μm or more. 前記セルにおける前記セル開口面積比(A0)と、前記セルに隣接するセルにおけるセル開口面積比(A1、A2、A3、A4・・・)との差の絶対値が、任意の5セル×5セル=25セルにおける最大値が0.10以上1.0未満であることを特徴とする請求項1に記載のセラミックハニカムフィルタ。 The absolute value of the difference between the cell opening area ratio (A 0 ) in the cell and the cell opening area ratio (A 1 , A 2 , A 3 , A 4 ...) In the cell adjacent to the cell is arbitrary. 2. The ceramic honeycomb filter according to claim 1, wherein a maximum value of 5 cells × 5 cells = 25 cells is 0.10 or more and less than 1.0. 前記複数のセラミックハニカム構造体の隔壁同士が、隔壁厚さの方向に前記隔壁同士の最短間隔が隔壁ピッチの0.1倍以上0.5倍未満でずれて接合されていることを特徴とする請求項1または請求項2に記載のセラミックハニカムフィルタ。 The partition walls of the plurality of ceramic honeycomb structures are bonded to each other with a shortest distance between the partition walls in the direction of the partition wall thickness being shifted by 0.1 times or more and less than 0.5 times the partition wall pitch. The ceramic honeycomb filter according to claim 2. 前記複数のセラミックハニカム構造体の隔壁同士が、前記端面の中心を軸として35〜55°の角度ずれた位置で接合されていることを特徴とする請求項1乃至請求項3の何れか1項に記載のセラミックハニカムフィルタ。 The partition walls of the plurality of ceramic honeycomb structures are joined at positions shifted by an angle of 35 to 55 ° with the center of the end face as an axis. A ceramic honeycomb filter as described in 1. 前記複数のセラミックハニカム構造体は2個以上15個以下であることを特徴とする請求項1乃至請求項4の何れか1項に記載のセラミックハニカムフィルタ。 The ceramic honeycomb filter according to any one of claims 1 to 4, wherein the plurality of ceramic honeycomb structures is 2 or more and 15 or less. 前記排気ガスが流通する方向に直交する断面において、前記セルは略四角形状で、隅部が円弧状であり、一方の対向する隅部の曲率半径は他方の対向する隅部の曲率半径より大きいことを特徴とする請求項1乃至請求項5の何れか1項に記載のセラミックハニカムフィルタ。 In the cross section orthogonal to the direction in which the exhaust gas flows, the cell has a substantially quadrangular shape, the corners are arcuate, and the radius of curvature of one opposing corner is greater than the radius of curvature of the other opposing corner. The ceramic honeycomb filter according to any one of claims 1 to 5, wherein the ceramic honeycomb filter is provided. 前記接合された複数のセラミックハニカム構造体の端面間が0.01〜3.0mmの間隔を有することを特徴とする請求項1乃至請求項6の何れか1項に記載のセラミックハニカムフィルタ。 The ceramic honeycomb filter according to any one of claims 1 to 6, wherein an interval between the end faces of the plurality of bonded ceramic honeycomb structures is 0.01 to 3.0 mm. 前記複数のセラミックハニカム構造体の開口率が75%以下であることを特徴とする請求項1乃至請求項7の何れかに記載のセラミックハニカムフィルタ。 The ceramic honeycomb filter according to any one of claims 1 to 7, wherein an opening ratio of the plurality of ceramic honeycomb structures is 75% or less. 前記複数のセラミックハニカム構造体が、隣接するセラミックハニカム構造体同士の開口率が異なるように接合されていることを特徴とする請求項8に記載のセラミックハニカムフィルタ。 9. The ceramic honeycomb filter according to claim 8, wherein the plurality of ceramic honeycomb structures are joined such that adjacent ceramic honeycomb structures have different aperture ratios. 前記複数のセラミックハニカム構造体は、排気ガスが流通する方向に平行する断面において、隣接する隔壁同士が略平行であるとともに、前記セラミックハニカム構造体の外周部のセルの1〜5個が、そのセルの一部もしくは端部が、外周面を形成していることを特徴とする請求項1乃至請求項9の何れかに記載のセラミックハニカムフィルタ。 In the plurality of ceramic honeycomb structures, in the cross section parallel to the direction in which the exhaust gas flows, adjacent partition walls are substantially parallel to each other, and 1 to 5 cells in the outer peripheral portion of the ceramic honeycomb structure are The ceramic honeycomb filter according to any one of claims 1 to 9, wherein a part or an end of the cell forms an outer peripheral surface. 複数のセラミックハニカム構造体が接合されてなるセラミックハニカムフィルタの製造方法であって、セラミック坏土をハニカム状に押出成形し、所定長さに切断し、乾燥後の複数のセラミックハニカム乾燥体を前記セラミックハニカム乾燥体の端面において、隔壁同士をずらして載置し、載置された複数のセラミックハニカム乾燥体を焼成して複数のセラミックハニカム構造体とすることを特徴とするセラミックハニカムフィルタの製造方法。   A method for manufacturing a ceramic honeycomb filter in which a plurality of ceramic honeycomb structures are joined, wherein a ceramic clay is extruded into a honeycomb shape, cut into a predetermined length, and a plurality of dried ceramic honeycomb bodies are dried. A method for manufacturing a ceramic honeycomb filter, comprising: placing a plurality of ceramic honeycomb dried bodies on the end face of the ceramic honeycomb dried body by shifting the partition walls; and firing the plurality of ceramic honeycomb dried bodies to form a plurality of ceramic honeycomb structures . 前記焼成後、前記複数のセラミックハニカム構造体の外周部にコート材を塗布することを特徴とする請求項11に記載のセラミックハニカムフィルタの製造方法。   The method for manufacturing a ceramic honeycomb filter according to claim 11, wherein after the firing, a coating material is applied to an outer peripheral portion of the plurality of ceramic honeycomb structures. 複数のセラミックハニカム構造体が接合されてなるセラミックハニカムフィルタの製造方法であって、セラミック坏土をハニカム状に押出成形し、所定長さに切断し、乾燥後の複数のセラミックハニカム乾燥体を前記セラミックハニカム乾燥体の端面において、隔壁同士をずらして載置し、前記載置された複数のセラミックハニカム乾燥体の外周部にコート材を塗布し、焼成することを特徴とするセラミックハニカムフィルタの製造方法。   A method for manufacturing a ceramic honeycomb filter in which a plurality of ceramic honeycomb structures are joined, wherein a ceramic clay is extruded into a honeycomb shape, cut into a predetermined length, and a plurality of dried ceramic honeycomb bodies are dried. Production of a ceramic honeycomb filter characterized in that, on the end face of the dried ceramic honeycomb body, the partition walls are shifted from each other, a coating material is applied to the outer peripheral portion of the plurality of dried ceramic honeycomb bodies, and fired Method. 複数のセラミックハニカム構造体が接合されてなるセラミックハニカムフィルタの製造方法であって、セラミック坏土をハニカム状に押出成形し、所定長さに切断し、乾燥、焼成後の複数のセラミックハニカム構造体を前記セラミックハニカム構造体の端面において、隔壁同士をずらして載置し、前記載置された複数のセラミックハニカム構造体の外周部にコート材を塗布することを特徴とするセラミックハニカムフィルタの製造方法。   A method for manufacturing a ceramic honeycomb filter in which a plurality of ceramic honeycomb structures are joined, wherein the ceramic clay is extruded into a honeycomb shape, cut into a predetermined length, dried and fired, and then the plurality of ceramic honeycomb structures On the end face of the ceramic honeycomb structure, the partition walls are shifted from each other, and a coating material is applied to the outer periphery of the plurality of ceramic honeycomb structures placed above, . 前記セラミックハニカム構造体の端面の周縁部に接合材を配置し、前記複数のセラミックハニカム構造体が前記接合材を介して載置されることを特徴とする請求項11乃至請求項14の何れかに記載のセラミックハニカムフィルタの製造方法。   The bonding material is disposed at a peripheral edge portion of the end face of the ceramic honeycomb structure, and the plurality of ceramic honeycomb structures are placed via the bonding material. A method for producing a ceramic honeycomb filter according to claim 1. 前記複数のセラミックハニカム構造体のうちの1つのセラミックハニカム構造体の端面上において、一方の外周端から他方の外周端まで形成されている任意の隔壁に、位置決め部材を略一致させた後、前記1つのセラミックハニカム構造体を、X方向、または、Y方向に移動、もしくは、X方向、Y方向の両方向に移動、もしくは、前記端面の中心を軸として回転移動させ、前記移動した1つのセラミックハニカム構造体の端面上に、他のセラミックハニカム構造体を載置するにあたって、前記他のセラミックハニカム構造体の端面上において、一方の外周端から他方の外周端まで形成されている任意の隔壁に位置決め部材を略一致させて載置することにより、隔壁同士をずらして載置されることを特徴とする請求項11乃至請求項15の何れかに記載のセラミックハニカムフィルタの製造方法。   On the end face of one ceramic honeycomb structure of the plurality of ceramic honeycomb structures, after substantially aligning a positioning member to an arbitrary partition formed from one outer peripheral end to the other outer peripheral end, One ceramic honeycomb structure moved in the X direction or Y direction, or moved in both the X direction and the Y direction, or rotated around the center of the end face, and moved. When placing another ceramic honeycomb structure on the end face of the structure, positioning is performed on an arbitrary partition wall formed from one outer peripheral end to the other outer peripheral end on the end face of the other ceramic honeycomb structure. 16. The structure according to claim 11, wherein the members are placed so as to be substantially coincident with each other so that the partition walls are shifted from each other. Method for producing a ceramic honeycomb filter crab according. 前記位置決め部材が、金属、及び/又は非金属からなる線状部材、もしくは光線であることを特徴とする請求項16に記載のセラミックハニカムフィルタの製造方法。
The method for manufacturing a ceramic honeycomb filter according to claim 16, wherein the positioning member is a linear member made of a metal and / or a non-metal, or a light beam.
JP2012039758A 2011-04-01 2012-02-27 Ceramic honeycomb filter and manufacturing method thereof Pending JP2014113510A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012039758A JP2014113510A (en) 2011-04-01 2012-02-27 Ceramic honeycomb filter and manufacturing method thereof
PCT/JP2012/058267 WO2012137655A1 (en) 2011-04-01 2012-03-28 Ceramic honeycomb filter and method for manufacturing same
CN201280026598.0A CN103648605B (en) 2011-04-01 2012-03-28 Ceramic honeycomb filter and manufacture method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011081374 2011-04-01
JP2011081374 2011-04-01
JP2012039758A JP2014113510A (en) 2011-04-01 2012-02-27 Ceramic honeycomb filter and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2014113510A true JP2014113510A (en) 2014-06-26

Family

ID=46969056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012039758A Pending JP2014113510A (en) 2011-04-01 2012-02-27 Ceramic honeycomb filter and manufacturing method thereof

Country Status (3)

Country Link
JP (1) JP2014113510A (en)
CN (1) CN103648605B (en)
WO (1) WO2012137655A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013202590A (en) * 2012-03-29 2013-10-07 Ngk Insulators Ltd Honeycomb structure
JP2013202591A (en) * 2012-03-29 2013-10-07 Ngk Insulators Ltd Honeycomb structure
JP2021525642A (en) * 2018-05-31 2021-09-27 コーニング インコーポレイテッド Honeycomb body having a triangular cell-shaped honeycomb structure and its manufacturing method
JP7504826B2 (en) 2021-03-23 2024-06-24 日本碍子株式会社 Honeycomb Filter

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105237033B (en) * 2015-09-06 2018-11-30 歌尔股份有限公司 Sound-absorbing material preparation method, sound-absorbing material and its fill method
FR3051836B1 (en) * 2016-05-31 2018-05-25 IFP Energies Nouvelles PARTICULATE FILTER WITH VARIABLE CHANNEL GEOMETRY AND METHODS OF MAKING SUCH A FILTER
JP6887300B2 (en) * 2017-05-12 2021-06-16 日本碍子株式会社 Honeycomb filter
JP2020158351A (en) * 2019-03-27 2020-10-01 日本碍子株式会社 Honeycomb structure and production method of honeycomb structure
US20230311042A1 (en) * 2020-08-20 2023-10-05 Transportation Ip Holdings, Llc Filter system and method
CN112678913B (en) * 2020-12-02 2023-10-27 南京丰禾新材料科技有限公司 Pig raising wastewater filtering equipment capable of regenerating filter materials by microwaves
DE202022107120U1 (en) * 2022-12-20 2024-03-21 Bollbranic Gmbh Filter element, filtration device and use of the filter element

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5786619U (en) * 1980-11-13 1982-05-28
JPH0812460A (en) * 1994-06-22 1996-01-16 Osamu Yamamoto Honeycomb ceramic structure
JPH10249968A (en) * 1997-03-12 1998-09-22 Etsuro Kato Ceramic helical honeycomb structure and its manufacture
DE69817679D1 (en) * 1997-06-12 2003-10-09 Toyota Chuo Kenkyusho Aichi Kk particulate
JPH1181983A (en) * 1997-06-12 1999-03-26 Toyota Central Res & Dev Lab Inc Particulate filter
WO2008078748A1 (en) * 2006-12-27 2008-07-03 Hitachi Metals, Ltd. Ceramic honeycomb structure and process for producing the same
EP2098493B1 (en) * 2006-12-27 2016-09-14 Hitachi Metals, Ltd. Process for producing aluminum-titanate-based ceramic honeycomb structure
US8268401B2 (en) * 2007-03-26 2012-09-18 Hitachi Metals, Ltd. Method for producing ceramic honeycomb structure
US8551579B2 (en) * 2007-03-28 2013-10-08 Hitachi Metals, Ltd. Method for producing ceramic honeycomb structure
CN101679133B (en) * 2007-05-18 2013-06-12 日立金属株式会社 Process for producing ceramic honeycomb structure and ceramic honeycomb structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013202590A (en) * 2012-03-29 2013-10-07 Ngk Insulators Ltd Honeycomb structure
JP2013202591A (en) * 2012-03-29 2013-10-07 Ngk Insulators Ltd Honeycomb structure
JP2021525642A (en) * 2018-05-31 2021-09-27 コーニング インコーポレイテッド Honeycomb body having a triangular cell-shaped honeycomb structure and its manufacturing method
JP7340544B2 (en) 2018-05-31 2023-09-07 コーニング インコーポレイテッド Honeycomb body having triangular cellular honeycomb structure and method for manufacturing the same
JP7504826B2 (en) 2021-03-23 2024-06-24 日本碍子株式会社 Honeycomb Filter

Also Published As

Publication number Publication date
CN103648605B (en) 2015-10-21
CN103648605A (en) 2014-03-19
WO2012137655A1 (en) 2012-10-11

Similar Documents

Publication Publication Date Title
JP2014113510A (en) Ceramic honeycomb filter and manufacturing method thereof
KR101436878B1 (en) Ceramic honeycomb filter and process for producing the same
JP4367683B2 (en) Honeycomb filter
JP5315997B2 (en) Ceramic honeycomb structure and method for manufacturing ceramic honeycomb structure
US9555355B2 (en) Manufacturing method for honeycomb structure and honeycomb structure
WO2014061320A1 (en) Dust-collecting honeycomb filter
US9212589B2 (en) Honeycomb filter
US9238190B2 (en) Plugged honeycomb structure
JPWO2007111279A1 (en) Bonded body, bonded material composition, honeycomb segment bonded body, and honeycomb structure using the same
US9045372B2 (en) Honeycomb structure body
US8053054B2 (en) Honeycomb structure
JP2016190198A (en) Honeycomb structure and production method of honeycomb structure
US10300424B2 (en) Honeycomb filter
JP6847724B2 (en) Sealed honeycomb structure
JP7153684B2 (en) Manufacturing method of honeycomb structure containing silicon carbide
US20240261715A1 (en) Ceramic honeycomb filter
US9168479B2 (en) Plugged honeycomb structure
JP5351678B2 (en) Honeycomb structure
JP2013202532A (en) Honeycomb filter
JP6824780B2 (en) Honeycomb filter
JP7569756B2 (en) Honeycomb Filter
JP2004075522A (en) Ceramic honeycomb structure
JP2010227847A (en) Honeycomb structure
JP5450010B2 (en) Honeycomb structure